1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 59 /* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80 /* Two fragments for cross MMIO pages. */ 81 #define KVM_MAX_MMIO_FRAGMENTS 2 82 83 #ifndef KVM_MAX_NR_ADDRESS_SPACES 84 #define KVM_MAX_NR_ADDRESS_SPACES 1 85 #endif 86 87 /* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94 #define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100 101 /* 102 * error pfns indicate that the gfn is in slot but faild to 103 * translate it to pfn on host. 104 */ 105 static inline bool is_error_pfn(kvm_pfn_t pfn) 106 { 107 return !!(pfn & KVM_PFN_ERR_MASK); 108 } 109 110 /* 111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 112 * by a pending signal. Note, the signal may or may not be fatal. 113 */ 114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 115 { 116 return pfn == KVM_PFN_ERR_SIGPENDING; 117 } 118 119 /* 120 * error_noslot pfns indicate that the gfn can not be 121 * translated to pfn - it is not in slot or failed to 122 * translate it to pfn. 123 */ 124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 125 { 126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 127 } 128 129 /* noslot pfn indicates that the gfn is not in slot. */ 130 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 131 { 132 return pfn == KVM_PFN_NOSLOT; 133 } 134 135 /* 136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 137 * provide own defines and kvm_is_error_hva 138 */ 139 #ifndef KVM_HVA_ERR_BAD 140 141 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 142 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 143 144 static inline bool kvm_is_error_hva(unsigned long addr) 145 { 146 return addr >= PAGE_OFFSET; 147 } 148 149 #endif 150 151 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 152 153 static inline bool is_error_page(struct page *page) 154 { 155 return IS_ERR(page); 156 } 157 158 #define KVM_REQUEST_MASK GENMASK(7,0) 159 #define KVM_REQUEST_NO_WAKEUP BIT(8) 160 #define KVM_REQUEST_WAIT BIT(9) 161 #define KVM_REQUEST_NO_ACTION BIT(10) 162 /* 163 * Architecture-independent vcpu->requests bit members 164 * Bits 3-7 are reserved for more arch-independent bits. 165 */ 166 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 167 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 168 #define KVM_REQ_UNBLOCK 2 169 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3 170 #define KVM_REQUEST_ARCH_BASE 8 171 172 /* 173 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 174 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 175 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 176 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 177 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 178 * guarantee the vCPU received an IPI and has actually exited guest mode. 179 */ 180 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 181 182 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 183 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 184 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 185 }) 186 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 187 188 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 189 unsigned long *vcpu_bitmap); 190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 191 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 192 struct kvm_vcpu *except); 193 194 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 195 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 196 197 extern struct mutex kvm_lock; 198 extern struct list_head vm_list; 199 200 struct kvm_io_range { 201 gpa_t addr; 202 int len; 203 struct kvm_io_device *dev; 204 }; 205 206 #define NR_IOBUS_DEVS 1000 207 208 struct kvm_io_bus { 209 int dev_count; 210 int ioeventfd_count; 211 struct kvm_io_range range[]; 212 }; 213 214 enum kvm_bus { 215 KVM_MMIO_BUS, 216 KVM_PIO_BUS, 217 KVM_VIRTIO_CCW_NOTIFY_BUS, 218 KVM_FAST_MMIO_BUS, 219 KVM_NR_BUSES 220 }; 221 222 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 223 int len, const void *val); 224 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 225 gpa_t addr, int len, const void *val, long cookie); 226 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 227 int len, void *val); 228 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 229 int len, struct kvm_io_device *dev); 230 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 231 struct kvm_io_device *dev); 232 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 233 gpa_t addr); 234 235 #ifdef CONFIG_KVM_ASYNC_PF 236 struct kvm_async_pf { 237 struct work_struct work; 238 struct list_head link; 239 struct list_head queue; 240 struct kvm_vcpu *vcpu; 241 struct mm_struct *mm; 242 gpa_t cr2_or_gpa; 243 unsigned long addr; 244 struct kvm_arch_async_pf arch; 245 bool wakeup_all; 246 bool notpresent_injected; 247 }; 248 249 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 250 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 251 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 252 unsigned long hva, struct kvm_arch_async_pf *arch); 253 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 254 #endif 255 256 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 257 union kvm_mmu_notifier_arg { 258 pte_t pte; 259 unsigned long attributes; 260 }; 261 262 struct kvm_gfn_range { 263 struct kvm_memory_slot *slot; 264 gfn_t start; 265 gfn_t end; 266 union kvm_mmu_notifier_arg arg; 267 bool may_block; 268 }; 269 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 270 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 271 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 272 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 273 #endif 274 275 enum { 276 OUTSIDE_GUEST_MODE, 277 IN_GUEST_MODE, 278 EXITING_GUEST_MODE, 279 READING_SHADOW_PAGE_TABLES, 280 }; 281 282 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 283 284 struct kvm_host_map { 285 /* 286 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 287 * a 'struct page' for it. When using mem= kernel parameter some memory 288 * can be used as guest memory but they are not managed by host 289 * kernel). 290 * If 'pfn' is not managed by the host kernel, this field is 291 * initialized to KVM_UNMAPPED_PAGE. 292 */ 293 struct page *page; 294 void *hva; 295 kvm_pfn_t pfn; 296 kvm_pfn_t gfn; 297 }; 298 299 /* 300 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 301 * directly to check for that. 302 */ 303 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 304 { 305 return !!map->hva; 306 } 307 308 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 309 { 310 return single_task_running() && !need_resched() && ktime_before(cur, stop); 311 } 312 313 /* 314 * Sometimes a large or cross-page mmio needs to be broken up into separate 315 * exits for userspace servicing. 316 */ 317 struct kvm_mmio_fragment { 318 gpa_t gpa; 319 void *data; 320 unsigned len; 321 }; 322 323 struct kvm_vcpu { 324 struct kvm *kvm; 325 #ifdef CONFIG_PREEMPT_NOTIFIERS 326 struct preempt_notifier preempt_notifier; 327 #endif 328 int cpu; 329 int vcpu_id; /* id given by userspace at creation */ 330 int vcpu_idx; /* index into kvm->vcpu_array */ 331 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 332 #ifdef CONFIG_PROVE_RCU 333 int srcu_depth; 334 #endif 335 int mode; 336 u64 requests; 337 unsigned long guest_debug; 338 339 struct mutex mutex; 340 struct kvm_run *run; 341 342 #ifndef __KVM_HAVE_ARCH_WQP 343 struct rcuwait wait; 344 #endif 345 struct pid __rcu *pid; 346 int sigset_active; 347 sigset_t sigset; 348 unsigned int halt_poll_ns; 349 bool valid_wakeup; 350 351 #ifdef CONFIG_HAS_IOMEM 352 int mmio_needed; 353 int mmio_read_completed; 354 int mmio_is_write; 355 int mmio_cur_fragment; 356 int mmio_nr_fragments; 357 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 358 #endif 359 360 #ifdef CONFIG_KVM_ASYNC_PF 361 struct { 362 u32 queued; 363 struct list_head queue; 364 struct list_head done; 365 spinlock_t lock; 366 } async_pf; 367 #endif 368 369 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 370 /* 371 * Cpu relax intercept or pause loop exit optimization 372 * in_spin_loop: set when a vcpu does a pause loop exit 373 * or cpu relax intercepted. 374 * dy_eligible: indicates whether vcpu is eligible for directed yield. 375 */ 376 struct { 377 bool in_spin_loop; 378 bool dy_eligible; 379 } spin_loop; 380 #endif 381 bool preempted; 382 bool ready; 383 struct kvm_vcpu_arch arch; 384 struct kvm_vcpu_stat stat; 385 char stats_id[KVM_STATS_NAME_SIZE]; 386 struct kvm_dirty_ring dirty_ring; 387 388 /* 389 * The most recently used memslot by this vCPU and the slots generation 390 * for which it is valid. 391 * No wraparound protection is needed since generations won't overflow in 392 * thousands of years, even assuming 1M memslot operations per second. 393 */ 394 struct kvm_memory_slot *last_used_slot; 395 u64 last_used_slot_gen; 396 }; 397 398 /* 399 * Start accounting time towards a guest. 400 * Must be called before entering guest context. 401 */ 402 static __always_inline void guest_timing_enter_irqoff(void) 403 { 404 /* 405 * This is running in ioctl context so its safe to assume that it's the 406 * stime pending cputime to flush. 407 */ 408 instrumentation_begin(); 409 vtime_account_guest_enter(); 410 instrumentation_end(); 411 } 412 413 /* 414 * Enter guest context and enter an RCU extended quiescent state. 415 * 416 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 417 * unsafe to use any code which may directly or indirectly use RCU, tracing 418 * (including IRQ flag tracing), or lockdep. All code in this period must be 419 * non-instrumentable. 420 */ 421 static __always_inline void guest_context_enter_irqoff(void) 422 { 423 /* 424 * KVM does not hold any references to rcu protected data when it 425 * switches CPU into a guest mode. In fact switching to a guest mode 426 * is very similar to exiting to userspace from rcu point of view. In 427 * addition CPU may stay in a guest mode for quite a long time (up to 428 * one time slice). Lets treat guest mode as quiescent state, just like 429 * we do with user-mode execution. 430 */ 431 if (!context_tracking_guest_enter()) { 432 instrumentation_begin(); 433 rcu_virt_note_context_switch(); 434 instrumentation_end(); 435 } 436 } 437 438 /* 439 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 440 * guest_state_enter_irqoff(). 441 */ 442 static __always_inline void guest_enter_irqoff(void) 443 { 444 guest_timing_enter_irqoff(); 445 guest_context_enter_irqoff(); 446 } 447 448 /** 449 * guest_state_enter_irqoff - Fixup state when entering a guest 450 * 451 * Entry to a guest will enable interrupts, but the kernel state is interrupts 452 * disabled when this is invoked. Also tell RCU about it. 453 * 454 * 1) Trace interrupts on state 455 * 2) Invoke context tracking if enabled to adjust RCU state 456 * 3) Tell lockdep that interrupts are enabled 457 * 458 * Invoked from architecture specific code before entering a guest. 459 * Must be called with interrupts disabled and the caller must be 460 * non-instrumentable. 461 * The caller has to invoke guest_timing_enter_irqoff() before this. 462 * 463 * Note: this is analogous to exit_to_user_mode(). 464 */ 465 static __always_inline void guest_state_enter_irqoff(void) 466 { 467 instrumentation_begin(); 468 trace_hardirqs_on_prepare(); 469 lockdep_hardirqs_on_prepare(); 470 instrumentation_end(); 471 472 guest_context_enter_irqoff(); 473 lockdep_hardirqs_on(CALLER_ADDR0); 474 } 475 476 /* 477 * Exit guest context and exit an RCU extended quiescent state. 478 * 479 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 480 * unsafe to use any code which may directly or indirectly use RCU, tracing 481 * (including IRQ flag tracing), or lockdep. All code in this period must be 482 * non-instrumentable. 483 */ 484 static __always_inline void guest_context_exit_irqoff(void) 485 { 486 context_tracking_guest_exit(); 487 } 488 489 /* 490 * Stop accounting time towards a guest. 491 * Must be called after exiting guest context. 492 */ 493 static __always_inline void guest_timing_exit_irqoff(void) 494 { 495 instrumentation_begin(); 496 /* Flush the guest cputime we spent on the guest */ 497 vtime_account_guest_exit(); 498 instrumentation_end(); 499 } 500 501 /* 502 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 503 * guest_timing_exit_irqoff(). 504 */ 505 static __always_inline void guest_exit_irqoff(void) 506 { 507 guest_context_exit_irqoff(); 508 guest_timing_exit_irqoff(); 509 } 510 511 static inline void guest_exit(void) 512 { 513 unsigned long flags; 514 515 local_irq_save(flags); 516 guest_exit_irqoff(); 517 local_irq_restore(flags); 518 } 519 520 /** 521 * guest_state_exit_irqoff - Establish state when returning from guest mode 522 * 523 * Entry from a guest disables interrupts, but guest mode is traced as 524 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 525 * 526 * 1) Tell lockdep that interrupts are disabled 527 * 2) Invoke context tracking if enabled to reactivate RCU 528 * 3) Trace interrupts off state 529 * 530 * Invoked from architecture specific code after exiting a guest. 531 * Must be invoked with interrupts disabled and the caller must be 532 * non-instrumentable. 533 * The caller has to invoke guest_timing_exit_irqoff() after this. 534 * 535 * Note: this is analogous to enter_from_user_mode(). 536 */ 537 static __always_inline void guest_state_exit_irqoff(void) 538 { 539 lockdep_hardirqs_off(CALLER_ADDR0); 540 guest_context_exit_irqoff(); 541 542 instrumentation_begin(); 543 trace_hardirqs_off_finish(); 544 instrumentation_end(); 545 } 546 547 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 548 { 549 /* 550 * The memory barrier ensures a previous write to vcpu->requests cannot 551 * be reordered with the read of vcpu->mode. It pairs with the general 552 * memory barrier following the write of vcpu->mode in VCPU RUN. 553 */ 554 smp_mb__before_atomic(); 555 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 556 } 557 558 /* 559 * Some of the bitops functions do not support too long bitmaps. 560 * This number must be determined not to exceed such limits. 561 */ 562 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 563 564 /* 565 * Since at idle each memslot belongs to two memslot sets it has to contain 566 * two embedded nodes for each data structure that it forms a part of. 567 * 568 * Two memslot sets (one active and one inactive) are necessary so the VM 569 * continues to run on one memslot set while the other is being modified. 570 * 571 * These two memslot sets normally point to the same set of memslots. 572 * They can, however, be desynchronized when performing a memslot management 573 * operation by replacing the memslot to be modified by its copy. 574 * After the operation is complete, both memslot sets once again point to 575 * the same, common set of memslot data. 576 * 577 * The memslots themselves are independent of each other so they can be 578 * individually added or deleted. 579 */ 580 struct kvm_memory_slot { 581 struct hlist_node id_node[2]; 582 struct interval_tree_node hva_node[2]; 583 struct rb_node gfn_node[2]; 584 gfn_t base_gfn; 585 unsigned long npages; 586 unsigned long *dirty_bitmap; 587 struct kvm_arch_memory_slot arch; 588 unsigned long userspace_addr; 589 u32 flags; 590 short id; 591 u16 as_id; 592 593 #ifdef CONFIG_KVM_PRIVATE_MEM 594 struct { 595 struct file __rcu *file; 596 pgoff_t pgoff; 597 } gmem; 598 #endif 599 }; 600 601 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot) 602 { 603 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD); 604 } 605 606 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 607 { 608 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 609 } 610 611 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 612 { 613 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 614 } 615 616 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 617 { 618 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 619 620 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 621 } 622 623 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 624 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 625 #endif 626 627 struct kvm_s390_adapter_int { 628 u64 ind_addr; 629 u64 summary_addr; 630 u64 ind_offset; 631 u32 summary_offset; 632 u32 adapter_id; 633 }; 634 635 struct kvm_hv_sint { 636 u32 vcpu; 637 u32 sint; 638 }; 639 640 struct kvm_xen_evtchn { 641 u32 port; 642 u32 vcpu_id; 643 int vcpu_idx; 644 u32 priority; 645 }; 646 647 struct kvm_kernel_irq_routing_entry { 648 u32 gsi; 649 u32 type; 650 int (*set)(struct kvm_kernel_irq_routing_entry *e, 651 struct kvm *kvm, int irq_source_id, int level, 652 bool line_status); 653 union { 654 struct { 655 unsigned irqchip; 656 unsigned pin; 657 } irqchip; 658 struct { 659 u32 address_lo; 660 u32 address_hi; 661 u32 data; 662 u32 flags; 663 u32 devid; 664 } msi; 665 struct kvm_s390_adapter_int adapter; 666 struct kvm_hv_sint hv_sint; 667 struct kvm_xen_evtchn xen_evtchn; 668 }; 669 struct hlist_node link; 670 }; 671 672 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 673 struct kvm_irq_routing_table { 674 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 675 u32 nr_rt_entries; 676 /* 677 * Array indexed by gsi. Each entry contains list of irq chips 678 * the gsi is connected to. 679 */ 680 struct hlist_head map[] __counted_by(nr_rt_entries); 681 }; 682 #endif 683 684 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 685 686 #ifndef KVM_INTERNAL_MEM_SLOTS 687 #define KVM_INTERNAL_MEM_SLOTS 0 688 #endif 689 690 #define KVM_MEM_SLOTS_NUM SHRT_MAX 691 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 692 693 #if KVM_MAX_NR_ADDRESS_SPACES == 1 694 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm) 695 { 696 return KVM_MAX_NR_ADDRESS_SPACES; 697 } 698 699 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 700 { 701 return 0; 702 } 703 #endif 704 705 /* 706 * Arch code must define kvm_arch_has_private_mem if support for private memory 707 * is enabled. 708 */ 709 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) 710 static inline bool kvm_arch_has_private_mem(struct kvm *kvm) 711 { 712 return false; 713 } 714 #endif 715 716 struct kvm_memslots { 717 u64 generation; 718 atomic_long_t last_used_slot; 719 struct rb_root_cached hva_tree; 720 struct rb_root gfn_tree; 721 /* 722 * The mapping table from slot id to memslot. 723 * 724 * 7-bit bucket count matches the size of the old id to index array for 725 * 512 slots, while giving good performance with this slot count. 726 * Higher bucket counts bring only small performance improvements but 727 * always result in higher memory usage (even for lower memslot counts). 728 */ 729 DECLARE_HASHTABLE(id_hash, 7); 730 int node_idx; 731 }; 732 733 struct kvm { 734 #ifdef KVM_HAVE_MMU_RWLOCK 735 rwlock_t mmu_lock; 736 #else 737 spinlock_t mmu_lock; 738 #endif /* KVM_HAVE_MMU_RWLOCK */ 739 740 struct mutex slots_lock; 741 742 /* 743 * Protects the arch-specific fields of struct kvm_memory_slots in 744 * use by the VM. To be used under the slots_lock (above) or in a 745 * kvm->srcu critical section where acquiring the slots_lock would 746 * lead to deadlock with the synchronize_srcu in 747 * kvm_swap_active_memslots(). 748 */ 749 struct mutex slots_arch_lock; 750 struct mm_struct *mm; /* userspace tied to this vm */ 751 unsigned long nr_memslot_pages; 752 /* The two memslot sets - active and inactive (per address space) */ 753 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2]; 754 /* The current active memslot set for each address space */ 755 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES]; 756 struct xarray vcpu_array; 757 /* 758 * Protected by slots_lock, but can be read outside if an 759 * incorrect answer is acceptable. 760 */ 761 atomic_t nr_memslots_dirty_logging; 762 763 /* Used to wait for completion of MMU notifiers. */ 764 spinlock_t mn_invalidate_lock; 765 unsigned long mn_active_invalidate_count; 766 struct rcuwait mn_memslots_update_rcuwait; 767 768 /* For management / invalidation of gfn_to_pfn_caches */ 769 spinlock_t gpc_lock; 770 struct list_head gpc_list; 771 772 /* 773 * created_vcpus is protected by kvm->lock, and is incremented 774 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 775 * incremented after storing the kvm_vcpu pointer in vcpus, 776 * and is accessed atomically. 777 */ 778 atomic_t online_vcpus; 779 int max_vcpus; 780 int created_vcpus; 781 int last_boosted_vcpu; 782 struct list_head vm_list; 783 struct mutex lock; 784 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 785 #ifdef CONFIG_HAVE_KVM_IRQCHIP 786 struct { 787 spinlock_t lock; 788 struct list_head items; 789 /* resampler_list update side is protected by resampler_lock. */ 790 struct list_head resampler_list; 791 struct mutex resampler_lock; 792 } irqfds; 793 #endif 794 struct list_head ioeventfds; 795 struct kvm_vm_stat stat; 796 struct kvm_arch arch; 797 refcount_t users_count; 798 #ifdef CONFIG_KVM_MMIO 799 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 800 spinlock_t ring_lock; 801 struct list_head coalesced_zones; 802 #endif 803 804 struct mutex irq_lock; 805 #ifdef CONFIG_HAVE_KVM_IRQCHIP 806 /* 807 * Update side is protected by irq_lock. 808 */ 809 struct kvm_irq_routing_table __rcu *irq_routing; 810 811 struct hlist_head irq_ack_notifier_list; 812 #endif 813 814 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 815 struct mmu_notifier mmu_notifier; 816 unsigned long mmu_invalidate_seq; 817 long mmu_invalidate_in_progress; 818 gfn_t mmu_invalidate_range_start; 819 gfn_t mmu_invalidate_range_end; 820 #endif 821 struct list_head devices; 822 u64 manual_dirty_log_protect; 823 struct dentry *debugfs_dentry; 824 struct kvm_stat_data **debugfs_stat_data; 825 struct srcu_struct srcu; 826 struct srcu_struct irq_srcu; 827 pid_t userspace_pid; 828 bool override_halt_poll_ns; 829 unsigned int max_halt_poll_ns; 830 u32 dirty_ring_size; 831 bool dirty_ring_with_bitmap; 832 bool vm_bugged; 833 bool vm_dead; 834 835 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 836 struct notifier_block pm_notifier; 837 #endif 838 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 839 /* Protected by slots_locks (for writes) and RCU (for reads) */ 840 struct xarray mem_attr_array; 841 #endif 842 char stats_id[KVM_STATS_NAME_SIZE]; 843 }; 844 845 #define kvm_err(fmt, ...) \ 846 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 847 #define kvm_info(fmt, ...) \ 848 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 849 #define kvm_debug(fmt, ...) \ 850 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 851 #define kvm_debug_ratelimited(fmt, ...) \ 852 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 853 ## __VA_ARGS__) 854 #define kvm_pr_unimpl(fmt, ...) \ 855 pr_err_ratelimited("kvm [%i]: " fmt, \ 856 task_tgid_nr(current), ## __VA_ARGS__) 857 858 /* The guest did something we don't support. */ 859 #define vcpu_unimpl(vcpu, fmt, ...) \ 860 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 861 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 862 863 #define vcpu_debug(vcpu, fmt, ...) \ 864 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 865 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 866 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 867 ## __VA_ARGS__) 868 #define vcpu_err(vcpu, fmt, ...) \ 869 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 870 871 static inline void kvm_vm_dead(struct kvm *kvm) 872 { 873 kvm->vm_dead = true; 874 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 875 } 876 877 static inline void kvm_vm_bugged(struct kvm *kvm) 878 { 879 kvm->vm_bugged = true; 880 kvm_vm_dead(kvm); 881 } 882 883 884 #define KVM_BUG(cond, kvm, fmt...) \ 885 ({ \ 886 bool __ret = !!(cond); \ 887 \ 888 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 889 kvm_vm_bugged(kvm); \ 890 unlikely(__ret); \ 891 }) 892 893 #define KVM_BUG_ON(cond, kvm) \ 894 ({ \ 895 bool __ret = !!(cond); \ 896 \ 897 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 898 kvm_vm_bugged(kvm); \ 899 unlikely(__ret); \ 900 }) 901 902 /* 903 * Note, "data corruption" refers to corruption of host kernel data structures, 904 * not guest data. Guest data corruption, suspected or confirmed, that is tied 905 * and contained to a single VM should *never* BUG() and potentially panic the 906 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure 907 * is corrupted and that corruption can have a cascading effect to other parts 908 * of the hosts and/or to other VMs. 909 */ 910 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ 911 ({ \ 912 bool __ret = !!(cond); \ 913 \ 914 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ 915 BUG_ON(__ret); \ 916 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 917 kvm_vm_bugged(kvm); \ 918 unlikely(__ret); \ 919 }) 920 921 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 922 { 923 #ifdef CONFIG_PROVE_RCU 924 WARN_ONCE(vcpu->srcu_depth++, 925 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 926 #endif 927 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 928 } 929 930 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 931 { 932 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 933 934 #ifdef CONFIG_PROVE_RCU 935 WARN_ONCE(--vcpu->srcu_depth, 936 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 937 #endif 938 } 939 940 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 941 { 942 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 943 } 944 945 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 946 { 947 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 948 lockdep_is_held(&kvm->slots_lock) || 949 !refcount_read(&kvm->users_count)); 950 } 951 952 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 953 { 954 int num_vcpus = atomic_read(&kvm->online_vcpus); 955 i = array_index_nospec(i, num_vcpus); 956 957 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 958 smp_rmb(); 959 return xa_load(&kvm->vcpu_array, i); 960 } 961 962 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 963 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 964 (atomic_read(&kvm->online_vcpus) - 1)) 965 966 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 967 { 968 struct kvm_vcpu *vcpu = NULL; 969 unsigned long i; 970 971 if (id < 0) 972 return NULL; 973 if (id < KVM_MAX_VCPUS) 974 vcpu = kvm_get_vcpu(kvm, id); 975 if (vcpu && vcpu->vcpu_id == id) 976 return vcpu; 977 kvm_for_each_vcpu(i, vcpu, kvm) 978 if (vcpu->vcpu_id == id) 979 return vcpu; 980 return NULL; 981 } 982 983 void kvm_destroy_vcpus(struct kvm *kvm); 984 985 void vcpu_load(struct kvm_vcpu *vcpu); 986 void vcpu_put(struct kvm_vcpu *vcpu); 987 988 #ifdef __KVM_HAVE_IOAPIC 989 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 990 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 991 #else 992 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 993 { 994 } 995 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 996 { 997 } 998 #endif 999 1000 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1001 int kvm_irqfd_init(void); 1002 void kvm_irqfd_exit(void); 1003 #else 1004 static inline int kvm_irqfd_init(void) 1005 { 1006 return 0; 1007 } 1008 1009 static inline void kvm_irqfd_exit(void) 1010 { 1011 } 1012 #endif 1013 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 1014 void kvm_exit(void); 1015 1016 void kvm_get_kvm(struct kvm *kvm); 1017 bool kvm_get_kvm_safe(struct kvm *kvm); 1018 void kvm_put_kvm(struct kvm *kvm); 1019 bool file_is_kvm(struct file *file); 1020 void kvm_put_kvm_no_destroy(struct kvm *kvm); 1021 1022 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 1023 { 1024 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES); 1025 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 1026 lockdep_is_held(&kvm->slots_lock) || 1027 !refcount_read(&kvm->users_count)); 1028 } 1029 1030 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 1031 { 1032 return __kvm_memslots(kvm, 0); 1033 } 1034 1035 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 1036 { 1037 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 1038 1039 return __kvm_memslots(vcpu->kvm, as_id); 1040 } 1041 1042 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 1043 { 1044 return RB_EMPTY_ROOT(&slots->gfn_tree); 1045 } 1046 1047 bool kvm_are_all_memslots_empty(struct kvm *kvm); 1048 1049 #define kvm_for_each_memslot(memslot, bkt, slots) \ 1050 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 1051 if (WARN_ON_ONCE(!memslot->npages)) { \ 1052 } else 1053 1054 static inline 1055 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1056 { 1057 struct kvm_memory_slot *slot; 1058 int idx = slots->node_idx; 1059 1060 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1061 if (slot->id == id) 1062 return slot; 1063 } 1064 1065 return NULL; 1066 } 1067 1068 /* Iterator used for walking memslots that overlap a gfn range. */ 1069 struct kvm_memslot_iter { 1070 struct kvm_memslots *slots; 1071 struct rb_node *node; 1072 struct kvm_memory_slot *slot; 1073 }; 1074 1075 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1076 { 1077 iter->node = rb_next(iter->node); 1078 if (!iter->node) 1079 return; 1080 1081 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1082 } 1083 1084 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1085 struct kvm_memslots *slots, 1086 gfn_t start) 1087 { 1088 int idx = slots->node_idx; 1089 struct rb_node *tmp; 1090 struct kvm_memory_slot *slot; 1091 1092 iter->slots = slots; 1093 1094 /* 1095 * Find the so called "upper bound" of a key - the first node that has 1096 * its key strictly greater than the searched one (the start gfn in our case). 1097 */ 1098 iter->node = NULL; 1099 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1100 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1101 if (start < slot->base_gfn) { 1102 iter->node = tmp; 1103 tmp = tmp->rb_left; 1104 } else { 1105 tmp = tmp->rb_right; 1106 } 1107 } 1108 1109 /* 1110 * Find the slot with the lowest gfn that can possibly intersect with 1111 * the range, so we'll ideally have slot start <= range start 1112 */ 1113 if (iter->node) { 1114 /* 1115 * A NULL previous node means that the very first slot 1116 * already has a higher start gfn. 1117 * In this case slot start > range start. 1118 */ 1119 tmp = rb_prev(iter->node); 1120 if (tmp) 1121 iter->node = tmp; 1122 } else { 1123 /* a NULL node below means no slots */ 1124 iter->node = rb_last(&slots->gfn_tree); 1125 } 1126 1127 if (iter->node) { 1128 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1129 1130 /* 1131 * It is possible in the slot start < range start case that the 1132 * found slot ends before or at range start (slot end <= range start) 1133 * and so it does not overlap the requested range. 1134 * 1135 * In such non-overlapping case the next slot (if it exists) will 1136 * already have slot start > range start, otherwise the logic above 1137 * would have found it instead of the current slot. 1138 */ 1139 if (iter->slot->base_gfn + iter->slot->npages <= start) 1140 kvm_memslot_iter_next(iter); 1141 } 1142 } 1143 1144 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1145 { 1146 if (!iter->node) 1147 return false; 1148 1149 /* 1150 * If this slot starts beyond or at the end of the range so does 1151 * every next one 1152 */ 1153 return iter->slot->base_gfn < end; 1154 } 1155 1156 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1157 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1158 for (kvm_memslot_iter_start(iter, slots, start); \ 1159 kvm_memslot_iter_is_valid(iter, end); \ 1160 kvm_memslot_iter_next(iter)) 1161 1162 /* 1163 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1164 * - create a new memory slot 1165 * - delete an existing memory slot 1166 * - modify an existing memory slot 1167 * -- move it in the guest physical memory space 1168 * -- just change its flags 1169 * 1170 * Since flags can be changed by some of these operations, the following 1171 * differentiation is the best we can do for __kvm_set_memory_region(): 1172 */ 1173 enum kvm_mr_change { 1174 KVM_MR_CREATE, 1175 KVM_MR_DELETE, 1176 KVM_MR_MOVE, 1177 KVM_MR_FLAGS_ONLY, 1178 }; 1179 1180 int kvm_set_memory_region(struct kvm *kvm, 1181 const struct kvm_userspace_memory_region2 *mem); 1182 int __kvm_set_memory_region(struct kvm *kvm, 1183 const struct kvm_userspace_memory_region2 *mem); 1184 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1185 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1186 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1187 const struct kvm_memory_slot *old, 1188 struct kvm_memory_slot *new, 1189 enum kvm_mr_change change); 1190 void kvm_arch_commit_memory_region(struct kvm *kvm, 1191 struct kvm_memory_slot *old, 1192 const struct kvm_memory_slot *new, 1193 enum kvm_mr_change change); 1194 /* flush all memory translations */ 1195 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1196 /* flush memory translations pointing to 'slot' */ 1197 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1198 struct kvm_memory_slot *slot); 1199 1200 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1201 struct page **pages, int nr_pages); 1202 1203 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 1204 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1205 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1206 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1207 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1208 bool *writable); 1209 void kvm_release_page_clean(struct page *page); 1210 void kvm_release_page_dirty(struct page *page); 1211 1212 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 1213 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1214 bool *writable); 1215 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); 1216 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn); 1217 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 1218 bool atomic, bool interruptible, bool *async, 1219 bool write_fault, bool *writable, hva_t *hva); 1220 1221 void kvm_release_pfn_clean(kvm_pfn_t pfn); 1222 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 1223 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 1224 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 1225 1226 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); 1227 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1228 int len); 1229 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1230 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1231 void *data, unsigned long len); 1232 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1233 void *data, unsigned int offset, 1234 unsigned long len); 1235 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1236 int offset, int len); 1237 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1238 unsigned long len); 1239 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1240 void *data, unsigned long len); 1241 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1242 void *data, unsigned int offset, 1243 unsigned long len); 1244 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1245 gpa_t gpa, unsigned long len); 1246 1247 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1248 ({ \ 1249 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1250 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1251 int __ret = -EFAULT; \ 1252 \ 1253 if (!kvm_is_error_hva(__addr)) \ 1254 __ret = get_user(v, __uaddr); \ 1255 __ret; \ 1256 }) 1257 1258 #define kvm_get_guest(kvm, gpa, v) \ 1259 ({ \ 1260 gpa_t __gpa = gpa; \ 1261 struct kvm *__kvm = kvm; \ 1262 \ 1263 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1264 offset_in_page(__gpa), v); \ 1265 }) 1266 1267 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1268 ({ \ 1269 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1270 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1271 int __ret = -EFAULT; \ 1272 \ 1273 if (!kvm_is_error_hva(__addr)) \ 1274 __ret = put_user(v, __uaddr); \ 1275 if (!__ret) \ 1276 mark_page_dirty(kvm, gfn); \ 1277 __ret; \ 1278 }) 1279 1280 #define kvm_put_guest(kvm, gpa, v) \ 1281 ({ \ 1282 gpa_t __gpa = gpa; \ 1283 struct kvm *__kvm = kvm; \ 1284 \ 1285 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1286 offset_in_page(__gpa), v); \ 1287 }) 1288 1289 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1290 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1291 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1292 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1293 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1294 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1295 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1296 1297 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1298 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1299 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 1300 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1301 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 1302 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 1303 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1304 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1305 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1306 int len); 1307 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1308 unsigned long len); 1309 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1310 unsigned long len); 1311 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1312 int offset, int len); 1313 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1314 unsigned long len); 1315 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1316 1317 /** 1318 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1319 * 1320 * @gpc: struct gfn_to_pfn_cache object. 1321 * @kvm: pointer to kvm instance. 1322 * @vcpu: vCPU to be used for marking pages dirty and to be woken on 1323 * invalidation. 1324 * @usage: indicates if the resulting host physical PFN is used while 1325 * the @vcpu is IN_GUEST_MODE (in which case invalidation of 1326 * the cache from MMU notifiers---but not for KVM memslot 1327 * changes!---will also force @vcpu to exit the guest and 1328 * refresh the cache); and/or if the PFN used directly 1329 * by KVM (and thus needs a kernel virtual mapping). 1330 * 1331 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1332 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1333 * the caller before init). 1334 */ 1335 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm, 1336 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage); 1337 1338 /** 1339 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1340 * physical address. 1341 * 1342 * @gpc: struct gfn_to_pfn_cache object. 1343 * @gpa: guest physical address to map. 1344 * @len: sanity check; the range being access must fit a single page. 1345 * 1346 * @return: 0 for success. 1347 * -EINVAL for a mapping which would cross a page boundary. 1348 * -EFAULT for an untranslatable guest physical address. 1349 * 1350 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1351 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1352 * to ensure that the cache is valid before accessing the target page. 1353 */ 1354 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1355 1356 /** 1357 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1358 * 1359 * @gpc: struct gfn_to_pfn_cache object. 1360 * @len: sanity check; the range being access must fit a single page. 1361 * 1362 * @return: %true if the cache is still valid and the address matches. 1363 * %false if the cache is not valid. 1364 * 1365 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1366 * while calling this function, and then continue to hold the lock until the 1367 * access is complete. 1368 * 1369 * Callers in IN_GUEST_MODE may do so without locking, although they should 1370 * still hold a read lock on kvm->scru for the memslot checks. 1371 */ 1372 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1373 1374 /** 1375 * kvm_gpc_refresh - update a previously initialized cache. 1376 * 1377 * @gpc: struct gfn_to_pfn_cache object. 1378 * @len: sanity check; the range being access must fit a single page. 1379 * 1380 * @return: 0 for success. 1381 * -EINVAL for a mapping which would cross a page boundary. 1382 * -EFAULT for an untranslatable guest physical address. 1383 * 1384 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1385 * return from this function does not mean the page can be immediately 1386 * accessed because it may have raced with an invalidation. Callers must 1387 * still lock and check the cache status, as this function does not return 1388 * with the lock still held to permit access. 1389 */ 1390 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1391 1392 /** 1393 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1394 * 1395 * @gpc: struct gfn_to_pfn_cache object. 1396 * 1397 * This removes a cache from the VM's list to be processed on MMU notifier 1398 * invocation. 1399 */ 1400 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1401 1402 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1403 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1404 1405 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1406 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1407 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1408 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1409 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1410 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1411 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1412 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1413 1414 void kvm_flush_remote_tlbs(struct kvm *kvm); 1415 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1416 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 1417 const struct kvm_memory_slot *memslot); 1418 1419 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1420 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1421 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1422 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1423 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1424 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1425 #endif 1426 1427 void kvm_mmu_invalidate_begin(struct kvm *kvm); 1428 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end); 1429 void kvm_mmu_invalidate_end(struct kvm *kvm); 1430 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 1431 1432 long kvm_arch_dev_ioctl(struct file *filp, 1433 unsigned int ioctl, unsigned long arg); 1434 long kvm_arch_vcpu_ioctl(struct file *filp, 1435 unsigned int ioctl, unsigned long arg); 1436 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1437 1438 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1439 1440 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1441 struct kvm_memory_slot *slot, 1442 gfn_t gfn_offset, 1443 unsigned long mask); 1444 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1445 1446 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1447 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1448 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1449 int *is_dirty, struct kvm_memory_slot **memslot); 1450 #endif 1451 1452 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1453 bool line_status); 1454 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1455 struct kvm_enable_cap *cap); 1456 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1457 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1458 unsigned long arg); 1459 1460 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1461 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1462 1463 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1464 struct kvm_translation *tr); 1465 1466 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1467 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1468 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1469 struct kvm_sregs *sregs); 1470 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1471 struct kvm_sregs *sregs); 1472 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1473 struct kvm_mp_state *mp_state); 1474 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1475 struct kvm_mp_state *mp_state); 1476 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1477 struct kvm_guest_debug *dbg); 1478 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1479 1480 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 1481 1482 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1483 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1484 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1485 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1486 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1487 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1488 1489 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1490 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1491 #endif 1492 1493 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1494 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1495 #else 1496 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1497 #endif 1498 1499 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1500 int kvm_arch_hardware_enable(void); 1501 void kvm_arch_hardware_disable(void); 1502 #endif 1503 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1504 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1505 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1506 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1507 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1508 int kvm_arch_post_init_vm(struct kvm *kvm); 1509 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1510 int kvm_arch_create_vm_debugfs(struct kvm *kvm); 1511 1512 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1513 /* 1514 * All architectures that want to use vzalloc currently also 1515 * need their own kvm_arch_alloc_vm implementation. 1516 */ 1517 static inline struct kvm *kvm_arch_alloc_vm(void) 1518 { 1519 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1520 } 1521 #endif 1522 1523 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1524 { 1525 kvfree(kvm); 1526 } 1527 1528 #ifndef __KVM_HAVE_ARCH_VM_FREE 1529 static inline void kvm_arch_free_vm(struct kvm *kvm) 1530 { 1531 __kvm_arch_free_vm(kvm); 1532 } 1533 #endif 1534 1535 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1536 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1537 { 1538 return -ENOTSUPP; 1539 } 1540 #else 1541 int kvm_arch_flush_remote_tlbs(struct kvm *kvm); 1542 #endif 1543 1544 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1545 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 1546 gfn_t gfn, u64 nr_pages) 1547 { 1548 return -EOPNOTSUPP; 1549 } 1550 #else 1551 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1552 #endif 1553 1554 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1555 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1556 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1557 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1558 #else 1559 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1560 { 1561 } 1562 1563 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1564 { 1565 } 1566 1567 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1568 { 1569 return false; 1570 } 1571 #endif 1572 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1573 void kvm_arch_start_assignment(struct kvm *kvm); 1574 void kvm_arch_end_assignment(struct kvm *kvm); 1575 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1576 #else 1577 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1578 { 1579 } 1580 1581 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1582 { 1583 } 1584 1585 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1586 { 1587 return false; 1588 } 1589 #endif 1590 1591 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1592 { 1593 #ifdef __KVM_HAVE_ARCH_WQP 1594 return vcpu->arch.waitp; 1595 #else 1596 return &vcpu->wait; 1597 #endif 1598 } 1599 1600 /* 1601 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1602 * true if the vCPU was blocking and was awakened, false otherwise. 1603 */ 1604 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1605 { 1606 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1607 } 1608 1609 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1610 { 1611 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1612 } 1613 1614 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1615 /* 1616 * returns true if the virtual interrupt controller is initialized and 1617 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1618 * controller is dynamically instantiated and this is not always true. 1619 */ 1620 bool kvm_arch_intc_initialized(struct kvm *kvm); 1621 #else 1622 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1623 { 1624 return true; 1625 } 1626 #endif 1627 1628 #ifdef CONFIG_GUEST_PERF_EVENTS 1629 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1630 1631 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1632 void kvm_unregister_perf_callbacks(void); 1633 #else 1634 static inline void kvm_register_perf_callbacks(void *ign) {} 1635 static inline void kvm_unregister_perf_callbacks(void) {} 1636 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1637 1638 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1639 void kvm_arch_destroy_vm(struct kvm *kvm); 1640 void kvm_arch_sync_events(struct kvm *kvm); 1641 1642 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1643 1644 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn); 1645 bool kvm_is_zone_device_page(struct page *page); 1646 1647 struct kvm_irq_ack_notifier { 1648 struct hlist_node link; 1649 unsigned gsi; 1650 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1651 }; 1652 1653 int kvm_irq_map_gsi(struct kvm *kvm, 1654 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1655 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1656 1657 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1658 bool line_status); 1659 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1660 int irq_source_id, int level, bool line_status); 1661 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1662 struct kvm *kvm, int irq_source_id, 1663 int level, bool line_status); 1664 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1665 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1666 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1667 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1668 struct kvm_irq_ack_notifier *kian); 1669 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1670 struct kvm_irq_ack_notifier *kian); 1671 int kvm_request_irq_source_id(struct kvm *kvm); 1672 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1673 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1674 1675 /* 1676 * Returns a pointer to the memslot if it contains gfn. 1677 * Otherwise returns NULL. 1678 */ 1679 static inline struct kvm_memory_slot * 1680 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1681 { 1682 if (!slot) 1683 return NULL; 1684 1685 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1686 return slot; 1687 else 1688 return NULL; 1689 } 1690 1691 /* 1692 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1693 * 1694 * With "approx" set returns the memslot also when the address falls 1695 * in a hole. In that case one of the memslots bordering the hole is 1696 * returned. 1697 */ 1698 static inline struct kvm_memory_slot * 1699 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1700 { 1701 struct kvm_memory_slot *slot; 1702 struct rb_node *node; 1703 int idx = slots->node_idx; 1704 1705 slot = NULL; 1706 for (node = slots->gfn_tree.rb_node; node; ) { 1707 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1708 if (gfn >= slot->base_gfn) { 1709 if (gfn < slot->base_gfn + slot->npages) 1710 return slot; 1711 node = node->rb_right; 1712 } else 1713 node = node->rb_left; 1714 } 1715 1716 return approx ? slot : NULL; 1717 } 1718 1719 static inline struct kvm_memory_slot * 1720 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1721 { 1722 struct kvm_memory_slot *slot; 1723 1724 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1725 slot = try_get_memslot(slot, gfn); 1726 if (slot) 1727 return slot; 1728 1729 slot = search_memslots(slots, gfn, approx); 1730 if (slot) { 1731 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1732 return slot; 1733 } 1734 1735 return NULL; 1736 } 1737 1738 /* 1739 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1740 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1741 * because that would bloat other code too much. 1742 */ 1743 static inline struct kvm_memory_slot * 1744 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1745 { 1746 return ____gfn_to_memslot(slots, gfn, false); 1747 } 1748 1749 static inline unsigned long 1750 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1751 { 1752 /* 1753 * The index was checked originally in search_memslots. To avoid 1754 * that a malicious guest builds a Spectre gadget out of e.g. page 1755 * table walks, do not let the processor speculate loads outside 1756 * the guest's registered memslots. 1757 */ 1758 unsigned long offset = gfn - slot->base_gfn; 1759 offset = array_index_nospec(offset, slot->npages); 1760 return slot->userspace_addr + offset * PAGE_SIZE; 1761 } 1762 1763 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1764 { 1765 return gfn_to_memslot(kvm, gfn)->id; 1766 } 1767 1768 static inline gfn_t 1769 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1770 { 1771 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1772 1773 return slot->base_gfn + gfn_offset; 1774 } 1775 1776 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1777 { 1778 return (gpa_t)gfn << PAGE_SHIFT; 1779 } 1780 1781 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1782 { 1783 return (gfn_t)(gpa >> PAGE_SHIFT); 1784 } 1785 1786 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1787 { 1788 return (hpa_t)pfn << PAGE_SHIFT; 1789 } 1790 1791 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1792 { 1793 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1794 1795 return kvm_is_error_hva(hva); 1796 } 1797 1798 enum kvm_stat_kind { 1799 KVM_STAT_VM, 1800 KVM_STAT_VCPU, 1801 }; 1802 1803 struct kvm_stat_data { 1804 struct kvm *kvm; 1805 const struct _kvm_stats_desc *desc; 1806 enum kvm_stat_kind kind; 1807 }; 1808 1809 struct _kvm_stats_desc { 1810 struct kvm_stats_desc desc; 1811 char name[KVM_STATS_NAME_SIZE]; 1812 }; 1813 1814 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1815 .flags = type | unit | base | \ 1816 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1817 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1818 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1819 .exponent = exp, \ 1820 .size = sz, \ 1821 .bucket_size = bsz 1822 1823 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1824 { \ 1825 { \ 1826 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1827 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1828 }, \ 1829 .name = #stat, \ 1830 } 1831 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1832 { \ 1833 { \ 1834 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1835 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1836 }, \ 1837 .name = #stat, \ 1838 } 1839 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1840 { \ 1841 { \ 1842 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1843 .offset = offsetof(struct kvm_vm_stat, stat) \ 1844 }, \ 1845 .name = #stat, \ 1846 } 1847 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1848 { \ 1849 { \ 1850 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1851 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1852 }, \ 1853 .name = #stat, \ 1854 } 1855 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1856 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1857 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1858 1859 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1860 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1861 unit, base, exponent, 1, 0) 1862 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1863 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1864 unit, base, exponent, 1, 0) 1865 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1866 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1867 unit, base, exponent, 1, 0) 1868 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1869 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1870 unit, base, exponent, sz, bsz) 1871 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1872 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1873 unit, base, exponent, sz, 0) 1874 1875 /* Cumulative counter, read/write */ 1876 #define STATS_DESC_COUNTER(SCOPE, name) \ 1877 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1878 KVM_STATS_BASE_POW10, 0) 1879 /* Instantaneous counter, read only */ 1880 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1881 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1882 KVM_STATS_BASE_POW10, 0) 1883 /* Peak counter, read/write */ 1884 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1885 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1886 KVM_STATS_BASE_POW10, 0) 1887 1888 /* Instantaneous boolean value, read only */ 1889 #define STATS_DESC_IBOOLEAN(SCOPE, name) \ 1890 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1891 KVM_STATS_BASE_POW10, 0) 1892 /* Peak (sticky) boolean value, read/write */ 1893 #define STATS_DESC_PBOOLEAN(SCOPE, name) \ 1894 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1895 KVM_STATS_BASE_POW10, 0) 1896 1897 /* Cumulative time in nanosecond */ 1898 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1899 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1900 KVM_STATS_BASE_POW10, -9) 1901 /* Linear histogram for time in nanosecond */ 1902 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1903 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1904 KVM_STATS_BASE_POW10, -9, sz, bsz) 1905 /* Logarithmic histogram for time in nanosecond */ 1906 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1907 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1908 KVM_STATS_BASE_POW10, -9, sz) 1909 1910 #define KVM_GENERIC_VM_STATS() \ 1911 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1912 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1913 1914 #define KVM_GENERIC_VCPU_STATS() \ 1915 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1916 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1917 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1918 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1919 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1920 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1921 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1922 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1923 HALT_POLL_HIST_COUNT), \ 1924 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1925 HALT_POLL_HIST_COUNT), \ 1926 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1927 HALT_POLL_HIST_COUNT), \ 1928 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 1929 1930 extern struct dentry *kvm_debugfs_dir; 1931 1932 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1933 const struct _kvm_stats_desc *desc, 1934 void *stats, size_t size_stats, 1935 char __user *user_buffer, size_t size, loff_t *offset); 1936 1937 /** 1938 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1939 * statistics data. 1940 * 1941 * @data: start address of the stats data 1942 * @size: the number of bucket of the stats data 1943 * @value: the new value used to update the linear histogram's bucket 1944 * @bucket_size: the size (width) of a bucket 1945 */ 1946 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1947 u64 value, size_t bucket_size) 1948 { 1949 size_t index = div64_u64(value, bucket_size); 1950 1951 index = min(index, size - 1); 1952 ++data[index]; 1953 } 1954 1955 /** 1956 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1957 * statistics data. 1958 * 1959 * @data: start address of the stats data 1960 * @size: the number of bucket of the stats data 1961 * @value: the new value used to update the logarithmic histogram's bucket 1962 */ 1963 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 1964 { 1965 size_t index = fls64(value); 1966 1967 index = min(index, size - 1); 1968 ++data[index]; 1969 } 1970 1971 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 1972 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 1973 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 1974 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 1975 1976 1977 extern const struct kvm_stats_header kvm_vm_stats_header; 1978 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 1979 extern const struct kvm_stats_header kvm_vcpu_stats_header; 1980 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 1981 1982 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 1983 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 1984 { 1985 if (unlikely(kvm->mmu_invalidate_in_progress)) 1986 return 1; 1987 /* 1988 * Ensure the read of mmu_invalidate_in_progress happens before 1989 * the read of mmu_invalidate_seq. This interacts with the 1990 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 1991 * that the caller either sees the old (non-zero) value of 1992 * mmu_invalidate_in_progress or the new (incremented) value of 1993 * mmu_invalidate_seq. 1994 * 1995 * PowerPC Book3s HV KVM calls this under a per-page lock rather 1996 * than under kvm->mmu_lock, for scalability, so can't rely on 1997 * kvm->mmu_lock to keep things ordered. 1998 */ 1999 smp_rmb(); 2000 if (kvm->mmu_invalidate_seq != mmu_seq) 2001 return 1; 2002 return 0; 2003 } 2004 2005 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm, 2006 unsigned long mmu_seq, 2007 gfn_t gfn) 2008 { 2009 lockdep_assert_held(&kvm->mmu_lock); 2010 /* 2011 * If mmu_invalidate_in_progress is non-zero, then the range maintained 2012 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 2013 * that might be being invalidated. Note that it may include some false 2014 * positives, due to shortcuts when handing concurrent invalidations. 2015 */ 2016 if (unlikely(kvm->mmu_invalidate_in_progress)) { 2017 /* 2018 * Dropping mmu_lock after bumping mmu_invalidate_in_progress 2019 * but before updating the range is a KVM bug. 2020 */ 2021 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA || 2022 kvm->mmu_invalidate_range_end == INVALID_GPA)) 2023 return 1; 2024 2025 if (gfn >= kvm->mmu_invalidate_range_start && 2026 gfn < kvm->mmu_invalidate_range_end) 2027 return 1; 2028 } 2029 2030 if (kvm->mmu_invalidate_seq != mmu_seq) 2031 return 1; 2032 return 0; 2033 } 2034 #endif 2035 2036 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2037 2038 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 2039 2040 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 2041 int kvm_set_irq_routing(struct kvm *kvm, 2042 const struct kvm_irq_routing_entry *entries, 2043 unsigned nr, 2044 unsigned flags); 2045 int kvm_set_routing_entry(struct kvm *kvm, 2046 struct kvm_kernel_irq_routing_entry *e, 2047 const struct kvm_irq_routing_entry *ue); 2048 void kvm_free_irq_routing(struct kvm *kvm); 2049 2050 #else 2051 2052 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 2053 2054 #endif 2055 2056 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2057 2058 void kvm_eventfd_init(struct kvm *kvm); 2059 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2060 2061 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2062 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2063 void kvm_irqfd_release(struct kvm *kvm); 2064 bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2065 unsigned int irqchip, 2066 unsigned int pin); 2067 void kvm_irq_routing_update(struct kvm *); 2068 #else 2069 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2070 { 2071 return -EINVAL; 2072 } 2073 2074 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2075 2076 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2077 unsigned int irqchip, 2078 unsigned int pin) 2079 { 2080 return false; 2081 } 2082 #endif /* CONFIG_HAVE_KVM_IRQCHIP */ 2083 2084 void kvm_arch_irq_routing_update(struct kvm *kvm); 2085 2086 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2087 { 2088 /* 2089 * Ensure the rest of the request is published to kvm_check_request's 2090 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2091 */ 2092 smp_wmb(); 2093 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2094 } 2095 2096 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2097 { 2098 /* 2099 * Request that don't require vCPU action should never be logged in 2100 * vcpu->requests. The vCPU won't clear the request, so it will stay 2101 * logged indefinitely and prevent the vCPU from entering the guest. 2102 */ 2103 BUILD_BUG_ON(!__builtin_constant_p(req) || 2104 (req & KVM_REQUEST_NO_ACTION)); 2105 2106 __kvm_make_request(req, vcpu); 2107 } 2108 2109 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2110 { 2111 return READ_ONCE(vcpu->requests); 2112 } 2113 2114 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2115 { 2116 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2117 } 2118 2119 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2120 { 2121 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2122 } 2123 2124 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2125 { 2126 if (kvm_test_request(req, vcpu)) { 2127 kvm_clear_request(req, vcpu); 2128 2129 /* 2130 * Ensure the rest of the request is visible to kvm_check_request's 2131 * caller. Paired with the smp_wmb in kvm_make_request. 2132 */ 2133 smp_mb__after_atomic(); 2134 return true; 2135 } else { 2136 return false; 2137 } 2138 } 2139 2140 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2141 extern bool kvm_rebooting; 2142 #endif 2143 2144 extern unsigned int halt_poll_ns; 2145 extern unsigned int halt_poll_ns_grow; 2146 extern unsigned int halt_poll_ns_grow_start; 2147 extern unsigned int halt_poll_ns_shrink; 2148 2149 struct kvm_device { 2150 const struct kvm_device_ops *ops; 2151 struct kvm *kvm; 2152 void *private; 2153 struct list_head vm_node; 2154 }; 2155 2156 /* create, destroy, and name are mandatory */ 2157 struct kvm_device_ops { 2158 const char *name; 2159 2160 /* 2161 * create is called holding kvm->lock and any operations not suitable 2162 * to do while holding the lock should be deferred to init (see 2163 * below). 2164 */ 2165 int (*create)(struct kvm_device *dev, u32 type); 2166 2167 /* 2168 * init is called after create if create is successful and is called 2169 * outside of holding kvm->lock. 2170 */ 2171 void (*init)(struct kvm_device *dev); 2172 2173 /* 2174 * Destroy is responsible for freeing dev. 2175 * 2176 * Destroy may be called before or after destructors are called 2177 * on emulated I/O regions, depending on whether a reference is 2178 * held by a vcpu or other kvm component that gets destroyed 2179 * after the emulated I/O. 2180 */ 2181 void (*destroy)(struct kvm_device *dev); 2182 2183 /* 2184 * Release is an alternative method to free the device. It is 2185 * called when the device file descriptor is closed. Once 2186 * release is called, the destroy method will not be called 2187 * anymore as the device is removed from the device list of 2188 * the VM. kvm->lock is held. 2189 */ 2190 void (*release)(struct kvm_device *dev); 2191 2192 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2193 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2194 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2195 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2196 unsigned long arg); 2197 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2198 }; 2199 2200 struct kvm_device *kvm_device_from_filp(struct file *filp); 2201 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2202 void kvm_unregister_device_ops(u32 type); 2203 2204 extern struct kvm_device_ops kvm_mpic_ops; 2205 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2206 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2207 2208 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2209 2210 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2211 { 2212 vcpu->spin_loop.in_spin_loop = val; 2213 } 2214 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2215 { 2216 vcpu->spin_loop.dy_eligible = val; 2217 } 2218 2219 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2220 2221 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2222 { 2223 } 2224 2225 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2226 { 2227 } 2228 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2229 2230 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2231 { 2232 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2233 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2234 } 2235 2236 struct kvm_vcpu *kvm_get_running_vcpu(void); 2237 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2238 2239 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2240 bool kvm_arch_has_irq_bypass(void); 2241 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2242 struct irq_bypass_producer *); 2243 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2244 struct irq_bypass_producer *); 2245 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2246 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2247 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2248 uint32_t guest_irq, bool set); 2249 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2250 struct kvm_kernel_irq_routing_entry *); 2251 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2252 2253 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2254 /* If we wakeup during the poll time, was it a sucessful poll? */ 2255 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2256 { 2257 return vcpu->valid_wakeup; 2258 } 2259 2260 #else 2261 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2262 { 2263 return true; 2264 } 2265 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2266 2267 #ifdef CONFIG_HAVE_KVM_NO_POLL 2268 /* Callback that tells if we must not poll */ 2269 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2270 #else 2271 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2272 { 2273 return false; 2274 } 2275 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2276 2277 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2278 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2279 unsigned int ioctl, unsigned long arg); 2280 #else 2281 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2282 unsigned int ioctl, 2283 unsigned long arg) 2284 { 2285 return -ENOIOCTLCMD; 2286 } 2287 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2288 2289 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2290 2291 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2292 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2293 #else 2294 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2295 { 2296 return 0; 2297 } 2298 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2299 2300 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 2301 2302 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 2303 uintptr_t data, const char *name, 2304 struct task_struct **thread_ptr); 2305 2306 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2307 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2308 { 2309 vcpu->run->exit_reason = KVM_EXIT_INTR; 2310 vcpu->stat.signal_exits++; 2311 } 2312 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2313 2314 /* 2315 * If more than one page is being (un)accounted, @virt must be the address of 2316 * the first page of a block of pages what were allocated together (i.e 2317 * accounted together). 2318 * 2319 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2320 * is thread-safe. 2321 */ 2322 static inline void kvm_account_pgtable_pages(void *virt, int nr) 2323 { 2324 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2325 } 2326 2327 /* 2328 * This defines how many reserved entries we want to keep before we 2329 * kick the vcpu to the userspace to avoid dirty ring full. This 2330 * value can be tuned to higher if e.g. PML is enabled on the host. 2331 */ 2332 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2333 2334 /* Max number of entries allowed for each kvm dirty ring */ 2335 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2336 2337 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, 2338 gpa_t gpa, gpa_t size, 2339 bool is_write, bool is_exec, 2340 bool is_private) 2341 { 2342 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT; 2343 vcpu->run->memory_fault.gpa = gpa; 2344 vcpu->run->memory_fault.size = size; 2345 2346 /* RWX flags are not (yet) defined or communicated to userspace. */ 2347 vcpu->run->memory_fault.flags = 0; 2348 if (is_private) 2349 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE; 2350 } 2351 2352 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2353 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn) 2354 { 2355 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn)); 2356 } 2357 2358 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2359 unsigned long attrs); 2360 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 2361 struct kvm_gfn_range *range); 2362 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 2363 struct kvm_gfn_range *range); 2364 2365 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2366 { 2367 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) && 2368 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE; 2369 } 2370 #else 2371 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2372 { 2373 return false; 2374 } 2375 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2376 2377 #ifdef CONFIG_KVM_PRIVATE_MEM 2378 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot, 2379 gfn_t gfn, kvm_pfn_t *pfn, int *max_order); 2380 #else 2381 static inline int kvm_gmem_get_pfn(struct kvm *kvm, 2382 struct kvm_memory_slot *slot, gfn_t gfn, 2383 kvm_pfn_t *pfn, int *max_order) 2384 { 2385 KVM_BUG_ON(1, kvm); 2386 return -EIO; 2387 } 2388 #endif /* CONFIG_KVM_PRIVATE_MEM */ 2389 2390 #endif 2391