1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 59 /* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of install_new_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80 /* Two fragments for cross MMIO pages. */ 81 #define KVM_MAX_MMIO_FRAGMENTS 2 82 83 #ifndef KVM_ADDRESS_SPACE_NUM 84 #define KVM_ADDRESS_SPACE_NUM 1 85 #endif 86 87 /* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94 #define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100 101 /* 102 * error pfns indicate that the gfn is in slot but faild to 103 * translate it to pfn on host. 104 */ 105 static inline bool is_error_pfn(kvm_pfn_t pfn) 106 { 107 return !!(pfn & KVM_PFN_ERR_MASK); 108 } 109 110 /* 111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 112 * by a pending signal. Note, the signal may or may not be fatal. 113 */ 114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 115 { 116 return pfn == KVM_PFN_ERR_SIGPENDING; 117 } 118 119 /* 120 * error_noslot pfns indicate that the gfn can not be 121 * translated to pfn - it is not in slot or failed to 122 * translate it to pfn. 123 */ 124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 125 { 126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 127 } 128 129 /* noslot pfn indicates that the gfn is not in slot. */ 130 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 131 { 132 return pfn == KVM_PFN_NOSLOT; 133 } 134 135 /* 136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 137 * provide own defines and kvm_is_error_hva 138 */ 139 #ifndef KVM_HVA_ERR_BAD 140 141 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 142 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 143 144 static inline bool kvm_is_error_hva(unsigned long addr) 145 { 146 return addr >= PAGE_OFFSET; 147 } 148 149 #endif 150 151 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 152 153 static inline bool is_error_page(struct page *page) 154 { 155 return IS_ERR(page); 156 } 157 158 #define KVM_REQUEST_MASK GENMASK(7,0) 159 #define KVM_REQUEST_NO_WAKEUP BIT(8) 160 #define KVM_REQUEST_WAIT BIT(9) 161 #define KVM_REQUEST_NO_ACTION BIT(10) 162 /* 163 * Architecture-independent vcpu->requests bit members 164 * Bits 3-7 are reserved for more arch-independent bits. 165 */ 166 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 167 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 168 #define KVM_REQ_UNBLOCK 2 169 #define KVM_REQUEST_ARCH_BASE 8 170 171 /* 172 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 173 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 174 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 175 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 176 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 177 * guarantee the vCPU received an IPI and has actually exited guest mode. 178 */ 179 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 180 181 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 182 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 183 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 184 }) 185 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 186 187 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 188 unsigned long *vcpu_bitmap); 189 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 190 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 191 struct kvm_vcpu *except); 192 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 193 unsigned long *vcpu_bitmap); 194 195 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 196 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 197 198 extern struct mutex kvm_lock; 199 extern struct list_head vm_list; 200 201 struct kvm_io_range { 202 gpa_t addr; 203 int len; 204 struct kvm_io_device *dev; 205 }; 206 207 #define NR_IOBUS_DEVS 1000 208 209 struct kvm_io_bus { 210 int dev_count; 211 int ioeventfd_count; 212 struct kvm_io_range range[]; 213 }; 214 215 enum kvm_bus { 216 KVM_MMIO_BUS, 217 KVM_PIO_BUS, 218 KVM_VIRTIO_CCW_NOTIFY_BUS, 219 KVM_FAST_MMIO_BUS, 220 KVM_NR_BUSES 221 }; 222 223 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 224 int len, const void *val); 225 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 226 gpa_t addr, int len, const void *val, long cookie); 227 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 228 int len, void *val); 229 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 230 int len, struct kvm_io_device *dev); 231 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 232 struct kvm_io_device *dev); 233 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 234 gpa_t addr); 235 236 #ifdef CONFIG_KVM_ASYNC_PF 237 struct kvm_async_pf { 238 struct work_struct work; 239 struct list_head link; 240 struct list_head queue; 241 struct kvm_vcpu *vcpu; 242 struct mm_struct *mm; 243 gpa_t cr2_or_gpa; 244 unsigned long addr; 245 struct kvm_arch_async_pf arch; 246 bool wakeup_all; 247 bool notpresent_injected; 248 }; 249 250 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 251 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 252 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 253 unsigned long hva, struct kvm_arch_async_pf *arch); 254 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 255 #endif 256 257 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER 258 struct kvm_gfn_range { 259 struct kvm_memory_slot *slot; 260 gfn_t start; 261 gfn_t end; 262 pte_t pte; 263 bool may_block; 264 }; 265 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 266 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 267 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 268 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 269 #endif 270 271 enum { 272 OUTSIDE_GUEST_MODE, 273 IN_GUEST_MODE, 274 EXITING_GUEST_MODE, 275 READING_SHADOW_PAGE_TABLES, 276 }; 277 278 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 279 280 struct kvm_host_map { 281 /* 282 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 283 * a 'struct page' for it. When using mem= kernel parameter some memory 284 * can be used as guest memory but they are not managed by host 285 * kernel). 286 * If 'pfn' is not managed by the host kernel, this field is 287 * initialized to KVM_UNMAPPED_PAGE. 288 */ 289 struct page *page; 290 void *hva; 291 kvm_pfn_t pfn; 292 kvm_pfn_t gfn; 293 }; 294 295 /* 296 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 297 * directly to check for that. 298 */ 299 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 300 { 301 return !!map->hva; 302 } 303 304 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 305 { 306 return single_task_running() && !need_resched() && ktime_before(cur, stop); 307 } 308 309 /* 310 * Sometimes a large or cross-page mmio needs to be broken up into separate 311 * exits for userspace servicing. 312 */ 313 struct kvm_mmio_fragment { 314 gpa_t gpa; 315 void *data; 316 unsigned len; 317 }; 318 319 struct kvm_vcpu { 320 struct kvm *kvm; 321 #ifdef CONFIG_PREEMPT_NOTIFIERS 322 struct preempt_notifier preempt_notifier; 323 #endif 324 int cpu; 325 int vcpu_id; /* id given by userspace at creation */ 326 int vcpu_idx; /* index in kvm->vcpus array */ 327 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 328 #ifdef CONFIG_PROVE_RCU 329 int srcu_depth; 330 #endif 331 int mode; 332 u64 requests; 333 unsigned long guest_debug; 334 335 struct mutex mutex; 336 struct kvm_run *run; 337 338 #ifndef __KVM_HAVE_ARCH_WQP 339 struct rcuwait wait; 340 #endif 341 struct pid __rcu *pid; 342 int sigset_active; 343 sigset_t sigset; 344 unsigned int halt_poll_ns; 345 bool valid_wakeup; 346 347 #ifdef CONFIG_HAS_IOMEM 348 int mmio_needed; 349 int mmio_read_completed; 350 int mmio_is_write; 351 int mmio_cur_fragment; 352 int mmio_nr_fragments; 353 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 354 #endif 355 356 #ifdef CONFIG_KVM_ASYNC_PF 357 struct { 358 u32 queued; 359 struct list_head queue; 360 struct list_head done; 361 spinlock_t lock; 362 } async_pf; 363 #endif 364 365 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 366 /* 367 * Cpu relax intercept or pause loop exit optimization 368 * in_spin_loop: set when a vcpu does a pause loop exit 369 * or cpu relax intercepted. 370 * dy_eligible: indicates whether vcpu is eligible for directed yield. 371 */ 372 struct { 373 bool in_spin_loop; 374 bool dy_eligible; 375 } spin_loop; 376 #endif 377 bool preempted; 378 bool ready; 379 struct kvm_vcpu_arch arch; 380 struct kvm_vcpu_stat stat; 381 char stats_id[KVM_STATS_NAME_SIZE]; 382 struct kvm_dirty_ring dirty_ring; 383 384 /* 385 * The most recently used memslot by this vCPU and the slots generation 386 * for which it is valid. 387 * No wraparound protection is needed since generations won't overflow in 388 * thousands of years, even assuming 1M memslot operations per second. 389 */ 390 struct kvm_memory_slot *last_used_slot; 391 u64 last_used_slot_gen; 392 }; 393 394 /* 395 * Start accounting time towards a guest. 396 * Must be called before entering guest context. 397 */ 398 static __always_inline void guest_timing_enter_irqoff(void) 399 { 400 /* 401 * This is running in ioctl context so its safe to assume that it's the 402 * stime pending cputime to flush. 403 */ 404 instrumentation_begin(); 405 vtime_account_guest_enter(); 406 instrumentation_end(); 407 } 408 409 /* 410 * Enter guest context and enter an RCU extended quiescent state. 411 * 412 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 413 * unsafe to use any code which may directly or indirectly use RCU, tracing 414 * (including IRQ flag tracing), or lockdep. All code in this period must be 415 * non-instrumentable. 416 */ 417 static __always_inline void guest_context_enter_irqoff(void) 418 { 419 /* 420 * KVM does not hold any references to rcu protected data when it 421 * switches CPU into a guest mode. In fact switching to a guest mode 422 * is very similar to exiting to userspace from rcu point of view. In 423 * addition CPU may stay in a guest mode for quite a long time (up to 424 * one time slice). Lets treat guest mode as quiescent state, just like 425 * we do with user-mode execution. 426 */ 427 if (!context_tracking_guest_enter()) { 428 instrumentation_begin(); 429 rcu_virt_note_context_switch(smp_processor_id()); 430 instrumentation_end(); 431 } 432 } 433 434 /* 435 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 436 * guest_state_enter_irqoff(). 437 */ 438 static __always_inline void guest_enter_irqoff(void) 439 { 440 guest_timing_enter_irqoff(); 441 guest_context_enter_irqoff(); 442 } 443 444 /** 445 * guest_state_enter_irqoff - Fixup state when entering a guest 446 * 447 * Entry to a guest will enable interrupts, but the kernel state is interrupts 448 * disabled when this is invoked. Also tell RCU about it. 449 * 450 * 1) Trace interrupts on state 451 * 2) Invoke context tracking if enabled to adjust RCU state 452 * 3) Tell lockdep that interrupts are enabled 453 * 454 * Invoked from architecture specific code before entering a guest. 455 * Must be called with interrupts disabled and the caller must be 456 * non-instrumentable. 457 * The caller has to invoke guest_timing_enter_irqoff() before this. 458 * 459 * Note: this is analogous to exit_to_user_mode(). 460 */ 461 static __always_inline void guest_state_enter_irqoff(void) 462 { 463 instrumentation_begin(); 464 trace_hardirqs_on_prepare(); 465 lockdep_hardirqs_on_prepare(); 466 instrumentation_end(); 467 468 guest_context_enter_irqoff(); 469 lockdep_hardirqs_on(CALLER_ADDR0); 470 } 471 472 /* 473 * Exit guest context and exit an RCU extended quiescent state. 474 * 475 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 476 * unsafe to use any code which may directly or indirectly use RCU, tracing 477 * (including IRQ flag tracing), or lockdep. All code in this period must be 478 * non-instrumentable. 479 */ 480 static __always_inline void guest_context_exit_irqoff(void) 481 { 482 context_tracking_guest_exit(); 483 } 484 485 /* 486 * Stop accounting time towards a guest. 487 * Must be called after exiting guest context. 488 */ 489 static __always_inline void guest_timing_exit_irqoff(void) 490 { 491 instrumentation_begin(); 492 /* Flush the guest cputime we spent on the guest */ 493 vtime_account_guest_exit(); 494 instrumentation_end(); 495 } 496 497 /* 498 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 499 * guest_timing_exit_irqoff(). 500 */ 501 static __always_inline void guest_exit_irqoff(void) 502 { 503 guest_context_exit_irqoff(); 504 guest_timing_exit_irqoff(); 505 } 506 507 static inline void guest_exit(void) 508 { 509 unsigned long flags; 510 511 local_irq_save(flags); 512 guest_exit_irqoff(); 513 local_irq_restore(flags); 514 } 515 516 /** 517 * guest_state_exit_irqoff - Establish state when returning from guest mode 518 * 519 * Entry from a guest disables interrupts, but guest mode is traced as 520 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 521 * 522 * 1) Tell lockdep that interrupts are disabled 523 * 2) Invoke context tracking if enabled to reactivate RCU 524 * 3) Trace interrupts off state 525 * 526 * Invoked from architecture specific code after exiting a guest. 527 * Must be invoked with interrupts disabled and the caller must be 528 * non-instrumentable. 529 * The caller has to invoke guest_timing_exit_irqoff() after this. 530 * 531 * Note: this is analogous to enter_from_user_mode(). 532 */ 533 static __always_inline void guest_state_exit_irqoff(void) 534 { 535 lockdep_hardirqs_off(CALLER_ADDR0); 536 guest_context_exit_irqoff(); 537 538 instrumentation_begin(); 539 trace_hardirqs_off_finish(); 540 instrumentation_end(); 541 } 542 543 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 544 { 545 /* 546 * The memory barrier ensures a previous write to vcpu->requests cannot 547 * be reordered with the read of vcpu->mode. It pairs with the general 548 * memory barrier following the write of vcpu->mode in VCPU RUN. 549 */ 550 smp_mb__before_atomic(); 551 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 552 } 553 554 /* 555 * Some of the bitops functions do not support too long bitmaps. 556 * This number must be determined not to exceed such limits. 557 */ 558 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 559 560 /* 561 * Since at idle each memslot belongs to two memslot sets it has to contain 562 * two embedded nodes for each data structure that it forms a part of. 563 * 564 * Two memslot sets (one active and one inactive) are necessary so the VM 565 * continues to run on one memslot set while the other is being modified. 566 * 567 * These two memslot sets normally point to the same set of memslots. 568 * They can, however, be desynchronized when performing a memslot management 569 * operation by replacing the memslot to be modified by its copy. 570 * After the operation is complete, both memslot sets once again point to 571 * the same, common set of memslot data. 572 * 573 * The memslots themselves are independent of each other so they can be 574 * individually added or deleted. 575 */ 576 struct kvm_memory_slot { 577 struct hlist_node id_node[2]; 578 struct interval_tree_node hva_node[2]; 579 struct rb_node gfn_node[2]; 580 gfn_t base_gfn; 581 unsigned long npages; 582 unsigned long *dirty_bitmap; 583 struct kvm_arch_memory_slot arch; 584 unsigned long userspace_addr; 585 u32 flags; 586 short id; 587 u16 as_id; 588 }; 589 590 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 591 { 592 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 593 } 594 595 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 596 { 597 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 598 } 599 600 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 601 { 602 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 603 604 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 605 } 606 607 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 608 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 609 #endif 610 611 struct kvm_s390_adapter_int { 612 u64 ind_addr; 613 u64 summary_addr; 614 u64 ind_offset; 615 u32 summary_offset; 616 u32 adapter_id; 617 }; 618 619 struct kvm_hv_sint { 620 u32 vcpu; 621 u32 sint; 622 }; 623 624 struct kvm_xen_evtchn { 625 u32 port; 626 u32 vcpu_id; 627 int vcpu_idx; 628 u32 priority; 629 }; 630 631 struct kvm_kernel_irq_routing_entry { 632 u32 gsi; 633 u32 type; 634 int (*set)(struct kvm_kernel_irq_routing_entry *e, 635 struct kvm *kvm, int irq_source_id, int level, 636 bool line_status); 637 union { 638 struct { 639 unsigned irqchip; 640 unsigned pin; 641 } irqchip; 642 struct { 643 u32 address_lo; 644 u32 address_hi; 645 u32 data; 646 u32 flags; 647 u32 devid; 648 } msi; 649 struct kvm_s390_adapter_int adapter; 650 struct kvm_hv_sint hv_sint; 651 struct kvm_xen_evtchn xen_evtchn; 652 }; 653 struct hlist_node link; 654 }; 655 656 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 657 struct kvm_irq_routing_table { 658 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 659 u32 nr_rt_entries; 660 /* 661 * Array indexed by gsi. Each entry contains list of irq chips 662 * the gsi is connected to. 663 */ 664 struct hlist_head map[]; 665 }; 666 #endif 667 668 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 669 670 #ifndef KVM_INTERNAL_MEM_SLOTS 671 #define KVM_INTERNAL_MEM_SLOTS 0 672 #endif 673 674 #define KVM_MEM_SLOTS_NUM SHRT_MAX 675 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 676 677 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 678 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 679 { 680 return 0; 681 } 682 #endif 683 684 struct kvm_memslots { 685 u64 generation; 686 atomic_long_t last_used_slot; 687 struct rb_root_cached hva_tree; 688 struct rb_root gfn_tree; 689 /* 690 * The mapping table from slot id to memslot. 691 * 692 * 7-bit bucket count matches the size of the old id to index array for 693 * 512 slots, while giving good performance with this slot count. 694 * Higher bucket counts bring only small performance improvements but 695 * always result in higher memory usage (even for lower memslot counts). 696 */ 697 DECLARE_HASHTABLE(id_hash, 7); 698 int node_idx; 699 }; 700 701 struct kvm { 702 #ifdef KVM_HAVE_MMU_RWLOCK 703 rwlock_t mmu_lock; 704 #else 705 spinlock_t mmu_lock; 706 #endif /* KVM_HAVE_MMU_RWLOCK */ 707 708 struct mutex slots_lock; 709 710 /* 711 * Protects the arch-specific fields of struct kvm_memory_slots in 712 * use by the VM. To be used under the slots_lock (above) or in a 713 * kvm->srcu critical section where acquiring the slots_lock would 714 * lead to deadlock with the synchronize_srcu in 715 * install_new_memslots. 716 */ 717 struct mutex slots_arch_lock; 718 struct mm_struct *mm; /* userspace tied to this vm */ 719 unsigned long nr_memslot_pages; 720 /* The two memslot sets - active and inactive (per address space) */ 721 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2]; 722 /* The current active memslot set for each address space */ 723 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 724 struct xarray vcpu_array; 725 /* 726 * Protected by slots_lock, but can be read outside if an 727 * incorrect answer is acceptable. 728 */ 729 atomic_t nr_memslots_dirty_logging; 730 731 /* Used to wait for completion of MMU notifiers. */ 732 spinlock_t mn_invalidate_lock; 733 unsigned long mn_active_invalidate_count; 734 struct rcuwait mn_memslots_update_rcuwait; 735 736 /* For management / invalidation of gfn_to_pfn_caches */ 737 spinlock_t gpc_lock; 738 struct list_head gpc_list; 739 740 /* 741 * created_vcpus is protected by kvm->lock, and is incremented 742 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 743 * incremented after storing the kvm_vcpu pointer in vcpus, 744 * and is accessed atomically. 745 */ 746 atomic_t online_vcpus; 747 int max_vcpus; 748 int created_vcpus; 749 int last_boosted_vcpu; 750 struct list_head vm_list; 751 struct mutex lock; 752 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 753 #ifdef CONFIG_HAVE_KVM_EVENTFD 754 struct { 755 spinlock_t lock; 756 struct list_head items; 757 struct list_head resampler_list; 758 struct mutex resampler_lock; 759 } irqfds; 760 struct list_head ioeventfds; 761 #endif 762 struct kvm_vm_stat stat; 763 struct kvm_arch arch; 764 refcount_t users_count; 765 #ifdef CONFIG_KVM_MMIO 766 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 767 spinlock_t ring_lock; 768 struct list_head coalesced_zones; 769 #endif 770 771 struct mutex irq_lock; 772 #ifdef CONFIG_HAVE_KVM_IRQCHIP 773 /* 774 * Update side is protected by irq_lock. 775 */ 776 struct kvm_irq_routing_table __rcu *irq_routing; 777 #endif 778 #ifdef CONFIG_HAVE_KVM_IRQFD 779 struct hlist_head irq_ack_notifier_list; 780 #endif 781 782 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 783 struct mmu_notifier mmu_notifier; 784 unsigned long mmu_invalidate_seq; 785 long mmu_invalidate_in_progress; 786 unsigned long mmu_invalidate_range_start; 787 unsigned long mmu_invalidate_range_end; 788 #endif 789 struct list_head devices; 790 u64 manual_dirty_log_protect; 791 struct dentry *debugfs_dentry; 792 struct kvm_stat_data **debugfs_stat_data; 793 struct srcu_struct srcu; 794 struct srcu_struct irq_srcu; 795 pid_t userspace_pid; 796 unsigned int max_halt_poll_ns; 797 u32 dirty_ring_size; 798 bool vm_bugged; 799 bool vm_dead; 800 801 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 802 struct notifier_block pm_notifier; 803 #endif 804 char stats_id[KVM_STATS_NAME_SIZE]; 805 }; 806 807 #define kvm_err(fmt, ...) \ 808 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 809 #define kvm_info(fmt, ...) \ 810 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 811 #define kvm_debug(fmt, ...) \ 812 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 813 #define kvm_debug_ratelimited(fmt, ...) \ 814 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 815 ## __VA_ARGS__) 816 #define kvm_pr_unimpl(fmt, ...) \ 817 pr_err_ratelimited("kvm [%i]: " fmt, \ 818 task_tgid_nr(current), ## __VA_ARGS__) 819 820 /* The guest did something we don't support. */ 821 #define vcpu_unimpl(vcpu, fmt, ...) \ 822 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 823 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 824 825 #define vcpu_debug(vcpu, fmt, ...) \ 826 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 827 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 828 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 829 ## __VA_ARGS__) 830 #define vcpu_err(vcpu, fmt, ...) \ 831 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 832 833 static inline void kvm_vm_dead(struct kvm *kvm) 834 { 835 kvm->vm_dead = true; 836 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 837 } 838 839 static inline void kvm_vm_bugged(struct kvm *kvm) 840 { 841 kvm->vm_bugged = true; 842 kvm_vm_dead(kvm); 843 } 844 845 846 #define KVM_BUG(cond, kvm, fmt...) \ 847 ({ \ 848 int __ret = (cond); \ 849 \ 850 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 851 kvm_vm_bugged(kvm); \ 852 unlikely(__ret); \ 853 }) 854 855 #define KVM_BUG_ON(cond, kvm) \ 856 ({ \ 857 int __ret = (cond); \ 858 \ 859 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 860 kvm_vm_bugged(kvm); \ 861 unlikely(__ret); \ 862 }) 863 864 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 865 { 866 #ifdef CONFIG_PROVE_RCU 867 WARN_ONCE(vcpu->srcu_depth++, 868 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 869 #endif 870 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 871 } 872 873 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 874 { 875 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 876 877 #ifdef CONFIG_PROVE_RCU 878 WARN_ONCE(--vcpu->srcu_depth, 879 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 880 #endif 881 } 882 883 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 884 { 885 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 886 } 887 888 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 889 { 890 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 891 lockdep_is_held(&kvm->slots_lock) || 892 !refcount_read(&kvm->users_count)); 893 } 894 895 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 896 { 897 int num_vcpus = atomic_read(&kvm->online_vcpus); 898 i = array_index_nospec(i, num_vcpus); 899 900 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 901 smp_rmb(); 902 return xa_load(&kvm->vcpu_array, i); 903 } 904 905 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 906 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 907 (atomic_read(&kvm->online_vcpus) - 1)) 908 909 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 910 { 911 struct kvm_vcpu *vcpu = NULL; 912 unsigned long i; 913 914 if (id < 0) 915 return NULL; 916 if (id < KVM_MAX_VCPUS) 917 vcpu = kvm_get_vcpu(kvm, id); 918 if (vcpu && vcpu->vcpu_id == id) 919 return vcpu; 920 kvm_for_each_vcpu(i, vcpu, kvm) 921 if (vcpu->vcpu_id == id) 922 return vcpu; 923 return NULL; 924 } 925 926 void kvm_destroy_vcpus(struct kvm *kvm); 927 928 void vcpu_load(struct kvm_vcpu *vcpu); 929 void vcpu_put(struct kvm_vcpu *vcpu); 930 931 #ifdef __KVM_HAVE_IOAPIC 932 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 933 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 934 #else 935 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 936 { 937 } 938 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 939 { 940 } 941 #endif 942 943 #ifdef CONFIG_HAVE_KVM_IRQFD 944 int kvm_irqfd_init(void); 945 void kvm_irqfd_exit(void); 946 #else 947 static inline int kvm_irqfd_init(void) 948 { 949 return 0; 950 } 951 952 static inline void kvm_irqfd_exit(void) 953 { 954 } 955 #endif 956 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 957 struct module *module); 958 void kvm_exit(void); 959 960 void kvm_get_kvm(struct kvm *kvm); 961 bool kvm_get_kvm_safe(struct kvm *kvm); 962 void kvm_put_kvm(struct kvm *kvm); 963 bool file_is_kvm(struct file *file); 964 void kvm_put_kvm_no_destroy(struct kvm *kvm); 965 966 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 967 { 968 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 969 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 970 lockdep_is_held(&kvm->slots_lock) || 971 !refcount_read(&kvm->users_count)); 972 } 973 974 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 975 { 976 return __kvm_memslots(kvm, 0); 977 } 978 979 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 980 { 981 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 982 983 return __kvm_memslots(vcpu->kvm, as_id); 984 } 985 986 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 987 { 988 return RB_EMPTY_ROOT(&slots->gfn_tree); 989 } 990 991 #define kvm_for_each_memslot(memslot, bkt, slots) \ 992 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 993 if (WARN_ON_ONCE(!memslot->npages)) { \ 994 } else 995 996 static inline 997 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 998 { 999 struct kvm_memory_slot *slot; 1000 int idx = slots->node_idx; 1001 1002 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1003 if (slot->id == id) 1004 return slot; 1005 } 1006 1007 return NULL; 1008 } 1009 1010 /* Iterator used for walking memslots that overlap a gfn range. */ 1011 struct kvm_memslot_iter { 1012 struct kvm_memslots *slots; 1013 struct rb_node *node; 1014 struct kvm_memory_slot *slot; 1015 }; 1016 1017 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1018 { 1019 iter->node = rb_next(iter->node); 1020 if (!iter->node) 1021 return; 1022 1023 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1024 } 1025 1026 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1027 struct kvm_memslots *slots, 1028 gfn_t start) 1029 { 1030 int idx = slots->node_idx; 1031 struct rb_node *tmp; 1032 struct kvm_memory_slot *slot; 1033 1034 iter->slots = slots; 1035 1036 /* 1037 * Find the so called "upper bound" of a key - the first node that has 1038 * its key strictly greater than the searched one (the start gfn in our case). 1039 */ 1040 iter->node = NULL; 1041 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1042 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1043 if (start < slot->base_gfn) { 1044 iter->node = tmp; 1045 tmp = tmp->rb_left; 1046 } else { 1047 tmp = tmp->rb_right; 1048 } 1049 } 1050 1051 /* 1052 * Find the slot with the lowest gfn that can possibly intersect with 1053 * the range, so we'll ideally have slot start <= range start 1054 */ 1055 if (iter->node) { 1056 /* 1057 * A NULL previous node means that the very first slot 1058 * already has a higher start gfn. 1059 * In this case slot start > range start. 1060 */ 1061 tmp = rb_prev(iter->node); 1062 if (tmp) 1063 iter->node = tmp; 1064 } else { 1065 /* a NULL node below means no slots */ 1066 iter->node = rb_last(&slots->gfn_tree); 1067 } 1068 1069 if (iter->node) { 1070 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1071 1072 /* 1073 * It is possible in the slot start < range start case that the 1074 * found slot ends before or at range start (slot end <= range start) 1075 * and so it does not overlap the requested range. 1076 * 1077 * In such non-overlapping case the next slot (if it exists) will 1078 * already have slot start > range start, otherwise the logic above 1079 * would have found it instead of the current slot. 1080 */ 1081 if (iter->slot->base_gfn + iter->slot->npages <= start) 1082 kvm_memslot_iter_next(iter); 1083 } 1084 } 1085 1086 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1087 { 1088 if (!iter->node) 1089 return false; 1090 1091 /* 1092 * If this slot starts beyond or at the end of the range so does 1093 * every next one 1094 */ 1095 return iter->slot->base_gfn < end; 1096 } 1097 1098 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1099 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1100 for (kvm_memslot_iter_start(iter, slots, start); \ 1101 kvm_memslot_iter_is_valid(iter, end); \ 1102 kvm_memslot_iter_next(iter)) 1103 1104 /* 1105 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1106 * - create a new memory slot 1107 * - delete an existing memory slot 1108 * - modify an existing memory slot 1109 * -- move it in the guest physical memory space 1110 * -- just change its flags 1111 * 1112 * Since flags can be changed by some of these operations, the following 1113 * differentiation is the best we can do for __kvm_set_memory_region(): 1114 */ 1115 enum kvm_mr_change { 1116 KVM_MR_CREATE, 1117 KVM_MR_DELETE, 1118 KVM_MR_MOVE, 1119 KVM_MR_FLAGS_ONLY, 1120 }; 1121 1122 int kvm_set_memory_region(struct kvm *kvm, 1123 const struct kvm_userspace_memory_region *mem); 1124 int __kvm_set_memory_region(struct kvm *kvm, 1125 const struct kvm_userspace_memory_region *mem); 1126 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1127 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1128 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1129 const struct kvm_memory_slot *old, 1130 struct kvm_memory_slot *new, 1131 enum kvm_mr_change change); 1132 void kvm_arch_commit_memory_region(struct kvm *kvm, 1133 struct kvm_memory_slot *old, 1134 const struct kvm_memory_slot *new, 1135 enum kvm_mr_change change); 1136 /* flush all memory translations */ 1137 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1138 /* flush memory translations pointing to 'slot' */ 1139 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1140 struct kvm_memory_slot *slot); 1141 1142 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1143 struct page **pages, int nr_pages); 1144 1145 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 1146 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1147 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1148 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1149 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1150 bool *writable); 1151 void kvm_release_page_clean(struct page *page); 1152 void kvm_release_page_dirty(struct page *page); 1153 1154 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 1155 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1156 bool *writable); 1157 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); 1158 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn); 1159 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 1160 bool atomic, bool interruptible, bool *async, 1161 bool write_fault, bool *writable, hva_t *hva); 1162 1163 void kvm_release_pfn_clean(kvm_pfn_t pfn); 1164 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 1165 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 1166 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 1167 1168 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); 1169 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1170 int len); 1171 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1172 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1173 void *data, unsigned long len); 1174 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1175 void *data, unsigned int offset, 1176 unsigned long len); 1177 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1178 int offset, int len); 1179 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1180 unsigned long len); 1181 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1182 void *data, unsigned long len); 1183 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1184 void *data, unsigned int offset, 1185 unsigned long len); 1186 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1187 gpa_t gpa, unsigned long len); 1188 1189 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1190 ({ \ 1191 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1192 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1193 int __ret = -EFAULT; \ 1194 \ 1195 if (!kvm_is_error_hva(__addr)) \ 1196 __ret = get_user(v, __uaddr); \ 1197 __ret; \ 1198 }) 1199 1200 #define kvm_get_guest(kvm, gpa, v) \ 1201 ({ \ 1202 gpa_t __gpa = gpa; \ 1203 struct kvm *__kvm = kvm; \ 1204 \ 1205 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1206 offset_in_page(__gpa), v); \ 1207 }) 1208 1209 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1210 ({ \ 1211 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1212 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1213 int __ret = -EFAULT; \ 1214 \ 1215 if (!kvm_is_error_hva(__addr)) \ 1216 __ret = put_user(v, __uaddr); \ 1217 if (!__ret) \ 1218 mark_page_dirty(kvm, gfn); \ 1219 __ret; \ 1220 }) 1221 1222 #define kvm_put_guest(kvm, gpa, v) \ 1223 ({ \ 1224 gpa_t __gpa = gpa; \ 1225 struct kvm *__kvm = kvm; \ 1226 \ 1227 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1228 offset_in_page(__gpa), v); \ 1229 }) 1230 1231 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1232 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1233 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1234 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1235 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1236 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1237 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1238 1239 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1240 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1241 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 1242 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1243 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 1244 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 1245 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1246 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1247 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1248 int len); 1249 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1250 unsigned long len); 1251 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1252 unsigned long len); 1253 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1254 int offset, int len); 1255 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1256 unsigned long len); 1257 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1258 1259 /** 1260 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1261 * 1262 * @gpc: struct gfn_to_pfn_cache object. 1263 * 1264 * This sets up a gfn_to_pfn_cache by initializing locks. Note, the cache must 1265 * be zero-allocated (or zeroed by the caller before init). 1266 */ 1267 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc); 1268 1269 /** 1270 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1271 * physical address. 1272 * 1273 * @kvm: pointer to kvm instance. 1274 * @gpc: struct gfn_to_pfn_cache object. 1275 * @vcpu: vCPU to be used for marking pages dirty and to be woken on 1276 * invalidation. 1277 * @usage: indicates if the resulting host physical PFN is used while 1278 * the @vcpu is IN_GUEST_MODE (in which case invalidation of 1279 * the cache from MMU notifiers---but not for KVM memslot 1280 * changes!---will also force @vcpu to exit the guest and 1281 * refresh the cache); and/or if the PFN used directly 1282 * by KVM (and thus needs a kernel virtual mapping). 1283 * @gpa: guest physical address to map. 1284 * @len: sanity check; the range being access must fit a single page. 1285 * 1286 * @return: 0 for success. 1287 * -EINVAL for a mapping which would cross a page boundary. 1288 * -EFAULT for an untranslatable guest physical address. 1289 * 1290 * This primes a gfn_to_pfn_cache and links it into the @kvm's list for 1291 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1292 * to ensure that the cache is valid before accessing the target page. 1293 */ 1294 int kvm_gpc_activate(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1295 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage, 1296 gpa_t gpa, unsigned long len); 1297 1298 /** 1299 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1300 * 1301 * @kvm: pointer to kvm instance. 1302 * @gpc: struct gfn_to_pfn_cache object. 1303 * @gpa: current guest physical address to map. 1304 * @len: sanity check; the range being access must fit a single page. 1305 * 1306 * @return: %true if the cache is still valid and the address matches. 1307 * %false if the cache is not valid. 1308 * 1309 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1310 * while calling this function, and then continue to hold the lock until the 1311 * access is complete. 1312 * 1313 * Callers in IN_GUEST_MODE may do so without locking, although they should 1314 * still hold a read lock on kvm->scru for the memslot checks. 1315 */ 1316 bool kvm_gpc_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, gpa_t gpa, 1317 unsigned long len); 1318 1319 /** 1320 * kvm_gpc_refresh - update a previously initialized cache. 1321 * 1322 * @kvm: pointer to kvm instance. 1323 * @gpc: struct gfn_to_pfn_cache object. 1324 * @gpa: updated guest physical address to map. 1325 * @len: sanity check; the range being access must fit a single page. 1326 * 1327 * @return: 0 for success. 1328 * -EINVAL for a mapping which would cross a page boundary. 1329 * -EFAULT for an untranslatable guest physical address. 1330 * 1331 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1332 * returm from this function does not mean the page can be immediately 1333 * accessed because it may have raced with an invalidation. Callers must 1334 * still lock and check the cache status, as this function does not return 1335 * with the lock still held to permit access. 1336 */ 1337 int kvm_gpc_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, gpa_t gpa, 1338 unsigned long len); 1339 1340 /** 1341 * kvm_gpc_unmap - temporarily unmap a gfn_to_pfn_cache. 1342 * 1343 * @kvm: pointer to kvm instance. 1344 * @gpc: struct gfn_to_pfn_cache object. 1345 * 1346 * This unmaps the referenced page. The cache is left in the invalid state 1347 * but at least the mapping from GPA to userspace HVA will remain cached 1348 * and can be reused on a subsequent refresh. 1349 */ 1350 void kvm_gpc_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc); 1351 1352 /** 1353 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1354 * 1355 * @kvm: pointer to kvm instance. 1356 * @gpc: struct gfn_to_pfn_cache object. 1357 * 1358 * This removes a cache from the @kvm's list to be processed on MMU notifier 1359 * invocation. 1360 */ 1361 void kvm_gpc_deactivate(struct kvm *kvm, struct gfn_to_pfn_cache *gpc); 1362 1363 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1364 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1365 1366 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1367 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1368 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1369 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1370 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1371 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1372 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1373 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 1374 1375 void kvm_flush_remote_tlbs(struct kvm *kvm); 1376 1377 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1378 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1379 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1380 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1381 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1382 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1383 #endif 1384 1385 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start, 1386 unsigned long end); 1387 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start, 1388 unsigned long end); 1389 1390 long kvm_arch_dev_ioctl(struct file *filp, 1391 unsigned int ioctl, unsigned long arg); 1392 long kvm_arch_vcpu_ioctl(struct file *filp, 1393 unsigned int ioctl, unsigned long arg); 1394 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1395 1396 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1397 1398 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1399 struct kvm_memory_slot *slot, 1400 gfn_t gfn_offset, 1401 unsigned long mask); 1402 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1403 1404 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1405 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1406 const struct kvm_memory_slot *memslot); 1407 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1408 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1409 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1410 int *is_dirty, struct kvm_memory_slot **memslot); 1411 #endif 1412 1413 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1414 bool line_status); 1415 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1416 struct kvm_enable_cap *cap); 1417 long kvm_arch_vm_ioctl(struct file *filp, 1418 unsigned int ioctl, unsigned long arg); 1419 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1420 unsigned long arg); 1421 1422 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1423 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1424 1425 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1426 struct kvm_translation *tr); 1427 1428 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1429 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1430 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1431 struct kvm_sregs *sregs); 1432 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1433 struct kvm_sregs *sregs); 1434 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1435 struct kvm_mp_state *mp_state); 1436 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1437 struct kvm_mp_state *mp_state); 1438 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1439 struct kvm_guest_debug *dbg); 1440 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1441 1442 int kvm_arch_init(void *opaque); 1443 void kvm_arch_exit(void); 1444 1445 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 1446 1447 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1448 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1449 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1450 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1451 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1452 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1453 1454 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1455 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1456 #endif 1457 1458 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1459 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1460 #else 1461 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1462 #endif 1463 1464 int kvm_arch_hardware_enable(void); 1465 void kvm_arch_hardware_disable(void); 1466 int kvm_arch_hardware_setup(void *opaque); 1467 void kvm_arch_hardware_unsetup(void); 1468 int kvm_arch_check_processor_compat(void *opaque); 1469 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1470 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1471 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1472 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1473 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1474 int kvm_arch_post_init_vm(struct kvm *kvm); 1475 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1476 int kvm_arch_create_vm_debugfs(struct kvm *kvm); 1477 1478 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1479 /* 1480 * All architectures that want to use vzalloc currently also 1481 * need their own kvm_arch_alloc_vm implementation. 1482 */ 1483 static inline struct kvm *kvm_arch_alloc_vm(void) 1484 { 1485 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 1486 } 1487 #endif 1488 1489 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1490 { 1491 kvfree(kvm); 1492 } 1493 1494 #ifndef __KVM_HAVE_ARCH_VM_FREE 1495 static inline void kvm_arch_free_vm(struct kvm *kvm) 1496 { 1497 __kvm_arch_free_vm(kvm); 1498 } 1499 #endif 1500 1501 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1502 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1503 { 1504 return -ENOTSUPP; 1505 } 1506 #endif 1507 1508 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1509 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1510 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1511 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1512 #else 1513 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1514 { 1515 } 1516 1517 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1518 { 1519 } 1520 1521 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1522 { 1523 return false; 1524 } 1525 #endif 1526 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1527 void kvm_arch_start_assignment(struct kvm *kvm); 1528 void kvm_arch_end_assignment(struct kvm *kvm); 1529 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1530 #else 1531 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1532 { 1533 } 1534 1535 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1536 { 1537 } 1538 1539 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1540 { 1541 return false; 1542 } 1543 #endif 1544 1545 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1546 { 1547 #ifdef __KVM_HAVE_ARCH_WQP 1548 return vcpu->arch.waitp; 1549 #else 1550 return &vcpu->wait; 1551 #endif 1552 } 1553 1554 /* 1555 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1556 * true if the vCPU was blocking and was awakened, false otherwise. 1557 */ 1558 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1559 { 1560 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1561 } 1562 1563 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1564 { 1565 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1566 } 1567 1568 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1569 /* 1570 * returns true if the virtual interrupt controller is initialized and 1571 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1572 * controller is dynamically instantiated and this is not always true. 1573 */ 1574 bool kvm_arch_intc_initialized(struct kvm *kvm); 1575 #else 1576 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1577 { 1578 return true; 1579 } 1580 #endif 1581 1582 #ifdef CONFIG_GUEST_PERF_EVENTS 1583 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1584 1585 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1586 void kvm_unregister_perf_callbacks(void); 1587 #else 1588 static inline void kvm_register_perf_callbacks(void *ign) {} 1589 static inline void kvm_unregister_perf_callbacks(void) {} 1590 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1591 1592 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1593 void kvm_arch_destroy_vm(struct kvm *kvm); 1594 void kvm_arch_sync_events(struct kvm *kvm); 1595 1596 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1597 1598 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn); 1599 bool kvm_is_zone_device_page(struct page *page); 1600 1601 struct kvm_irq_ack_notifier { 1602 struct hlist_node link; 1603 unsigned gsi; 1604 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1605 }; 1606 1607 int kvm_irq_map_gsi(struct kvm *kvm, 1608 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1609 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1610 1611 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1612 bool line_status); 1613 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1614 int irq_source_id, int level, bool line_status); 1615 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1616 struct kvm *kvm, int irq_source_id, 1617 int level, bool line_status); 1618 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1619 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1620 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1621 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1622 struct kvm_irq_ack_notifier *kian); 1623 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1624 struct kvm_irq_ack_notifier *kian); 1625 int kvm_request_irq_source_id(struct kvm *kvm); 1626 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1627 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1628 1629 /* 1630 * Returns a pointer to the memslot if it contains gfn. 1631 * Otherwise returns NULL. 1632 */ 1633 static inline struct kvm_memory_slot * 1634 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1635 { 1636 if (!slot) 1637 return NULL; 1638 1639 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1640 return slot; 1641 else 1642 return NULL; 1643 } 1644 1645 /* 1646 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1647 * 1648 * With "approx" set returns the memslot also when the address falls 1649 * in a hole. In that case one of the memslots bordering the hole is 1650 * returned. 1651 */ 1652 static inline struct kvm_memory_slot * 1653 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1654 { 1655 struct kvm_memory_slot *slot; 1656 struct rb_node *node; 1657 int idx = slots->node_idx; 1658 1659 slot = NULL; 1660 for (node = slots->gfn_tree.rb_node; node; ) { 1661 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1662 if (gfn >= slot->base_gfn) { 1663 if (gfn < slot->base_gfn + slot->npages) 1664 return slot; 1665 node = node->rb_right; 1666 } else 1667 node = node->rb_left; 1668 } 1669 1670 return approx ? slot : NULL; 1671 } 1672 1673 static inline struct kvm_memory_slot * 1674 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1675 { 1676 struct kvm_memory_slot *slot; 1677 1678 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1679 slot = try_get_memslot(slot, gfn); 1680 if (slot) 1681 return slot; 1682 1683 slot = search_memslots(slots, gfn, approx); 1684 if (slot) { 1685 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1686 return slot; 1687 } 1688 1689 return NULL; 1690 } 1691 1692 /* 1693 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1694 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1695 * because that would bloat other code too much. 1696 */ 1697 static inline struct kvm_memory_slot * 1698 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1699 { 1700 return ____gfn_to_memslot(slots, gfn, false); 1701 } 1702 1703 static inline unsigned long 1704 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1705 { 1706 /* 1707 * The index was checked originally in search_memslots. To avoid 1708 * that a malicious guest builds a Spectre gadget out of e.g. page 1709 * table walks, do not let the processor speculate loads outside 1710 * the guest's registered memslots. 1711 */ 1712 unsigned long offset = gfn - slot->base_gfn; 1713 offset = array_index_nospec(offset, slot->npages); 1714 return slot->userspace_addr + offset * PAGE_SIZE; 1715 } 1716 1717 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1718 { 1719 return gfn_to_memslot(kvm, gfn)->id; 1720 } 1721 1722 static inline gfn_t 1723 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1724 { 1725 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1726 1727 return slot->base_gfn + gfn_offset; 1728 } 1729 1730 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1731 { 1732 return (gpa_t)gfn << PAGE_SHIFT; 1733 } 1734 1735 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1736 { 1737 return (gfn_t)(gpa >> PAGE_SHIFT); 1738 } 1739 1740 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1741 { 1742 return (hpa_t)pfn << PAGE_SHIFT; 1743 } 1744 1745 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1746 { 1747 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1748 1749 return kvm_is_error_hva(hva); 1750 } 1751 1752 enum kvm_stat_kind { 1753 KVM_STAT_VM, 1754 KVM_STAT_VCPU, 1755 }; 1756 1757 struct kvm_stat_data { 1758 struct kvm *kvm; 1759 const struct _kvm_stats_desc *desc; 1760 enum kvm_stat_kind kind; 1761 }; 1762 1763 struct _kvm_stats_desc { 1764 struct kvm_stats_desc desc; 1765 char name[KVM_STATS_NAME_SIZE]; 1766 }; 1767 1768 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1769 .flags = type | unit | base | \ 1770 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1771 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1772 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1773 .exponent = exp, \ 1774 .size = sz, \ 1775 .bucket_size = bsz 1776 1777 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1778 { \ 1779 { \ 1780 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1781 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1782 }, \ 1783 .name = #stat, \ 1784 } 1785 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1786 { \ 1787 { \ 1788 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1789 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1790 }, \ 1791 .name = #stat, \ 1792 } 1793 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1794 { \ 1795 { \ 1796 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1797 .offset = offsetof(struct kvm_vm_stat, stat) \ 1798 }, \ 1799 .name = #stat, \ 1800 } 1801 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1802 { \ 1803 { \ 1804 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1805 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1806 }, \ 1807 .name = #stat, \ 1808 } 1809 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1810 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1811 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1812 1813 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1814 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1815 unit, base, exponent, 1, 0) 1816 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1817 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1818 unit, base, exponent, 1, 0) 1819 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1820 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1821 unit, base, exponent, 1, 0) 1822 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1823 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1824 unit, base, exponent, sz, bsz) 1825 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1826 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1827 unit, base, exponent, sz, 0) 1828 1829 /* Cumulative counter, read/write */ 1830 #define STATS_DESC_COUNTER(SCOPE, name) \ 1831 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1832 KVM_STATS_BASE_POW10, 0) 1833 /* Instantaneous counter, read only */ 1834 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1835 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1836 KVM_STATS_BASE_POW10, 0) 1837 /* Peak counter, read/write */ 1838 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1839 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1840 KVM_STATS_BASE_POW10, 0) 1841 1842 /* Instantaneous boolean value, read only */ 1843 #define STATS_DESC_IBOOLEAN(SCOPE, name) \ 1844 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1845 KVM_STATS_BASE_POW10, 0) 1846 /* Peak (sticky) boolean value, read/write */ 1847 #define STATS_DESC_PBOOLEAN(SCOPE, name) \ 1848 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1849 KVM_STATS_BASE_POW10, 0) 1850 1851 /* Cumulative time in nanosecond */ 1852 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1853 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1854 KVM_STATS_BASE_POW10, -9) 1855 /* Linear histogram for time in nanosecond */ 1856 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1857 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1858 KVM_STATS_BASE_POW10, -9, sz, bsz) 1859 /* Logarithmic histogram for time in nanosecond */ 1860 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1861 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1862 KVM_STATS_BASE_POW10, -9, sz) 1863 1864 #define KVM_GENERIC_VM_STATS() \ 1865 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1866 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1867 1868 #define KVM_GENERIC_VCPU_STATS() \ 1869 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1870 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1871 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1872 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1873 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1874 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1875 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1876 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1877 HALT_POLL_HIST_COUNT), \ 1878 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1879 HALT_POLL_HIST_COUNT), \ 1880 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1881 HALT_POLL_HIST_COUNT), \ 1882 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 1883 1884 extern struct dentry *kvm_debugfs_dir; 1885 1886 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1887 const struct _kvm_stats_desc *desc, 1888 void *stats, size_t size_stats, 1889 char __user *user_buffer, size_t size, loff_t *offset); 1890 1891 /** 1892 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1893 * statistics data. 1894 * 1895 * @data: start address of the stats data 1896 * @size: the number of bucket of the stats data 1897 * @value: the new value used to update the linear histogram's bucket 1898 * @bucket_size: the size (width) of a bucket 1899 */ 1900 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1901 u64 value, size_t bucket_size) 1902 { 1903 size_t index = div64_u64(value, bucket_size); 1904 1905 index = min(index, size - 1); 1906 ++data[index]; 1907 } 1908 1909 /** 1910 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1911 * statistics data. 1912 * 1913 * @data: start address of the stats data 1914 * @size: the number of bucket of the stats data 1915 * @value: the new value used to update the logarithmic histogram's bucket 1916 */ 1917 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 1918 { 1919 size_t index = fls64(value); 1920 1921 index = min(index, size - 1); 1922 ++data[index]; 1923 } 1924 1925 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 1926 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 1927 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 1928 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 1929 1930 1931 extern const struct kvm_stats_header kvm_vm_stats_header; 1932 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 1933 extern const struct kvm_stats_header kvm_vcpu_stats_header; 1934 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 1935 1936 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1937 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 1938 { 1939 if (unlikely(kvm->mmu_invalidate_in_progress)) 1940 return 1; 1941 /* 1942 * Ensure the read of mmu_invalidate_in_progress happens before 1943 * the read of mmu_invalidate_seq. This interacts with the 1944 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 1945 * that the caller either sees the old (non-zero) value of 1946 * mmu_invalidate_in_progress or the new (incremented) value of 1947 * mmu_invalidate_seq. 1948 * 1949 * PowerPC Book3s HV KVM calls this under a per-page lock rather 1950 * than under kvm->mmu_lock, for scalability, so can't rely on 1951 * kvm->mmu_lock to keep things ordered. 1952 */ 1953 smp_rmb(); 1954 if (kvm->mmu_invalidate_seq != mmu_seq) 1955 return 1; 1956 return 0; 1957 } 1958 1959 static inline int mmu_invalidate_retry_hva(struct kvm *kvm, 1960 unsigned long mmu_seq, 1961 unsigned long hva) 1962 { 1963 lockdep_assert_held(&kvm->mmu_lock); 1964 /* 1965 * If mmu_invalidate_in_progress is non-zero, then the range maintained 1966 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 1967 * that might be being invalidated. Note that it may include some false 1968 * positives, due to shortcuts when handing concurrent invalidations. 1969 */ 1970 if (unlikely(kvm->mmu_invalidate_in_progress) && 1971 hva >= kvm->mmu_invalidate_range_start && 1972 hva < kvm->mmu_invalidate_range_end) 1973 return 1; 1974 if (kvm->mmu_invalidate_seq != mmu_seq) 1975 return 1; 1976 return 0; 1977 } 1978 #endif 1979 1980 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1981 1982 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1983 1984 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1985 int kvm_set_irq_routing(struct kvm *kvm, 1986 const struct kvm_irq_routing_entry *entries, 1987 unsigned nr, 1988 unsigned flags); 1989 int kvm_set_routing_entry(struct kvm *kvm, 1990 struct kvm_kernel_irq_routing_entry *e, 1991 const struct kvm_irq_routing_entry *ue); 1992 void kvm_free_irq_routing(struct kvm *kvm); 1993 1994 #else 1995 1996 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1997 1998 #endif 1999 2000 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2001 2002 #ifdef CONFIG_HAVE_KVM_EVENTFD 2003 2004 void kvm_eventfd_init(struct kvm *kvm); 2005 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2006 2007 #ifdef CONFIG_HAVE_KVM_IRQFD 2008 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2009 void kvm_irqfd_release(struct kvm *kvm); 2010 void kvm_irq_routing_update(struct kvm *); 2011 #else 2012 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2013 { 2014 return -EINVAL; 2015 } 2016 2017 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2018 #endif 2019 2020 #else 2021 2022 static inline void kvm_eventfd_init(struct kvm *kvm) {} 2023 2024 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2025 { 2026 return -EINVAL; 2027 } 2028 2029 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2030 2031 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2032 static inline void kvm_irq_routing_update(struct kvm *kvm) 2033 { 2034 } 2035 #endif 2036 2037 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 2038 { 2039 return -ENOSYS; 2040 } 2041 2042 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 2043 2044 void kvm_arch_irq_routing_update(struct kvm *kvm); 2045 2046 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2047 { 2048 /* 2049 * Ensure the rest of the request is published to kvm_check_request's 2050 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2051 */ 2052 smp_wmb(); 2053 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2054 } 2055 2056 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2057 { 2058 /* 2059 * Request that don't require vCPU action should never be logged in 2060 * vcpu->requests. The vCPU won't clear the request, so it will stay 2061 * logged indefinitely and prevent the vCPU from entering the guest. 2062 */ 2063 BUILD_BUG_ON(!__builtin_constant_p(req) || 2064 (req & KVM_REQUEST_NO_ACTION)); 2065 2066 __kvm_make_request(req, vcpu); 2067 } 2068 2069 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2070 { 2071 return READ_ONCE(vcpu->requests); 2072 } 2073 2074 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2075 { 2076 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2077 } 2078 2079 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2080 { 2081 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2082 } 2083 2084 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2085 { 2086 if (kvm_test_request(req, vcpu)) { 2087 kvm_clear_request(req, vcpu); 2088 2089 /* 2090 * Ensure the rest of the request is visible to kvm_check_request's 2091 * caller. Paired with the smp_wmb in kvm_make_request. 2092 */ 2093 smp_mb__after_atomic(); 2094 return true; 2095 } else { 2096 return false; 2097 } 2098 } 2099 2100 extern bool kvm_rebooting; 2101 2102 extern unsigned int halt_poll_ns; 2103 extern unsigned int halt_poll_ns_grow; 2104 extern unsigned int halt_poll_ns_grow_start; 2105 extern unsigned int halt_poll_ns_shrink; 2106 2107 struct kvm_device { 2108 const struct kvm_device_ops *ops; 2109 struct kvm *kvm; 2110 void *private; 2111 struct list_head vm_node; 2112 }; 2113 2114 /* create, destroy, and name are mandatory */ 2115 struct kvm_device_ops { 2116 const char *name; 2117 2118 /* 2119 * create is called holding kvm->lock and any operations not suitable 2120 * to do while holding the lock should be deferred to init (see 2121 * below). 2122 */ 2123 int (*create)(struct kvm_device *dev, u32 type); 2124 2125 /* 2126 * init is called after create if create is successful and is called 2127 * outside of holding kvm->lock. 2128 */ 2129 void (*init)(struct kvm_device *dev); 2130 2131 /* 2132 * Destroy is responsible for freeing dev. 2133 * 2134 * Destroy may be called before or after destructors are called 2135 * on emulated I/O regions, depending on whether a reference is 2136 * held by a vcpu or other kvm component that gets destroyed 2137 * after the emulated I/O. 2138 */ 2139 void (*destroy)(struct kvm_device *dev); 2140 2141 /* 2142 * Release is an alternative method to free the device. It is 2143 * called when the device file descriptor is closed. Once 2144 * release is called, the destroy method will not be called 2145 * anymore as the device is removed from the device list of 2146 * the VM. kvm->lock is held. 2147 */ 2148 void (*release)(struct kvm_device *dev); 2149 2150 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2151 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2152 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2153 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2154 unsigned long arg); 2155 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2156 }; 2157 2158 void kvm_device_get(struct kvm_device *dev); 2159 void kvm_device_put(struct kvm_device *dev); 2160 struct kvm_device *kvm_device_from_filp(struct file *filp); 2161 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2162 void kvm_unregister_device_ops(u32 type); 2163 2164 extern struct kvm_device_ops kvm_mpic_ops; 2165 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2166 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2167 2168 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2169 2170 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2171 { 2172 vcpu->spin_loop.in_spin_loop = val; 2173 } 2174 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2175 { 2176 vcpu->spin_loop.dy_eligible = val; 2177 } 2178 2179 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2180 2181 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2182 { 2183 } 2184 2185 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2186 { 2187 } 2188 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2189 2190 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2191 { 2192 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2193 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2194 } 2195 2196 struct kvm_vcpu *kvm_get_running_vcpu(void); 2197 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2198 2199 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2200 bool kvm_arch_has_irq_bypass(void); 2201 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2202 struct irq_bypass_producer *); 2203 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2204 struct irq_bypass_producer *); 2205 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2206 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2207 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2208 uint32_t guest_irq, bool set); 2209 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2210 struct kvm_kernel_irq_routing_entry *); 2211 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2212 2213 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2214 /* If we wakeup during the poll time, was it a sucessful poll? */ 2215 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2216 { 2217 return vcpu->valid_wakeup; 2218 } 2219 2220 #else 2221 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2222 { 2223 return true; 2224 } 2225 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2226 2227 #ifdef CONFIG_HAVE_KVM_NO_POLL 2228 /* Callback that tells if we must not poll */ 2229 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2230 #else 2231 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2232 { 2233 return false; 2234 } 2235 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2236 2237 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2238 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2239 unsigned int ioctl, unsigned long arg); 2240 #else 2241 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2242 unsigned int ioctl, 2243 unsigned long arg) 2244 { 2245 return -ENOIOCTLCMD; 2246 } 2247 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2248 2249 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 2250 unsigned long start, unsigned long end); 2251 2252 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2253 2254 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2255 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2256 #else 2257 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2258 { 2259 return 0; 2260 } 2261 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2262 2263 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 2264 2265 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 2266 uintptr_t data, const char *name, 2267 struct task_struct **thread_ptr); 2268 2269 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2270 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2271 { 2272 vcpu->run->exit_reason = KVM_EXIT_INTR; 2273 vcpu->stat.signal_exits++; 2274 } 2275 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2276 2277 /* 2278 * If more than one page is being (un)accounted, @virt must be the address of 2279 * the first page of a block of pages what were allocated together (i.e 2280 * accounted together). 2281 * 2282 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2283 * is thread-safe. 2284 */ 2285 static inline void kvm_account_pgtable_pages(void *virt, int nr) 2286 { 2287 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2288 } 2289 2290 /* 2291 * This defines how many reserved entries we want to keep before we 2292 * kick the vcpu to the userspace to avoid dirty ring full. This 2293 * value can be tuned to higher if e.g. PML is enabled on the host. 2294 */ 2295 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2296 2297 /* Max number of entries allowed for each kvm dirty ring */ 2298 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2299 2300 #endif 2301