1 #ifndef __KVM_HOST_H 2 #define __KVM_HOST_H 3 4 /* 5 * This work is licensed under the terms of the GNU GPL, version 2. See 6 * the COPYING file in the top-level directory. 7 */ 8 9 #include <linux/types.h> 10 #include <linux/hardirq.h> 11 #include <linux/list.h> 12 #include <linux/mutex.h> 13 #include <linux/spinlock.h> 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/bug.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_notifier.h> 19 #include <linux/preempt.h> 20 #include <linux/msi.h> 21 #include <linux/slab.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/swait.h> 29 #include <linux/refcount.h> 30 #include <asm/signal.h> 31 32 #include <linux/kvm.h> 33 #include <linux/kvm_para.h> 34 35 #include <linux/kvm_types.h> 36 37 #include <asm/kvm_host.h> 38 39 #ifndef KVM_MAX_VCPU_ID 40 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 41 #endif 42 43 /* 44 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 45 * in kvm, other bits are visible for userspace which are defined in 46 * include/linux/kvm_h. 47 */ 48 #define KVM_MEMSLOT_INVALID (1UL << 16) 49 50 /* Two fragments for cross MMIO pages. */ 51 #define KVM_MAX_MMIO_FRAGMENTS 2 52 53 #ifndef KVM_ADDRESS_SPACE_NUM 54 #define KVM_ADDRESS_SPACE_NUM 1 55 #endif 56 57 /* 58 * For the normal pfn, the highest 12 bits should be zero, 59 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 60 * mask bit 63 to indicate the noslot pfn. 61 */ 62 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 63 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 64 #define KVM_PFN_NOSLOT (0x1ULL << 63) 65 66 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 67 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 68 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 69 70 /* 71 * error pfns indicate that the gfn is in slot but faild to 72 * translate it to pfn on host. 73 */ 74 static inline bool is_error_pfn(kvm_pfn_t pfn) 75 { 76 return !!(pfn & KVM_PFN_ERR_MASK); 77 } 78 79 /* 80 * error_noslot pfns indicate that the gfn can not be 81 * translated to pfn - it is not in slot or failed to 82 * translate it to pfn. 83 */ 84 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 85 { 86 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 87 } 88 89 /* noslot pfn indicates that the gfn is not in slot. */ 90 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 91 { 92 return pfn == KVM_PFN_NOSLOT; 93 } 94 95 /* 96 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 97 * provide own defines and kvm_is_error_hva 98 */ 99 #ifndef KVM_HVA_ERR_BAD 100 101 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 102 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 103 104 static inline bool kvm_is_error_hva(unsigned long addr) 105 { 106 return addr >= PAGE_OFFSET; 107 } 108 109 #endif 110 111 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 112 113 static inline bool is_error_page(struct page *page) 114 { 115 return IS_ERR(page); 116 } 117 118 #define KVM_REQUEST_MASK GENMASK(7,0) 119 #define KVM_REQUEST_NO_WAKEUP BIT(8) 120 #define KVM_REQUEST_WAIT BIT(9) 121 /* 122 * Architecture-independent vcpu->requests bit members 123 * Bits 4-7 are reserved for more arch-independent bits. 124 */ 125 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 126 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 127 #define KVM_REQ_PENDING_TIMER 2 128 #define KVM_REQ_UNHALT 3 129 #define KVM_REQUEST_ARCH_BASE 8 130 131 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 132 BUILD_BUG_ON((unsigned)(nr) >= 32 - KVM_REQUEST_ARCH_BASE); \ 133 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 134 }) 135 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 136 137 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 138 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 139 140 extern struct kmem_cache *kvm_vcpu_cache; 141 142 extern spinlock_t kvm_lock; 143 extern struct list_head vm_list; 144 145 struct kvm_io_range { 146 gpa_t addr; 147 int len; 148 struct kvm_io_device *dev; 149 }; 150 151 #define NR_IOBUS_DEVS 1000 152 153 struct kvm_io_bus { 154 int dev_count; 155 int ioeventfd_count; 156 struct kvm_io_range range[]; 157 }; 158 159 enum kvm_bus { 160 KVM_MMIO_BUS, 161 KVM_PIO_BUS, 162 KVM_VIRTIO_CCW_NOTIFY_BUS, 163 KVM_FAST_MMIO_BUS, 164 KVM_NR_BUSES 165 }; 166 167 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 168 int len, const void *val); 169 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 170 gpa_t addr, int len, const void *val, long cookie); 171 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 172 int len, void *val); 173 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 174 int len, struct kvm_io_device *dev); 175 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 176 struct kvm_io_device *dev); 177 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 178 gpa_t addr); 179 180 #ifdef CONFIG_KVM_ASYNC_PF 181 struct kvm_async_pf { 182 struct work_struct work; 183 struct list_head link; 184 struct list_head queue; 185 struct kvm_vcpu *vcpu; 186 struct mm_struct *mm; 187 gva_t gva; 188 unsigned long addr; 189 struct kvm_arch_async_pf arch; 190 bool wakeup_all; 191 }; 192 193 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 194 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 195 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 196 struct kvm_arch_async_pf *arch); 197 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 198 #endif 199 200 enum { 201 OUTSIDE_GUEST_MODE, 202 IN_GUEST_MODE, 203 EXITING_GUEST_MODE, 204 READING_SHADOW_PAGE_TABLES, 205 }; 206 207 /* 208 * Sometimes a large or cross-page mmio needs to be broken up into separate 209 * exits for userspace servicing. 210 */ 211 struct kvm_mmio_fragment { 212 gpa_t gpa; 213 void *data; 214 unsigned len; 215 }; 216 217 struct kvm_vcpu { 218 struct kvm *kvm; 219 #ifdef CONFIG_PREEMPT_NOTIFIERS 220 struct preempt_notifier preempt_notifier; 221 #endif 222 int cpu; 223 int vcpu_id; 224 int srcu_idx; 225 int mode; 226 unsigned long requests; 227 unsigned long guest_debug; 228 229 int pre_pcpu; 230 struct list_head blocked_vcpu_list; 231 232 struct mutex mutex; 233 struct kvm_run *run; 234 235 int guest_fpu_loaded, guest_xcr0_loaded; 236 struct swait_queue_head wq; 237 struct pid __rcu *pid; 238 int sigset_active; 239 sigset_t sigset; 240 struct kvm_vcpu_stat stat; 241 unsigned int halt_poll_ns; 242 bool valid_wakeup; 243 244 #ifdef CONFIG_HAS_IOMEM 245 int mmio_needed; 246 int mmio_read_completed; 247 int mmio_is_write; 248 int mmio_cur_fragment; 249 int mmio_nr_fragments; 250 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 251 #endif 252 253 #ifdef CONFIG_KVM_ASYNC_PF 254 struct { 255 u32 queued; 256 struct list_head queue; 257 struct list_head done; 258 spinlock_t lock; 259 } async_pf; 260 #endif 261 262 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 263 /* 264 * Cpu relax intercept or pause loop exit optimization 265 * in_spin_loop: set when a vcpu does a pause loop exit 266 * or cpu relax intercepted. 267 * dy_eligible: indicates whether vcpu is eligible for directed yield. 268 */ 269 struct { 270 bool in_spin_loop; 271 bool dy_eligible; 272 } spin_loop; 273 #endif 274 bool preempted; 275 struct kvm_vcpu_arch arch; 276 struct dentry *debugfs_dentry; 277 }; 278 279 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 280 { 281 /* 282 * The memory barrier ensures a previous write to vcpu->requests cannot 283 * be reordered with the read of vcpu->mode. It pairs with the general 284 * memory barrier following the write of vcpu->mode in VCPU RUN. 285 */ 286 smp_mb__before_atomic(); 287 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 288 } 289 290 /* 291 * Some of the bitops functions do not support too long bitmaps. 292 * This number must be determined not to exceed such limits. 293 */ 294 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 295 296 struct kvm_memory_slot { 297 gfn_t base_gfn; 298 unsigned long npages; 299 unsigned long *dirty_bitmap; 300 struct kvm_arch_memory_slot arch; 301 unsigned long userspace_addr; 302 u32 flags; 303 short id; 304 }; 305 306 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 307 { 308 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 309 } 310 311 struct kvm_s390_adapter_int { 312 u64 ind_addr; 313 u64 summary_addr; 314 u64 ind_offset; 315 u32 summary_offset; 316 u32 adapter_id; 317 }; 318 319 struct kvm_hv_sint { 320 u32 vcpu; 321 u32 sint; 322 }; 323 324 struct kvm_kernel_irq_routing_entry { 325 u32 gsi; 326 u32 type; 327 int (*set)(struct kvm_kernel_irq_routing_entry *e, 328 struct kvm *kvm, int irq_source_id, int level, 329 bool line_status); 330 union { 331 struct { 332 unsigned irqchip; 333 unsigned pin; 334 } irqchip; 335 struct { 336 u32 address_lo; 337 u32 address_hi; 338 u32 data; 339 u32 flags; 340 u32 devid; 341 } msi; 342 struct kvm_s390_adapter_int adapter; 343 struct kvm_hv_sint hv_sint; 344 }; 345 struct hlist_node link; 346 }; 347 348 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 349 struct kvm_irq_routing_table { 350 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 351 u32 nr_rt_entries; 352 /* 353 * Array indexed by gsi. Each entry contains list of irq chips 354 * the gsi is connected to. 355 */ 356 struct hlist_head map[0]; 357 }; 358 #endif 359 360 #ifndef KVM_PRIVATE_MEM_SLOTS 361 #define KVM_PRIVATE_MEM_SLOTS 0 362 #endif 363 364 #ifndef KVM_MEM_SLOTS_NUM 365 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 366 #endif 367 368 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 369 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 370 { 371 return 0; 372 } 373 #endif 374 375 /* 376 * Note: 377 * memslots are not sorted by id anymore, please use id_to_memslot() 378 * to get the memslot by its id. 379 */ 380 struct kvm_memslots { 381 u64 generation; 382 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 383 /* The mapping table from slot id to the index in memslots[]. */ 384 short id_to_index[KVM_MEM_SLOTS_NUM]; 385 atomic_t lru_slot; 386 int used_slots; 387 }; 388 389 struct kvm { 390 spinlock_t mmu_lock; 391 struct mutex slots_lock; 392 struct mm_struct *mm; /* userspace tied to this vm */ 393 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 394 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 395 396 /* 397 * created_vcpus is protected by kvm->lock, and is incremented 398 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 399 * incremented after storing the kvm_vcpu pointer in vcpus, 400 * and is accessed atomically. 401 */ 402 atomic_t online_vcpus; 403 int created_vcpus; 404 int last_boosted_vcpu; 405 struct list_head vm_list; 406 struct mutex lock; 407 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 408 #ifdef CONFIG_HAVE_KVM_EVENTFD 409 struct { 410 spinlock_t lock; 411 struct list_head items; 412 struct list_head resampler_list; 413 struct mutex resampler_lock; 414 } irqfds; 415 struct list_head ioeventfds; 416 #endif 417 struct kvm_vm_stat stat; 418 struct kvm_arch arch; 419 refcount_t users_count; 420 #ifdef CONFIG_KVM_MMIO 421 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 422 spinlock_t ring_lock; 423 struct list_head coalesced_zones; 424 #endif 425 426 struct mutex irq_lock; 427 #ifdef CONFIG_HAVE_KVM_IRQCHIP 428 /* 429 * Update side is protected by irq_lock. 430 */ 431 struct kvm_irq_routing_table __rcu *irq_routing; 432 #endif 433 #ifdef CONFIG_HAVE_KVM_IRQFD 434 struct hlist_head irq_ack_notifier_list; 435 #endif 436 437 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 438 struct mmu_notifier mmu_notifier; 439 unsigned long mmu_notifier_seq; 440 long mmu_notifier_count; 441 #endif 442 long tlbs_dirty; 443 struct list_head devices; 444 struct dentry *debugfs_dentry; 445 struct kvm_stat_data **debugfs_stat_data; 446 struct srcu_struct srcu; 447 struct srcu_struct irq_srcu; 448 }; 449 450 #define kvm_err(fmt, ...) \ 451 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 452 #define kvm_info(fmt, ...) \ 453 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 454 #define kvm_debug(fmt, ...) \ 455 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 456 #define kvm_debug_ratelimited(fmt, ...) \ 457 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 458 ## __VA_ARGS__) 459 #define kvm_pr_unimpl(fmt, ...) \ 460 pr_err_ratelimited("kvm [%i]: " fmt, \ 461 task_tgid_nr(current), ## __VA_ARGS__) 462 463 /* The guest did something we don't support. */ 464 #define vcpu_unimpl(vcpu, fmt, ...) \ 465 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 466 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 467 468 #define vcpu_debug(vcpu, fmt, ...) \ 469 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 470 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 471 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 472 ## __VA_ARGS__) 473 #define vcpu_err(vcpu, fmt, ...) \ 474 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 475 476 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 477 { 478 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 479 lockdep_is_held(&kvm->slots_lock)); 480 } 481 482 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 483 { 484 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu, in case 485 * the caller has read kvm->online_vcpus before (as is the case 486 * for kvm_for_each_vcpu, for example). 487 */ 488 smp_rmb(); 489 return kvm->vcpus[i]; 490 } 491 492 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 493 for (idx = 0; \ 494 idx < atomic_read(&kvm->online_vcpus) && \ 495 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 496 idx++) 497 498 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 499 { 500 struct kvm_vcpu *vcpu = NULL; 501 int i; 502 503 if (id < 0) 504 return NULL; 505 if (id < KVM_MAX_VCPUS) 506 vcpu = kvm_get_vcpu(kvm, id); 507 if (vcpu && vcpu->vcpu_id == id) 508 return vcpu; 509 kvm_for_each_vcpu(i, vcpu, kvm) 510 if (vcpu->vcpu_id == id) 511 return vcpu; 512 return NULL; 513 } 514 515 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 516 { 517 struct kvm_vcpu *tmp; 518 int idx; 519 520 kvm_for_each_vcpu(idx, tmp, vcpu->kvm) 521 if (tmp == vcpu) 522 return idx; 523 BUG(); 524 } 525 526 #define kvm_for_each_memslot(memslot, slots) \ 527 for (memslot = &slots->memslots[0]; \ 528 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 529 memslot++) 530 531 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 532 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 533 534 int __must_check vcpu_load(struct kvm_vcpu *vcpu); 535 void vcpu_put(struct kvm_vcpu *vcpu); 536 537 #ifdef __KVM_HAVE_IOAPIC 538 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 539 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 540 #else 541 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 542 { 543 } 544 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 545 { 546 } 547 #endif 548 549 #ifdef CONFIG_HAVE_KVM_IRQFD 550 int kvm_irqfd_init(void); 551 void kvm_irqfd_exit(void); 552 #else 553 static inline int kvm_irqfd_init(void) 554 { 555 return 0; 556 } 557 558 static inline void kvm_irqfd_exit(void) 559 { 560 } 561 #endif 562 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 563 struct module *module); 564 void kvm_exit(void); 565 566 void kvm_get_kvm(struct kvm *kvm); 567 void kvm_put_kvm(struct kvm *kvm); 568 569 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 570 { 571 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 572 lockdep_is_held(&kvm->slots_lock)); 573 } 574 575 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 576 { 577 return __kvm_memslots(kvm, 0); 578 } 579 580 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 581 { 582 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 583 584 return __kvm_memslots(vcpu->kvm, as_id); 585 } 586 587 static inline struct kvm_memory_slot * 588 id_to_memslot(struct kvm_memslots *slots, int id) 589 { 590 int index = slots->id_to_index[id]; 591 struct kvm_memory_slot *slot; 592 593 slot = &slots->memslots[index]; 594 595 WARN_ON(slot->id != id); 596 return slot; 597 } 598 599 /* 600 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 601 * - create a new memory slot 602 * - delete an existing memory slot 603 * - modify an existing memory slot 604 * -- move it in the guest physical memory space 605 * -- just change its flags 606 * 607 * Since flags can be changed by some of these operations, the following 608 * differentiation is the best we can do for __kvm_set_memory_region(): 609 */ 610 enum kvm_mr_change { 611 KVM_MR_CREATE, 612 KVM_MR_DELETE, 613 KVM_MR_MOVE, 614 KVM_MR_FLAGS_ONLY, 615 }; 616 617 int kvm_set_memory_region(struct kvm *kvm, 618 const struct kvm_userspace_memory_region *mem); 619 int __kvm_set_memory_region(struct kvm *kvm, 620 const struct kvm_userspace_memory_region *mem); 621 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 622 struct kvm_memory_slot *dont); 623 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 624 unsigned long npages); 625 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots); 626 int kvm_arch_prepare_memory_region(struct kvm *kvm, 627 struct kvm_memory_slot *memslot, 628 const struct kvm_userspace_memory_region *mem, 629 enum kvm_mr_change change); 630 void kvm_arch_commit_memory_region(struct kvm *kvm, 631 const struct kvm_userspace_memory_region *mem, 632 const struct kvm_memory_slot *old, 633 const struct kvm_memory_slot *new, 634 enum kvm_mr_change change); 635 bool kvm_largepages_enabled(void); 636 void kvm_disable_largepages(void); 637 /* flush all memory translations */ 638 void kvm_arch_flush_shadow_all(struct kvm *kvm); 639 /* flush memory translations pointing to 'slot' */ 640 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 641 struct kvm_memory_slot *slot); 642 643 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 644 struct page **pages, int nr_pages); 645 646 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 647 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 648 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 649 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 650 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 651 bool *writable); 652 void kvm_release_page_clean(struct page *page); 653 void kvm_release_page_dirty(struct page *page); 654 void kvm_set_page_accessed(struct page *page); 655 656 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 657 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 658 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 659 bool *writable); 660 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 661 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 662 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 663 bool atomic, bool *async, bool write_fault, 664 bool *writable); 665 666 void kvm_release_pfn_clean(kvm_pfn_t pfn); 667 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 668 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 669 void kvm_get_pfn(kvm_pfn_t pfn); 670 671 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 672 int len); 673 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 674 unsigned long len); 675 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 676 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 677 void *data, unsigned long len); 678 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 679 int offset, int len); 680 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 681 unsigned long len); 682 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 683 void *data, unsigned long len); 684 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 685 void *data, int offset, unsigned long len); 686 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 687 gpa_t gpa, unsigned long len); 688 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 689 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 690 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 691 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 692 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 693 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 694 695 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 696 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 697 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 698 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 699 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 700 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 701 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 702 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 703 int len); 704 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 705 unsigned long len); 706 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 707 unsigned long len); 708 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 709 int offset, int len); 710 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 711 unsigned long len); 712 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 713 714 void kvm_vcpu_block(struct kvm_vcpu *vcpu); 715 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 716 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 717 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 718 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 719 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 720 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu); 721 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu); 722 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu); 723 724 void kvm_flush_remote_tlbs(struct kvm *kvm); 725 void kvm_reload_remote_mmus(struct kvm *kvm); 726 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 727 728 long kvm_arch_dev_ioctl(struct file *filp, 729 unsigned int ioctl, unsigned long arg); 730 long kvm_arch_vcpu_ioctl(struct file *filp, 731 unsigned int ioctl, unsigned long arg); 732 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 733 734 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 735 736 int kvm_get_dirty_log(struct kvm *kvm, 737 struct kvm_dirty_log *log, int *is_dirty); 738 739 int kvm_get_dirty_log_protect(struct kvm *kvm, 740 struct kvm_dirty_log *log, bool *is_dirty); 741 742 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 743 struct kvm_memory_slot *slot, 744 gfn_t gfn_offset, 745 unsigned long mask); 746 747 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 748 struct kvm_dirty_log *log); 749 750 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 751 bool line_status); 752 long kvm_arch_vm_ioctl(struct file *filp, 753 unsigned int ioctl, unsigned long arg); 754 755 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 756 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 757 758 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 759 struct kvm_translation *tr); 760 761 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 762 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 763 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 764 struct kvm_sregs *sregs); 765 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 766 struct kvm_sregs *sregs); 767 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 768 struct kvm_mp_state *mp_state); 769 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 770 struct kvm_mp_state *mp_state); 771 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 772 struct kvm_guest_debug *dbg); 773 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 774 775 int kvm_arch_init(void *opaque); 776 void kvm_arch_exit(void); 777 778 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 779 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 780 781 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 782 783 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 784 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 785 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 786 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 787 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 788 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 789 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 790 791 bool kvm_arch_has_vcpu_debugfs(void); 792 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 793 794 int kvm_arch_hardware_enable(void); 795 void kvm_arch_hardware_disable(void); 796 int kvm_arch_hardware_setup(void); 797 void kvm_arch_hardware_unsetup(void); 798 void kvm_arch_check_processor_compat(void *rtn); 799 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 800 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 801 802 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 803 static inline struct kvm *kvm_arch_alloc_vm(void) 804 { 805 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 806 } 807 808 static inline void kvm_arch_free_vm(struct kvm *kvm) 809 { 810 kfree(kvm); 811 } 812 #endif 813 814 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 815 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 816 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 817 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 818 #else 819 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 820 { 821 } 822 823 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 824 { 825 } 826 827 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 828 { 829 return false; 830 } 831 #endif 832 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 833 void kvm_arch_start_assignment(struct kvm *kvm); 834 void kvm_arch_end_assignment(struct kvm *kvm); 835 bool kvm_arch_has_assigned_device(struct kvm *kvm); 836 #else 837 static inline void kvm_arch_start_assignment(struct kvm *kvm) 838 { 839 } 840 841 static inline void kvm_arch_end_assignment(struct kvm *kvm) 842 { 843 } 844 845 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 846 { 847 return false; 848 } 849 #endif 850 851 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 852 { 853 #ifdef __KVM_HAVE_ARCH_WQP 854 return vcpu->arch.wqp; 855 #else 856 return &vcpu->wq; 857 #endif 858 } 859 860 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 861 /* 862 * returns true if the virtual interrupt controller is initialized and 863 * ready to accept virtual IRQ. On some architectures the virtual interrupt 864 * controller is dynamically instantiated and this is not always true. 865 */ 866 bool kvm_arch_intc_initialized(struct kvm *kvm); 867 #else 868 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 869 { 870 return true; 871 } 872 #endif 873 874 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 875 void kvm_arch_destroy_vm(struct kvm *kvm); 876 void kvm_arch_sync_events(struct kvm *kvm); 877 878 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 879 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 880 881 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 882 883 struct kvm_irq_ack_notifier { 884 struct hlist_node link; 885 unsigned gsi; 886 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 887 }; 888 889 int kvm_irq_map_gsi(struct kvm *kvm, 890 struct kvm_kernel_irq_routing_entry *entries, int gsi); 891 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 892 893 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 894 bool line_status); 895 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 896 int irq_source_id, int level, bool line_status); 897 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 898 struct kvm *kvm, int irq_source_id, 899 int level, bool line_status); 900 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 901 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 902 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 903 void kvm_register_irq_ack_notifier(struct kvm *kvm, 904 struct kvm_irq_ack_notifier *kian); 905 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 906 struct kvm_irq_ack_notifier *kian); 907 int kvm_request_irq_source_id(struct kvm *kvm); 908 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 909 910 /* 911 * search_memslots() and __gfn_to_memslot() are here because they are 912 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 913 * gfn_to_memslot() itself isn't here as an inline because that would 914 * bloat other code too much. 915 */ 916 static inline struct kvm_memory_slot * 917 search_memslots(struct kvm_memslots *slots, gfn_t gfn) 918 { 919 int start = 0, end = slots->used_slots; 920 int slot = atomic_read(&slots->lru_slot); 921 struct kvm_memory_slot *memslots = slots->memslots; 922 923 if (gfn >= memslots[slot].base_gfn && 924 gfn < memslots[slot].base_gfn + memslots[slot].npages) 925 return &memslots[slot]; 926 927 while (start < end) { 928 slot = start + (end - start) / 2; 929 930 if (gfn >= memslots[slot].base_gfn) 931 end = slot; 932 else 933 start = slot + 1; 934 } 935 936 if (gfn >= memslots[start].base_gfn && 937 gfn < memslots[start].base_gfn + memslots[start].npages) { 938 atomic_set(&slots->lru_slot, start); 939 return &memslots[start]; 940 } 941 942 return NULL; 943 } 944 945 static inline struct kvm_memory_slot * 946 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 947 { 948 return search_memslots(slots, gfn); 949 } 950 951 static inline unsigned long 952 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 953 { 954 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 955 } 956 957 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 958 { 959 return gfn_to_memslot(kvm, gfn)->id; 960 } 961 962 static inline gfn_t 963 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 964 { 965 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 966 967 return slot->base_gfn + gfn_offset; 968 } 969 970 static inline gpa_t gfn_to_gpa(gfn_t gfn) 971 { 972 return (gpa_t)gfn << PAGE_SHIFT; 973 } 974 975 static inline gfn_t gpa_to_gfn(gpa_t gpa) 976 { 977 return (gfn_t)(gpa >> PAGE_SHIFT); 978 } 979 980 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 981 { 982 return (hpa_t)pfn << PAGE_SHIFT; 983 } 984 985 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 986 { 987 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 988 989 return kvm_is_error_hva(hva); 990 } 991 992 enum kvm_stat_kind { 993 KVM_STAT_VM, 994 KVM_STAT_VCPU, 995 }; 996 997 struct kvm_stat_data { 998 int offset; 999 struct kvm *kvm; 1000 }; 1001 1002 struct kvm_stats_debugfs_item { 1003 const char *name; 1004 int offset; 1005 enum kvm_stat_kind kind; 1006 }; 1007 extern struct kvm_stats_debugfs_item debugfs_entries[]; 1008 extern struct dentry *kvm_debugfs_dir; 1009 1010 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1011 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1012 { 1013 if (unlikely(kvm->mmu_notifier_count)) 1014 return 1; 1015 /* 1016 * Ensure the read of mmu_notifier_count happens before the read 1017 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1018 * mmu_notifier_invalidate_range_end to make sure that the caller 1019 * either sees the old (non-zero) value of mmu_notifier_count or 1020 * the new (incremented) value of mmu_notifier_seq. 1021 * PowerPC Book3s HV KVM calls this under a per-page lock 1022 * rather than under kvm->mmu_lock, for scalability, so 1023 * can't rely on kvm->mmu_lock to keep things ordered. 1024 */ 1025 smp_rmb(); 1026 if (kvm->mmu_notifier_seq != mmu_seq) 1027 return 1; 1028 return 0; 1029 } 1030 #endif 1031 1032 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1033 1034 #ifdef CONFIG_S390 1035 #define KVM_MAX_IRQ_ROUTES 4096 //FIXME: we can have more than that... 1036 #elif defined(CONFIG_ARM64) 1037 #define KVM_MAX_IRQ_ROUTES 4096 1038 #else 1039 #define KVM_MAX_IRQ_ROUTES 1024 1040 #endif 1041 1042 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1043 int kvm_set_irq_routing(struct kvm *kvm, 1044 const struct kvm_irq_routing_entry *entries, 1045 unsigned nr, 1046 unsigned flags); 1047 int kvm_set_routing_entry(struct kvm *kvm, 1048 struct kvm_kernel_irq_routing_entry *e, 1049 const struct kvm_irq_routing_entry *ue); 1050 void kvm_free_irq_routing(struct kvm *kvm); 1051 1052 #else 1053 1054 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1055 1056 #endif 1057 1058 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1059 1060 #ifdef CONFIG_HAVE_KVM_EVENTFD 1061 1062 void kvm_eventfd_init(struct kvm *kvm); 1063 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1064 1065 #ifdef CONFIG_HAVE_KVM_IRQFD 1066 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1067 void kvm_irqfd_release(struct kvm *kvm); 1068 void kvm_irq_routing_update(struct kvm *); 1069 #else 1070 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1071 { 1072 return -EINVAL; 1073 } 1074 1075 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1076 #endif 1077 1078 #else 1079 1080 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1081 1082 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1083 { 1084 return -EINVAL; 1085 } 1086 1087 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1088 1089 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1090 static inline void kvm_irq_routing_update(struct kvm *kvm) 1091 { 1092 } 1093 #endif 1094 void kvm_arch_irq_routing_update(struct kvm *kvm); 1095 1096 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1097 { 1098 return -ENOSYS; 1099 } 1100 1101 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1102 1103 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1104 { 1105 /* 1106 * Ensure the rest of the request is published to kvm_check_request's 1107 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1108 */ 1109 smp_wmb(); 1110 set_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1111 } 1112 1113 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1114 { 1115 return READ_ONCE(vcpu->requests); 1116 } 1117 1118 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1119 { 1120 return test_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1121 } 1122 1123 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1124 { 1125 clear_bit(req & KVM_REQUEST_MASK, &vcpu->requests); 1126 } 1127 1128 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1129 { 1130 if (kvm_test_request(req, vcpu)) { 1131 kvm_clear_request(req, vcpu); 1132 1133 /* 1134 * Ensure the rest of the request is visible to kvm_check_request's 1135 * caller. Paired with the smp_wmb in kvm_make_request. 1136 */ 1137 smp_mb__after_atomic(); 1138 return true; 1139 } else { 1140 return false; 1141 } 1142 } 1143 1144 extern bool kvm_rebooting; 1145 1146 extern unsigned int halt_poll_ns; 1147 extern unsigned int halt_poll_ns_grow; 1148 extern unsigned int halt_poll_ns_shrink; 1149 1150 struct kvm_device { 1151 struct kvm_device_ops *ops; 1152 struct kvm *kvm; 1153 void *private; 1154 struct list_head vm_node; 1155 }; 1156 1157 /* create, destroy, and name are mandatory */ 1158 struct kvm_device_ops { 1159 const char *name; 1160 1161 /* 1162 * create is called holding kvm->lock and any operations not suitable 1163 * to do while holding the lock should be deferred to init (see 1164 * below). 1165 */ 1166 int (*create)(struct kvm_device *dev, u32 type); 1167 1168 /* 1169 * init is called after create if create is successful and is called 1170 * outside of holding kvm->lock. 1171 */ 1172 void (*init)(struct kvm_device *dev); 1173 1174 /* 1175 * Destroy is responsible for freeing dev. 1176 * 1177 * Destroy may be called before or after destructors are called 1178 * on emulated I/O regions, depending on whether a reference is 1179 * held by a vcpu or other kvm component that gets destroyed 1180 * after the emulated I/O. 1181 */ 1182 void (*destroy)(struct kvm_device *dev); 1183 1184 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1185 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1186 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1187 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1188 unsigned long arg); 1189 }; 1190 1191 void kvm_device_get(struct kvm_device *dev); 1192 void kvm_device_put(struct kvm_device *dev); 1193 struct kvm_device *kvm_device_from_filp(struct file *filp); 1194 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1195 void kvm_unregister_device_ops(u32 type); 1196 1197 extern struct kvm_device_ops kvm_mpic_ops; 1198 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1199 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1200 1201 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1202 1203 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1204 { 1205 vcpu->spin_loop.in_spin_loop = val; 1206 } 1207 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1208 { 1209 vcpu->spin_loop.dy_eligible = val; 1210 } 1211 1212 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1213 1214 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1215 { 1216 } 1217 1218 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1219 { 1220 } 1221 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1222 1223 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1224 bool kvm_arch_has_irq_bypass(void); 1225 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1226 struct irq_bypass_producer *); 1227 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1228 struct irq_bypass_producer *); 1229 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1230 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1231 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1232 uint32_t guest_irq, bool set); 1233 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1234 1235 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1236 /* If we wakeup during the poll time, was it a sucessful poll? */ 1237 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1238 { 1239 return vcpu->valid_wakeup; 1240 } 1241 1242 #else 1243 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1244 { 1245 return true; 1246 } 1247 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1248 1249 #endif 1250