1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/bug.h> 14 #include <linux/mm.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/preempt.h> 17 #include <linux/msi.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/rcupdate.h> 21 #include <linux/ratelimit.h> 22 #include <linux/err.h> 23 #include <linux/irqflags.h> 24 #include <linux/context_tracking.h> 25 #include <linux/irqbypass.h> 26 #include <linux/swait.h> 27 #include <linux/refcount.h> 28 #include <linux/nospec.h> 29 #include <asm/signal.h> 30 31 #include <linux/kvm.h> 32 #include <linux/kvm_para.h> 33 34 #include <linux/kvm_types.h> 35 36 #include <asm/kvm_host.h> 37 38 #ifndef KVM_MAX_VCPU_ID 39 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 40 #endif 41 42 /* 43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 44 * in kvm, other bits are visible for userspace which are defined in 45 * include/linux/kvm_h. 46 */ 47 #define KVM_MEMSLOT_INVALID (1UL << 16) 48 49 /* 50 * Bit 63 of the memslot generation number is an "update in-progress flag", 51 * e.g. is temporarily set for the duration of install_new_memslots(). 52 * This flag effectively creates a unique generation number that is used to 53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 54 * i.e. may (or may not) have come from the previous memslots generation. 55 * 56 * This is necessary because the actual memslots update is not atomic with 57 * respect to the generation number update. Updating the generation number 58 * first would allow a vCPU to cache a spte from the old memslots using the 59 * new generation number, and updating the generation number after switching 60 * to the new memslots would allow cache hits using the old generation number 61 * to reference the defunct memslots. 62 * 63 * This mechanism is used to prevent getting hits in KVM's caches while a 64 * memslot update is in-progress, and to prevent cache hits *after* updating 65 * the actual generation number against accesses that were inserted into the 66 * cache *before* the memslots were updated. 67 */ 68 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 69 70 /* Two fragments for cross MMIO pages. */ 71 #define KVM_MAX_MMIO_FRAGMENTS 2 72 73 #ifndef KVM_ADDRESS_SPACE_NUM 74 #define KVM_ADDRESS_SPACE_NUM 1 75 #endif 76 77 /* 78 * For the normal pfn, the highest 12 bits should be zero, 79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 80 * mask bit 63 to indicate the noslot pfn. 81 */ 82 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 83 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 84 #define KVM_PFN_NOSLOT (0x1ULL << 63) 85 86 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 87 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 88 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 89 90 /* 91 * error pfns indicate that the gfn is in slot but faild to 92 * translate it to pfn on host. 93 */ 94 static inline bool is_error_pfn(kvm_pfn_t pfn) 95 { 96 return !!(pfn & KVM_PFN_ERR_MASK); 97 } 98 99 /* 100 * error_noslot pfns indicate that the gfn can not be 101 * translated to pfn - it is not in slot or failed to 102 * translate it to pfn. 103 */ 104 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 105 { 106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 107 } 108 109 /* noslot pfn indicates that the gfn is not in slot. */ 110 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 111 { 112 return pfn == KVM_PFN_NOSLOT; 113 } 114 115 /* 116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 117 * provide own defines and kvm_is_error_hva 118 */ 119 #ifndef KVM_HVA_ERR_BAD 120 121 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 122 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 123 124 static inline bool kvm_is_error_hva(unsigned long addr) 125 { 126 return addr >= PAGE_OFFSET; 127 } 128 129 #endif 130 131 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 132 133 static inline bool is_error_page(struct page *page) 134 { 135 return IS_ERR(page); 136 } 137 138 #define KVM_REQUEST_MASK GENMASK(7,0) 139 #define KVM_REQUEST_NO_WAKEUP BIT(8) 140 #define KVM_REQUEST_WAIT BIT(9) 141 /* 142 * Architecture-independent vcpu->requests bit members 143 * Bits 4-7 are reserved for more arch-independent bits. 144 */ 145 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 146 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 147 #define KVM_REQ_PENDING_TIMER 2 148 #define KVM_REQ_UNHALT 3 149 #define KVM_REQUEST_ARCH_BASE 8 150 151 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 152 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 154 }) 155 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 156 157 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 158 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 159 160 extern struct kmem_cache *kvm_vcpu_cache; 161 162 extern struct mutex kvm_lock; 163 extern struct list_head vm_list; 164 165 struct kvm_io_range { 166 gpa_t addr; 167 int len; 168 struct kvm_io_device *dev; 169 }; 170 171 #define NR_IOBUS_DEVS 1000 172 173 struct kvm_io_bus { 174 int dev_count; 175 int ioeventfd_count; 176 struct kvm_io_range range[]; 177 }; 178 179 enum kvm_bus { 180 KVM_MMIO_BUS, 181 KVM_PIO_BUS, 182 KVM_VIRTIO_CCW_NOTIFY_BUS, 183 KVM_FAST_MMIO_BUS, 184 KVM_NR_BUSES 185 }; 186 187 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 188 int len, const void *val); 189 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 190 gpa_t addr, int len, const void *val, long cookie); 191 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 192 int len, void *val); 193 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 194 int len, struct kvm_io_device *dev); 195 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 196 struct kvm_io_device *dev); 197 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 198 gpa_t addr); 199 200 #ifdef CONFIG_KVM_ASYNC_PF 201 struct kvm_async_pf { 202 struct work_struct work; 203 struct list_head link; 204 struct list_head queue; 205 struct kvm_vcpu *vcpu; 206 struct mm_struct *mm; 207 gva_t gva; 208 unsigned long addr; 209 struct kvm_arch_async_pf arch; 210 bool wakeup_all; 211 }; 212 213 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 214 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 215 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 216 struct kvm_arch_async_pf *arch); 217 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 218 #endif 219 220 enum { 221 OUTSIDE_GUEST_MODE, 222 IN_GUEST_MODE, 223 EXITING_GUEST_MODE, 224 READING_SHADOW_PAGE_TABLES, 225 }; 226 227 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 228 229 struct kvm_host_map { 230 /* 231 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 232 * a 'struct page' for it. When using mem= kernel parameter some memory 233 * can be used as guest memory but they are not managed by host 234 * kernel). 235 * If 'pfn' is not managed by the host kernel, this field is 236 * initialized to KVM_UNMAPPED_PAGE. 237 */ 238 struct page *page; 239 void *hva; 240 kvm_pfn_t pfn; 241 kvm_pfn_t gfn; 242 }; 243 244 /* 245 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 246 * directly to check for that. 247 */ 248 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 249 { 250 return !!map->hva; 251 } 252 253 /* 254 * Sometimes a large or cross-page mmio needs to be broken up into separate 255 * exits for userspace servicing. 256 */ 257 struct kvm_mmio_fragment { 258 gpa_t gpa; 259 void *data; 260 unsigned len; 261 }; 262 263 struct kvm_vcpu { 264 struct kvm *kvm; 265 #ifdef CONFIG_PREEMPT_NOTIFIERS 266 struct preempt_notifier preempt_notifier; 267 #endif 268 int cpu; 269 int vcpu_id; 270 int srcu_idx; 271 int mode; 272 u64 requests; 273 unsigned long guest_debug; 274 275 int pre_pcpu; 276 struct list_head blocked_vcpu_list; 277 278 struct mutex mutex; 279 struct kvm_run *run; 280 281 int guest_xcr0_loaded; 282 struct swait_queue_head wq; 283 struct pid __rcu *pid; 284 int sigset_active; 285 sigset_t sigset; 286 struct kvm_vcpu_stat stat; 287 unsigned int halt_poll_ns; 288 bool valid_wakeup; 289 290 #ifdef CONFIG_HAS_IOMEM 291 int mmio_needed; 292 int mmio_read_completed; 293 int mmio_is_write; 294 int mmio_cur_fragment; 295 int mmio_nr_fragments; 296 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 297 #endif 298 299 #ifdef CONFIG_KVM_ASYNC_PF 300 struct { 301 u32 queued; 302 struct list_head queue; 303 struct list_head done; 304 spinlock_t lock; 305 } async_pf; 306 #endif 307 308 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 309 /* 310 * Cpu relax intercept or pause loop exit optimization 311 * in_spin_loop: set when a vcpu does a pause loop exit 312 * or cpu relax intercepted. 313 * dy_eligible: indicates whether vcpu is eligible for directed yield. 314 */ 315 struct { 316 bool in_spin_loop; 317 bool dy_eligible; 318 } spin_loop; 319 #endif 320 bool preempted; 321 struct kvm_vcpu_arch arch; 322 struct dentry *debugfs_dentry; 323 }; 324 325 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 326 { 327 /* 328 * The memory barrier ensures a previous write to vcpu->requests cannot 329 * be reordered with the read of vcpu->mode. It pairs with the general 330 * memory barrier following the write of vcpu->mode in VCPU RUN. 331 */ 332 smp_mb__before_atomic(); 333 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 334 } 335 336 /* 337 * Some of the bitops functions do not support too long bitmaps. 338 * This number must be determined not to exceed such limits. 339 */ 340 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 341 342 struct kvm_memory_slot { 343 gfn_t base_gfn; 344 unsigned long npages; 345 unsigned long *dirty_bitmap; 346 struct kvm_arch_memory_slot arch; 347 unsigned long userspace_addr; 348 u32 flags; 349 short id; 350 }; 351 352 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 353 { 354 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 355 } 356 357 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 358 { 359 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 360 361 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 362 } 363 364 struct kvm_s390_adapter_int { 365 u64 ind_addr; 366 u64 summary_addr; 367 u64 ind_offset; 368 u32 summary_offset; 369 u32 adapter_id; 370 }; 371 372 struct kvm_hv_sint { 373 u32 vcpu; 374 u32 sint; 375 }; 376 377 struct kvm_kernel_irq_routing_entry { 378 u32 gsi; 379 u32 type; 380 int (*set)(struct kvm_kernel_irq_routing_entry *e, 381 struct kvm *kvm, int irq_source_id, int level, 382 bool line_status); 383 union { 384 struct { 385 unsigned irqchip; 386 unsigned pin; 387 } irqchip; 388 struct { 389 u32 address_lo; 390 u32 address_hi; 391 u32 data; 392 u32 flags; 393 u32 devid; 394 } msi; 395 struct kvm_s390_adapter_int adapter; 396 struct kvm_hv_sint hv_sint; 397 }; 398 struct hlist_node link; 399 }; 400 401 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 402 struct kvm_irq_routing_table { 403 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 404 u32 nr_rt_entries; 405 /* 406 * Array indexed by gsi. Each entry contains list of irq chips 407 * the gsi is connected to. 408 */ 409 struct hlist_head map[0]; 410 }; 411 #endif 412 413 #ifndef KVM_PRIVATE_MEM_SLOTS 414 #define KVM_PRIVATE_MEM_SLOTS 0 415 #endif 416 417 #ifndef KVM_MEM_SLOTS_NUM 418 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 419 #endif 420 421 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 422 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 423 { 424 return 0; 425 } 426 #endif 427 428 /* 429 * Note: 430 * memslots are not sorted by id anymore, please use id_to_memslot() 431 * to get the memslot by its id. 432 */ 433 struct kvm_memslots { 434 u64 generation; 435 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 436 /* The mapping table from slot id to the index in memslots[]. */ 437 short id_to_index[KVM_MEM_SLOTS_NUM]; 438 atomic_t lru_slot; 439 int used_slots; 440 }; 441 442 struct kvm { 443 spinlock_t mmu_lock; 444 struct mutex slots_lock; 445 struct mm_struct *mm; /* userspace tied to this vm */ 446 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 447 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 448 449 /* 450 * created_vcpus is protected by kvm->lock, and is incremented 451 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 452 * incremented after storing the kvm_vcpu pointer in vcpus, 453 * and is accessed atomically. 454 */ 455 atomic_t online_vcpus; 456 int created_vcpus; 457 int last_boosted_vcpu; 458 struct list_head vm_list; 459 struct mutex lock; 460 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 461 #ifdef CONFIG_HAVE_KVM_EVENTFD 462 struct { 463 spinlock_t lock; 464 struct list_head items; 465 struct list_head resampler_list; 466 struct mutex resampler_lock; 467 } irqfds; 468 struct list_head ioeventfds; 469 #endif 470 struct kvm_vm_stat stat; 471 struct kvm_arch arch; 472 refcount_t users_count; 473 #ifdef CONFIG_KVM_MMIO 474 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 475 spinlock_t ring_lock; 476 struct list_head coalesced_zones; 477 #endif 478 479 struct mutex irq_lock; 480 #ifdef CONFIG_HAVE_KVM_IRQCHIP 481 /* 482 * Update side is protected by irq_lock. 483 */ 484 struct kvm_irq_routing_table __rcu *irq_routing; 485 #endif 486 #ifdef CONFIG_HAVE_KVM_IRQFD 487 struct hlist_head irq_ack_notifier_list; 488 #endif 489 490 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 491 struct mmu_notifier mmu_notifier; 492 unsigned long mmu_notifier_seq; 493 long mmu_notifier_count; 494 #endif 495 long tlbs_dirty; 496 struct list_head devices; 497 bool manual_dirty_log_protect; 498 struct dentry *debugfs_dentry; 499 struct kvm_stat_data **debugfs_stat_data; 500 struct srcu_struct srcu; 501 struct srcu_struct irq_srcu; 502 pid_t userspace_pid; 503 }; 504 505 #define kvm_err(fmt, ...) \ 506 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 507 #define kvm_info(fmt, ...) \ 508 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 509 #define kvm_debug(fmt, ...) \ 510 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 511 #define kvm_debug_ratelimited(fmt, ...) \ 512 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 513 ## __VA_ARGS__) 514 #define kvm_pr_unimpl(fmt, ...) \ 515 pr_err_ratelimited("kvm [%i]: " fmt, \ 516 task_tgid_nr(current), ## __VA_ARGS__) 517 518 /* The guest did something we don't support. */ 519 #define vcpu_unimpl(vcpu, fmt, ...) \ 520 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 521 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 522 523 #define vcpu_debug(vcpu, fmt, ...) \ 524 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 525 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 526 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 527 ## __VA_ARGS__) 528 #define vcpu_err(vcpu, fmt, ...) \ 529 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 530 531 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 532 { 533 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 534 lockdep_is_held(&kvm->slots_lock) || 535 !refcount_read(&kvm->users_count)); 536 } 537 538 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 539 { 540 int num_vcpus = atomic_read(&kvm->online_vcpus); 541 i = array_index_nospec(i, num_vcpus); 542 543 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 544 smp_rmb(); 545 return kvm->vcpus[i]; 546 } 547 548 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 549 for (idx = 0; \ 550 idx < atomic_read(&kvm->online_vcpus) && \ 551 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 552 idx++) 553 554 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 555 { 556 struct kvm_vcpu *vcpu = NULL; 557 int i; 558 559 if (id < 0) 560 return NULL; 561 if (id < KVM_MAX_VCPUS) 562 vcpu = kvm_get_vcpu(kvm, id); 563 if (vcpu && vcpu->vcpu_id == id) 564 return vcpu; 565 kvm_for_each_vcpu(i, vcpu, kvm) 566 if (vcpu->vcpu_id == id) 567 return vcpu; 568 return NULL; 569 } 570 571 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 572 { 573 struct kvm_vcpu *tmp; 574 int idx; 575 576 kvm_for_each_vcpu(idx, tmp, vcpu->kvm) 577 if (tmp == vcpu) 578 return idx; 579 BUG(); 580 } 581 582 #define kvm_for_each_memslot(memslot, slots) \ 583 for (memslot = &slots->memslots[0]; \ 584 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 585 memslot++) 586 587 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 588 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 589 590 void vcpu_load(struct kvm_vcpu *vcpu); 591 void vcpu_put(struct kvm_vcpu *vcpu); 592 593 #ifdef __KVM_HAVE_IOAPIC 594 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 595 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 596 #else 597 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 598 { 599 } 600 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 601 { 602 } 603 #endif 604 605 #ifdef CONFIG_HAVE_KVM_IRQFD 606 int kvm_irqfd_init(void); 607 void kvm_irqfd_exit(void); 608 #else 609 static inline int kvm_irqfd_init(void) 610 { 611 return 0; 612 } 613 614 static inline void kvm_irqfd_exit(void) 615 { 616 } 617 #endif 618 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 619 struct module *module); 620 void kvm_exit(void); 621 622 void kvm_get_kvm(struct kvm *kvm); 623 void kvm_put_kvm(struct kvm *kvm); 624 625 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 626 { 627 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 628 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 629 lockdep_is_held(&kvm->slots_lock) || 630 !refcount_read(&kvm->users_count)); 631 } 632 633 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 634 { 635 return __kvm_memslots(kvm, 0); 636 } 637 638 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 639 { 640 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 641 642 return __kvm_memslots(vcpu->kvm, as_id); 643 } 644 645 static inline struct kvm_memory_slot * 646 id_to_memslot(struct kvm_memslots *slots, int id) 647 { 648 int index = slots->id_to_index[id]; 649 struct kvm_memory_slot *slot; 650 651 slot = &slots->memslots[index]; 652 653 WARN_ON(slot->id != id); 654 return slot; 655 } 656 657 /* 658 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 659 * - create a new memory slot 660 * - delete an existing memory slot 661 * - modify an existing memory slot 662 * -- move it in the guest physical memory space 663 * -- just change its flags 664 * 665 * Since flags can be changed by some of these operations, the following 666 * differentiation is the best we can do for __kvm_set_memory_region(): 667 */ 668 enum kvm_mr_change { 669 KVM_MR_CREATE, 670 KVM_MR_DELETE, 671 KVM_MR_MOVE, 672 KVM_MR_FLAGS_ONLY, 673 }; 674 675 int kvm_set_memory_region(struct kvm *kvm, 676 const struct kvm_userspace_memory_region *mem); 677 int __kvm_set_memory_region(struct kvm *kvm, 678 const struct kvm_userspace_memory_region *mem); 679 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 680 struct kvm_memory_slot *dont); 681 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 682 unsigned long npages); 683 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 684 int kvm_arch_prepare_memory_region(struct kvm *kvm, 685 struct kvm_memory_slot *memslot, 686 const struct kvm_userspace_memory_region *mem, 687 enum kvm_mr_change change); 688 void kvm_arch_commit_memory_region(struct kvm *kvm, 689 const struct kvm_userspace_memory_region *mem, 690 const struct kvm_memory_slot *old, 691 const struct kvm_memory_slot *new, 692 enum kvm_mr_change change); 693 bool kvm_largepages_enabled(void); 694 void kvm_disable_largepages(void); 695 /* flush all memory translations */ 696 void kvm_arch_flush_shadow_all(struct kvm *kvm); 697 /* flush memory translations pointing to 'slot' */ 698 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 699 struct kvm_memory_slot *slot); 700 701 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 702 struct page **pages, int nr_pages); 703 704 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 705 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 706 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 707 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 708 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 709 bool *writable); 710 void kvm_release_page_clean(struct page *page); 711 void kvm_release_page_dirty(struct page *page); 712 void kvm_set_page_accessed(struct page *page); 713 714 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 715 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 716 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 717 bool *writable); 718 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 719 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 720 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 721 bool atomic, bool *async, bool write_fault, 722 bool *writable); 723 724 void kvm_release_pfn_clean(kvm_pfn_t pfn); 725 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 726 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 727 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 728 void kvm_get_pfn(kvm_pfn_t pfn); 729 730 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 731 int len); 732 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 733 unsigned long len); 734 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 735 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 736 void *data, unsigned long len); 737 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 738 int offset, int len); 739 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 740 unsigned long len); 741 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 742 void *data, unsigned long len); 743 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 744 void *data, unsigned int offset, 745 unsigned long len); 746 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 747 gpa_t gpa, unsigned long len); 748 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 749 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 750 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 751 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 752 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 753 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 754 755 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 756 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 757 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 758 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 759 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 760 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 761 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 762 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 763 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 764 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 765 int len); 766 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 767 unsigned long len); 768 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 769 unsigned long len); 770 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 771 int offset, int len); 772 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 773 unsigned long len); 774 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 775 776 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 777 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 778 779 void kvm_vcpu_block(struct kvm_vcpu *vcpu); 780 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 781 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 782 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 783 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 784 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 785 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 786 787 void kvm_flush_remote_tlbs(struct kvm *kvm); 788 void kvm_reload_remote_mmus(struct kvm *kvm); 789 790 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 791 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 792 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 793 794 long kvm_arch_dev_ioctl(struct file *filp, 795 unsigned int ioctl, unsigned long arg); 796 long kvm_arch_vcpu_ioctl(struct file *filp, 797 unsigned int ioctl, unsigned long arg); 798 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 799 800 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 801 802 int kvm_get_dirty_log(struct kvm *kvm, 803 struct kvm_dirty_log *log, int *is_dirty); 804 805 int kvm_get_dirty_log_protect(struct kvm *kvm, 806 struct kvm_dirty_log *log, bool *flush); 807 int kvm_clear_dirty_log_protect(struct kvm *kvm, 808 struct kvm_clear_dirty_log *log, bool *flush); 809 810 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 811 struct kvm_memory_slot *slot, 812 gfn_t gfn_offset, 813 unsigned long mask); 814 815 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 816 struct kvm_dirty_log *log); 817 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 818 struct kvm_clear_dirty_log *log); 819 820 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 821 bool line_status); 822 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 823 struct kvm_enable_cap *cap); 824 long kvm_arch_vm_ioctl(struct file *filp, 825 unsigned int ioctl, unsigned long arg); 826 827 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 828 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 829 830 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 831 struct kvm_translation *tr); 832 833 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 834 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 835 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 836 struct kvm_sregs *sregs); 837 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 838 struct kvm_sregs *sregs); 839 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 840 struct kvm_mp_state *mp_state); 841 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 842 struct kvm_mp_state *mp_state); 843 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 844 struct kvm_guest_debug *dbg); 845 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 846 847 int kvm_arch_init(void *opaque); 848 void kvm_arch_exit(void); 849 850 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 851 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 852 853 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 854 855 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 856 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 857 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 858 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 859 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 860 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 861 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 862 863 bool kvm_arch_has_vcpu_debugfs(void); 864 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 865 866 int kvm_arch_hardware_enable(void); 867 void kvm_arch_hardware_disable(void); 868 int kvm_arch_hardware_setup(void); 869 void kvm_arch_hardware_unsetup(void); 870 int kvm_arch_check_processor_compat(void); 871 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 872 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 873 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 874 875 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 876 /* 877 * All architectures that want to use vzalloc currently also 878 * need their own kvm_arch_alloc_vm implementation. 879 */ 880 static inline struct kvm *kvm_arch_alloc_vm(void) 881 { 882 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 883 } 884 885 static inline void kvm_arch_free_vm(struct kvm *kvm) 886 { 887 kfree(kvm); 888 } 889 #endif 890 891 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 892 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 893 { 894 return -ENOTSUPP; 895 } 896 #endif 897 898 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 899 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 900 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 901 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 902 #else 903 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 904 { 905 } 906 907 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 908 { 909 } 910 911 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 912 { 913 return false; 914 } 915 #endif 916 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 917 void kvm_arch_start_assignment(struct kvm *kvm); 918 void kvm_arch_end_assignment(struct kvm *kvm); 919 bool kvm_arch_has_assigned_device(struct kvm *kvm); 920 #else 921 static inline void kvm_arch_start_assignment(struct kvm *kvm) 922 { 923 } 924 925 static inline void kvm_arch_end_assignment(struct kvm *kvm) 926 { 927 } 928 929 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 930 { 931 return false; 932 } 933 #endif 934 935 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 936 { 937 #ifdef __KVM_HAVE_ARCH_WQP 938 return vcpu->arch.wqp; 939 #else 940 return &vcpu->wq; 941 #endif 942 } 943 944 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 945 /* 946 * returns true if the virtual interrupt controller is initialized and 947 * ready to accept virtual IRQ. On some architectures the virtual interrupt 948 * controller is dynamically instantiated and this is not always true. 949 */ 950 bool kvm_arch_intc_initialized(struct kvm *kvm); 951 #else 952 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 953 { 954 return true; 955 } 956 #endif 957 958 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 959 void kvm_arch_destroy_vm(struct kvm *kvm); 960 void kvm_arch_sync_events(struct kvm *kvm); 961 962 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 963 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 964 965 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 966 967 struct kvm_irq_ack_notifier { 968 struct hlist_node link; 969 unsigned gsi; 970 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 971 }; 972 973 int kvm_irq_map_gsi(struct kvm *kvm, 974 struct kvm_kernel_irq_routing_entry *entries, int gsi); 975 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 976 977 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 978 bool line_status); 979 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 980 int irq_source_id, int level, bool line_status); 981 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 982 struct kvm *kvm, int irq_source_id, 983 int level, bool line_status); 984 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 985 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 986 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 987 void kvm_register_irq_ack_notifier(struct kvm *kvm, 988 struct kvm_irq_ack_notifier *kian); 989 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 990 struct kvm_irq_ack_notifier *kian); 991 int kvm_request_irq_source_id(struct kvm *kvm); 992 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 993 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 994 995 /* 996 * search_memslots() and __gfn_to_memslot() are here because they are 997 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 998 * gfn_to_memslot() itself isn't here as an inline because that would 999 * bloat other code too much. 1000 */ 1001 static inline struct kvm_memory_slot * 1002 search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1003 { 1004 int start = 0, end = slots->used_slots; 1005 int slot = atomic_read(&slots->lru_slot); 1006 struct kvm_memory_slot *memslots = slots->memslots; 1007 1008 if (gfn >= memslots[slot].base_gfn && 1009 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1010 return &memslots[slot]; 1011 1012 while (start < end) { 1013 slot = start + (end - start) / 2; 1014 1015 if (gfn >= memslots[slot].base_gfn) 1016 end = slot; 1017 else 1018 start = slot + 1; 1019 } 1020 1021 if (gfn >= memslots[start].base_gfn && 1022 gfn < memslots[start].base_gfn + memslots[start].npages) { 1023 atomic_set(&slots->lru_slot, start); 1024 return &memslots[start]; 1025 } 1026 1027 return NULL; 1028 } 1029 1030 static inline struct kvm_memory_slot * 1031 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1032 { 1033 return search_memslots(slots, gfn); 1034 } 1035 1036 static inline unsigned long 1037 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1038 { 1039 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1040 } 1041 1042 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1043 { 1044 return gfn_to_memslot(kvm, gfn)->id; 1045 } 1046 1047 static inline gfn_t 1048 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1049 { 1050 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1051 1052 return slot->base_gfn + gfn_offset; 1053 } 1054 1055 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1056 { 1057 return (gpa_t)gfn << PAGE_SHIFT; 1058 } 1059 1060 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1061 { 1062 return (gfn_t)(gpa >> PAGE_SHIFT); 1063 } 1064 1065 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1066 { 1067 return (hpa_t)pfn << PAGE_SHIFT; 1068 } 1069 1070 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1071 gpa_t gpa) 1072 { 1073 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1074 } 1075 1076 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1077 { 1078 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1079 1080 return kvm_is_error_hva(hva); 1081 } 1082 1083 enum kvm_stat_kind { 1084 KVM_STAT_VM, 1085 KVM_STAT_VCPU, 1086 }; 1087 1088 struct kvm_stat_data { 1089 int offset; 1090 struct kvm *kvm; 1091 }; 1092 1093 struct kvm_stats_debugfs_item { 1094 const char *name; 1095 int offset; 1096 enum kvm_stat_kind kind; 1097 }; 1098 extern struct kvm_stats_debugfs_item debugfs_entries[]; 1099 extern struct dentry *kvm_debugfs_dir; 1100 1101 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1102 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1103 { 1104 if (unlikely(kvm->mmu_notifier_count)) 1105 return 1; 1106 /* 1107 * Ensure the read of mmu_notifier_count happens before the read 1108 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1109 * mmu_notifier_invalidate_range_end to make sure that the caller 1110 * either sees the old (non-zero) value of mmu_notifier_count or 1111 * the new (incremented) value of mmu_notifier_seq. 1112 * PowerPC Book3s HV KVM calls this under a per-page lock 1113 * rather than under kvm->mmu_lock, for scalability, so 1114 * can't rely on kvm->mmu_lock to keep things ordered. 1115 */ 1116 smp_rmb(); 1117 if (kvm->mmu_notifier_seq != mmu_seq) 1118 return 1; 1119 return 0; 1120 } 1121 #endif 1122 1123 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1124 1125 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1126 1127 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1128 int kvm_set_irq_routing(struct kvm *kvm, 1129 const struct kvm_irq_routing_entry *entries, 1130 unsigned nr, 1131 unsigned flags); 1132 int kvm_set_routing_entry(struct kvm *kvm, 1133 struct kvm_kernel_irq_routing_entry *e, 1134 const struct kvm_irq_routing_entry *ue); 1135 void kvm_free_irq_routing(struct kvm *kvm); 1136 1137 #else 1138 1139 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1140 1141 #endif 1142 1143 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1144 1145 #ifdef CONFIG_HAVE_KVM_EVENTFD 1146 1147 void kvm_eventfd_init(struct kvm *kvm); 1148 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1149 1150 #ifdef CONFIG_HAVE_KVM_IRQFD 1151 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1152 void kvm_irqfd_release(struct kvm *kvm); 1153 void kvm_irq_routing_update(struct kvm *); 1154 #else 1155 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1156 { 1157 return -EINVAL; 1158 } 1159 1160 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1161 #endif 1162 1163 #else 1164 1165 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1166 1167 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1168 { 1169 return -EINVAL; 1170 } 1171 1172 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1173 1174 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1175 static inline void kvm_irq_routing_update(struct kvm *kvm) 1176 { 1177 } 1178 #endif 1179 1180 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1181 { 1182 return -ENOSYS; 1183 } 1184 1185 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1186 1187 void kvm_arch_irq_routing_update(struct kvm *kvm); 1188 1189 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1190 { 1191 /* 1192 * Ensure the rest of the request is published to kvm_check_request's 1193 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1194 */ 1195 smp_wmb(); 1196 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1197 } 1198 1199 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1200 { 1201 return READ_ONCE(vcpu->requests); 1202 } 1203 1204 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1205 { 1206 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1207 } 1208 1209 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1210 { 1211 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1212 } 1213 1214 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1215 { 1216 if (kvm_test_request(req, vcpu)) { 1217 kvm_clear_request(req, vcpu); 1218 1219 /* 1220 * Ensure the rest of the request is visible to kvm_check_request's 1221 * caller. Paired with the smp_wmb in kvm_make_request. 1222 */ 1223 smp_mb__after_atomic(); 1224 return true; 1225 } else { 1226 return false; 1227 } 1228 } 1229 1230 extern bool kvm_rebooting; 1231 1232 extern unsigned int halt_poll_ns; 1233 extern unsigned int halt_poll_ns_grow; 1234 extern unsigned int halt_poll_ns_grow_start; 1235 extern unsigned int halt_poll_ns_shrink; 1236 1237 struct kvm_device { 1238 struct kvm_device_ops *ops; 1239 struct kvm *kvm; 1240 void *private; 1241 struct list_head vm_node; 1242 }; 1243 1244 /* create, destroy, and name are mandatory */ 1245 struct kvm_device_ops { 1246 const char *name; 1247 1248 /* 1249 * create is called holding kvm->lock and any operations not suitable 1250 * to do while holding the lock should be deferred to init (see 1251 * below). 1252 */ 1253 int (*create)(struct kvm_device *dev, u32 type); 1254 1255 /* 1256 * init is called after create if create is successful and is called 1257 * outside of holding kvm->lock. 1258 */ 1259 void (*init)(struct kvm_device *dev); 1260 1261 /* 1262 * Destroy is responsible for freeing dev. 1263 * 1264 * Destroy may be called before or after destructors are called 1265 * on emulated I/O regions, depending on whether a reference is 1266 * held by a vcpu or other kvm component that gets destroyed 1267 * after the emulated I/O. 1268 */ 1269 void (*destroy)(struct kvm_device *dev); 1270 1271 /* 1272 * Release is an alternative method to free the device. It is 1273 * called when the device file descriptor is closed. Once 1274 * release is called, the destroy method will not be called 1275 * anymore as the device is removed from the device list of 1276 * the VM. kvm->lock is held. 1277 */ 1278 void (*release)(struct kvm_device *dev); 1279 1280 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1281 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1282 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1283 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1284 unsigned long arg); 1285 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1286 }; 1287 1288 void kvm_device_get(struct kvm_device *dev); 1289 void kvm_device_put(struct kvm_device *dev); 1290 struct kvm_device *kvm_device_from_filp(struct file *filp); 1291 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1292 void kvm_unregister_device_ops(u32 type); 1293 1294 extern struct kvm_device_ops kvm_mpic_ops; 1295 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1296 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1297 1298 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1299 1300 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1301 { 1302 vcpu->spin_loop.in_spin_loop = val; 1303 } 1304 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1305 { 1306 vcpu->spin_loop.dy_eligible = val; 1307 } 1308 1309 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1310 1311 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1312 { 1313 } 1314 1315 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1316 { 1317 } 1318 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1319 1320 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1321 bool kvm_arch_has_irq_bypass(void); 1322 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1323 struct irq_bypass_producer *); 1324 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1325 struct irq_bypass_producer *); 1326 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1327 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1328 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1329 uint32_t guest_irq, bool set); 1330 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1331 1332 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1333 /* If we wakeup during the poll time, was it a sucessful poll? */ 1334 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1335 { 1336 return vcpu->valid_wakeup; 1337 } 1338 1339 #else 1340 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1341 { 1342 return true; 1343 } 1344 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1345 1346 #ifdef CONFIG_HAVE_KVM_NO_POLL 1347 /* Callback that tells if we must not poll */ 1348 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1349 #else 1350 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1351 { 1352 return false; 1353 } 1354 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 1355 1356 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1357 long kvm_arch_vcpu_async_ioctl(struct file *filp, 1358 unsigned int ioctl, unsigned long arg); 1359 #else 1360 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1361 unsigned int ioctl, 1362 unsigned long arg) 1363 { 1364 return -ENOIOCTLCMD; 1365 } 1366 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1367 1368 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1369 unsigned long start, unsigned long end, bool blockable); 1370 1371 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1372 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1373 #else 1374 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1375 { 1376 return 0; 1377 } 1378 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1379 1380 #endif 1381