1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 59 /* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80 /* Two fragments for cross MMIO pages. */ 81 #define KVM_MAX_MMIO_FRAGMENTS 2 82 83 #ifndef KVM_MAX_NR_ADDRESS_SPACES 84 #define KVM_MAX_NR_ADDRESS_SPACES 1 85 #endif 86 87 /* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94 #define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100 #define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4) 101 102 /* 103 * error pfns indicate that the gfn is in slot but faild to 104 * translate it to pfn on host. 105 */ 106 static inline bool is_error_pfn(kvm_pfn_t pfn) 107 { 108 return !!(pfn & KVM_PFN_ERR_MASK); 109 } 110 111 /* 112 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 113 * by a pending signal. Note, the signal may or may not be fatal. 114 */ 115 static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 116 { 117 return pfn == KVM_PFN_ERR_SIGPENDING; 118 } 119 120 /* 121 * error_noslot pfns indicate that the gfn can not be 122 * translated to pfn - it is not in slot or failed to 123 * translate it to pfn. 124 */ 125 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 126 { 127 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 128 } 129 130 /* noslot pfn indicates that the gfn is not in slot. */ 131 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 132 { 133 return pfn == KVM_PFN_NOSLOT; 134 } 135 136 /* 137 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 138 * provide own defines and kvm_is_error_hva 139 */ 140 #ifndef KVM_HVA_ERR_BAD 141 142 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 143 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 144 145 static inline bool kvm_is_error_hva(unsigned long addr) 146 { 147 return addr >= PAGE_OFFSET; 148 } 149 150 #endif 151 152 static inline bool kvm_is_error_gpa(gpa_t gpa) 153 { 154 return gpa == INVALID_GPA; 155 } 156 157 #define KVM_REQUEST_MASK GENMASK(7,0) 158 #define KVM_REQUEST_NO_WAKEUP BIT(8) 159 #define KVM_REQUEST_WAIT BIT(9) 160 #define KVM_REQUEST_NO_ACTION BIT(10) 161 /* 162 * Architecture-independent vcpu->requests bit members 163 * Bits 3-7 are reserved for more arch-independent bits. 164 */ 165 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 166 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 167 #define KVM_REQ_UNBLOCK 2 168 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3 169 #define KVM_REQUEST_ARCH_BASE 8 170 171 /* 172 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 173 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 174 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 175 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 176 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 177 * guarantee the vCPU received an IPI and has actually exited guest mode. 178 */ 179 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 180 181 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 182 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 183 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 184 }) 185 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 186 187 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 188 unsigned long *vcpu_bitmap); 189 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 190 191 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 192 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 193 194 extern struct mutex kvm_lock; 195 extern struct list_head vm_list; 196 197 struct kvm_io_range { 198 gpa_t addr; 199 int len; 200 struct kvm_io_device *dev; 201 }; 202 203 #define NR_IOBUS_DEVS 1000 204 205 struct kvm_io_bus { 206 int dev_count; 207 int ioeventfd_count; 208 struct kvm_io_range range[]; 209 }; 210 211 enum kvm_bus { 212 KVM_MMIO_BUS, 213 KVM_PIO_BUS, 214 KVM_VIRTIO_CCW_NOTIFY_BUS, 215 KVM_FAST_MMIO_BUS, 216 KVM_IOCSR_BUS, 217 KVM_NR_BUSES 218 }; 219 220 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 221 int len, const void *val); 222 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 223 gpa_t addr, int len, const void *val, long cookie); 224 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 225 int len, void *val); 226 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 227 int len, struct kvm_io_device *dev); 228 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 229 struct kvm_io_device *dev); 230 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 231 gpa_t addr); 232 233 #ifdef CONFIG_KVM_ASYNC_PF 234 struct kvm_async_pf { 235 struct work_struct work; 236 struct list_head link; 237 struct list_head queue; 238 struct kvm_vcpu *vcpu; 239 gpa_t cr2_or_gpa; 240 unsigned long addr; 241 struct kvm_arch_async_pf arch; 242 bool wakeup_all; 243 bool notpresent_injected; 244 }; 245 246 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 247 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 248 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 249 unsigned long hva, struct kvm_arch_async_pf *arch); 250 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 251 #endif 252 253 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 254 union kvm_mmu_notifier_arg { 255 unsigned long attributes; 256 }; 257 258 enum kvm_gfn_range_filter { 259 KVM_FILTER_SHARED = BIT(0), 260 KVM_FILTER_PRIVATE = BIT(1), 261 }; 262 263 struct kvm_gfn_range { 264 struct kvm_memory_slot *slot; 265 gfn_t start; 266 gfn_t end; 267 union kvm_mmu_notifier_arg arg; 268 enum kvm_gfn_range_filter attr_filter; 269 bool may_block; 270 bool lockless; 271 }; 272 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 273 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 274 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 275 #endif 276 277 enum { 278 OUTSIDE_GUEST_MODE, 279 IN_GUEST_MODE, 280 EXITING_GUEST_MODE, 281 READING_SHADOW_PAGE_TABLES, 282 }; 283 284 struct kvm_host_map { 285 /* 286 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 287 * a 'struct page' for it. When using mem= kernel parameter some memory 288 * can be used as guest memory but they are not managed by host 289 * kernel). 290 */ 291 struct page *pinned_page; 292 struct page *page; 293 void *hva; 294 kvm_pfn_t pfn; 295 kvm_pfn_t gfn; 296 bool writable; 297 }; 298 299 /* 300 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 301 * directly to check for that. 302 */ 303 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 304 { 305 return !!map->hva; 306 } 307 308 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 309 { 310 return single_task_running() && !need_resched() && ktime_before(cur, stop); 311 } 312 313 /* 314 * Sometimes a large or cross-page mmio needs to be broken up into separate 315 * exits for userspace servicing. 316 */ 317 struct kvm_mmio_fragment { 318 gpa_t gpa; 319 void *data; 320 unsigned len; 321 }; 322 323 struct kvm_vcpu { 324 struct kvm *kvm; 325 #ifdef CONFIG_PREEMPT_NOTIFIERS 326 struct preempt_notifier preempt_notifier; 327 #endif 328 int cpu; 329 int vcpu_id; /* id given by userspace at creation */ 330 int vcpu_idx; /* index into kvm->vcpu_array */ 331 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 332 #ifdef CONFIG_PROVE_RCU 333 int srcu_depth; 334 #endif 335 int mode; 336 u64 requests; 337 unsigned long guest_debug; 338 339 struct mutex mutex; 340 struct kvm_run *run; 341 342 #ifndef __KVM_HAVE_ARCH_WQP 343 struct rcuwait wait; 344 #endif 345 struct pid *pid; 346 rwlock_t pid_lock; 347 int sigset_active; 348 sigset_t sigset; 349 unsigned int halt_poll_ns; 350 bool valid_wakeup; 351 352 #ifdef CONFIG_HAS_IOMEM 353 int mmio_needed; 354 int mmio_read_completed; 355 int mmio_is_write; 356 int mmio_cur_fragment; 357 int mmio_nr_fragments; 358 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 359 #endif 360 361 #ifdef CONFIG_KVM_ASYNC_PF 362 struct { 363 u32 queued; 364 struct list_head queue; 365 struct list_head done; 366 spinlock_t lock; 367 } async_pf; 368 #endif 369 370 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 371 /* 372 * Cpu relax intercept or pause loop exit optimization 373 * in_spin_loop: set when a vcpu does a pause loop exit 374 * or cpu relax intercepted. 375 * dy_eligible: indicates whether vcpu is eligible for directed yield. 376 */ 377 struct { 378 bool in_spin_loop; 379 bool dy_eligible; 380 } spin_loop; 381 #endif 382 bool wants_to_run; 383 bool preempted; 384 bool ready; 385 bool scheduled_out; 386 struct kvm_vcpu_arch arch; 387 struct kvm_vcpu_stat stat; 388 char stats_id[KVM_STATS_NAME_SIZE]; 389 struct kvm_dirty_ring dirty_ring; 390 391 /* 392 * The most recently used memslot by this vCPU and the slots generation 393 * for which it is valid. 394 * No wraparound protection is needed since generations won't overflow in 395 * thousands of years, even assuming 1M memslot operations per second. 396 */ 397 struct kvm_memory_slot *last_used_slot; 398 u64 last_used_slot_gen; 399 }; 400 401 /* 402 * Start accounting time towards a guest. 403 * Must be called before entering guest context. 404 */ 405 static __always_inline void guest_timing_enter_irqoff(void) 406 { 407 /* 408 * This is running in ioctl context so its safe to assume that it's the 409 * stime pending cputime to flush. 410 */ 411 instrumentation_begin(); 412 vtime_account_guest_enter(); 413 instrumentation_end(); 414 } 415 416 /* 417 * Enter guest context and enter an RCU extended quiescent state. 418 * 419 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 420 * unsafe to use any code which may directly or indirectly use RCU, tracing 421 * (including IRQ flag tracing), or lockdep. All code in this period must be 422 * non-instrumentable. 423 */ 424 static __always_inline void guest_context_enter_irqoff(void) 425 { 426 /* 427 * KVM does not hold any references to rcu protected data when it 428 * switches CPU into a guest mode. In fact switching to a guest mode 429 * is very similar to exiting to userspace from rcu point of view. In 430 * addition CPU may stay in a guest mode for quite a long time (up to 431 * one time slice). Lets treat guest mode as quiescent state, just like 432 * we do with user-mode execution. 433 */ 434 if (!context_tracking_guest_enter()) { 435 instrumentation_begin(); 436 rcu_virt_note_context_switch(); 437 instrumentation_end(); 438 } 439 } 440 441 /* 442 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 443 * guest_state_enter_irqoff(). 444 */ 445 static __always_inline void guest_enter_irqoff(void) 446 { 447 guest_timing_enter_irqoff(); 448 guest_context_enter_irqoff(); 449 } 450 451 /** 452 * guest_state_enter_irqoff - Fixup state when entering a guest 453 * 454 * Entry to a guest will enable interrupts, but the kernel state is interrupts 455 * disabled when this is invoked. Also tell RCU about it. 456 * 457 * 1) Trace interrupts on state 458 * 2) Invoke context tracking if enabled to adjust RCU state 459 * 3) Tell lockdep that interrupts are enabled 460 * 461 * Invoked from architecture specific code before entering a guest. 462 * Must be called with interrupts disabled and the caller must be 463 * non-instrumentable. 464 * The caller has to invoke guest_timing_enter_irqoff() before this. 465 * 466 * Note: this is analogous to exit_to_user_mode(). 467 */ 468 static __always_inline void guest_state_enter_irqoff(void) 469 { 470 instrumentation_begin(); 471 trace_hardirqs_on_prepare(); 472 lockdep_hardirqs_on_prepare(); 473 instrumentation_end(); 474 475 guest_context_enter_irqoff(); 476 lockdep_hardirqs_on(CALLER_ADDR0); 477 } 478 479 /* 480 * Exit guest context and exit an RCU extended quiescent state. 481 * 482 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 483 * unsafe to use any code which may directly or indirectly use RCU, tracing 484 * (including IRQ flag tracing), or lockdep. All code in this period must be 485 * non-instrumentable. 486 */ 487 static __always_inline void guest_context_exit_irqoff(void) 488 { 489 /* 490 * Guest mode is treated as a quiescent state, see 491 * guest_context_enter_irqoff() for more details. 492 */ 493 if (!context_tracking_guest_exit()) { 494 instrumentation_begin(); 495 rcu_virt_note_context_switch(); 496 instrumentation_end(); 497 } 498 } 499 500 /* 501 * Stop accounting time towards a guest. 502 * Must be called after exiting guest context. 503 */ 504 static __always_inline void guest_timing_exit_irqoff(void) 505 { 506 instrumentation_begin(); 507 /* Flush the guest cputime we spent on the guest */ 508 vtime_account_guest_exit(); 509 instrumentation_end(); 510 } 511 512 /* 513 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 514 * guest_timing_exit_irqoff(). 515 */ 516 static __always_inline void guest_exit_irqoff(void) 517 { 518 guest_context_exit_irqoff(); 519 guest_timing_exit_irqoff(); 520 } 521 522 static inline void guest_exit(void) 523 { 524 unsigned long flags; 525 526 local_irq_save(flags); 527 guest_exit_irqoff(); 528 local_irq_restore(flags); 529 } 530 531 /** 532 * guest_state_exit_irqoff - Establish state when returning from guest mode 533 * 534 * Entry from a guest disables interrupts, but guest mode is traced as 535 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 536 * 537 * 1) Tell lockdep that interrupts are disabled 538 * 2) Invoke context tracking if enabled to reactivate RCU 539 * 3) Trace interrupts off state 540 * 541 * Invoked from architecture specific code after exiting a guest. 542 * Must be invoked with interrupts disabled and the caller must be 543 * non-instrumentable. 544 * The caller has to invoke guest_timing_exit_irqoff() after this. 545 * 546 * Note: this is analogous to enter_from_user_mode(). 547 */ 548 static __always_inline void guest_state_exit_irqoff(void) 549 { 550 lockdep_hardirqs_off(CALLER_ADDR0); 551 guest_context_exit_irqoff(); 552 553 instrumentation_begin(); 554 trace_hardirqs_off_finish(); 555 instrumentation_end(); 556 } 557 558 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 559 { 560 /* 561 * The memory barrier ensures a previous write to vcpu->requests cannot 562 * be reordered with the read of vcpu->mode. It pairs with the general 563 * memory barrier following the write of vcpu->mode in VCPU RUN. 564 */ 565 smp_mb__before_atomic(); 566 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 567 } 568 569 /* 570 * Some of the bitops functions do not support too long bitmaps. 571 * This number must be determined not to exceed such limits. 572 */ 573 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 574 575 /* 576 * Since at idle each memslot belongs to two memslot sets it has to contain 577 * two embedded nodes for each data structure that it forms a part of. 578 * 579 * Two memslot sets (one active and one inactive) are necessary so the VM 580 * continues to run on one memslot set while the other is being modified. 581 * 582 * These two memslot sets normally point to the same set of memslots. 583 * They can, however, be desynchronized when performing a memslot management 584 * operation by replacing the memslot to be modified by its copy. 585 * After the operation is complete, both memslot sets once again point to 586 * the same, common set of memslot data. 587 * 588 * The memslots themselves are independent of each other so they can be 589 * individually added or deleted. 590 */ 591 struct kvm_memory_slot { 592 struct hlist_node id_node[2]; 593 struct interval_tree_node hva_node[2]; 594 struct rb_node gfn_node[2]; 595 gfn_t base_gfn; 596 unsigned long npages; 597 unsigned long *dirty_bitmap; 598 struct kvm_arch_memory_slot arch; 599 unsigned long userspace_addr; 600 u32 flags; 601 short id; 602 u16 as_id; 603 604 #ifdef CONFIG_KVM_PRIVATE_MEM 605 struct { 606 /* 607 * Writes protected by kvm->slots_lock. Acquiring a 608 * reference via kvm_gmem_get_file() is protected by 609 * either kvm->slots_lock or kvm->srcu. 610 */ 611 struct file *file; 612 pgoff_t pgoff; 613 } gmem; 614 #endif 615 }; 616 617 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot) 618 { 619 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD); 620 } 621 622 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 623 { 624 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 625 } 626 627 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 628 { 629 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 630 } 631 632 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 633 { 634 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 635 636 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 637 } 638 639 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 640 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 641 #endif 642 643 struct kvm_s390_adapter_int { 644 u64 ind_addr; 645 u64 summary_addr; 646 u64 ind_offset; 647 u32 summary_offset; 648 u32 adapter_id; 649 }; 650 651 struct kvm_hv_sint { 652 u32 vcpu; 653 u32 sint; 654 }; 655 656 struct kvm_xen_evtchn { 657 u32 port; 658 u32 vcpu_id; 659 int vcpu_idx; 660 u32 priority; 661 }; 662 663 struct kvm_kernel_irq_routing_entry { 664 u32 gsi; 665 u32 type; 666 int (*set)(struct kvm_kernel_irq_routing_entry *e, 667 struct kvm *kvm, int irq_source_id, int level, 668 bool line_status); 669 union { 670 struct { 671 unsigned irqchip; 672 unsigned pin; 673 } irqchip; 674 struct { 675 u32 address_lo; 676 u32 address_hi; 677 u32 data; 678 u32 flags; 679 u32 devid; 680 } msi; 681 struct kvm_s390_adapter_int adapter; 682 struct kvm_hv_sint hv_sint; 683 struct kvm_xen_evtchn xen_evtchn; 684 }; 685 struct hlist_node link; 686 }; 687 688 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 689 struct kvm_irq_routing_table { 690 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 691 u32 nr_rt_entries; 692 /* 693 * Array indexed by gsi. Each entry contains list of irq chips 694 * the gsi is connected to. 695 */ 696 struct hlist_head map[] __counted_by(nr_rt_entries); 697 }; 698 #endif 699 700 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 701 702 #ifndef KVM_INTERNAL_MEM_SLOTS 703 #define KVM_INTERNAL_MEM_SLOTS 0 704 #endif 705 706 #define KVM_MEM_SLOTS_NUM SHRT_MAX 707 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 708 709 #if KVM_MAX_NR_ADDRESS_SPACES == 1 710 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm) 711 { 712 return KVM_MAX_NR_ADDRESS_SPACES; 713 } 714 715 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 716 { 717 return 0; 718 } 719 #endif 720 721 /* 722 * Arch code must define kvm_arch_has_private_mem if support for private memory 723 * is enabled. 724 */ 725 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) 726 static inline bool kvm_arch_has_private_mem(struct kvm *kvm) 727 { 728 return false; 729 } 730 #endif 731 732 #ifndef kvm_arch_has_readonly_mem 733 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm) 734 { 735 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM); 736 } 737 #endif 738 739 struct kvm_memslots { 740 u64 generation; 741 atomic_long_t last_used_slot; 742 struct rb_root_cached hva_tree; 743 struct rb_root gfn_tree; 744 /* 745 * The mapping table from slot id to memslot. 746 * 747 * 7-bit bucket count matches the size of the old id to index array for 748 * 512 slots, while giving good performance with this slot count. 749 * Higher bucket counts bring only small performance improvements but 750 * always result in higher memory usage (even for lower memslot counts). 751 */ 752 DECLARE_HASHTABLE(id_hash, 7); 753 int node_idx; 754 }; 755 756 struct kvm { 757 #ifdef KVM_HAVE_MMU_RWLOCK 758 rwlock_t mmu_lock; 759 #else 760 spinlock_t mmu_lock; 761 #endif /* KVM_HAVE_MMU_RWLOCK */ 762 763 struct mutex slots_lock; 764 765 /* 766 * Protects the arch-specific fields of struct kvm_memory_slots in 767 * use by the VM. To be used under the slots_lock (above) or in a 768 * kvm->srcu critical section where acquiring the slots_lock would 769 * lead to deadlock with the synchronize_srcu in 770 * kvm_swap_active_memslots(). 771 */ 772 struct mutex slots_arch_lock; 773 struct mm_struct *mm; /* userspace tied to this vm */ 774 unsigned long nr_memslot_pages; 775 /* The two memslot sets - active and inactive (per address space) */ 776 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2]; 777 /* The current active memslot set for each address space */ 778 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES]; 779 struct xarray vcpu_array; 780 /* 781 * Protected by slots_lock, but can be read outside if an 782 * incorrect answer is acceptable. 783 */ 784 atomic_t nr_memslots_dirty_logging; 785 786 /* Used to wait for completion of MMU notifiers. */ 787 spinlock_t mn_invalidate_lock; 788 unsigned long mn_active_invalidate_count; 789 struct rcuwait mn_memslots_update_rcuwait; 790 791 /* For management / invalidation of gfn_to_pfn_caches */ 792 spinlock_t gpc_lock; 793 struct list_head gpc_list; 794 795 /* 796 * created_vcpus is protected by kvm->lock, and is incremented 797 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 798 * incremented after storing the kvm_vcpu pointer in vcpus, 799 * and is accessed atomically. 800 */ 801 atomic_t online_vcpus; 802 int max_vcpus; 803 int created_vcpus; 804 int last_boosted_vcpu; 805 struct list_head vm_list; 806 struct mutex lock; 807 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 808 #ifdef CONFIG_HAVE_KVM_IRQCHIP 809 struct { 810 spinlock_t lock; 811 struct list_head items; 812 /* resampler_list update side is protected by resampler_lock. */ 813 struct list_head resampler_list; 814 struct mutex resampler_lock; 815 } irqfds; 816 #endif 817 struct list_head ioeventfds; 818 struct kvm_vm_stat stat; 819 struct kvm_arch arch; 820 refcount_t users_count; 821 #ifdef CONFIG_KVM_MMIO 822 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 823 spinlock_t ring_lock; 824 struct list_head coalesced_zones; 825 #endif 826 827 struct mutex irq_lock; 828 #ifdef CONFIG_HAVE_KVM_IRQCHIP 829 /* 830 * Update side is protected by irq_lock. 831 */ 832 struct kvm_irq_routing_table __rcu *irq_routing; 833 834 struct hlist_head irq_ack_notifier_list; 835 #endif 836 837 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 838 struct mmu_notifier mmu_notifier; 839 unsigned long mmu_invalidate_seq; 840 long mmu_invalidate_in_progress; 841 gfn_t mmu_invalidate_range_start; 842 gfn_t mmu_invalidate_range_end; 843 #endif 844 struct list_head devices; 845 u64 manual_dirty_log_protect; 846 struct dentry *debugfs_dentry; 847 struct kvm_stat_data **debugfs_stat_data; 848 struct srcu_struct srcu; 849 struct srcu_struct irq_srcu; 850 pid_t userspace_pid; 851 bool override_halt_poll_ns; 852 unsigned int max_halt_poll_ns; 853 u32 dirty_ring_size; 854 bool dirty_ring_with_bitmap; 855 bool vm_bugged; 856 bool vm_dead; 857 858 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 859 struct notifier_block pm_notifier; 860 #endif 861 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 862 /* Protected by slots_locks (for writes) and RCU (for reads) */ 863 struct xarray mem_attr_array; 864 #endif 865 char stats_id[KVM_STATS_NAME_SIZE]; 866 }; 867 868 #define kvm_err(fmt, ...) \ 869 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 870 #define kvm_info(fmt, ...) \ 871 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 872 #define kvm_debug(fmt, ...) \ 873 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 874 #define kvm_debug_ratelimited(fmt, ...) \ 875 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 876 ## __VA_ARGS__) 877 #define kvm_pr_unimpl(fmt, ...) \ 878 pr_err_ratelimited("kvm [%i]: " fmt, \ 879 task_tgid_nr(current), ## __VA_ARGS__) 880 881 /* The guest did something we don't support. */ 882 #define vcpu_unimpl(vcpu, fmt, ...) \ 883 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 884 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 885 886 #define vcpu_debug(vcpu, fmt, ...) \ 887 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 888 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 889 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 890 ## __VA_ARGS__) 891 #define vcpu_err(vcpu, fmt, ...) \ 892 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 893 894 static inline void kvm_vm_dead(struct kvm *kvm) 895 { 896 kvm->vm_dead = true; 897 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 898 } 899 900 static inline void kvm_vm_bugged(struct kvm *kvm) 901 { 902 kvm->vm_bugged = true; 903 kvm_vm_dead(kvm); 904 } 905 906 907 #define KVM_BUG(cond, kvm, fmt...) \ 908 ({ \ 909 bool __ret = !!(cond); \ 910 \ 911 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 912 kvm_vm_bugged(kvm); \ 913 unlikely(__ret); \ 914 }) 915 916 #define KVM_BUG_ON(cond, kvm) \ 917 ({ \ 918 bool __ret = !!(cond); \ 919 \ 920 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 921 kvm_vm_bugged(kvm); \ 922 unlikely(__ret); \ 923 }) 924 925 /* 926 * Note, "data corruption" refers to corruption of host kernel data structures, 927 * not guest data. Guest data corruption, suspected or confirmed, that is tied 928 * and contained to a single VM should *never* BUG() and potentially panic the 929 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure 930 * is corrupted and that corruption can have a cascading effect to other parts 931 * of the hosts and/or to other VMs. 932 */ 933 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ 934 ({ \ 935 bool __ret = !!(cond); \ 936 \ 937 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ 938 BUG_ON(__ret); \ 939 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 940 kvm_vm_bugged(kvm); \ 941 unlikely(__ret); \ 942 }) 943 944 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 945 { 946 #ifdef CONFIG_PROVE_RCU 947 WARN_ONCE(vcpu->srcu_depth++, 948 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 949 #endif 950 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 951 } 952 953 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 954 { 955 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 956 957 #ifdef CONFIG_PROVE_RCU 958 WARN_ONCE(--vcpu->srcu_depth, 959 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 960 #endif 961 } 962 963 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 964 { 965 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 966 } 967 968 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 969 { 970 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 971 lockdep_is_held(&kvm->slots_lock) || 972 !refcount_read(&kvm->users_count)); 973 } 974 975 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 976 { 977 int num_vcpus = atomic_read(&kvm->online_vcpus); 978 979 /* 980 * Explicitly verify the target vCPU is online, as the anti-speculation 981 * logic only limits the CPU's ability to speculate, e.g. given a "bad" 982 * index, clamping the index to 0 would return vCPU0, not NULL. 983 */ 984 if (i >= num_vcpus) 985 return NULL; 986 987 i = array_index_nospec(i, num_vcpus); 988 989 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 990 smp_rmb(); 991 return xa_load(&kvm->vcpu_array, i); 992 } 993 994 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 995 if (atomic_read(&kvm->online_vcpus)) \ 996 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 997 (atomic_read(&kvm->online_vcpus) - 1)) 998 999 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 1000 { 1001 struct kvm_vcpu *vcpu = NULL; 1002 unsigned long i; 1003 1004 if (id < 0) 1005 return NULL; 1006 if (id < KVM_MAX_VCPUS) 1007 vcpu = kvm_get_vcpu(kvm, id); 1008 if (vcpu && vcpu->vcpu_id == id) 1009 return vcpu; 1010 kvm_for_each_vcpu(i, vcpu, kvm) 1011 if (vcpu->vcpu_id == id) 1012 return vcpu; 1013 return NULL; 1014 } 1015 1016 void kvm_destroy_vcpus(struct kvm *kvm); 1017 1018 void vcpu_load(struct kvm_vcpu *vcpu); 1019 void vcpu_put(struct kvm_vcpu *vcpu); 1020 1021 #ifdef __KVM_HAVE_IOAPIC 1022 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 1023 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 1024 #else 1025 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 1026 { 1027 } 1028 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 1029 { 1030 } 1031 #endif 1032 1033 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1034 int kvm_irqfd_init(void); 1035 void kvm_irqfd_exit(void); 1036 #else 1037 static inline int kvm_irqfd_init(void) 1038 { 1039 return 0; 1040 } 1041 1042 static inline void kvm_irqfd_exit(void) 1043 { 1044 } 1045 #endif 1046 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 1047 void kvm_exit(void); 1048 1049 void kvm_get_kvm(struct kvm *kvm); 1050 bool kvm_get_kvm_safe(struct kvm *kvm); 1051 void kvm_put_kvm(struct kvm *kvm); 1052 bool file_is_kvm(struct file *file); 1053 void kvm_put_kvm_no_destroy(struct kvm *kvm); 1054 1055 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 1056 { 1057 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES); 1058 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 1059 lockdep_is_held(&kvm->slots_lock) || 1060 !refcount_read(&kvm->users_count)); 1061 } 1062 1063 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 1064 { 1065 return __kvm_memslots(kvm, 0); 1066 } 1067 1068 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 1069 { 1070 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 1071 1072 return __kvm_memslots(vcpu->kvm, as_id); 1073 } 1074 1075 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 1076 { 1077 return RB_EMPTY_ROOT(&slots->gfn_tree); 1078 } 1079 1080 bool kvm_are_all_memslots_empty(struct kvm *kvm); 1081 1082 #define kvm_for_each_memslot(memslot, bkt, slots) \ 1083 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 1084 if (WARN_ON_ONCE(!memslot->npages)) { \ 1085 } else 1086 1087 static inline 1088 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1089 { 1090 struct kvm_memory_slot *slot; 1091 int idx = slots->node_idx; 1092 1093 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1094 if (slot->id == id) 1095 return slot; 1096 } 1097 1098 return NULL; 1099 } 1100 1101 /* Iterator used for walking memslots that overlap a gfn range. */ 1102 struct kvm_memslot_iter { 1103 struct kvm_memslots *slots; 1104 struct rb_node *node; 1105 struct kvm_memory_slot *slot; 1106 }; 1107 1108 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1109 { 1110 iter->node = rb_next(iter->node); 1111 if (!iter->node) 1112 return; 1113 1114 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1115 } 1116 1117 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1118 struct kvm_memslots *slots, 1119 gfn_t start) 1120 { 1121 int idx = slots->node_idx; 1122 struct rb_node *tmp; 1123 struct kvm_memory_slot *slot; 1124 1125 iter->slots = slots; 1126 1127 /* 1128 * Find the so called "upper bound" of a key - the first node that has 1129 * its key strictly greater than the searched one (the start gfn in our case). 1130 */ 1131 iter->node = NULL; 1132 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1133 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1134 if (start < slot->base_gfn) { 1135 iter->node = tmp; 1136 tmp = tmp->rb_left; 1137 } else { 1138 tmp = tmp->rb_right; 1139 } 1140 } 1141 1142 /* 1143 * Find the slot with the lowest gfn that can possibly intersect with 1144 * the range, so we'll ideally have slot start <= range start 1145 */ 1146 if (iter->node) { 1147 /* 1148 * A NULL previous node means that the very first slot 1149 * already has a higher start gfn. 1150 * In this case slot start > range start. 1151 */ 1152 tmp = rb_prev(iter->node); 1153 if (tmp) 1154 iter->node = tmp; 1155 } else { 1156 /* a NULL node below means no slots */ 1157 iter->node = rb_last(&slots->gfn_tree); 1158 } 1159 1160 if (iter->node) { 1161 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1162 1163 /* 1164 * It is possible in the slot start < range start case that the 1165 * found slot ends before or at range start (slot end <= range start) 1166 * and so it does not overlap the requested range. 1167 * 1168 * In such non-overlapping case the next slot (if it exists) will 1169 * already have slot start > range start, otherwise the logic above 1170 * would have found it instead of the current slot. 1171 */ 1172 if (iter->slot->base_gfn + iter->slot->npages <= start) 1173 kvm_memslot_iter_next(iter); 1174 } 1175 } 1176 1177 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1178 { 1179 if (!iter->node) 1180 return false; 1181 1182 /* 1183 * If this slot starts beyond or at the end of the range so does 1184 * every next one 1185 */ 1186 return iter->slot->base_gfn < end; 1187 } 1188 1189 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1190 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1191 for (kvm_memslot_iter_start(iter, slots, start); \ 1192 kvm_memslot_iter_is_valid(iter, end); \ 1193 kvm_memslot_iter_next(iter)) 1194 1195 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1196 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1197 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1198 1199 /* 1200 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1201 * - create a new memory slot 1202 * - delete an existing memory slot 1203 * - modify an existing memory slot 1204 * -- move it in the guest physical memory space 1205 * -- just change its flags 1206 * 1207 * Since flags can be changed by some of these operations, the following 1208 * differentiation is the best we can do for kvm_set_memory_region(): 1209 */ 1210 enum kvm_mr_change { 1211 KVM_MR_CREATE, 1212 KVM_MR_DELETE, 1213 KVM_MR_MOVE, 1214 KVM_MR_FLAGS_ONLY, 1215 }; 1216 1217 int kvm_set_internal_memslot(struct kvm *kvm, 1218 const struct kvm_userspace_memory_region2 *mem); 1219 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1220 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1221 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1222 const struct kvm_memory_slot *old, 1223 struct kvm_memory_slot *new, 1224 enum kvm_mr_change change); 1225 void kvm_arch_commit_memory_region(struct kvm *kvm, 1226 struct kvm_memory_slot *old, 1227 const struct kvm_memory_slot *new, 1228 enum kvm_mr_change change); 1229 /* flush all memory translations */ 1230 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1231 /* flush memory translations pointing to 'slot' */ 1232 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1233 struct kvm_memory_slot *slot); 1234 1235 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, 1236 struct page **pages, int nr_pages); 1237 1238 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write); 1239 static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1240 { 1241 return __gfn_to_page(kvm, gfn, true); 1242 } 1243 1244 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1245 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1246 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1247 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1248 bool *writable); 1249 1250 static inline void kvm_release_page_unused(struct page *page) 1251 { 1252 if (!page) 1253 return; 1254 1255 put_page(page); 1256 } 1257 1258 void kvm_release_page_clean(struct page *page); 1259 void kvm_release_page_dirty(struct page *page); 1260 1261 static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page, 1262 bool unused, bool dirty) 1263 { 1264 lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused); 1265 1266 if (!page) 1267 return; 1268 1269 /* 1270 * If the page that KVM got from the *primary MMU* is writable, and KVM 1271 * installed or reused a SPTE, mark the page/folio dirty. Note, this 1272 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if 1273 * the GFN is write-protected. Folios can't be safely marked dirty 1274 * outside of mmu_lock as doing so could race with writeback on the 1275 * folio. As a result, KVM can't mark folios dirty in the fast page 1276 * fault handler, and so KVM must (somewhat) speculatively mark the 1277 * folio dirty if KVM could locklessly make the SPTE writable. 1278 */ 1279 if (unused) 1280 kvm_release_page_unused(page); 1281 else if (dirty) 1282 kvm_release_page_dirty(page); 1283 else 1284 kvm_release_page_clean(page); 1285 } 1286 1287 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, 1288 unsigned int foll, bool *writable, 1289 struct page **refcounted_page); 1290 1291 static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 1292 bool write, bool *writable, 1293 struct page **refcounted_page) 1294 { 1295 return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, 1296 write ? FOLL_WRITE : 0, writable, refcounted_page); 1297 } 1298 1299 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1300 int len); 1301 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1302 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1303 void *data, unsigned long len); 1304 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1305 void *data, unsigned int offset, 1306 unsigned long len); 1307 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1308 int offset, int len); 1309 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1310 unsigned long len); 1311 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1312 void *data, unsigned long len); 1313 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1314 void *data, unsigned int offset, 1315 unsigned long len); 1316 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1317 gpa_t gpa, unsigned long len); 1318 1319 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1320 ({ \ 1321 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1322 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1323 int __ret = -EFAULT; \ 1324 \ 1325 if (!kvm_is_error_hva(__addr)) \ 1326 __ret = get_user(v, __uaddr); \ 1327 __ret; \ 1328 }) 1329 1330 #define kvm_get_guest(kvm, gpa, v) \ 1331 ({ \ 1332 gpa_t __gpa = gpa; \ 1333 struct kvm *__kvm = kvm; \ 1334 \ 1335 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1336 offset_in_page(__gpa), v); \ 1337 }) 1338 1339 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1340 ({ \ 1341 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1342 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1343 int __ret = -EFAULT; \ 1344 \ 1345 if (!kvm_is_error_hva(__addr)) \ 1346 __ret = put_user(v, __uaddr); \ 1347 if (!__ret) \ 1348 mark_page_dirty(kvm, gfn); \ 1349 __ret; \ 1350 }) 1351 1352 #define kvm_put_guest(kvm, gpa, v) \ 1353 ({ \ 1354 gpa_t __gpa = gpa; \ 1355 struct kvm *__kvm = kvm; \ 1356 \ 1357 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1358 offset_in_page(__gpa), v); \ 1359 }) 1360 1361 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1362 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1363 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1364 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1365 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1366 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1367 1368 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map, 1369 bool writable); 1370 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map); 1371 1372 static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, 1373 struct kvm_host_map *map) 1374 { 1375 return __kvm_vcpu_map(vcpu, gpa, map, true); 1376 } 1377 1378 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa, 1379 struct kvm_host_map *map) 1380 { 1381 return __kvm_vcpu_map(vcpu, gpa, map, false); 1382 } 1383 1384 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1385 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1386 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1387 int len); 1388 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1389 unsigned long len); 1390 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1391 unsigned long len); 1392 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1393 int offset, int len); 1394 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1395 unsigned long len); 1396 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1397 1398 /** 1399 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1400 * 1401 * @gpc: struct gfn_to_pfn_cache object. 1402 * @kvm: pointer to kvm instance. 1403 * 1404 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1405 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1406 * the caller before init). 1407 */ 1408 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm); 1409 1410 /** 1411 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1412 * physical address. 1413 * 1414 * @gpc: struct gfn_to_pfn_cache object. 1415 * @gpa: guest physical address to map. 1416 * @len: sanity check; the range being access must fit a single page. 1417 * 1418 * @return: 0 for success. 1419 * -EINVAL for a mapping which would cross a page boundary. 1420 * -EFAULT for an untranslatable guest physical address. 1421 * 1422 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1423 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1424 * to ensure that the cache is valid before accessing the target page. 1425 */ 1426 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1427 1428 /** 1429 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA. 1430 * 1431 * @gpc: struct gfn_to_pfn_cache object. 1432 * @hva: userspace virtual address to map. 1433 * @len: sanity check; the range being access must fit a single page. 1434 * 1435 * @return: 0 for success. 1436 * -EINVAL for a mapping which would cross a page boundary. 1437 * -EFAULT for an untranslatable guest physical address. 1438 * 1439 * The semantics of this function are the same as those of kvm_gpc_activate(). It 1440 * merely bypasses a layer of address translation. 1441 */ 1442 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len); 1443 1444 /** 1445 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1446 * 1447 * @gpc: struct gfn_to_pfn_cache object. 1448 * @len: sanity check; the range being access must fit a single page. 1449 * 1450 * @return: %true if the cache is still valid and the address matches. 1451 * %false if the cache is not valid. 1452 * 1453 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1454 * while calling this function, and then continue to hold the lock until the 1455 * access is complete. 1456 * 1457 * Callers in IN_GUEST_MODE may do so without locking, although they should 1458 * still hold a read lock on kvm->scru for the memslot checks. 1459 */ 1460 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1461 1462 /** 1463 * kvm_gpc_refresh - update a previously initialized cache. 1464 * 1465 * @gpc: struct gfn_to_pfn_cache object. 1466 * @len: sanity check; the range being access must fit a single page. 1467 * 1468 * @return: 0 for success. 1469 * -EINVAL for a mapping which would cross a page boundary. 1470 * -EFAULT for an untranslatable guest physical address. 1471 * 1472 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1473 * return from this function does not mean the page can be immediately 1474 * accessed because it may have raced with an invalidation. Callers must 1475 * still lock and check the cache status, as this function does not return 1476 * with the lock still held to permit access. 1477 */ 1478 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1479 1480 /** 1481 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1482 * 1483 * @gpc: struct gfn_to_pfn_cache object. 1484 * 1485 * This removes a cache from the VM's list to be processed on MMU notifier 1486 * invocation. 1487 */ 1488 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1489 1490 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc) 1491 { 1492 return gpc->active && !kvm_is_error_gpa(gpc->gpa); 1493 } 1494 1495 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc) 1496 { 1497 return gpc->active && kvm_is_error_gpa(gpc->gpa); 1498 } 1499 1500 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1501 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1502 1503 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1504 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1505 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1506 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1507 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1508 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1509 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1510 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1511 1512 void kvm_flush_remote_tlbs(struct kvm *kvm); 1513 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1514 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 1515 const struct kvm_memory_slot *memslot); 1516 1517 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1518 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1519 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1520 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1521 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1522 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1523 #endif 1524 1525 void kvm_mmu_invalidate_begin(struct kvm *kvm); 1526 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end); 1527 void kvm_mmu_invalidate_end(struct kvm *kvm); 1528 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 1529 1530 long kvm_arch_dev_ioctl(struct file *filp, 1531 unsigned int ioctl, unsigned long arg); 1532 long kvm_arch_vcpu_ioctl(struct file *filp, 1533 unsigned int ioctl, unsigned long arg); 1534 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1535 1536 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1537 1538 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1539 struct kvm_memory_slot *slot, 1540 gfn_t gfn_offset, 1541 unsigned long mask); 1542 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1543 1544 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1545 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1546 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1547 int *is_dirty, struct kvm_memory_slot **memslot); 1548 #endif 1549 1550 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1551 bool line_status); 1552 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1553 struct kvm_enable_cap *cap); 1554 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1555 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1556 unsigned long arg); 1557 1558 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1559 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1560 1561 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1562 struct kvm_translation *tr); 1563 1564 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1565 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1566 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1567 struct kvm_sregs *sregs); 1568 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1569 struct kvm_sregs *sregs); 1570 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1571 struct kvm_mp_state *mp_state); 1572 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1573 struct kvm_mp_state *mp_state); 1574 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1575 struct kvm_guest_debug *dbg); 1576 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1577 1578 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1579 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1580 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1581 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1582 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1583 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1584 1585 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1586 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1587 #endif 1588 1589 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1590 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1591 #else 1592 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1593 #endif 1594 1595 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1596 /* 1597 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under 1598 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of 1599 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling 1600 * sequence, and at the end of the generic hardware disabling sequence. 1601 */ 1602 void kvm_arch_enable_virtualization(void); 1603 void kvm_arch_disable_virtualization(void); 1604 /* 1605 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to 1606 * do the actual twiddling of hardware bits. The hooks are called on all 1607 * online CPUs when KVM enables/disabled virtualization, and on a single CPU 1608 * when that CPU is onlined/offlined (including for Resume/Suspend). 1609 */ 1610 int kvm_arch_enable_virtualization_cpu(void); 1611 void kvm_arch_disable_virtualization_cpu(void); 1612 #endif 1613 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1614 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1615 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1616 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1617 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1618 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu); 1619 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1620 void kvm_arch_create_vm_debugfs(struct kvm *kvm); 1621 1622 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1623 /* 1624 * All architectures that want to use vzalloc currently also 1625 * need their own kvm_arch_alloc_vm implementation. 1626 */ 1627 static inline struct kvm *kvm_arch_alloc_vm(void) 1628 { 1629 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1630 } 1631 #endif 1632 1633 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1634 { 1635 kvfree(kvm); 1636 } 1637 1638 #ifndef __KVM_HAVE_ARCH_VM_FREE 1639 static inline void kvm_arch_free_vm(struct kvm *kvm) 1640 { 1641 __kvm_arch_free_vm(kvm); 1642 } 1643 #endif 1644 1645 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1646 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1647 { 1648 return -ENOTSUPP; 1649 } 1650 #else 1651 int kvm_arch_flush_remote_tlbs(struct kvm *kvm); 1652 #endif 1653 1654 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1655 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 1656 gfn_t gfn, u64 nr_pages) 1657 { 1658 return -EOPNOTSUPP; 1659 } 1660 #else 1661 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1662 #endif 1663 1664 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1665 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1666 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1667 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1668 #else 1669 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1670 { 1671 } 1672 1673 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1674 { 1675 } 1676 1677 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1678 { 1679 return false; 1680 } 1681 #endif 1682 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1683 void kvm_arch_start_assignment(struct kvm *kvm); 1684 void kvm_arch_end_assignment(struct kvm *kvm); 1685 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1686 #else 1687 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1688 { 1689 } 1690 1691 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1692 { 1693 } 1694 1695 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1696 { 1697 return false; 1698 } 1699 #endif 1700 1701 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1702 { 1703 #ifdef __KVM_HAVE_ARCH_WQP 1704 return vcpu->arch.waitp; 1705 #else 1706 return &vcpu->wait; 1707 #endif 1708 } 1709 1710 /* 1711 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1712 * true if the vCPU was blocking and was awakened, false otherwise. 1713 */ 1714 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1715 { 1716 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1717 } 1718 1719 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1720 { 1721 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1722 } 1723 1724 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1725 /* 1726 * returns true if the virtual interrupt controller is initialized and 1727 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1728 * controller is dynamically instantiated and this is not always true. 1729 */ 1730 bool kvm_arch_intc_initialized(struct kvm *kvm); 1731 #else 1732 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1733 { 1734 return true; 1735 } 1736 #endif 1737 1738 #ifdef CONFIG_GUEST_PERF_EVENTS 1739 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1740 1741 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1742 void kvm_unregister_perf_callbacks(void); 1743 #else 1744 static inline void kvm_register_perf_callbacks(void *ign) {} 1745 static inline void kvm_unregister_perf_callbacks(void) {} 1746 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1747 1748 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1749 void kvm_arch_destroy_vm(struct kvm *kvm); 1750 1751 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1752 1753 struct kvm_irq_ack_notifier { 1754 struct hlist_node link; 1755 unsigned gsi; 1756 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1757 }; 1758 1759 int kvm_irq_map_gsi(struct kvm *kvm, 1760 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1761 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1762 1763 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1764 bool line_status); 1765 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1766 int irq_source_id, int level, bool line_status); 1767 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1768 struct kvm *kvm, int irq_source_id, 1769 int level, bool line_status); 1770 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1771 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1772 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1773 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1774 struct kvm_irq_ack_notifier *kian); 1775 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1776 struct kvm_irq_ack_notifier *kian); 1777 int kvm_request_irq_source_id(struct kvm *kvm); 1778 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1779 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1780 1781 /* 1782 * Returns a pointer to the memslot if it contains gfn. 1783 * Otherwise returns NULL. 1784 */ 1785 static inline struct kvm_memory_slot * 1786 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1787 { 1788 if (!slot) 1789 return NULL; 1790 1791 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1792 return slot; 1793 else 1794 return NULL; 1795 } 1796 1797 /* 1798 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1799 * 1800 * With "approx" set returns the memslot also when the address falls 1801 * in a hole. In that case one of the memslots bordering the hole is 1802 * returned. 1803 */ 1804 static inline struct kvm_memory_slot * 1805 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1806 { 1807 struct kvm_memory_slot *slot; 1808 struct rb_node *node; 1809 int idx = slots->node_idx; 1810 1811 slot = NULL; 1812 for (node = slots->gfn_tree.rb_node; node; ) { 1813 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1814 if (gfn >= slot->base_gfn) { 1815 if (gfn < slot->base_gfn + slot->npages) 1816 return slot; 1817 node = node->rb_right; 1818 } else 1819 node = node->rb_left; 1820 } 1821 1822 return approx ? slot : NULL; 1823 } 1824 1825 static inline struct kvm_memory_slot * 1826 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1827 { 1828 struct kvm_memory_slot *slot; 1829 1830 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1831 slot = try_get_memslot(slot, gfn); 1832 if (slot) 1833 return slot; 1834 1835 slot = search_memslots(slots, gfn, approx); 1836 if (slot) { 1837 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1838 return slot; 1839 } 1840 1841 return NULL; 1842 } 1843 1844 /* 1845 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1846 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1847 * because that would bloat other code too much. 1848 */ 1849 static inline struct kvm_memory_slot * 1850 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1851 { 1852 return ____gfn_to_memslot(slots, gfn, false); 1853 } 1854 1855 static inline unsigned long 1856 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1857 { 1858 /* 1859 * The index was checked originally in search_memslots. To avoid 1860 * that a malicious guest builds a Spectre gadget out of e.g. page 1861 * table walks, do not let the processor speculate loads outside 1862 * the guest's registered memslots. 1863 */ 1864 unsigned long offset = gfn - slot->base_gfn; 1865 offset = array_index_nospec(offset, slot->npages); 1866 return slot->userspace_addr + offset * PAGE_SIZE; 1867 } 1868 1869 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1870 { 1871 return gfn_to_memslot(kvm, gfn)->id; 1872 } 1873 1874 static inline gfn_t 1875 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1876 { 1877 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1878 1879 return slot->base_gfn + gfn_offset; 1880 } 1881 1882 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1883 { 1884 return (gpa_t)gfn << PAGE_SHIFT; 1885 } 1886 1887 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1888 { 1889 return (gfn_t)(gpa >> PAGE_SHIFT); 1890 } 1891 1892 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1893 { 1894 return (hpa_t)pfn << PAGE_SHIFT; 1895 } 1896 1897 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa) 1898 { 1899 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1900 1901 return !kvm_is_error_hva(hva); 1902 } 1903 1904 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc) 1905 { 1906 lockdep_assert_held(&gpc->lock); 1907 1908 if (!gpc->memslot) 1909 return; 1910 1911 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa)); 1912 } 1913 1914 enum kvm_stat_kind { 1915 KVM_STAT_VM, 1916 KVM_STAT_VCPU, 1917 }; 1918 1919 struct kvm_stat_data { 1920 struct kvm *kvm; 1921 const struct _kvm_stats_desc *desc; 1922 enum kvm_stat_kind kind; 1923 }; 1924 1925 struct _kvm_stats_desc { 1926 struct kvm_stats_desc desc; 1927 char name[KVM_STATS_NAME_SIZE]; 1928 }; 1929 1930 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1931 .flags = type | unit | base | \ 1932 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1933 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1934 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1935 .exponent = exp, \ 1936 .size = sz, \ 1937 .bucket_size = bsz 1938 1939 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1940 { \ 1941 { \ 1942 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1943 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1944 }, \ 1945 .name = #stat, \ 1946 } 1947 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1948 { \ 1949 { \ 1950 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1951 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1952 }, \ 1953 .name = #stat, \ 1954 } 1955 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1956 { \ 1957 { \ 1958 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1959 .offset = offsetof(struct kvm_vm_stat, stat) \ 1960 }, \ 1961 .name = #stat, \ 1962 } 1963 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1964 { \ 1965 { \ 1966 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1967 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1968 }, \ 1969 .name = #stat, \ 1970 } 1971 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1972 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1973 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1974 1975 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1976 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1977 unit, base, exponent, 1, 0) 1978 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1979 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1980 unit, base, exponent, 1, 0) 1981 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1982 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1983 unit, base, exponent, 1, 0) 1984 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1985 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1986 unit, base, exponent, sz, bsz) 1987 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1988 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1989 unit, base, exponent, sz, 0) 1990 1991 /* Cumulative counter, read/write */ 1992 #define STATS_DESC_COUNTER(SCOPE, name) \ 1993 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1994 KVM_STATS_BASE_POW10, 0) 1995 /* Instantaneous counter, read only */ 1996 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1997 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1998 KVM_STATS_BASE_POW10, 0) 1999 /* Peak counter, read/write */ 2000 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 2001 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 2002 KVM_STATS_BASE_POW10, 0) 2003 2004 /* Instantaneous boolean value, read only */ 2005 #define STATS_DESC_IBOOLEAN(SCOPE, name) \ 2006 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 2007 KVM_STATS_BASE_POW10, 0) 2008 /* Peak (sticky) boolean value, read/write */ 2009 #define STATS_DESC_PBOOLEAN(SCOPE, name) \ 2010 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 2011 KVM_STATS_BASE_POW10, 0) 2012 2013 /* Cumulative time in nanosecond */ 2014 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 2015 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2016 KVM_STATS_BASE_POW10, -9) 2017 /* Linear histogram for time in nanosecond */ 2018 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 2019 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2020 KVM_STATS_BASE_POW10, -9, sz, bsz) 2021 /* Logarithmic histogram for time in nanosecond */ 2022 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 2023 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2024 KVM_STATS_BASE_POW10, -9, sz) 2025 2026 #define KVM_GENERIC_VM_STATS() \ 2027 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 2028 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 2029 2030 #define KVM_GENERIC_VCPU_STATS() \ 2031 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 2032 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 2033 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 2034 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 2035 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 2036 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 2037 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 2038 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 2039 HALT_POLL_HIST_COUNT), \ 2040 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 2041 HALT_POLL_HIST_COUNT), \ 2042 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 2043 HALT_POLL_HIST_COUNT), \ 2044 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 2045 2046 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 2047 const struct _kvm_stats_desc *desc, 2048 void *stats, size_t size_stats, 2049 char __user *user_buffer, size_t size, loff_t *offset); 2050 2051 /** 2052 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 2053 * statistics data. 2054 * 2055 * @data: start address of the stats data 2056 * @size: the number of bucket of the stats data 2057 * @value: the new value used to update the linear histogram's bucket 2058 * @bucket_size: the size (width) of a bucket 2059 */ 2060 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 2061 u64 value, size_t bucket_size) 2062 { 2063 size_t index = div64_u64(value, bucket_size); 2064 2065 index = min(index, size - 1); 2066 ++data[index]; 2067 } 2068 2069 /** 2070 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 2071 * statistics data. 2072 * 2073 * @data: start address of the stats data 2074 * @size: the number of bucket of the stats data 2075 * @value: the new value used to update the logarithmic histogram's bucket 2076 */ 2077 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 2078 { 2079 size_t index = fls64(value); 2080 2081 index = min(index, size - 1); 2082 ++data[index]; 2083 } 2084 2085 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 2086 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 2087 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 2088 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 2089 2090 2091 extern const struct kvm_stats_header kvm_vm_stats_header; 2092 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 2093 extern const struct kvm_stats_header kvm_vcpu_stats_header; 2094 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 2095 2096 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 2097 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 2098 { 2099 if (unlikely(kvm->mmu_invalidate_in_progress)) 2100 return 1; 2101 /* 2102 * Ensure the read of mmu_invalidate_in_progress happens before 2103 * the read of mmu_invalidate_seq. This interacts with the 2104 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 2105 * that the caller either sees the old (non-zero) value of 2106 * mmu_invalidate_in_progress or the new (incremented) value of 2107 * mmu_invalidate_seq. 2108 * 2109 * PowerPC Book3s HV KVM calls this under a per-page lock rather 2110 * than under kvm->mmu_lock, for scalability, so can't rely on 2111 * kvm->mmu_lock to keep things ordered. 2112 */ 2113 smp_rmb(); 2114 if (kvm->mmu_invalidate_seq != mmu_seq) 2115 return 1; 2116 return 0; 2117 } 2118 2119 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm, 2120 unsigned long mmu_seq, 2121 gfn_t gfn) 2122 { 2123 lockdep_assert_held(&kvm->mmu_lock); 2124 /* 2125 * If mmu_invalidate_in_progress is non-zero, then the range maintained 2126 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 2127 * that might be being invalidated. Note that it may include some false 2128 * positives, due to shortcuts when handing concurrent invalidations. 2129 */ 2130 if (unlikely(kvm->mmu_invalidate_in_progress)) { 2131 /* 2132 * Dropping mmu_lock after bumping mmu_invalidate_in_progress 2133 * but before updating the range is a KVM bug. 2134 */ 2135 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA || 2136 kvm->mmu_invalidate_range_end == INVALID_GPA)) 2137 return 1; 2138 2139 if (gfn >= kvm->mmu_invalidate_range_start && 2140 gfn < kvm->mmu_invalidate_range_end) 2141 return 1; 2142 } 2143 2144 if (kvm->mmu_invalidate_seq != mmu_seq) 2145 return 1; 2146 return 0; 2147 } 2148 2149 /* 2150 * This lockless version of the range-based retry check *must* be paired with a 2151 * call to the locked version after acquiring mmu_lock, i.e. this is safe to 2152 * use only as a pre-check to avoid contending mmu_lock. This version *will* 2153 * get false negatives and false positives. 2154 */ 2155 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm, 2156 unsigned long mmu_seq, 2157 gfn_t gfn) 2158 { 2159 /* 2160 * Use READ_ONCE() to ensure the in-progress flag and sequence counter 2161 * are always read from memory, e.g. so that checking for retry in a 2162 * loop won't result in an infinite retry loop. Don't force loads for 2163 * start+end, as the key to avoiding infinite retry loops is observing 2164 * the 1=>0 transition of in-progress, i.e. getting false negatives 2165 * due to stale start+end values is acceptable. 2166 */ 2167 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) && 2168 gfn >= kvm->mmu_invalidate_range_start && 2169 gfn < kvm->mmu_invalidate_range_end) 2170 return true; 2171 2172 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq; 2173 } 2174 #endif 2175 2176 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2177 2178 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 2179 2180 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 2181 int kvm_set_irq_routing(struct kvm *kvm, 2182 const struct kvm_irq_routing_entry *entries, 2183 unsigned nr, 2184 unsigned flags); 2185 int kvm_init_irq_routing(struct kvm *kvm); 2186 int kvm_set_routing_entry(struct kvm *kvm, 2187 struct kvm_kernel_irq_routing_entry *e, 2188 const struct kvm_irq_routing_entry *ue); 2189 void kvm_free_irq_routing(struct kvm *kvm); 2190 2191 #else 2192 2193 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 2194 2195 static inline int kvm_init_irq_routing(struct kvm *kvm) 2196 { 2197 return 0; 2198 } 2199 2200 #endif 2201 2202 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2203 2204 void kvm_eventfd_init(struct kvm *kvm); 2205 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2206 2207 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2208 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2209 void kvm_irqfd_release(struct kvm *kvm); 2210 bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2211 unsigned int irqchip, 2212 unsigned int pin); 2213 void kvm_irq_routing_update(struct kvm *); 2214 #else 2215 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2216 { 2217 return -EINVAL; 2218 } 2219 2220 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2221 2222 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2223 unsigned int irqchip, 2224 unsigned int pin) 2225 { 2226 return false; 2227 } 2228 #endif /* CONFIG_HAVE_KVM_IRQCHIP */ 2229 2230 void kvm_arch_irq_routing_update(struct kvm *kvm); 2231 2232 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2233 { 2234 /* 2235 * Ensure the rest of the request is published to kvm_check_request's 2236 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2237 */ 2238 smp_wmb(); 2239 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2240 } 2241 2242 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2243 { 2244 /* 2245 * Request that don't require vCPU action should never be logged in 2246 * vcpu->requests. The vCPU won't clear the request, so it will stay 2247 * logged indefinitely and prevent the vCPU from entering the guest. 2248 */ 2249 BUILD_BUG_ON(!__builtin_constant_p(req) || 2250 (req & KVM_REQUEST_NO_ACTION)); 2251 2252 __kvm_make_request(req, vcpu); 2253 } 2254 2255 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2256 { 2257 return READ_ONCE(vcpu->requests); 2258 } 2259 2260 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2261 { 2262 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2263 } 2264 2265 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2266 { 2267 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2268 } 2269 2270 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2271 { 2272 if (kvm_test_request(req, vcpu)) { 2273 kvm_clear_request(req, vcpu); 2274 2275 /* 2276 * Ensure the rest of the request is visible to kvm_check_request's 2277 * caller. Paired with the smp_wmb in kvm_make_request. 2278 */ 2279 smp_mb__after_atomic(); 2280 return true; 2281 } else { 2282 return false; 2283 } 2284 } 2285 2286 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2287 extern bool kvm_rebooting; 2288 #endif 2289 2290 extern unsigned int halt_poll_ns; 2291 extern unsigned int halt_poll_ns_grow; 2292 extern unsigned int halt_poll_ns_grow_start; 2293 extern unsigned int halt_poll_ns_shrink; 2294 2295 struct kvm_device { 2296 const struct kvm_device_ops *ops; 2297 struct kvm *kvm; 2298 void *private; 2299 struct list_head vm_node; 2300 }; 2301 2302 /* create, destroy, and name are mandatory */ 2303 struct kvm_device_ops { 2304 const char *name; 2305 2306 /* 2307 * create is called holding kvm->lock and any operations not suitable 2308 * to do while holding the lock should be deferred to init (see 2309 * below). 2310 */ 2311 int (*create)(struct kvm_device *dev, u32 type); 2312 2313 /* 2314 * init is called after create if create is successful and is called 2315 * outside of holding kvm->lock. 2316 */ 2317 void (*init)(struct kvm_device *dev); 2318 2319 /* 2320 * Destroy is responsible for freeing dev. 2321 * 2322 * Destroy may be called before or after destructors are called 2323 * on emulated I/O regions, depending on whether a reference is 2324 * held by a vcpu or other kvm component that gets destroyed 2325 * after the emulated I/O. 2326 */ 2327 void (*destroy)(struct kvm_device *dev); 2328 2329 /* 2330 * Release is an alternative method to free the device. It is 2331 * called when the device file descriptor is closed. Once 2332 * release is called, the destroy method will not be called 2333 * anymore as the device is removed from the device list of 2334 * the VM. kvm->lock is held. 2335 */ 2336 void (*release)(struct kvm_device *dev); 2337 2338 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2339 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2340 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2341 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2342 unsigned long arg); 2343 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2344 }; 2345 2346 struct kvm_device *kvm_device_from_filp(struct file *filp); 2347 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2348 void kvm_unregister_device_ops(u32 type); 2349 2350 extern struct kvm_device_ops kvm_mpic_ops; 2351 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2352 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2353 2354 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2355 2356 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2357 { 2358 vcpu->spin_loop.in_spin_loop = val; 2359 } 2360 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2361 { 2362 vcpu->spin_loop.dy_eligible = val; 2363 } 2364 2365 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2366 2367 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2368 { 2369 } 2370 2371 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2372 { 2373 } 2374 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2375 2376 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2377 { 2378 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2379 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2380 } 2381 2382 struct kvm_vcpu *kvm_get_running_vcpu(void); 2383 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2384 2385 #if IS_ENABLED(CONFIG_HAVE_KVM_IRQ_BYPASS) 2386 bool kvm_arch_has_irq_bypass(void); 2387 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2388 struct irq_bypass_producer *); 2389 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2390 struct irq_bypass_producer *); 2391 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2392 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2393 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2394 uint32_t guest_irq, bool set); 2395 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2396 struct kvm_kernel_irq_routing_entry *); 2397 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2398 2399 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2400 /* If we wakeup during the poll time, was it a sucessful poll? */ 2401 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2402 { 2403 return vcpu->valid_wakeup; 2404 } 2405 2406 #else 2407 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2408 { 2409 return true; 2410 } 2411 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2412 2413 #ifdef CONFIG_HAVE_KVM_NO_POLL 2414 /* Callback that tells if we must not poll */ 2415 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2416 #else 2417 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2418 { 2419 return false; 2420 } 2421 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2422 2423 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2424 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2425 unsigned int ioctl, unsigned long arg); 2426 #else 2427 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2428 unsigned int ioctl, 2429 unsigned long arg) 2430 { 2431 return -ENOIOCTLCMD; 2432 } 2433 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2434 2435 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2436 2437 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2438 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2439 #else 2440 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2441 { 2442 return 0; 2443 } 2444 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2445 2446 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2447 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2448 { 2449 vcpu->run->exit_reason = KVM_EXIT_INTR; 2450 vcpu->stat.signal_exits++; 2451 } 2452 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2453 2454 /* 2455 * If more than one page is being (un)accounted, @virt must be the address of 2456 * the first page of a block of pages what were allocated together (i.e 2457 * accounted together). 2458 * 2459 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2460 * is thread-safe. 2461 */ 2462 static inline void kvm_account_pgtable_pages(void *virt, int nr) 2463 { 2464 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2465 } 2466 2467 /* 2468 * This defines how many reserved entries we want to keep before we 2469 * kick the vcpu to the userspace to avoid dirty ring full. This 2470 * value can be tuned to higher if e.g. PML is enabled on the host. 2471 */ 2472 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2473 2474 /* Max number of entries allowed for each kvm dirty ring */ 2475 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2476 2477 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, 2478 gpa_t gpa, gpa_t size, 2479 bool is_write, bool is_exec, 2480 bool is_private) 2481 { 2482 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT; 2483 vcpu->run->memory_fault.gpa = gpa; 2484 vcpu->run->memory_fault.size = size; 2485 2486 /* RWX flags are not (yet) defined or communicated to userspace. */ 2487 vcpu->run->memory_fault.flags = 0; 2488 if (is_private) 2489 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE; 2490 } 2491 2492 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2493 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn) 2494 { 2495 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn)); 2496 } 2497 2498 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2499 unsigned long mask, unsigned long attrs); 2500 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 2501 struct kvm_gfn_range *range); 2502 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 2503 struct kvm_gfn_range *range); 2504 2505 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2506 { 2507 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) && 2508 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE; 2509 } 2510 #else 2511 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2512 { 2513 return false; 2514 } 2515 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2516 2517 #ifdef CONFIG_KVM_PRIVATE_MEM 2518 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot, 2519 gfn_t gfn, kvm_pfn_t *pfn, struct page **page, 2520 int *max_order); 2521 #else 2522 static inline int kvm_gmem_get_pfn(struct kvm *kvm, 2523 struct kvm_memory_slot *slot, gfn_t gfn, 2524 kvm_pfn_t *pfn, struct page **page, 2525 int *max_order) 2526 { 2527 KVM_BUG_ON(1, kvm); 2528 return -EIO; 2529 } 2530 #endif /* CONFIG_KVM_PRIVATE_MEM */ 2531 2532 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 2533 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order); 2534 #endif 2535 2536 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM 2537 /** 2538 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data 2539 * 2540 * @kvm: KVM instance 2541 * @gfn: starting GFN to be populated 2542 * @src: userspace-provided buffer containing data to copy into GFN range 2543 * (passed to @post_populate, and incremented on each iteration 2544 * if not NULL) 2545 * @npages: number of pages to copy from userspace-buffer 2546 * @post_populate: callback to issue for each gmem page that backs the GPA 2547 * range 2548 * @opaque: opaque data to pass to @post_populate callback 2549 * 2550 * This is primarily intended for cases where a gmem-backed GPA range needs 2551 * to be initialized with userspace-provided data prior to being mapped into 2552 * the guest as a private page. This should be called with the slots->lock 2553 * held so that caller-enforced invariants regarding the expected memory 2554 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES. 2555 * 2556 * Returns the number of pages that were populated. 2557 */ 2558 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2559 void __user *src, int order, void *opaque); 2560 2561 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages, 2562 kvm_gmem_populate_cb post_populate, void *opaque); 2563 #endif 2564 2565 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 2566 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); 2567 #endif 2568 2569 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 2570 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 2571 struct kvm_pre_fault_memory *range); 2572 #endif 2573 2574 #endif 2575