1 #ifndef __KVM_HOST_H 2 #define __KVM_HOST_H 3 4 /* 5 * This work is licensed under the terms of the GNU GPL, version 2. See 6 * the COPYING file in the top-level directory. 7 */ 8 9 #include <linux/types.h> 10 #include <linux/hardirq.h> 11 #include <linux/list.h> 12 #include <linux/mutex.h> 13 #include <linux/spinlock.h> 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/bug.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_notifier.h> 19 #include <linux/preempt.h> 20 #include <linux/msi.h> 21 #include <linux/slab.h> 22 #include <linux/vmalloc.h> 23 #include <linux/rcupdate.h> 24 #include <linux/ratelimit.h> 25 #include <linux/err.h> 26 #include <linux/irqflags.h> 27 #include <linux/context_tracking.h> 28 #include <linux/irqbypass.h> 29 #include <linux/swait.h> 30 #include <linux/refcount.h> 31 #include <linux/nospec.h> 32 #include <asm/signal.h> 33 34 #include <linux/kvm.h> 35 #include <linux/kvm_para.h> 36 37 #include <linux/kvm_types.h> 38 39 #include <asm/kvm_host.h> 40 41 #ifndef KVM_MAX_VCPU_ID 42 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 43 #endif 44 45 /* 46 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 47 * in kvm, other bits are visible for userspace which are defined in 48 * include/linux/kvm_h. 49 */ 50 #define KVM_MEMSLOT_INVALID (1UL << 16) 51 52 /* 53 * Bit 63 of the memslot generation number is an "update in-progress flag", 54 * e.g. is temporarily set for the duration of install_new_memslots(). 55 * This flag effectively creates a unique generation number that is used to 56 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 57 * i.e. may (or may not) have come from the previous memslots generation. 58 * 59 * This is necessary because the actual memslots update is not atomic with 60 * respect to the generation number update. Updating the generation number 61 * first would allow a vCPU to cache a spte from the old memslots using the 62 * new generation number, and updating the generation number after switching 63 * to the new memslots would allow cache hits using the old generation number 64 * to reference the defunct memslots. 65 * 66 * This mechanism is used to prevent getting hits in KVM's caches while a 67 * memslot update is in-progress, and to prevent cache hits *after* updating 68 * the actual generation number against accesses that were inserted into the 69 * cache *before* the memslots were updated. 70 */ 71 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 72 73 /* Two fragments for cross MMIO pages. */ 74 #define KVM_MAX_MMIO_FRAGMENTS 2 75 76 #ifndef KVM_ADDRESS_SPACE_NUM 77 #define KVM_ADDRESS_SPACE_NUM 1 78 #endif 79 80 /* 81 * For the normal pfn, the highest 12 bits should be zero, 82 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 83 * mask bit 63 to indicate the noslot pfn. 84 */ 85 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 86 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 87 #define KVM_PFN_NOSLOT (0x1ULL << 63) 88 89 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 90 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 91 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 92 93 /* 94 * error pfns indicate that the gfn is in slot but faild to 95 * translate it to pfn on host. 96 */ 97 static inline bool is_error_pfn(kvm_pfn_t pfn) 98 { 99 return !!(pfn & KVM_PFN_ERR_MASK); 100 } 101 102 /* 103 * error_noslot pfns indicate that the gfn can not be 104 * translated to pfn - it is not in slot or failed to 105 * translate it to pfn. 106 */ 107 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 108 { 109 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 110 } 111 112 /* noslot pfn indicates that the gfn is not in slot. */ 113 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 114 { 115 return pfn == KVM_PFN_NOSLOT; 116 } 117 118 /* 119 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 120 * provide own defines and kvm_is_error_hva 121 */ 122 #ifndef KVM_HVA_ERR_BAD 123 124 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 125 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 126 127 static inline bool kvm_is_error_hva(unsigned long addr) 128 { 129 return addr >= PAGE_OFFSET; 130 } 131 132 #endif 133 134 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 135 136 static inline bool is_error_page(struct page *page) 137 { 138 return IS_ERR(page); 139 } 140 141 #define KVM_REQUEST_MASK GENMASK(7,0) 142 #define KVM_REQUEST_NO_WAKEUP BIT(8) 143 #define KVM_REQUEST_WAIT BIT(9) 144 /* 145 * Architecture-independent vcpu->requests bit members 146 * Bits 4-7 are reserved for more arch-independent bits. 147 */ 148 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 149 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 150 #define KVM_REQ_PENDING_TIMER 2 151 #define KVM_REQ_UNHALT 3 152 #define KVM_REQUEST_ARCH_BASE 8 153 154 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 155 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 156 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 157 }) 158 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 159 160 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 161 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 162 163 extern struct kmem_cache *kvm_vcpu_cache; 164 165 extern spinlock_t kvm_lock; 166 extern struct list_head vm_list; 167 168 struct kvm_io_range { 169 gpa_t addr; 170 int len; 171 struct kvm_io_device *dev; 172 }; 173 174 #define NR_IOBUS_DEVS 1000 175 176 struct kvm_io_bus { 177 int dev_count; 178 int ioeventfd_count; 179 struct kvm_io_range range[]; 180 }; 181 182 enum kvm_bus { 183 KVM_MMIO_BUS, 184 KVM_PIO_BUS, 185 KVM_VIRTIO_CCW_NOTIFY_BUS, 186 KVM_FAST_MMIO_BUS, 187 KVM_NR_BUSES 188 }; 189 190 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 191 int len, const void *val); 192 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 193 gpa_t addr, int len, const void *val, long cookie); 194 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 195 int len, void *val); 196 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 197 int len, struct kvm_io_device *dev); 198 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 199 struct kvm_io_device *dev); 200 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 201 gpa_t addr); 202 203 #ifdef CONFIG_KVM_ASYNC_PF 204 struct kvm_async_pf { 205 struct work_struct work; 206 struct list_head link; 207 struct list_head queue; 208 struct kvm_vcpu *vcpu; 209 struct mm_struct *mm; 210 gva_t gva; 211 unsigned long addr; 212 struct kvm_arch_async_pf arch; 213 bool wakeup_all; 214 }; 215 216 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 217 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 218 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 219 struct kvm_arch_async_pf *arch); 220 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 221 #endif 222 223 enum { 224 OUTSIDE_GUEST_MODE, 225 IN_GUEST_MODE, 226 EXITING_GUEST_MODE, 227 READING_SHADOW_PAGE_TABLES, 228 }; 229 230 /* 231 * Sometimes a large or cross-page mmio needs to be broken up into separate 232 * exits for userspace servicing. 233 */ 234 struct kvm_mmio_fragment { 235 gpa_t gpa; 236 void *data; 237 unsigned len; 238 }; 239 240 struct kvm_vcpu { 241 struct kvm *kvm; 242 #ifdef CONFIG_PREEMPT_NOTIFIERS 243 struct preempt_notifier preempt_notifier; 244 #endif 245 int cpu; 246 int vcpu_id; 247 int srcu_idx; 248 int mode; 249 u64 requests; 250 unsigned long guest_debug; 251 252 int pre_pcpu; 253 struct list_head blocked_vcpu_list; 254 255 struct mutex mutex; 256 struct kvm_run *run; 257 258 int guest_xcr0_loaded; 259 struct swait_queue_head wq; 260 struct pid __rcu *pid; 261 int sigset_active; 262 sigset_t sigset; 263 struct kvm_vcpu_stat stat; 264 unsigned int halt_poll_ns; 265 bool valid_wakeup; 266 267 #ifdef CONFIG_HAS_IOMEM 268 int mmio_needed; 269 int mmio_read_completed; 270 int mmio_is_write; 271 int mmio_cur_fragment; 272 int mmio_nr_fragments; 273 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 274 #endif 275 276 #ifdef CONFIG_KVM_ASYNC_PF 277 struct { 278 u32 queued; 279 struct list_head queue; 280 struct list_head done; 281 spinlock_t lock; 282 } async_pf; 283 #endif 284 285 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 286 /* 287 * Cpu relax intercept or pause loop exit optimization 288 * in_spin_loop: set when a vcpu does a pause loop exit 289 * or cpu relax intercepted. 290 * dy_eligible: indicates whether vcpu is eligible for directed yield. 291 */ 292 struct { 293 bool in_spin_loop; 294 bool dy_eligible; 295 } spin_loop; 296 #endif 297 bool preempted; 298 struct kvm_vcpu_arch arch; 299 struct dentry *debugfs_dentry; 300 }; 301 302 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 303 { 304 /* 305 * The memory barrier ensures a previous write to vcpu->requests cannot 306 * be reordered with the read of vcpu->mode. It pairs with the general 307 * memory barrier following the write of vcpu->mode in VCPU RUN. 308 */ 309 smp_mb__before_atomic(); 310 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 311 } 312 313 /* 314 * Some of the bitops functions do not support too long bitmaps. 315 * This number must be determined not to exceed such limits. 316 */ 317 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 318 319 struct kvm_memory_slot { 320 gfn_t base_gfn; 321 unsigned long npages; 322 unsigned long *dirty_bitmap; 323 struct kvm_arch_memory_slot arch; 324 unsigned long userspace_addr; 325 u32 flags; 326 short id; 327 }; 328 329 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 330 { 331 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 332 } 333 334 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 335 { 336 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 337 338 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 339 } 340 341 struct kvm_s390_adapter_int { 342 u64 ind_addr; 343 u64 summary_addr; 344 u64 ind_offset; 345 u32 summary_offset; 346 u32 adapter_id; 347 }; 348 349 struct kvm_hv_sint { 350 u32 vcpu; 351 u32 sint; 352 }; 353 354 struct kvm_kernel_irq_routing_entry { 355 u32 gsi; 356 u32 type; 357 int (*set)(struct kvm_kernel_irq_routing_entry *e, 358 struct kvm *kvm, int irq_source_id, int level, 359 bool line_status); 360 union { 361 struct { 362 unsigned irqchip; 363 unsigned pin; 364 } irqchip; 365 struct { 366 u32 address_lo; 367 u32 address_hi; 368 u32 data; 369 u32 flags; 370 u32 devid; 371 } msi; 372 struct kvm_s390_adapter_int adapter; 373 struct kvm_hv_sint hv_sint; 374 }; 375 struct hlist_node link; 376 }; 377 378 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 379 struct kvm_irq_routing_table { 380 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 381 u32 nr_rt_entries; 382 /* 383 * Array indexed by gsi. Each entry contains list of irq chips 384 * the gsi is connected to. 385 */ 386 struct hlist_head map[0]; 387 }; 388 #endif 389 390 #ifndef KVM_PRIVATE_MEM_SLOTS 391 #define KVM_PRIVATE_MEM_SLOTS 0 392 #endif 393 394 #ifndef KVM_MEM_SLOTS_NUM 395 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 396 #endif 397 398 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 399 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 400 { 401 return 0; 402 } 403 #endif 404 405 /* 406 * Note: 407 * memslots are not sorted by id anymore, please use id_to_memslot() 408 * to get the memslot by its id. 409 */ 410 struct kvm_memslots { 411 u64 generation; 412 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 413 /* The mapping table from slot id to the index in memslots[]. */ 414 short id_to_index[KVM_MEM_SLOTS_NUM]; 415 atomic_t lru_slot; 416 int used_slots; 417 }; 418 419 struct kvm { 420 spinlock_t mmu_lock; 421 struct mutex slots_lock; 422 struct mm_struct *mm; /* userspace tied to this vm */ 423 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 424 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 425 426 /* 427 * created_vcpus is protected by kvm->lock, and is incremented 428 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 429 * incremented after storing the kvm_vcpu pointer in vcpus, 430 * and is accessed atomically. 431 */ 432 atomic_t online_vcpus; 433 int created_vcpus; 434 int last_boosted_vcpu; 435 struct list_head vm_list; 436 struct mutex lock; 437 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 438 #ifdef CONFIG_HAVE_KVM_EVENTFD 439 struct { 440 spinlock_t lock; 441 struct list_head items; 442 struct list_head resampler_list; 443 struct mutex resampler_lock; 444 } irqfds; 445 struct list_head ioeventfds; 446 #endif 447 struct kvm_vm_stat stat; 448 struct kvm_arch arch; 449 refcount_t users_count; 450 #ifdef CONFIG_KVM_MMIO 451 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 452 spinlock_t ring_lock; 453 struct list_head coalesced_zones; 454 #endif 455 456 struct mutex irq_lock; 457 #ifdef CONFIG_HAVE_KVM_IRQCHIP 458 /* 459 * Update side is protected by irq_lock. 460 */ 461 struct kvm_irq_routing_table __rcu *irq_routing; 462 #endif 463 #ifdef CONFIG_HAVE_KVM_IRQFD 464 struct hlist_head irq_ack_notifier_list; 465 #endif 466 467 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 468 struct mmu_notifier mmu_notifier; 469 unsigned long mmu_notifier_seq; 470 long mmu_notifier_count; 471 #endif 472 long tlbs_dirty; 473 struct list_head devices; 474 bool manual_dirty_log_protect; 475 struct dentry *debugfs_dentry; 476 struct kvm_stat_data **debugfs_stat_data; 477 struct srcu_struct srcu; 478 struct srcu_struct irq_srcu; 479 pid_t userspace_pid; 480 }; 481 482 #define kvm_err(fmt, ...) \ 483 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 484 #define kvm_info(fmt, ...) \ 485 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 486 #define kvm_debug(fmt, ...) \ 487 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 488 #define kvm_debug_ratelimited(fmt, ...) \ 489 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 490 ## __VA_ARGS__) 491 #define kvm_pr_unimpl(fmt, ...) \ 492 pr_err_ratelimited("kvm [%i]: " fmt, \ 493 task_tgid_nr(current), ## __VA_ARGS__) 494 495 /* The guest did something we don't support. */ 496 #define vcpu_unimpl(vcpu, fmt, ...) \ 497 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 498 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 499 500 #define vcpu_debug(vcpu, fmt, ...) \ 501 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 502 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 503 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 504 ## __VA_ARGS__) 505 #define vcpu_err(vcpu, fmt, ...) \ 506 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 507 508 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 509 { 510 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 511 lockdep_is_held(&kvm->slots_lock) || 512 !refcount_read(&kvm->users_count)); 513 } 514 515 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 516 { 517 int num_vcpus = atomic_read(&kvm->online_vcpus); 518 i = array_index_nospec(i, num_vcpus); 519 520 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 521 smp_rmb(); 522 return kvm->vcpus[i]; 523 } 524 525 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 526 for (idx = 0; \ 527 idx < atomic_read(&kvm->online_vcpus) && \ 528 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 529 idx++) 530 531 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 532 { 533 struct kvm_vcpu *vcpu = NULL; 534 int i; 535 536 if (id < 0) 537 return NULL; 538 if (id < KVM_MAX_VCPUS) 539 vcpu = kvm_get_vcpu(kvm, id); 540 if (vcpu && vcpu->vcpu_id == id) 541 return vcpu; 542 kvm_for_each_vcpu(i, vcpu, kvm) 543 if (vcpu->vcpu_id == id) 544 return vcpu; 545 return NULL; 546 } 547 548 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 549 { 550 struct kvm_vcpu *tmp; 551 int idx; 552 553 kvm_for_each_vcpu(idx, tmp, vcpu->kvm) 554 if (tmp == vcpu) 555 return idx; 556 BUG(); 557 } 558 559 #define kvm_for_each_memslot(memslot, slots) \ 560 for (memslot = &slots->memslots[0]; \ 561 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 562 memslot++) 563 564 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 565 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 566 567 void vcpu_load(struct kvm_vcpu *vcpu); 568 void vcpu_put(struct kvm_vcpu *vcpu); 569 570 #ifdef __KVM_HAVE_IOAPIC 571 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 572 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 573 #else 574 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 575 { 576 } 577 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 578 { 579 } 580 #endif 581 582 #ifdef CONFIG_HAVE_KVM_IRQFD 583 int kvm_irqfd_init(void); 584 void kvm_irqfd_exit(void); 585 #else 586 static inline int kvm_irqfd_init(void) 587 { 588 return 0; 589 } 590 591 static inline void kvm_irqfd_exit(void) 592 { 593 } 594 #endif 595 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 596 struct module *module); 597 void kvm_exit(void); 598 599 void kvm_get_kvm(struct kvm *kvm); 600 void kvm_put_kvm(struct kvm *kvm); 601 602 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 603 { 604 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 605 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 606 lockdep_is_held(&kvm->slots_lock) || 607 !refcount_read(&kvm->users_count)); 608 } 609 610 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 611 { 612 return __kvm_memslots(kvm, 0); 613 } 614 615 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 616 { 617 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 618 619 return __kvm_memslots(vcpu->kvm, as_id); 620 } 621 622 static inline struct kvm_memory_slot * 623 id_to_memslot(struct kvm_memslots *slots, int id) 624 { 625 int index = slots->id_to_index[id]; 626 struct kvm_memory_slot *slot; 627 628 slot = &slots->memslots[index]; 629 630 WARN_ON(slot->id != id); 631 return slot; 632 } 633 634 /* 635 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 636 * - create a new memory slot 637 * - delete an existing memory slot 638 * - modify an existing memory slot 639 * -- move it in the guest physical memory space 640 * -- just change its flags 641 * 642 * Since flags can be changed by some of these operations, the following 643 * differentiation is the best we can do for __kvm_set_memory_region(): 644 */ 645 enum kvm_mr_change { 646 KVM_MR_CREATE, 647 KVM_MR_DELETE, 648 KVM_MR_MOVE, 649 KVM_MR_FLAGS_ONLY, 650 }; 651 652 int kvm_set_memory_region(struct kvm *kvm, 653 const struct kvm_userspace_memory_region *mem); 654 int __kvm_set_memory_region(struct kvm *kvm, 655 const struct kvm_userspace_memory_region *mem); 656 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 657 struct kvm_memory_slot *dont); 658 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 659 unsigned long npages); 660 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 661 int kvm_arch_prepare_memory_region(struct kvm *kvm, 662 struct kvm_memory_slot *memslot, 663 const struct kvm_userspace_memory_region *mem, 664 enum kvm_mr_change change); 665 void kvm_arch_commit_memory_region(struct kvm *kvm, 666 const struct kvm_userspace_memory_region *mem, 667 const struct kvm_memory_slot *old, 668 const struct kvm_memory_slot *new, 669 enum kvm_mr_change change); 670 bool kvm_largepages_enabled(void); 671 void kvm_disable_largepages(void); 672 /* flush all memory translations */ 673 void kvm_arch_flush_shadow_all(struct kvm *kvm); 674 /* flush memory translations pointing to 'slot' */ 675 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 676 struct kvm_memory_slot *slot); 677 678 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 679 struct page **pages, int nr_pages); 680 681 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 682 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 683 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 684 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 685 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 686 bool *writable); 687 void kvm_release_page_clean(struct page *page); 688 void kvm_release_page_dirty(struct page *page); 689 void kvm_set_page_accessed(struct page *page); 690 691 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 692 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 693 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 694 bool *writable); 695 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 696 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 697 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 698 bool atomic, bool *async, bool write_fault, 699 bool *writable); 700 701 void kvm_release_pfn_clean(kvm_pfn_t pfn); 702 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 703 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 704 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 705 void kvm_get_pfn(kvm_pfn_t pfn); 706 707 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 708 int len); 709 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 710 unsigned long len); 711 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 712 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 713 void *data, unsigned long len); 714 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 715 int offset, int len); 716 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 717 unsigned long len); 718 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 719 void *data, unsigned long len); 720 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 721 void *data, unsigned int offset, 722 unsigned long len); 723 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 724 gpa_t gpa, unsigned long len); 725 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 726 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 727 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 728 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 729 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 730 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 731 732 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 733 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 734 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 735 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 736 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 737 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 738 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 739 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 740 int len); 741 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 742 unsigned long len); 743 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 744 unsigned long len); 745 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 746 int offset, int len); 747 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 748 unsigned long len); 749 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 750 751 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 752 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 753 754 void kvm_vcpu_block(struct kvm_vcpu *vcpu); 755 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 756 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 757 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 758 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 759 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 760 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 761 762 void kvm_flush_remote_tlbs(struct kvm *kvm); 763 void kvm_reload_remote_mmus(struct kvm *kvm); 764 765 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 766 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 767 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 768 769 long kvm_arch_dev_ioctl(struct file *filp, 770 unsigned int ioctl, unsigned long arg); 771 long kvm_arch_vcpu_ioctl(struct file *filp, 772 unsigned int ioctl, unsigned long arg); 773 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 774 775 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 776 777 int kvm_get_dirty_log(struct kvm *kvm, 778 struct kvm_dirty_log *log, int *is_dirty); 779 780 int kvm_get_dirty_log_protect(struct kvm *kvm, 781 struct kvm_dirty_log *log, bool *flush); 782 int kvm_clear_dirty_log_protect(struct kvm *kvm, 783 struct kvm_clear_dirty_log *log, bool *flush); 784 785 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 786 struct kvm_memory_slot *slot, 787 gfn_t gfn_offset, 788 unsigned long mask); 789 790 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 791 struct kvm_dirty_log *log); 792 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 793 struct kvm_clear_dirty_log *log); 794 795 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 796 bool line_status); 797 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 798 struct kvm_enable_cap *cap); 799 long kvm_arch_vm_ioctl(struct file *filp, 800 unsigned int ioctl, unsigned long arg); 801 802 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 803 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 804 805 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 806 struct kvm_translation *tr); 807 808 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 809 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 810 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 811 struct kvm_sregs *sregs); 812 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 813 struct kvm_sregs *sregs); 814 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 815 struct kvm_mp_state *mp_state); 816 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 817 struct kvm_mp_state *mp_state); 818 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 819 struct kvm_guest_debug *dbg); 820 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 821 822 int kvm_arch_init(void *opaque); 823 void kvm_arch_exit(void); 824 825 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 826 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 827 828 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 829 830 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 831 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 832 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 833 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 834 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 835 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 836 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 837 838 bool kvm_arch_has_vcpu_debugfs(void); 839 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 840 841 int kvm_arch_hardware_enable(void); 842 void kvm_arch_hardware_disable(void); 843 int kvm_arch_hardware_setup(void); 844 void kvm_arch_hardware_unsetup(void); 845 void kvm_arch_check_processor_compat(void *rtn); 846 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 847 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 848 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 849 850 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 851 /* 852 * All architectures that want to use vzalloc currently also 853 * need their own kvm_arch_alloc_vm implementation. 854 */ 855 static inline struct kvm *kvm_arch_alloc_vm(void) 856 { 857 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 858 } 859 860 static inline void kvm_arch_free_vm(struct kvm *kvm) 861 { 862 kfree(kvm); 863 } 864 #endif 865 866 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 867 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 868 { 869 return -ENOTSUPP; 870 } 871 #endif 872 873 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 874 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 875 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 876 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 877 #else 878 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 879 { 880 } 881 882 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 883 { 884 } 885 886 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 887 { 888 return false; 889 } 890 #endif 891 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 892 void kvm_arch_start_assignment(struct kvm *kvm); 893 void kvm_arch_end_assignment(struct kvm *kvm); 894 bool kvm_arch_has_assigned_device(struct kvm *kvm); 895 #else 896 static inline void kvm_arch_start_assignment(struct kvm *kvm) 897 { 898 } 899 900 static inline void kvm_arch_end_assignment(struct kvm *kvm) 901 { 902 } 903 904 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 905 { 906 return false; 907 } 908 #endif 909 910 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 911 { 912 #ifdef __KVM_HAVE_ARCH_WQP 913 return vcpu->arch.wqp; 914 #else 915 return &vcpu->wq; 916 #endif 917 } 918 919 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 920 /* 921 * returns true if the virtual interrupt controller is initialized and 922 * ready to accept virtual IRQ. On some architectures the virtual interrupt 923 * controller is dynamically instantiated and this is not always true. 924 */ 925 bool kvm_arch_intc_initialized(struct kvm *kvm); 926 #else 927 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 928 { 929 return true; 930 } 931 #endif 932 933 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 934 void kvm_arch_destroy_vm(struct kvm *kvm); 935 void kvm_arch_sync_events(struct kvm *kvm); 936 937 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 938 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 939 940 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 941 942 struct kvm_irq_ack_notifier { 943 struct hlist_node link; 944 unsigned gsi; 945 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 946 }; 947 948 int kvm_irq_map_gsi(struct kvm *kvm, 949 struct kvm_kernel_irq_routing_entry *entries, int gsi); 950 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 951 952 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 953 bool line_status); 954 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 955 int irq_source_id, int level, bool line_status); 956 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 957 struct kvm *kvm, int irq_source_id, 958 int level, bool line_status); 959 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 960 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 961 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 962 void kvm_register_irq_ack_notifier(struct kvm *kvm, 963 struct kvm_irq_ack_notifier *kian); 964 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 965 struct kvm_irq_ack_notifier *kian); 966 int kvm_request_irq_source_id(struct kvm *kvm); 967 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 968 969 /* 970 * search_memslots() and __gfn_to_memslot() are here because they are 971 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 972 * gfn_to_memslot() itself isn't here as an inline because that would 973 * bloat other code too much. 974 */ 975 static inline struct kvm_memory_slot * 976 search_memslots(struct kvm_memslots *slots, gfn_t gfn) 977 { 978 int start = 0, end = slots->used_slots; 979 int slot = atomic_read(&slots->lru_slot); 980 struct kvm_memory_slot *memslots = slots->memslots; 981 982 if (gfn >= memslots[slot].base_gfn && 983 gfn < memslots[slot].base_gfn + memslots[slot].npages) 984 return &memslots[slot]; 985 986 while (start < end) { 987 slot = start + (end - start) / 2; 988 989 if (gfn >= memslots[slot].base_gfn) 990 end = slot; 991 else 992 start = slot + 1; 993 } 994 995 if (gfn >= memslots[start].base_gfn && 996 gfn < memslots[start].base_gfn + memslots[start].npages) { 997 atomic_set(&slots->lru_slot, start); 998 return &memslots[start]; 999 } 1000 1001 return NULL; 1002 } 1003 1004 static inline struct kvm_memory_slot * 1005 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1006 { 1007 return search_memslots(slots, gfn); 1008 } 1009 1010 static inline unsigned long 1011 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1012 { 1013 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1014 } 1015 1016 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1017 { 1018 return gfn_to_memslot(kvm, gfn)->id; 1019 } 1020 1021 static inline gfn_t 1022 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1023 { 1024 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1025 1026 return slot->base_gfn + gfn_offset; 1027 } 1028 1029 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1030 { 1031 return (gpa_t)gfn << PAGE_SHIFT; 1032 } 1033 1034 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1035 { 1036 return (gfn_t)(gpa >> PAGE_SHIFT); 1037 } 1038 1039 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1040 { 1041 return (hpa_t)pfn << PAGE_SHIFT; 1042 } 1043 1044 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1045 gpa_t gpa) 1046 { 1047 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1048 } 1049 1050 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1051 { 1052 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1053 1054 return kvm_is_error_hva(hva); 1055 } 1056 1057 enum kvm_stat_kind { 1058 KVM_STAT_VM, 1059 KVM_STAT_VCPU, 1060 }; 1061 1062 struct kvm_stat_data { 1063 int offset; 1064 struct kvm *kvm; 1065 }; 1066 1067 struct kvm_stats_debugfs_item { 1068 const char *name; 1069 int offset; 1070 enum kvm_stat_kind kind; 1071 }; 1072 extern struct kvm_stats_debugfs_item debugfs_entries[]; 1073 extern struct dentry *kvm_debugfs_dir; 1074 1075 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1076 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1077 { 1078 if (unlikely(kvm->mmu_notifier_count)) 1079 return 1; 1080 /* 1081 * Ensure the read of mmu_notifier_count happens before the read 1082 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1083 * mmu_notifier_invalidate_range_end to make sure that the caller 1084 * either sees the old (non-zero) value of mmu_notifier_count or 1085 * the new (incremented) value of mmu_notifier_seq. 1086 * PowerPC Book3s HV KVM calls this under a per-page lock 1087 * rather than under kvm->mmu_lock, for scalability, so 1088 * can't rely on kvm->mmu_lock to keep things ordered. 1089 */ 1090 smp_rmb(); 1091 if (kvm->mmu_notifier_seq != mmu_seq) 1092 return 1; 1093 return 0; 1094 } 1095 #endif 1096 1097 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1098 1099 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1100 1101 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1102 int kvm_set_irq_routing(struct kvm *kvm, 1103 const struct kvm_irq_routing_entry *entries, 1104 unsigned nr, 1105 unsigned flags); 1106 int kvm_set_routing_entry(struct kvm *kvm, 1107 struct kvm_kernel_irq_routing_entry *e, 1108 const struct kvm_irq_routing_entry *ue); 1109 void kvm_free_irq_routing(struct kvm *kvm); 1110 1111 #else 1112 1113 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1114 1115 #endif 1116 1117 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1118 1119 #ifdef CONFIG_HAVE_KVM_EVENTFD 1120 1121 void kvm_eventfd_init(struct kvm *kvm); 1122 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1123 1124 #ifdef CONFIG_HAVE_KVM_IRQFD 1125 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1126 void kvm_irqfd_release(struct kvm *kvm); 1127 void kvm_irq_routing_update(struct kvm *); 1128 #else 1129 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1130 { 1131 return -EINVAL; 1132 } 1133 1134 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1135 #endif 1136 1137 #else 1138 1139 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1140 1141 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1142 { 1143 return -EINVAL; 1144 } 1145 1146 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1147 1148 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1149 static inline void kvm_irq_routing_update(struct kvm *kvm) 1150 { 1151 } 1152 #endif 1153 1154 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1155 { 1156 return -ENOSYS; 1157 } 1158 1159 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1160 1161 void kvm_arch_irq_routing_update(struct kvm *kvm); 1162 1163 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1164 { 1165 /* 1166 * Ensure the rest of the request is published to kvm_check_request's 1167 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1168 */ 1169 smp_wmb(); 1170 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1171 } 1172 1173 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1174 { 1175 return READ_ONCE(vcpu->requests); 1176 } 1177 1178 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1179 { 1180 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1181 } 1182 1183 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1184 { 1185 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1186 } 1187 1188 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1189 { 1190 if (kvm_test_request(req, vcpu)) { 1191 kvm_clear_request(req, vcpu); 1192 1193 /* 1194 * Ensure the rest of the request is visible to kvm_check_request's 1195 * caller. Paired with the smp_wmb in kvm_make_request. 1196 */ 1197 smp_mb__after_atomic(); 1198 return true; 1199 } else { 1200 return false; 1201 } 1202 } 1203 1204 extern bool kvm_rebooting; 1205 1206 extern unsigned int halt_poll_ns; 1207 extern unsigned int halt_poll_ns_grow; 1208 extern unsigned int halt_poll_ns_grow_start; 1209 extern unsigned int halt_poll_ns_shrink; 1210 1211 struct kvm_device { 1212 struct kvm_device_ops *ops; 1213 struct kvm *kvm; 1214 void *private; 1215 struct list_head vm_node; 1216 }; 1217 1218 /* create, destroy, and name are mandatory */ 1219 struct kvm_device_ops { 1220 const char *name; 1221 1222 /* 1223 * create is called holding kvm->lock and any operations not suitable 1224 * to do while holding the lock should be deferred to init (see 1225 * below). 1226 */ 1227 int (*create)(struct kvm_device *dev, u32 type); 1228 1229 /* 1230 * init is called after create if create is successful and is called 1231 * outside of holding kvm->lock. 1232 */ 1233 void (*init)(struct kvm_device *dev); 1234 1235 /* 1236 * Destroy is responsible for freeing dev. 1237 * 1238 * Destroy may be called before or after destructors are called 1239 * on emulated I/O regions, depending on whether a reference is 1240 * held by a vcpu or other kvm component that gets destroyed 1241 * after the emulated I/O. 1242 */ 1243 void (*destroy)(struct kvm_device *dev); 1244 1245 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1246 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1247 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1248 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1249 unsigned long arg); 1250 }; 1251 1252 void kvm_device_get(struct kvm_device *dev); 1253 void kvm_device_put(struct kvm_device *dev); 1254 struct kvm_device *kvm_device_from_filp(struct file *filp); 1255 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1256 void kvm_unregister_device_ops(u32 type); 1257 1258 extern struct kvm_device_ops kvm_mpic_ops; 1259 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1260 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1261 1262 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1263 1264 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1265 { 1266 vcpu->spin_loop.in_spin_loop = val; 1267 } 1268 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1269 { 1270 vcpu->spin_loop.dy_eligible = val; 1271 } 1272 1273 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1274 1275 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1276 { 1277 } 1278 1279 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1280 { 1281 } 1282 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1283 1284 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1285 bool kvm_arch_has_irq_bypass(void); 1286 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1287 struct irq_bypass_producer *); 1288 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1289 struct irq_bypass_producer *); 1290 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1291 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1292 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1293 uint32_t guest_irq, bool set); 1294 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1295 1296 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1297 /* If we wakeup during the poll time, was it a sucessful poll? */ 1298 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1299 { 1300 return vcpu->valid_wakeup; 1301 } 1302 1303 #else 1304 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1305 { 1306 return true; 1307 } 1308 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1309 1310 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1311 long kvm_arch_vcpu_async_ioctl(struct file *filp, 1312 unsigned int ioctl, unsigned long arg); 1313 #else 1314 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1315 unsigned int ioctl, 1316 unsigned long arg) 1317 { 1318 return -ENOIOCTLCMD; 1319 } 1320 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1321 1322 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1323 unsigned long start, unsigned long end, bool blockable); 1324 1325 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1326 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1327 #else 1328 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1329 { 1330 return 0; 1331 } 1332 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1333 1334 #endif 1335