1 #ifndef __KVM_HOST_H 2 #define __KVM_HOST_H 3 4 /* 5 * This work is licensed under the terms of the GNU GPL, version 2. See 6 * the COPYING file in the top-level directory. 7 */ 8 9 #include <linux/types.h> 10 #include <linux/hardirq.h> 11 #include <linux/list.h> 12 #include <linux/mutex.h> 13 #include <linux/spinlock.h> 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/bug.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_notifier.h> 19 #include <linux/preempt.h> 20 #include <linux/msi.h> 21 #include <linux/slab.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/swait.h> 29 #include <linux/refcount.h> 30 #include <asm/signal.h> 31 32 #include <linux/kvm.h> 33 #include <linux/kvm_para.h> 34 35 #include <linux/kvm_types.h> 36 37 #include <asm/kvm_host.h> 38 39 #ifndef KVM_MAX_VCPU_ID 40 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 41 #endif 42 43 /* 44 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 45 * in kvm, other bits are visible for userspace which are defined in 46 * include/linux/kvm_h. 47 */ 48 #define KVM_MEMSLOT_INVALID (1UL << 16) 49 50 /* Two fragments for cross MMIO pages. */ 51 #define KVM_MAX_MMIO_FRAGMENTS 2 52 53 #ifndef KVM_ADDRESS_SPACE_NUM 54 #define KVM_ADDRESS_SPACE_NUM 1 55 #endif 56 57 /* 58 * For the normal pfn, the highest 12 bits should be zero, 59 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 60 * mask bit 63 to indicate the noslot pfn. 61 */ 62 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 63 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 64 #define KVM_PFN_NOSLOT (0x1ULL << 63) 65 66 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 67 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 68 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 69 70 /* 71 * error pfns indicate that the gfn is in slot but faild to 72 * translate it to pfn on host. 73 */ 74 static inline bool is_error_pfn(kvm_pfn_t pfn) 75 { 76 return !!(pfn & KVM_PFN_ERR_MASK); 77 } 78 79 /* 80 * error_noslot pfns indicate that the gfn can not be 81 * translated to pfn - it is not in slot or failed to 82 * translate it to pfn. 83 */ 84 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 85 { 86 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 87 } 88 89 /* noslot pfn indicates that the gfn is not in slot. */ 90 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 91 { 92 return pfn == KVM_PFN_NOSLOT; 93 } 94 95 /* 96 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 97 * provide own defines and kvm_is_error_hva 98 */ 99 #ifndef KVM_HVA_ERR_BAD 100 101 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 102 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 103 104 static inline bool kvm_is_error_hva(unsigned long addr) 105 { 106 return addr >= PAGE_OFFSET; 107 } 108 109 #endif 110 111 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 112 113 static inline bool is_error_page(struct page *page) 114 { 115 return IS_ERR(page); 116 } 117 118 #define KVM_REQUEST_MASK GENMASK(7,0) 119 #define KVM_REQUEST_NO_WAKEUP BIT(8) 120 #define KVM_REQUEST_WAIT BIT(9) 121 /* 122 * Architecture-independent vcpu->requests bit members 123 * Bits 4-7 are reserved for more arch-independent bits. 124 */ 125 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 126 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 127 #define KVM_REQ_PENDING_TIMER 2 128 #define KVM_REQ_UNHALT 3 129 #define KVM_REQUEST_ARCH_BASE 8 130 131 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 132 BUILD_BUG_ON((unsigned)(nr) >= 32 - KVM_REQUEST_ARCH_BASE); \ 133 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 134 }) 135 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 136 137 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 138 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 139 140 extern struct kmem_cache *kvm_vcpu_cache; 141 142 extern spinlock_t kvm_lock; 143 extern struct list_head vm_list; 144 145 struct kvm_io_range { 146 gpa_t addr; 147 int len; 148 struct kvm_io_device *dev; 149 }; 150 151 #define NR_IOBUS_DEVS 1000 152 153 struct kvm_io_bus { 154 int dev_count; 155 int ioeventfd_count; 156 struct kvm_io_range range[]; 157 }; 158 159 enum kvm_bus { 160 KVM_MMIO_BUS, 161 KVM_PIO_BUS, 162 KVM_VIRTIO_CCW_NOTIFY_BUS, 163 KVM_FAST_MMIO_BUS, 164 KVM_NR_BUSES 165 }; 166 167 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 168 int len, const void *val); 169 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 170 gpa_t addr, int len, const void *val, long cookie); 171 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 172 int len, void *val); 173 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 174 int len, struct kvm_io_device *dev); 175 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 176 struct kvm_io_device *dev); 177 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 178 gpa_t addr); 179 180 #ifdef CONFIG_KVM_ASYNC_PF 181 struct kvm_async_pf { 182 struct work_struct work; 183 struct list_head link; 184 struct list_head queue; 185 struct kvm_vcpu *vcpu; 186 struct mm_struct *mm; 187 gva_t gva; 188 unsigned long addr; 189 struct kvm_arch_async_pf arch; 190 bool wakeup_all; 191 }; 192 193 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 194 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 195 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 196 struct kvm_arch_async_pf *arch); 197 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 198 #endif 199 200 enum { 201 OUTSIDE_GUEST_MODE, 202 IN_GUEST_MODE, 203 EXITING_GUEST_MODE, 204 READING_SHADOW_PAGE_TABLES, 205 }; 206 207 /* 208 * Sometimes a large or cross-page mmio needs to be broken up into separate 209 * exits for userspace servicing. 210 */ 211 struct kvm_mmio_fragment { 212 gpa_t gpa; 213 void *data; 214 unsigned len; 215 }; 216 217 struct kvm_vcpu { 218 struct kvm *kvm; 219 #ifdef CONFIG_PREEMPT_NOTIFIERS 220 struct preempt_notifier preempt_notifier; 221 #endif 222 int cpu; 223 int vcpu_id; 224 int srcu_idx; 225 int mode; 226 unsigned long requests; 227 unsigned long guest_debug; 228 229 int pre_pcpu; 230 struct list_head blocked_vcpu_list; 231 232 struct mutex mutex; 233 struct kvm_run *run; 234 235 int guest_fpu_loaded, guest_xcr0_loaded; 236 struct swait_queue_head wq; 237 struct pid __rcu *pid; 238 int sigset_active; 239 sigset_t sigset; 240 struct kvm_vcpu_stat stat; 241 unsigned int halt_poll_ns; 242 bool valid_wakeup; 243 244 #ifdef CONFIG_HAS_IOMEM 245 int mmio_needed; 246 int mmio_read_completed; 247 int mmio_is_write; 248 int mmio_cur_fragment; 249 int mmio_nr_fragments; 250 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 251 #endif 252 253 #ifdef CONFIG_KVM_ASYNC_PF 254 struct { 255 u32 queued; 256 struct list_head queue; 257 struct list_head done; 258 spinlock_t lock; 259 } async_pf; 260 #endif 261 262 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 263 /* 264 * Cpu relax intercept or pause loop exit optimization 265 * in_spin_loop: set when a vcpu does a pause loop exit 266 * or cpu relax intercepted. 267 * dy_eligible: indicates whether vcpu is eligible for directed yield. 268 */ 269 struct { 270 bool in_spin_loop; 271 bool dy_eligible; 272 } spin_loop; 273 #endif 274 bool preempted; 275 struct kvm_vcpu_arch arch; 276 struct dentry *debugfs_dentry; 277 }; 278 279 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 280 { 281 /* 282 * The memory barrier ensures a previous write to vcpu->requests cannot 283 * be reordered with the read of vcpu->mode. It pairs with the general 284 * memory barrier following the write of vcpu->mode in VCPU RUN. 285 */ 286 smp_mb__before_atomic(); 287 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 288 } 289 290 /* 291 * Some of the bitops functions do not support too long bitmaps. 292 * This number must be determined not to exceed such limits. 293 */ 294 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 295 296 struct kvm_memory_slot { 297 gfn_t base_gfn; 298 unsigned long npages; 299 unsigned long *dirty_bitmap; 300 struct kvm_arch_memory_slot arch; 301 unsigned long userspace_addr; 302 u32 flags; 303 short id; 304 }; 305 306 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 307 { 308 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 309 } 310 311 struct kvm_s390_adapter_int { 312 u64 ind_addr; 313 u64 summary_addr; 314 u64 ind_offset; 315 u32 summary_offset; 316 u32 adapter_id; 317 }; 318 319 struct kvm_hv_sint { 320 u32 vcpu; 321 u32 sint; 322 }; 323 324 struct kvm_kernel_irq_routing_entry { 325 u32 gsi; 326 u32 type; 327 int (*set)(struct kvm_kernel_irq_routing_entry *e, 328 struct kvm *kvm, int irq_source_id, int level, 329 bool line_status); 330 union { 331 struct { 332 unsigned irqchip; 333 unsigned pin; 334 } irqchip; 335 struct { 336 u32 address_lo; 337 u32 address_hi; 338 u32 data; 339 u32 flags; 340 u32 devid; 341 } msi; 342 struct kvm_s390_adapter_int adapter; 343 struct kvm_hv_sint hv_sint; 344 }; 345 struct hlist_node link; 346 }; 347 348 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 349 struct kvm_irq_routing_table { 350 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 351 u32 nr_rt_entries; 352 /* 353 * Array indexed by gsi. Each entry contains list of irq chips 354 * the gsi is connected to. 355 */ 356 struct hlist_head map[0]; 357 }; 358 #endif 359 360 #ifndef KVM_PRIVATE_MEM_SLOTS 361 #define KVM_PRIVATE_MEM_SLOTS 0 362 #endif 363 364 #ifndef KVM_MEM_SLOTS_NUM 365 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 366 #endif 367 368 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 369 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 370 { 371 return 0; 372 } 373 #endif 374 375 /* 376 * Note: 377 * memslots are not sorted by id anymore, please use id_to_memslot() 378 * to get the memslot by its id. 379 */ 380 struct kvm_memslots { 381 u64 generation; 382 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 383 /* The mapping table from slot id to the index in memslots[]. */ 384 short id_to_index[KVM_MEM_SLOTS_NUM]; 385 atomic_t lru_slot; 386 int used_slots; 387 }; 388 389 struct kvm { 390 spinlock_t mmu_lock; 391 struct mutex slots_lock; 392 struct mm_struct *mm; /* userspace tied to this vm */ 393 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 394 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 395 396 /* 397 * created_vcpus is protected by kvm->lock, and is incremented 398 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 399 * incremented after storing the kvm_vcpu pointer in vcpus, 400 * and is accessed atomically. 401 */ 402 atomic_t online_vcpus; 403 int created_vcpus; 404 int last_boosted_vcpu; 405 struct list_head vm_list; 406 struct mutex lock; 407 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 408 #ifdef CONFIG_HAVE_KVM_EVENTFD 409 struct { 410 spinlock_t lock; 411 struct list_head items; 412 struct list_head resampler_list; 413 struct mutex resampler_lock; 414 } irqfds; 415 struct list_head ioeventfds; 416 #endif 417 struct kvm_vm_stat stat; 418 struct kvm_arch arch; 419 refcount_t users_count; 420 #ifdef CONFIG_KVM_MMIO 421 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 422 spinlock_t ring_lock; 423 struct list_head coalesced_zones; 424 #endif 425 426 struct mutex irq_lock; 427 #ifdef CONFIG_HAVE_KVM_IRQCHIP 428 /* 429 * Update side is protected by irq_lock. 430 */ 431 struct kvm_irq_routing_table __rcu *irq_routing; 432 #endif 433 #ifdef CONFIG_HAVE_KVM_IRQFD 434 struct hlist_head irq_ack_notifier_list; 435 #endif 436 437 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 438 struct mmu_notifier mmu_notifier; 439 unsigned long mmu_notifier_seq; 440 long mmu_notifier_count; 441 #endif 442 long tlbs_dirty; 443 struct list_head devices; 444 struct dentry *debugfs_dentry; 445 struct kvm_stat_data **debugfs_stat_data; 446 struct srcu_struct srcu; 447 struct srcu_struct irq_srcu; 448 pid_t userspace_pid; 449 }; 450 451 #define kvm_err(fmt, ...) \ 452 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 453 #define kvm_info(fmt, ...) \ 454 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 455 #define kvm_debug(fmt, ...) \ 456 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 457 #define kvm_debug_ratelimited(fmt, ...) \ 458 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 459 ## __VA_ARGS__) 460 #define kvm_pr_unimpl(fmt, ...) \ 461 pr_err_ratelimited("kvm [%i]: " fmt, \ 462 task_tgid_nr(current), ## __VA_ARGS__) 463 464 /* The guest did something we don't support. */ 465 #define vcpu_unimpl(vcpu, fmt, ...) \ 466 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 467 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 468 469 #define vcpu_debug(vcpu, fmt, ...) \ 470 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 471 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 472 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 473 ## __VA_ARGS__) 474 #define vcpu_err(vcpu, fmt, ...) \ 475 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 476 477 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 478 { 479 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 480 lockdep_is_held(&kvm->slots_lock)); 481 } 482 483 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 484 { 485 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu, in case 486 * the caller has read kvm->online_vcpus before (as is the case 487 * for kvm_for_each_vcpu, for example). 488 */ 489 smp_rmb(); 490 return kvm->vcpus[i]; 491 } 492 493 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 494 for (idx = 0; \ 495 idx < atomic_read(&kvm->online_vcpus) && \ 496 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 497 idx++) 498 499 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 500 { 501 struct kvm_vcpu *vcpu = NULL; 502 int i; 503 504 if (id < 0) 505 return NULL; 506 if (id < KVM_MAX_VCPUS) 507 vcpu = kvm_get_vcpu(kvm, id); 508 if (vcpu && vcpu->vcpu_id == id) 509 return vcpu; 510 kvm_for_each_vcpu(i, vcpu, kvm) 511 if (vcpu->vcpu_id == id) 512 return vcpu; 513 return NULL; 514 } 515 516 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 517 { 518 struct kvm_vcpu *tmp; 519 int idx; 520 521 kvm_for_each_vcpu(idx, tmp, vcpu->kvm) 522 if (tmp == vcpu) 523 return idx; 524 BUG(); 525 } 526 527 #define kvm_for_each_memslot(memslot, slots) \ 528 for (memslot = &slots->memslots[0]; \ 529 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 530 memslot++) 531 532 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 533 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 534 535 int __must_check vcpu_load(struct kvm_vcpu *vcpu); 536 void vcpu_put(struct kvm_vcpu *vcpu); 537 538 #ifdef __KVM_HAVE_IOAPIC 539 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 540 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 541 #else 542 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 543 { 544 } 545 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 546 { 547 } 548 #endif 549 550 #ifdef CONFIG_HAVE_KVM_IRQFD 551 int kvm_irqfd_init(void); 552 void kvm_irqfd_exit(void); 553 #else 554 static inline int kvm_irqfd_init(void) 555 { 556 return 0; 557 } 558 559 static inline void kvm_irqfd_exit(void) 560 { 561 } 562 #endif 563 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 564 struct module *module); 565 void kvm_exit(void); 566 567 void kvm_get_kvm(struct kvm *kvm); 568 void kvm_put_kvm(struct kvm *kvm); 569 570 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 571 { 572 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 573 lockdep_is_held(&kvm->slots_lock)); 574 } 575 576 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 577 { 578 return __kvm_memslots(kvm, 0); 579 } 580 581 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 582 { 583 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 584 585 return __kvm_memslots(vcpu->kvm, as_id); 586 } 587 588 static inline struct kvm_memory_slot * 589 id_to_memslot(struct kvm_memslots *slots, int id) 590 { 591 int index = slots->id_to_index[id]; 592 struct kvm_memory_slot *slot; 593 594 slot = &slots->memslots[index]; 595 596 WARN_ON(slot->id != id); 597 return slot; 598 } 599 600 /* 601 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 602 * - create a new memory slot 603 * - delete an existing memory slot 604 * - modify an existing memory slot 605 * -- move it in the guest physical memory space 606 * -- just change its flags 607 * 608 * Since flags can be changed by some of these operations, the following 609 * differentiation is the best we can do for __kvm_set_memory_region(): 610 */ 611 enum kvm_mr_change { 612 KVM_MR_CREATE, 613 KVM_MR_DELETE, 614 KVM_MR_MOVE, 615 KVM_MR_FLAGS_ONLY, 616 }; 617 618 int kvm_set_memory_region(struct kvm *kvm, 619 const struct kvm_userspace_memory_region *mem); 620 int __kvm_set_memory_region(struct kvm *kvm, 621 const struct kvm_userspace_memory_region *mem); 622 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 623 struct kvm_memory_slot *dont); 624 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 625 unsigned long npages); 626 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots); 627 int kvm_arch_prepare_memory_region(struct kvm *kvm, 628 struct kvm_memory_slot *memslot, 629 const struct kvm_userspace_memory_region *mem, 630 enum kvm_mr_change change); 631 void kvm_arch_commit_memory_region(struct kvm *kvm, 632 const struct kvm_userspace_memory_region *mem, 633 const struct kvm_memory_slot *old, 634 const struct kvm_memory_slot *new, 635 enum kvm_mr_change change); 636 bool kvm_largepages_enabled(void); 637 void kvm_disable_largepages(void); 638 /* flush all memory translations */ 639 void kvm_arch_flush_shadow_all(struct kvm *kvm); 640 /* flush memory translations pointing to 'slot' */ 641 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 642 struct kvm_memory_slot *slot); 643 644 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 645 struct page **pages, int nr_pages); 646 647 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 648 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 649 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 650 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 651 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 652 bool *writable); 653 void kvm_release_page_clean(struct page *page); 654 void kvm_release_page_dirty(struct page *page); 655 void kvm_set_page_accessed(struct page *page); 656 657 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 658 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 659 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 660 bool *writable); 661 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 662 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 663 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 664 bool atomic, bool *async, bool write_fault, 665 bool *writable); 666 667 void kvm_release_pfn_clean(kvm_pfn_t pfn); 668 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 669 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 670 void kvm_get_pfn(kvm_pfn_t pfn); 671 672 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 673 int len); 674 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 675 unsigned long len); 676 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 677 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 678 void *data, unsigned long len); 679 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 680 int offset, int len); 681 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 682 unsigned long len); 683 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 684 void *data, unsigned long len); 685 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 686 void *data, int offset, unsigned long len); 687 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 688 gpa_t gpa, unsigned long len); 689 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 690 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 691 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 692 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 693 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 694 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 695 696 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 697 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 698 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 699 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 700 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 701 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 702 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 703 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 704 int len); 705 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 706 unsigned long len); 707 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 708 unsigned long len); 709 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 710 int offset, int len); 711 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 712 unsigned long len); 713 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 714 715 void kvm_vcpu_block(struct kvm_vcpu *vcpu); 716 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 717 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 718 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 719 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 720 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 721 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu); 722 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu); 723 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu); 724 725 void kvm_flush_remote_tlbs(struct kvm *kvm); 726 void kvm_reload_remote_mmus(struct kvm *kvm); 727 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 728 729 long kvm_arch_dev_ioctl(struct file *filp, 730 unsigned int ioctl, unsigned long arg); 731 long kvm_arch_vcpu_ioctl(struct file *filp, 732 unsigned int ioctl, unsigned long arg); 733 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 734 735 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 736 737 int kvm_get_dirty_log(struct kvm *kvm, 738 struct kvm_dirty_log *log, int *is_dirty); 739 740 int kvm_get_dirty_log_protect(struct kvm *kvm, 741 struct kvm_dirty_log *log, bool *is_dirty); 742 743 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 744 struct kvm_memory_slot *slot, 745 gfn_t gfn_offset, 746 unsigned long mask); 747 748 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 749 struct kvm_dirty_log *log); 750 751 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 752 bool line_status); 753 long kvm_arch_vm_ioctl(struct file *filp, 754 unsigned int ioctl, unsigned long arg); 755 756 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 757 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 758 759 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 760 struct kvm_translation *tr); 761 762 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 763 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 764 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 765 struct kvm_sregs *sregs); 766 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 767 struct kvm_sregs *sregs); 768 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 769 struct kvm_mp_state *mp_state); 770 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 771 struct kvm_mp_state *mp_state); 772 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 773 struct kvm_guest_debug *dbg); 774 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 775 776 int kvm_arch_init(void *opaque); 777 void kvm_arch_exit(void); 778 779 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 780 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 781 782 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 783 784 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 785 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 786 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 787 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 788 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 789 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 790 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 791 792 bool kvm_arch_has_vcpu_debugfs(void); 793 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 794 795 int kvm_arch_hardware_enable(void); 796 void kvm_arch_hardware_disable(void); 797 int kvm_arch_hardware_setup(void); 798 void kvm_arch_hardware_unsetup(void); 799 void kvm_arch_check_processor_compat(void *rtn); 800 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 801 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 802 803 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 804 static inline struct kvm *kvm_arch_alloc_vm(void) 805 { 806 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 807 } 808 809 static inline void kvm_arch_free_vm(struct kvm *kvm) 810 { 811 kfree(kvm); 812 } 813 #endif 814 815 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 816 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 817 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 818 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 819 #else 820 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 821 { 822 } 823 824 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 825 { 826 } 827 828 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 829 { 830 return false; 831 } 832 #endif 833 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 834 void kvm_arch_start_assignment(struct kvm *kvm); 835 void kvm_arch_end_assignment(struct kvm *kvm); 836 bool kvm_arch_has_assigned_device(struct kvm *kvm); 837 #else 838 static inline void kvm_arch_start_assignment(struct kvm *kvm) 839 { 840 } 841 842 static inline void kvm_arch_end_assignment(struct kvm *kvm) 843 { 844 } 845 846 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 847 { 848 return false; 849 } 850 #endif 851 852 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 853 { 854 #ifdef __KVM_HAVE_ARCH_WQP 855 return vcpu->arch.wqp; 856 #else 857 return &vcpu->wq; 858 #endif 859 } 860 861 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 862 /* 863 * returns true if the virtual interrupt controller is initialized and 864 * ready to accept virtual IRQ. On some architectures the virtual interrupt 865 * controller is dynamically instantiated and this is not always true. 866 */ 867 bool kvm_arch_intc_initialized(struct kvm *kvm); 868 #else 869 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 870 { 871 return true; 872 } 873 #endif 874 875 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 876 void kvm_arch_destroy_vm(struct kvm *kvm); 877 void kvm_arch_sync_events(struct kvm *kvm); 878 879 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 880 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 881 882 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 883 884 struct kvm_irq_ack_notifier { 885 struct hlist_node link; 886 unsigned gsi; 887 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 888 }; 889 890 int kvm_irq_map_gsi(struct kvm *kvm, 891 struct kvm_kernel_irq_routing_entry *entries, int gsi); 892 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 893 894 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 895 bool line_status); 896 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 897 int irq_source_id, int level, bool line_status); 898 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 899 struct kvm *kvm, int irq_source_id, 900 int level, bool line_status); 901 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 902 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 903 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 904 void kvm_register_irq_ack_notifier(struct kvm *kvm, 905 struct kvm_irq_ack_notifier *kian); 906 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 907 struct kvm_irq_ack_notifier *kian); 908 int kvm_request_irq_source_id(struct kvm *kvm); 909 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 910 911 /* 912 * search_memslots() and __gfn_to_memslot() are here because they are 913 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 914 * gfn_to_memslot() itself isn't here as an inline because that would 915 * bloat other code too much. 916 */ 917 static inline struct kvm_memory_slot * 918 search_memslots(struct kvm_memslots *slots, gfn_t gfn) 919 { 920 int start = 0, end = slots->used_slots; 921 int slot = atomic_read(&slots->lru_slot); 922 struct kvm_memory_slot *memslots = slots->memslots; 923 924 if (gfn >= memslots[slot].base_gfn && 925 gfn < memslots[slot].base_gfn + memslots[slot].npages) 926 return &memslots[slot]; 927 928 while (start < end) { 929 slot = start + (end - start) / 2; 930 931 if (gfn >= memslots[slot].base_gfn) 932 end = slot; 933 else 934 start = slot + 1; 935 } 936 937 if (gfn >= memslots[start].base_gfn && 938 gfn < memslots[start].base_gfn + memslots[start].npages) { 939 atomic_set(&slots->lru_slot, start); 940 return &memslots[start]; 941 } 942 943 return NULL; 944 } 945 946 static inline struct kvm_memory_slot * 947 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 948 { 949 return search_memslots(slots, gfn); 950 } 951 952 static inline unsigned long 953 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 954 { 955 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 956 } 957 958 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 959 { 960 return gfn_to_memslot(kvm, gfn)->id; 961 } 962 963 static inline gfn_t 964 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 965 { 966 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 967 968 return slot->base_gfn + gfn_offset; 969 } 970 971 static inline gpa_t gfn_to_gpa(gfn_t gfn) 972 { 973 return (gpa_t)gfn << PAGE_SHIFT; 974 } 975 976 static inline gfn_t gpa_to_gfn(gpa_t gpa) 977 { 978 return (gfn_t)(gpa >> PAGE_SHIFT); 979 } 980 981 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 982 { 983 return (hpa_t)pfn << PAGE_SHIFT; 984 } 985 986 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 987 { 988 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 989 990 return kvm_is_error_hva(hva); 991 } 992 993 enum kvm_stat_kind { 994 KVM_STAT_VM, 995 KVM_STAT_VCPU, 996 }; 997 998 struct kvm_stat_data { 999 int offset; 1000 struct kvm *kvm; 1001 }; 1002 1003 struct kvm_stats_debugfs_item { 1004 const char *name; 1005 int offset; 1006 enum kvm_stat_kind kind; 1007 }; 1008 extern struct kvm_stats_debugfs_item debugfs_entries[]; 1009 extern struct dentry *kvm_debugfs_dir; 1010 1011 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1012 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1013 { 1014 if (unlikely(kvm->mmu_notifier_count)) 1015 return 1; 1016 /* 1017 * Ensure the read of mmu_notifier_count happens before the read 1018 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1019 * mmu_notifier_invalidate_range_end to make sure that the caller 1020 * either sees the old (non-zero) value of mmu_notifier_count or 1021 * the new (incremented) value of mmu_notifier_seq. 1022 * PowerPC Book3s HV KVM calls this under a per-page lock 1023 * rather than under kvm->mmu_lock, for scalability, so 1024 * can't rely on kvm->mmu_lock to keep things ordered. 1025 */ 1026 smp_rmb(); 1027 if (kvm->mmu_notifier_seq != mmu_seq) 1028 return 1; 1029 return 0; 1030 } 1031 #endif 1032 1033 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1034 1035 #ifdef CONFIG_S390 1036 #define KVM_MAX_IRQ_ROUTES 4096 //FIXME: we can have more than that... 1037 #elif defined(CONFIG_ARM64) 1038 #define KVM_MAX_IRQ_ROUTES 4096 1039 #else 1040 #define KVM_MAX_IRQ_ROUTES 1024 1041 #endif 1042 1043 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1044 int kvm_set_irq_routing(struct kvm *kvm, 1045 const struct kvm_irq_routing_entry *entries, 1046 unsigned nr, 1047 unsigned flags); 1048 int kvm_set_routing_entry(struct kvm *kvm, 1049 struct kvm_kernel_irq_routing_entry *e, 1050 const struct kvm_irq_routing_entry *ue); 1051 void kvm_free_irq_routing(struct kvm *kvm); 1052 1053 #else 1054 1055 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1056 1057 #endif 1058 1059 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1060 1061 #ifdef CONFIG_HAVE_KVM_EVENTFD 1062 1063 void kvm_eventfd_init(struct kvm *kvm); 1064 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1065 1066 #ifdef CONFIG_HAVE_KVM_IRQFD 1067 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1068 void kvm_irqfd_release(struct kvm *kvm); 1069 void kvm_irq_routing_update(struct kvm *); 1070 #else 1071 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1072 { 1073 return -EINVAL; 1074 } 1075 1076 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1077 #endif 1078 1079 #else 1080 1081 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1082 1083 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1084 { 1085 return -EINVAL; 1086 } 1087 1088 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1089 1090 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1091 static inline void kvm_irq_routing_update(struct kvm *kvm) 1092 { 1093 } 1094 #endif 1095 void kvm_arch_irq_routing_update(struct kvm *kvm); 1096 1097 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1098 { 1099 return -ENOSYS; 1100 } 1101 1102 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1103 1104 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1105 { 1106 /* 1107 * Ensure the rest of the request is published to kvm_check_request's 1108 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1109 */ 1110 smp_wmb(); 1111 set_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1112 } 1113 1114 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1115 { 1116 return READ_ONCE(vcpu->requests); 1117 } 1118 1119 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1120 { 1121 return test_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1122 } 1123 1124 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1125 { 1126 clear_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1127 } 1128 1129 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1130 { 1131 if (kvm_test_request(req, vcpu)) { 1132 kvm_clear_request(req, vcpu); 1133 1134 /* 1135 * Ensure the rest of the request is visible to kvm_check_request's 1136 * caller. Paired with the smp_wmb in kvm_make_request. 1137 */ 1138 smp_mb__after_atomic(); 1139 return true; 1140 } else { 1141 return false; 1142 } 1143 } 1144 1145 extern bool kvm_rebooting; 1146 1147 extern unsigned int halt_poll_ns; 1148 extern unsigned int halt_poll_ns_grow; 1149 extern unsigned int halt_poll_ns_shrink; 1150 1151 struct kvm_device { 1152 struct kvm_device_ops *ops; 1153 struct kvm *kvm; 1154 void *private; 1155 struct list_head vm_node; 1156 }; 1157 1158 /* create, destroy, and name are mandatory */ 1159 struct kvm_device_ops { 1160 const char *name; 1161 1162 /* 1163 * create is called holding kvm->lock and any operations not suitable 1164 * to do while holding the lock should be deferred to init (see 1165 * below). 1166 */ 1167 int (*create)(struct kvm_device *dev, u32 type); 1168 1169 /* 1170 * init is called after create if create is successful and is called 1171 * outside of holding kvm->lock. 1172 */ 1173 void (*init)(struct kvm_device *dev); 1174 1175 /* 1176 * Destroy is responsible for freeing dev. 1177 * 1178 * Destroy may be called before or after destructors are called 1179 * on emulated I/O regions, depending on whether a reference is 1180 * held by a vcpu or other kvm component that gets destroyed 1181 * after the emulated I/O. 1182 */ 1183 void (*destroy)(struct kvm_device *dev); 1184 1185 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1186 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1187 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1188 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1189 unsigned long arg); 1190 }; 1191 1192 void kvm_device_get(struct kvm_device *dev); 1193 void kvm_device_put(struct kvm_device *dev); 1194 struct kvm_device *kvm_device_from_filp(struct file *filp); 1195 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1196 void kvm_unregister_device_ops(u32 type); 1197 1198 extern struct kvm_device_ops kvm_mpic_ops; 1199 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1200 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1201 1202 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1203 1204 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1205 { 1206 vcpu->spin_loop.in_spin_loop = val; 1207 } 1208 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1209 { 1210 vcpu->spin_loop.dy_eligible = val; 1211 } 1212 1213 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1214 1215 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1216 { 1217 } 1218 1219 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1220 { 1221 } 1222 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1223 1224 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1225 bool kvm_arch_has_irq_bypass(void); 1226 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1227 struct irq_bypass_producer *); 1228 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1229 struct irq_bypass_producer *); 1230 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1231 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1232 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1233 uint32_t guest_irq, bool set); 1234 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1235 1236 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1237 /* If we wakeup during the poll time, was it a sucessful poll? */ 1238 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1239 { 1240 return vcpu->valid_wakeup; 1241 } 1242 1243 #else 1244 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1245 { 1246 return true; 1247 } 1248 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1249 1250 #endif 1251