1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/hashtable.h> 33 #include <linux/interval_tree.h> 34 #include <linux/rbtree.h> 35 #include <linux/xarray.h> 36 #include <asm/signal.h> 37 38 #include <linux/kvm.h> 39 #include <linux/kvm_para.h> 40 41 #include <linux/kvm_types.h> 42 43 #include <asm/kvm_host.h> 44 #include <linux/kvm_dirty_ring.h> 45 46 #ifndef KVM_MAX_VCPU_IDS 47 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 48 #endif 49 50 /* 51 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 52 * in kvm, other bits are visible for userspace which are defined in 53 * include/linux/kvm_h. 54 */ 55 #define KVM_MEMSLOT_INVALID (1UL << 16) 56 57 /* 58 * Bit 63 of the memslot generation number is an "update in-progress flag", 59 * e.g. is temporarily set for the duration of install_new_memslots(). 60 * This flag effectively creates a unique generation number that is used to 61 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 62 * i.e. may (or may not) have come from the previous memslots generation. 63 * 64 * This is necessary because the actual memslots update is not atomic with 65 * respect to the generation number update. Updating the generation number 66 * first would allow a vCPU to cache a spte from the old memslots using the 67 * new generation number, and updating the generation number after switching 68 * to the new memslots would allow cache hits using the old generation number 69 * to reference the defunct memslots. 70 * 71 * This mechanism is used to prevent getting hits in KVM's caches while a 72 * memslot update is in-progress, and to prevent cache hits *after* updating 73 * the actual generation number against accesses that were inserted into the 74 * cache *before* the memslots were updated. 75 */ 76 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 77 78 /* Two fragments for cross MMIO pages. */ 79 #define KVM_MAX_MMIO_FRAGMENTS 2 80 81 #ifndef KVM_ADDRESS_SPACE_NUM 82 #define KVM_ADDRESS_SPACE_NUM 1 83 #endif 84 85 /* 86 * For the normal pfn, the highest 12 bits should be zero, 87 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 88 * mask bit 63 to indicate the noslot pfn. 89 */ 90 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 91 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 92 #define KVM_PFN_NOSLOT (0x1ULL << 63) 93 94 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 95 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 96 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 97 98 /* 99 * error pfns indicate that the gfn is in slot but faild to 100 * translate it to pfn on host. 101 */ 102 static inline bool is_error_pfn(kvm_pfn_t pfn) 103 { 104 return !!(pfn & KVM_PFN_ERR_MASK); 105 } 106 107 /* 108 * error_noslot pfns indicate that the gfn can not be 109 * translated to pfn - it is not in slot or failed to 110 * translate it to pfn. 111 */ 112 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 113 { 114 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 115 } 116 117 /* noslot pfn indicates that the gfn is not in slot. */ 118 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 119 { 120 return pfn == KVM_PFN_NOSLOT; 121 } 122 123 /* 124 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 125 * provide own defines and kvm_is_error_hva 126 */ 127 #ifndef KVM_HVA_ERR_BAD 128 129 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 130 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 131 132 static inline bool kvm_is_error_hva(unsigned long addr) 133 { 134 return addr >= PAGE_OFFSET; 135 } 136 137 #endif 138 139 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 140 141 static inline bool is_error_page(struct page *page) 142 { 143 return IS_ERR(page); 144 } 145 146 #define KVM_REQUEST_MASK GENMASK(7,0) 147 #define KVM_REQUEST_NO_WAKEUP BIT(8) 148 #define KVM_REQUEST_WAIT BIT(9) 149 /* 150 * Architecture-independent vcpu->requests bit members 151 * Bits 4-7 are reserved for more arch-independent bits. 152 */ 153 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 154 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 155 #define KVM_REQ_UNBLOCK 2 156 #define KVM_REQ_UNHALT 3 157 #define KVM_REQ_VM_DEAD (4 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 158 #define KVM_REQUEST_ARCH_BASE 8 159 160 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 161 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 162 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 163 }) 164 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 165 166 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 167 unsigned long *vcpu_bitmap); 168 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 169 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 170 struct kvm_vcpu *except); 171 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 172 unsigned long *vcpu_bitmap); 173 174 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 175 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 176 177 extern struct mutex kvm_lock; 178 extern struct list_head vm_list; 179 180 struct kvm_io_range { 181 gpa_t addr; 182 int len; 183 struct kvm_io_device *dev; 184 }; 185 186 #define NR_IOBUS_DEVS 1000 187 188 struct kvm_io_bus { 189 int dev_count; 190 int ioeventfd_count; 191 struct kvm_io_range range[]; 192 }; 193 194 enum kvm_bus { 195 KVM_MMIO_BUS, 196 KVM_PIO_BUS, 197 KVM_VIRTIO_CCW_NOTIFY_BUS, 198 KVM_FAST_MMIO_BUS, 199 KVM_NR_BUSES 200 }; 201 202 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 203 int len, const void *val); 204 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 205 gpa_t addr, int len, const void *val, long cookie); 206 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 207 int len, void *val); 208 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 209 int len, struct kvm_io_device *dev); 210 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 211 struct kvm_io_device *dev); 212 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 213 gpa_t addr); 214 215 #ifdef CONFIG_KVM_ASYNC_PF 216 struct kvm_async_pf { 217 struct work_struct work; 218 struct list_head link; 219 struct list_head queue; 220 struct kvm_vcpu *vcpu; 221 struct mm_struct *mm; 222 gpa_t cr2_or_gpa; 223 unsigned long addr; 224 struct kvm_arch_async_pf arch; 225 bool wakeup_all; 226 bool notpresent_injected; 227 }; 228 229 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 230 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 231 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 232 unsigned long hva, struct kvm_arch_async_pf *arch); 233 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 234 #endif 235 236 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER 237 struct kvm_gfn_range { 238 struct kvm_memory_slot *slot; 239 gfn_t start; 240 gfn_t end; 241 pte_t pte; 242 bool may_block; 243 }; 244 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 245 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 246 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 247 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 248 #endif 249 250 enum { 251 OUTSIDE_GUEST_MODE, 252 IN_GUEST_MODE, 253 EXITING_GUEST_MODE, 254 READING_SHADOW_PAGE_TABLES, 255 }; 256 257 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 258 259 struct kvm_host_map { 260 /* 261 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 262 * a 'struct page' for it. When using mem= kernel parameter some memory 263 * can be used as guest memory but they are not managed by host 264 * kernel). 265 * If 'pfn' is not managed by the host kernel, this field is 266 * initialized to KVM_UNMAPPED_PAGE. 267 */ 268 struct page *page; 269 void *hva; 270 kvm_pfn_t pfn; 271 kvm_pfn_t gfn; 272 }; 273 274 /* 275 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 276 * directly to check for that. 277 */ 278 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 279 { 280 return !!map->hva; 281 } 282 283 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 284 { 285 return single_task_running() && !need_resched() && ktime_before(cur, stop); 286 } 287 288 /* 289 * Sometimes a large or cross-page mmio needs to be broken up into separate 290 * exits for userspace servicing. 291 */ 292 struct kvm_mmio_fragment { 293 gpa_t gpa; 294 void *data; 295 unsigned len; 296 }; 297 298 struct kvm_vcpu { 299 struct kvm *kvm; 300 #ifdef CONFIG_PREEMPT_NOTIFIERS 301 struct preempt_notifier preempt_notifier; 302 #endif 303 int cpu; 304 int vcpu_id; /* id given by userspace at creation */ 305 int vcpu_idx; /* index in kvm->vcpus array */ 306 int srcu_idx; 307 int mode; 308 u64 requests; 309 unsigned long guest_debug; 310 311 int pre_pcpu; 312 struct list_head blocked_vcpu_list; 313 314 struct mutex mutex; 315 struct kvm_run *run; 316 317 #ifndef __KVM_HAVE_ARCH_WQP 318 struct rcuwait wait; 319 #endif 320 struct pid __rcu *pid; 321 int sigset_active; 322 sigset_t sigset; 323 unsigned int halt_poll_ns; 324 bool valid_wakeup; 325 326 #ifdef CONFIG_HAS_IOMEM 327 int mmio_needed; 328 int mmio_read_completed; 329 int mmio_is_write; 330 int mmio_cur_fragment; 331 int mmio_nr_fragments; 332 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 333 #endif 334 335 #ifdef CONFIG_KVM_ASYNC_PF 336 struct { 337 u32 queued; 338 struct list_head queue; 339 struct list_head done; 340 spinlock_t lock; 341 } async_pf; 342 #endif 343 344 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 345 /* 346 * Cpu relax intercept or pause loop exit optimization 347 * in_spin_loop: set when a vcpu does a pause loop exit 348 * or cpu relax intercepted. 349 * dy_eligible: indicates whether vcpu is eligible for directed yield. 350 */ 351 struct { 352 bool in_spin_loop; 353 bool dy_eligible; 354 } spin_loop; 355 #endif 356 bool preempted; 357 bool ready; 358 struct kvm_vcpu_arch arch; 359 struct kvm_vcpu_stat stat; 360 char stats_id[KVM_STATS_NAME_SIZE]; 361 struct kvm_dirty_ring dirty_ring; 362 363 /* 364 * The most recently used memslot by this vCPU and the slots generation 365 * for which it is valid. 366 * No wraparound protection is needed since generations won't overflow in 367 * thousands of years, even assuming 1M memslot operations per second. 368 */ 369 struct kvm_memory_slot *last_used_slot; 370 u64 last_used_slot_gen; 371 }; 372 373 /* must be called with irqs disabled */ 374 static __always_inline void guest_enter_irqoff(void) 375 { 376 /* 377 * This is running in ioctl context so its safe to assume that it's the 378 * stime pending cputime to flush. 379 */ 380 instrumentation_begin(); 381 vtime_account_guest_enter(); 382 instrumentation_end(); 383 384 /* 385 * KVM does not hold any references to rcu protected data when it 386 * switches CPU into a guest mode. In fact switching to a guest mode 387 * is very similar to exiting to userspace from rcu point of view. In 388 * addition CPU may stay in a guest mode for quite a long time (up to 389 * one time slice). Lets treat guest mode as quiescent state, just like 390 * we do with user-mode execution. 391 */ 392 if (!context_tracking_guest_enter()) { 393 instrumentation_begin(); 394 rcu_virt_note_context_switch(smp_processor_id()); 395 instrumentation_end(); 396 } 397 } 398 399 static __always_inline void guest_exit_irqoff(void) 400 { 401 context_tracking_guest_exit(); 402 403 instrumentation_begin(); 404 /* Flush the guest cputime we spent on the guest */ 405 vtime_account_guest_exit(); 406 instrumentation_end(); 407 } 408 409 static inline void guest_exit(void) 410 { 411 unsigned long flags; 412 413 local_irq_save(flags); 414 guest_exit_irqoff(); 415 local_irq_restore(flags); 416 } 417 418 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 419 { 420 /* 421 * The memory barrier ensures a previous write to vcpu->requests cannot 422 * be reordered with the read of vcpu->mode. It pairs with the general 423 * memory barrier following the write of vcpu->mode in VCPU RUN. 424 */ 425 smp_mb__before_atomic(); 426 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 427 } 428 429 /* 430 * Some of the bitops functions do not support too long bitmaps. 431 * This number must be determined not to exceed such limits. 432 */ 433 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 434 435 /* 436 * Since at idle each memslot belongs to two memslot sets it has to contain 437 * two embedded nodes for each data structure that it forms a part of. 438 * 439 * Two memslot sets (one active and one inactive) are necessary so the VM 440 * continues to run on one memslot set while the other is being modified. 441 * 442 * These two memslot sets normally point to the same set of memslots. 443 * They can, however, be desynchronized when performing a memslot management 444 * operation by replacing the memslot to be modified by its copy. 445 * After the operation is complete, both memslot sets once again point to 446 * the same, common set of memslot data. 447 * 448 * The memslots themselves are independent of each other so they can be 449 * individually added or deleted. 450 */ 451 struct kvm_memory_slot { 452 struct hlist_node id_node[2]; 453 struct interval_tree_node hva_node[2]; 454 struct rb_node gfn_node[2]; 455 gfn_t base_gfn; 456 unsigned long npages; 457 unsigned long *dirty_bitmap; 458 struct kvm_arch_memory_slot arch; 459 unsigned long userspace_addr; 460 u32 flags; 461 short id; 462 u16 as_id; 463 }; 464 465 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 466 { 467 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 468 } 469 470 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 471 { 472 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 473 } 474 475 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 476 { 477 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 478 479 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 480 } 481 482 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 483 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 484 #endif 485 486 struct kvm_s390_adapter_int { 487 u64 ind_addr; 488 u64 summary_addr; 489 u64 ind_offset; 490 u32 summary_offset; 491 u32 adapter_id; 492 }; 493 494 struct kvm_hv_sint { 495 u32 vcpu; 496 u32 sint; 497 }; 498 499 struct kvm_kernel_irq_routing_entry { 500 u32 gsi; 501 u32 type; 502 int (*set)(struct kvm_kernel_irq_routing_entry *e, 503 struct kvm *kvm, int irq_source_id, int level, 504 bool line_status); 505 union { 506 struct { 507 unsigned irqchip; 508 unsigned pin; 509 } irqchip; 510 struct { 511 u32 address_lo; 512 u32 address_hi; 513 u32 data; 514 u32 flags; 515 u32 devid; 516 } msi; 517 struct kvm_s390_adapter_int adapter; 518 struct kvm_hv_sint hv_sint; 519 }; 520 struct hlist_node link; 521 }; 522 523 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 524 struct kvm_irq_routing_table { 525 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 526 u32 nr_rt_entries; 527 /* 528 * Array indexed by gsi. Each entry contains list of irq chips 529 * the gsi is connected to. 530 */ 531 struct hlist_head map[]; 532 }; 533 #endif 534 535 #ifndef KVM_PRIVATE_MEM_SLOTS 536 #define KVM_PRIVATE_MEM_SLOTS 0 537 #endif 538 539 #define KVM_MEM_SLOTS_NUM SHRT_MAX 540 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS) 541 542 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 543 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 544 { 545 return 0; 546 } 547 #endif 548 549 struct kvm_memslots { 550 u64 generation; 551 atomic_long_t last_used_slot; 552 struct rb_root_cached hva_tree; 553 struct rb_root gfn_tree; 554 /* 555 * The mapping table from slot id to memslot. 556 * 557 * 7-bit bucket count matches the size of the old id to index array for 558 * 512 slots, while giving good performance with this slot count. 559 * Higher bucket counts bring only small performance improvements but 560 * always result in higher memory usage (even for lower memslot counts). 561 */ 562 DECLARE_HASHTABLE(id_hash, 7); 563 int node_idx; 564 }; 565 566 struct kvm { 567 #ifdef KVM_HAVE_MMU_RWLOCK 568 rwlock_t mmu_lock; 569 #else 570 spinlock_t mmu_lock; 571 #endif /* KVM_HAVE_MMU_RWLOCK */ 572 573 struct mutex slots_lock; 574 575 /* 576 * Protects the arch-specific fields of struct kvm_memory_slots in 577 * use by the VM. To be used under the slots_lock (above) or in a 578 * kvm->srcu critical section where acquiring the slots_lock would 579 * lead to deadlock with the synchronize_srcu in 580 * install_new_memslots. 581 */ 582 struct mutex slots_arch_lock; 583 struct mm_struct *mm; /* userspace tied to this vm */ 584 unsigned long nr_memslot_pages; 585 /* The two memslot sets - active and inactive (per address space) */ 586 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2]; 587 /* The current active memslot set for each address space */ 588 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 589 struct xarray vcpu_array; 590 591 /* Used to wait for completion of MMU notifiers. */ 592 spinlock_t mn_invalidate_lock; 593 unsigned long mn_active_invalidate_count; 594 struct rcuwait mn_memslots_update_rcuwait; 595 596 /* 597 * created_vcpus is protected by kvm->lock, and is incremented 598 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 599 * incremented after storing the kvm_vcpu pointer in vcpus, 600 * and is accessed atomically. 601 */ 602 atomic_t online_vcpus; 603 int created_vcpus; 604 int last_boosted_vcpu; 605 struct list_head vm_list; 606 struct mutex lock; 607 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 608 #ifdef CONFIG_HAVE_KVM_EVENTFD 609 struct { 610 spinlock_t lock; 611 struct list_head items; 612 struct list_head resampler_list; 613 struct mutex resampler_lock; 614 } irqfds; 615 struct list_head ioeventfds; 616 #endif 617 struct kvm_vm_stat stat; 618 struct kvm_arch arch; 619 refcount_t users_count; 620 #ifdef CONFIG_KVM_MMIO 621 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 622 spinlock_t ring_lock; 623 struct list_head coalesced_zones; 624 #endif 625 626 struct mutex irq_lock; 627 #ifdef CONFIG_HAVE_KVM_IRQCHIP 628 /* 629 * Update side is protected by irq_lock. 630 */ 631 struct kvm_irq_routing_table __rcu *irq_routing; 632 #endif 633 #ifdef CONFIG_HAVE_KVM_IRQFD 634 struct hlist_head irq_ack_notifier_list; 635 #endif 636 637 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 638 struct mmu_notifier mmu_notifier; 639 unsigned long mmu_notifier_seq; 640 long mmu_notifier_count; 641 unsigned long mmu_notifier_range_start; 642 unsigned long mmu_notifier_range_end; 643 #endif 644 struct list_head devices; 645 u64 manual_dirty_log_protect; 646 struct dentry *debugfs_dentry; 647 struct kvm_stat_data **debugfs_stat_data; 648 struct srcu_struct srcu; 649 struct srcu_struct irq_srcu; 650 pid_t userspace_pid; 651 unsigned int max_halt_poll_ns; 652 u32 dirty_ring_size; 653 bool vm_bugged; 654 bool vm_dead; 655 656 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 657 struct notifier_block pm_notifier; 658 #endif 659 char stats_id[KVM_STATS_NAME_SIZE]; 660 }; 661 662 #define kvm_err(fmt, ...) \ 663 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 664 #define kvm_info(fmt, ...) \ 665 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 666 #define kvm_debug(fmt, ...) \ 667 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 668 #define kvm_debug_ratelimited(fmt, ...) \ 669 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 670 ## __VA_ARGS__) 671 #define kvm_pr_unimpl(fmt, ...) \ 672 pr_err_ratelimited("kvm [%i]: " fmt, \ 673 task_tgid_nr(current), ## __VA_ARGS__) 674 675 /* The guest did something we don't support. */ 676 #define vcpu_unimpl(vcpu, fmt, ...) \ 677 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 678 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 679 680 #define vcpu_debug(vcpu, fmt, ...) \ 681 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 682 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 683 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 684 ## __VA_ARGS__) 685 #define vcpu_err(vcpu, fmt, ...) \ 686 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 687 688 static inline void kvm_vm_dead(struct kvm *kvm) 689 { 690 kvm->vm_dead = true; 691 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 692 } 693 694 static inline void kvm_vm_bugged(struct kvm *kvm) 695 { 696 kvm->vm_bugged = true; 697 kvm_vm_dead(kvm); 698 } 699 700 701 #define KVM_BUG(cond, kvm, fmt...) \ 702 ({ \ 703 int __ret = (cond); \ 704 \ 705 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 706 kvm_vm_bugged(kvm); \ 707 unlikely(__ret); \ 708 }) 709 710 #define KVM_BUG_ON(cond, kvm) \ 711 ({ \ 712 int __ret = (cond); \ 713 \ 714 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 715 kvm_vm_bugged(kvm); \ 716 unlikely(__ret); \ 717 }) 718 719 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 720 { 721 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 722 } 723 724 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 725 { 726 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 727 lockdep_is_held(&kvm->slots_lock) || 728 !refcount_read(&kvm->users_count)); 729 } 730 731 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 732 { 733 int num_vcpus = atomic_read(&kvm->online_vcpus); 734 i = array_index_nospec(i, num_vcpus); 735 736 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 737 smp_rmb(); 738 return xa_load(&kvm->vcpu_array, i); 739 } 740 741 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 742 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 743 (atomic_read(&kvm->online_vcpus) - 1)) 744 745 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 746 { 747 struct kvm_vcpu *vcpu = NULL; 748 unsigned long i; 749 750 if (id < 0) 751 return NULL; 752 if (id < KVM_MAX_VCPUS) 753 vcpu = kvm_get_vcpu(kvm, id); 754 if (vcpu && vcpu->vcpu_id == id) 755 return vcpu; 756 kvm_for_each_vcpu(i, vcpu, kvm) 757 if (vcpu->vcpu_id == id) 758 return vcpu; 759 return NULL; 760 } 761 762 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 763 { 764 return vcpu->vcpu_idx; 765 } 766 767 void kvm_destroy_vcpus(struct kvm *kvm); 768 769 void vcpu_load(struct kvm_vcpu *vcpu); 770 void vcpu_put(struct kvm_vcpu *vcpu); 771 772 #ifdef __KVM_HAVE_IOAPIC 773 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 774 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 775 #else 776 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 777 { 778 } 779 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 780 { 781 } 782 #endif 783 784 #ifdef CONFIG_HAVE_KVM_IRQFD 785 int kvm_irqfd_init(void); 786 void kvm_irqfd_exit(void); 787 #else 788 static inline int kvm_irqfd_init(void) 789 { 790 return 0; 791 } 792 793 static inline void kvm_irqfd_exit(void) 794 { 795 } 796 #endif 797 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 798 struct module *module); 799 void kvm_exit(void); 800 801 void kvm_get_kvm(struct kvm *kvm); 802 bool kvm_get_kvm_safe(struct kvm *kvm); 803 void kvm_put_kvm(struct kvm *kvm); 804 bool file_is_kvm(struct file *file); 805 void kvm_put_kvm_no_destroy(struct kvm *kvm); 806 807 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 808 { 809 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 810 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 811 lockdep_is_held(&kvm->slots_lock) || 812 !refcount_read(&kvm->users_count)); 813 } 814 815 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 816 { 817 return __kvm_memslots(kvm, 0); 818 } 819 820 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 821 { 822 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 823 824 return __kvm_memslots(vcpu->kvm, as_id); 825 } 826 827 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 828 { 829 return RB_EMPTY_ROOT(&slots->gfn_tree); 830 } 831 832 #define kvm_for_each_memslot(memslot, bkt, slots) \ 833 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 834 if (WARN_ON_ONCE(!memslot->npages)) { \ 835 } else 836 837 static inline 838 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 839 { 840 struct kvm_memory_slot *slot; 841 int idx = slots->node_idx; 842 843 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 844 if (slot->id == id) 845 return slot; 846 } 847 848 return NULL; 849 } 850 851 /* Iterator used for walking memslots that overlap a gfn range. */ 852 struct kvm_memslot_iter { 853 struct kvm_memslots *slots; 854 struct rb_node *node; 855 struct kvm_memory_slot *slot; 856 }; 857 858 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 859 { 860 iter->node = rb_next(iter->node); 861 if (!iter->node) 862 return; 863 864 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 865 } 866 867 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 868 struct kvm_memslots *slots, 869 gfn_t start) 870 { 871 int idx = slots->node_idx; 872 struct rb_node *tmp; 873 struct kvm_memory_slot *slot; 874 875 iter->slots = slots; 876 877 /* 878 * Find the so called "upper bound" of a key - the first node that has 879 * its key strictly greater than the searched one (the start gfn in our case). 880 */ 881 iter->node = NULL; 882 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 883 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 884 if (start < slot->base_gfn) { 885 iter->node = tmp; 886 tmp = tmp->rb_left; 887 } else { 888 tmp = tmp->rb_right; 889 } 890 } 891 892 /* 893 * Find the slot with the lowest gfn that can possibly intersect with 894 * the range, so we'll ideally have slot start <= range start 895 */ 896 if (iter->node) { 897 /* 898 * A NULL previous node means that the very first slot 899 * already has a higher start gfn. 900 * In this case slot start > range start. 901 */ 902 tmp = rb_prev(iter->node); 903 if (tmp) 904 iter->node = tmp; 905 } else { 906 /* a NULL node below means no slots */ 907 iter->node = rb_last(&slots->gfn_tree); 908 } 909 910 if (iter->node) { 911 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 912 913 /* 914 * It is possible in the slot start < range start case that the 915 * found slot ends before or at range start (slot end <= range start) 916 * and so it does not overlap the requested range. 917 * 918 * In such non-overlapping case the next slot (if it exists) will 919 * already have slot start > range start, otherwise the logic above 920 * would have found it instead of the current slot. 921 */ 922 if (iter->slot->base_gfn + iter->slot->npages <= start) 923 kvm_memslot_iter_next(iter); 924 } 925 } 926 927 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 928 { 929 if (!iter->node) 930 return false; 931 932 /* 933 * If this slot starts beyond or at the end of the range so does 934 * every next one 935 */ 936 return iter->slot->base_gfn < end; 937 } 938 939 /* Iterate over each memslot at least partially intersecting [start, end) range */ 940 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 941 for (kvm_memslot_iter_start(iter, slots, start); \ 942 kvm_memslot_iter_is_valid(iter, end); \ 943 kvm_memslot_iter_next(iter)) 944 945 /* 946 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 947 * - create a new memory slot 948 * - delete an existing memory slot 949 * - modify an existing memory slot 950 * -- move it in the guest physical memory space 951 * -- just change its flags 952 * 953 * Since flags can be changed by some of these operations, the following 954 * differentiation is the best we can do for __kvm_set_memory_region(): 955 */ 956 enum kvm_mr_change { 957 KVM_MR_CREATE, 958 KVM_MR_DELETE, 959 KVM_MR_MOVE, 960 KVM_MR_FLAGS_ONLY, 961 }; 962 963 int kvm_set_memory_region(struct kvm *kvm, 964 const struct kvm_userspace_memory_region *mem); 965 int __kvm_set_memory_region(struct kvm *kvm, 966 const struct kvm_userspace_memory_region *mem); 967 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 968 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 969 int kvm_arch_prepare_memory_region(struct kvm *kvm, 970 const struct kvm_memory_slot *old, 971 struct kvm_memory_slot *new, 972 enum kvm_mr_change change); 973 void kvm_arch_commit_memory_region(struct kvm *kvm, 974 struct kvm_memory_slot *old, 975 const struct kvm_memory_slot *new, 976 enum kvm_mr_change change); 977 /* flush all memory translations */ 978 void kvm_arch_flush_shadow_all(struct kvm *kvm); 979 /* flush memory translations pointing to 'slot' */ 980 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 981 struct kvm_memory_slot *slot); 982 983 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 984 struct page **pages, int nr_pages); 985 986 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 987 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 988 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 989 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 990 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 991 bool *writable); 992 void kvm_release_page_clean(struct page *page); 993 void kvm_release_page_dirty(struct page *page); 994 void kvm_set_page_accessed(struct page *page); 995 996 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 997 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 998 bool *writable); 999 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); 1000 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn); 1001 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 1002 bool atomic, bool *async, bool write_fault, 1003 bool *writable, hva_t *hva); 1004 1005 void kvm_release_pfn_clean(kvm_pfn_t pfn); 1006 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 1007 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 1008 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 1009 1010 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); 1011 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1012 int len); 1013 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1014 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1015 void *data, unsigned long len); 1016 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1017 void *data, unsigned int offset, 1018 unsigned long len); 1019 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1020 int offset, int len); 1021 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1022 unsigned long len); 1023 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1024 void *data, unsigned long len); 1025 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1026 void *data, unsigned int offset, 1027 unsigned long len); 1028 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1029 gpa_t gpa, unsigned long len); 1030 1031 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1032 ({ \ 1033 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1034 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1035 int __ret = -EFAULT; \ 1036 \ 1037 if (!kvm_is_error_hva(__addr)) \ 1038 __ret = get_user(v, __uaddr); \ 1039 __ret; \ 1040 }) 1041 1042 #define kvm_get_guest(kvm, gpa, v) \ 1043 ({ \ 1044 gpa_t __gpa = gpa; \ 1045 struct kvm *__kvm = kvm; \ 1046 \ 1047 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1048 offset_in_page(__gpa), v); \ 1049 }) 1050 1051 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1052 ({ \ 1053 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1054 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1055 int __ret = -EFAULT; \ 1056 \ 1057 if (!kvm_is_error_hva(__addr)) \ 1058 __ret = put_user(v, __uaddr); \ 1059 if (!__ret) \ 1060 mark_page_dirty(kvm, gfn); \ 1061 __ret; \ 1062 }) 1063 1064 #define kvm_put_guest(kvm, gpa, v) \ 1065 ({ \ 1066 gpa_t __gpa = gpa; \ 1067 struct kvm *__kvm = kvm; \ 1068 \ 1069 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1070 offset_in_page(__gpa), v); \ 1071 }) 1072 1073 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1074 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1075 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1076 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1077 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1078 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1079 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1080 1081 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1082 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1083 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 1084 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1085 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 1086 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 1087 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 1088 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1089 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1090 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1091 int len); 1092 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1093 unsigned long len); 1094 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1095 unsigned long len); 1096 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1097 int offset, int len); 1098 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1099 unsigned long len); 1100 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1101 1102 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1103 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1104 1105 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1106 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1107 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1108 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1109 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1110 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1111 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1112 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 1113 1114 void kvm_flush_remote_tlbs(struct kvm *kvm); 1115 void kvm_reload_remote_mmus(struct kvm *kvm); 1116 1117 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1118 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1119 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1120 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1121 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1122 #endif 1123 1124 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 1125 unsigned long end); 1126 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 1127 unsigned long end); 1128 1129 long kvm_arch_dev_ioctl(struct file *filp, 1130 unsigned int ioctl, unsigned long arg); 1131 long kvm_arch_vcpu_ioctl(struct file *filp, 1132 unsigned int ioctl, unsigned long arg); 1133 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1134 1135 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1136 1137 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1138 struct kvm_memory_slot *slot, 1139 gfn_t gfn_offset, 1140 unsigned long mask); 1141 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1142 1143 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1144 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1145 const struct kvm_memory_slot *memslot); 1146 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1147 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1148 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1149 int *is_dirty, struct kvm_memory_slot **memslot); 1150 #endif 1151 1152 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1153 bool line_status); 1154 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1155 struct kvm_enable_cap *cap); 1156 long kvm_arch_vm_ioctl(struct file *filp, 1157 unsigned int ioctl, unsigned long arg); 1158 1159 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1160 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1161 1162 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1163 struct kvm_translation *tr); 1164 1165 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1166 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1167 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1168 struct kvm_sregs *sregs); 1169 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1170 struct kvm_sregs *sregs); 1171 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1172 struct kvm_mp_state *mp_state); 1173 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1174 struct kvm_mp_state *mp_state); 1175 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1176 struct kvm_guest_debug *dbg); 1177 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1178 1179 int kvm_arch_init(void *opaque); 1180 void kvm_arch_exit(void); 1181 1182 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 1183 1184 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1185 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1186 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1187 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1188 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1189 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1190 1191 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1192 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1193 #endif 1194 1195 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1196 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1197 #endif 1198 1199 int kvm_arch_hardware_enable(void); 1200 void kvm_arch_hardware_disable(void); 1201 int kvm_arch_hardware_setup(void *opaque); 1202 void kvm_arch_hardware_unsetup(void); 1203 int kvm_arch_check_processor_compat(void *opaque); 1204 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1205 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1206 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1207 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1208 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1209 int kvm_arch_post_init_vm(struct kvm *kvm); 1210 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1211 int kvm_arch_create_vm_debugfs(struct kvm *kvm); 1212 1213 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1214 /* 1215 * All architectures that want to use vzalloc currently also 1216 * need their own kvm_arch_alloc_vm implementation. 1217 */ 1218 static inline struct kvm *kvm_arch_alloc_vm(void) 1219 { 1220 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 1221 } 1222 #endif 1223 1224 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1225 { 1226 kvfree(kvm); 1227 } 1228 1229 #ifndef __KVM_HAVE_ARCH_VM_FREE 1230 static inline void kvm_arch_free_vm(struct kvm *kvm) 1231 { 1232 __kvm_arch_free_vm(kvm); 1233 } 1234 #endif 1235 1236 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1237 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1238 { 1239 return -ENOTSUPP; 1240 } 1241 #endif 1242 1243 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1244 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1245 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1246 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1247 #else 1248 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1249 { 1250 } 1251 1252 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1253 { 1254 } 1255 1256 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1257 { 1258 return false; 1259 } 1260 #endif 1261 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1262 void kvm_arch_start_assignment(struct kvm *kvm); 1263 void kvm_arch_end_assignment(struct kvm *kvm); 1264 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1265 #else 1266 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1267 { 1268 } 1269 1270 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1271 { 1272 } 1273 1274 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1275 { 1276 return false; 1277 } 1278 #endif 1279 1280 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1281 { 1282 #ifdef __KVM_HAVE_ARCH_WQP 1283 return vcpu->arch.waitp; 1284 #else 1285 return &vcpu->wait; 1286 #endif 1287 } 1288 1289 /* 1290 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1291 * true if the vCPU was blocking and was awakened, false otherwise. 1292 */ 1293 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1294 { 1295 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1296 } 1297 1298 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1299 { 1300 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1301 } 1302 1303 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1304 /* 1305 * returns true if the virtual interrupt controller is initialized and 1306 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1307 * controller is dynamically instantiated and this is not always true. 1308 */ 1309 bool kvm_arch_intc_initialized(struct kvm *kvm); 1310 #else 1311 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1312 { 1313 return true; 1314 } 1315 #endif 1316 1317 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1318 void kvm_arch_destroy_vm(struct kvm *kvm); 1319 void kvm_arch_sync_events(struct kvm *kvm); 1320 1321 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1322 1323 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 1324 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 1325 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn); 1326 1327 struct kvm_irq_ack_notifier { 1328 struct hlist_node link; 1329 unsigned gsi; 1330 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1331 }; 1332 1333 int kvm_irq_map_gsi(struct kvm *kvm, 1334 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1335 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1336 1337 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1338 bool line_status); 1339 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1340 int irq_source_id, int level, bool line_status); 1341 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1342 struct kvm *kvm, int irq_source_id, 1343 int level, bool line_status); 1344 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1345 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1346 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1347 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1348 struct kvm_irq_ack_notifier *kian); 1349 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1350 struct kvm_irq_ack_notifier *kian); 1351 int kvm_request_irq_source_id(struct kvm *kvm); 1352 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1353 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1354 1355 /* 1356 * Returns a pointer to the memslot if it contains gfn. 1357 * Otherwise returns NULL. 1358 */ 1359 static inline struct kvm_memory_slot * 1360 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1361 { 1362 if (!slot) 1363 return NULL; 1364 1365 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1366 return slot; 1367 else 1368 return NULL; 1369 } 1370 1371 /* 1372 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1373 * 1374 * With "approx" set returns the memslot also when the address falls 1375 * in a hole. In that case one of the memslots bordering the hole is 1376 * returned. 1377 */ 1378 static inline struct kvm_memory_slot * 1379 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1380 { 1381 struct kvm_memory_slot *slot; 1382 struct rb_node *node; 1383 int idx = slots->node_idx; 1384 1385 slot = NULL; 1386 for (node = slots->gfn_tree.rb_node; node; ) { 1387 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1388 if (gfn >= slot->base_gfn) { 1389 if (gfn < slot->base_gfn + slot->npages) 1390 return slot; 1391 node = node->rb_right; 1392 } else 1393 node = node->rb_left; 1394 } 1395 1396 return approx ? slot : NULL; 1397 } 1398 1399 static inline struct kvm_memory_slot * 1400 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1401 { 1402 struct kvm_memory_slot *slot; 1403 1404 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1405 slot = try_get_memslot(slot, gfn); 1406 if (slot) 1407 return slot; 1408 1409 slot = search_memslots(slots, gfn, approx); 1410 if (slot) { 1411 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1412 return slot; 1413 } 1414 1415 return NULL; 1416 } 1417 1418 /* 1419 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1420 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1421 * because that would bloat other code too much. 1422 */ 1423 static inline struct kvm_memory_slot * 1424 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1425 { 1426 return ____gfn_to_memslot(slots, gfn, false); 1427 } 1428 1429 static inline unsigned long 1430 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1431 { 1432 /* 1433 * The index was checked originally in search_memslots. To avoid 1434 * that a malicious guest builds a Spectre gadget out of e.g. page 1435 * table walks, do not let the processor speculate loads outside 1436 * the guest's registered memslots. 1437 */ 1438 unsigned long offset = gfn - slot->base_gfn; 1439 offset = array_index_nospec(offset, slot->npages); 1440 return slot->userspace_addr + offset * PAGE_SIZE; 1441 } 1442 1443 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1444 { 1445 return gfn_to_memslot(kvm, gfn)->id; 1446 } 1447 1448 static inline gfn_t 1449 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1450 { 1451 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1452 1453 return slot->base_gfn + gfn_offset; 1454 } 1455 1456 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1457 { 1458 return (gpa_t)gfn << PAGE_SHIFT; 1459 } 1460 1461 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1462 { 1463 return (gfn_t)(gpa >> PAGE_SHIFT); 1464 } 1465 1466 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1467 { 1468 return (hpa_t)pfn << PAGE_SHIFT; 1469 } 1470 1471 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1472 gpa_t gpa) 1473 { 1474 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1475 } 1476 1477 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1478 { 1479 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1480 1481 return kvm_is_error_hva(hva); 1482 } 1483 1484 enum kvm_stat_kind { 1485 KVM_STAT_VM, 1486 KVM_STAT_VCPU, 1487 }; 1488 1489 struct kvm_stat_data { 1490 struct kvm *kvm; 1491 const struct _kvm_stats_desc *desc; 1492 enum kvm_stat_kind kind; 1493 }; 1494 1495 struct _kvm_stats_desc { 1496 struct kvm_stats_desc desc; 1497 char name[KVM_STATS_NAME_SIZE]; 1498 }; 1499 1500 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1501 .flags = type | unit | base | \ 1502 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1503 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1504 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1505 .exponent = exp, \ 1506 .size = sz, \ 1507 .bucket_size = bsz 1508 1509 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1510 { \ 1511 { \ 1512 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1513 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1514 }, \ 1515 .name = #stat, \ 1516 } 1517 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1518 { \ 1519 { \ 1520 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1521 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1522 }, \ 1523 .name = #stat, \ 1524 } 1525 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1526 { \ 1527 { \ 1528 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1529 .offset = offsetof(struct kvm_vm_stat, stat) \ 1530 }, \ 1531 .name = #stat, \ 1532 } 1533 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1534 { \ 1535 { \ 1536 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1537 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1538 }, \ 1539 .name = #stat, \ 1540 } 1541 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1542 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1543 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1544 1545 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1546 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1547 unit, base, exponent, 1, 0) 1548 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1549 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1550 unit, base, exponent, 1, 0) 1551 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1552 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1553 unit, base, exponent, 1, 0) 1554 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1555 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1556 unit, base, exponent, sz, bsz) 1557 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1558 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1559 unit, base, exponent, sz, 0) 1560 1561 /* Cumulative counter, read/write */ 1562 #define STATS_DESC_COUNTER(SCOPE, name) \ 1563 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1564 KVM_STATS_BASE_POW10, 0) 1565 /* Instantaneous counter, read only */ 1566 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1567 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1568 KVM_STATS_BASE_POW10, 0) 1569 /* Peak counter, read/write */ 1570 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1571 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1572 KVM_STATS_BASE_POW10, 0) 1573 1574 /* Cumulative time in nanosecond */ 1575 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1576 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1577 KVM_STATS_BASE_POW10, -9) 1578 /* Linear histogram for time in nanosecond */ 1579 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1580 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1581 KVM_STATS_BASE_POW10, -9, sz, bsz) 1582 /* Logarithmic histogram for time in nanosecond */ 1583 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1584 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1585 KVM_STATS_BASE_POW10, -9, sz) 1586 1587 #define KVM_GENERIC_VM_STATS() \ 1588 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1589 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1590 1591 #define KVM_GENERIC_VCPU_STATS() \ 1592 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1593 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1594 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1595 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1596 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1597 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1598 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1599 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1600 HALT_POLL_HIST_COUNT), \ 1601 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1602 HALT_POLL_HIST_COUNT), \ 1603 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1604 HALT_POLL_HIST_COUNT), \ 1605 STATS_DESC_ICOUNTER(VCPU_GENERIC, blocking) 1606 1607 extern struct dentry *kvm_debugfs_dir; 1608 1609 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1610 const struct _kvm_stats_desc *desc, 1611 void *stats, size_t size_stats, 1612 char __user *user_buffer, size_t size, loff_t *offset); 1613 1614 /** 1615 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1616 * statistics data. 1617 * 1618 * @data: start address of the stats data 1619 * @size: the number of bucket of the stats data 1620 * @value: the new value used to update the linear histogram's bucket 1621 * @bucket_size: the size (width) of a bucket 1622 */ 1623 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1624 u64 value, size_t bucket_size) 1625 { 1626 size_t index = div64_u64(value, bucket_size); 1627 1628 index = min(index, size - 1); 1629 ++data[index]; 1630 } 1631 1632 /** 1633 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1634 * statistics data. 1635 * 1636 * @data: start address of the stats data 1637 * @size: the number of bucket of the stats data 1638 * @value: the new value used to update the logarithmic histogram's bucket 1639 */ 1640 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 1641 { 1642 size_t index = fls64(value); 1643 1644 index = min(index, size - 1); 1645 ++data[index]; 1646 } 1647 1648 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 1649 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 1650 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 1651 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 1652 1653 1654 extern const struct kvm_stats_header kvm_vm_stats_header; 1655 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 1656 extern const struct kvm_stats_header kvm_vcpu_stats_header; 1657 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 1658 1659 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1660 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1661 { 1662 if (unlikely(kvm->mmu_notifier_count)) 1663 return 1; 1664 /* 1665 * Ensure the read of mmu_notifier_count happens before the read 1666 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1667 * mmu_notifier_invalidate_range_end to make sure that the caller 1668 * either sees the old (non-zero) value of mmu_notifier_count or 1669 * the new (incremented) value of mmu_notifier_seq. 1670 * PowerPC Book3s HV KVM calls this under a per-page lock 1671 * rather than under kvm->mmu_lock, for scalability, so 1672 * can't rely on kvm->mmu_lock to keep things ordered. 1673 */ 1674 smp_rmb(); 1675 if (kvm->mmu_notifier_seq != mmu_seq) 1676 return 1; 1677 return 0; 1678 } 1679 1680 static inline int mmu_notifier_retry_hva(struct kvm *kvm, 1681 unsigned long mmu_seq, 1682 unsigned long hva) 1683 { 1684 lockdep_assert_held(&kvm->mmu_lock); 1685 /* 1686 * If mmu_notifier_count is non-zero, then the range maintained by 1687 * kvm_mmu_notifier_invalidate_range_start contains all addresses that 1688 * might be being invalidated. Note that it may include some false 1689 * positives, due to shortcuts when handing concurrent invalidations. 1690 */ 1691 if (unlikely(kvm->mmu_notifier_count) && 1692 hva >= kvm->mmu_notifier_range_start && 1693 hva < kvm->mmu_notifier_range_end) 1694 return 1; 1695 if (kvm->mmu_notifier_seq != mmu_seq) 1696 return 1; 1697 return 0; 1698 } 1699 #endif 1700 1701 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1702 1703 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1704 1705 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1706 int kvm_set_irq_routing(struct kvm *kvm, 1707 const struct kvm_irq_routing_entry *entries, 1708 unsigned nr, 1709 unsigned flags); 1710 int kvm_set_routing_entry(struct kvm *kvm, 1711 struct kvm_kernel_irq_routing_entry *e, 1712 const struct kvm_irq_routing_entry *ue); 1713 void kvm_free_irq_routing(struct kvm *kvm); 1714 1715 #else 1716 1717 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1718 1719 #endif 1720 1721 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1722 1723 #ifdef CONFIG_HAVE_KVM_EVENTFD 1724 1725 void kvm_eventfd_init(struct kvm *kvm); 1726 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1727 1728 #ifdef CONFIG_HAVE_KVM_IRQFD 1729 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1730 void kvm_irqfd_release(struct kvm *kvm); 1731 void kvm_irq_routing_update(struct kvm *); 1732 #else 1733 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1734 { 1735 return -EINVAL; 1736 } 1737 1738 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1739 #endif 1740 1741 #else 1742 1743 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1744 1745 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1746 { 1747 return -EINVAL; 1748 } 1749 1750 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1751 1752 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1753 static inline void kvm_irq_routing_update(struct kvm *kvm) 1754 { 1755 } 1756 #endif 1757 1758 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1759 { 1760 return -ENOSYS; 1761 } 1762 1763 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1764 1765 void kvm_arch_irq_routing_update(struct kvm *kvm); 1766 1767 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1768 { 1769 /* 1770 * Ensure the rest of the request is published to kvm_check_request's 1771 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1772 */ 1773 smp_wmb(); 1774 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1775 } 1776 1777 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1778 { 1779 return READ_ONCE(vcpu->requests); 1780 } 1781 1782 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1783 { 1784 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1785 } 1786 1787 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1788 { 1789 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1790 } 1791 1792 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1793 { 1794 if (kvm_test_request(req, vcpu)) { 1795 kvm_clear_request(req, vcpu); 1796 1797 /* 1798 * Ensure the rest of the request is visible to kvm_check_request's 1799 * caller. Paired with the smp_wmb in kvm_make_request. 1800 */ 1801 smp_mb__after_atomic(); 1802 return true; 1803 } else { 1804 return false; 1805 } 1806 } 1807 1808 extern bool kvm_rebooting; 1809 1810 extern unsigned int halt_poll_ns; 1811 extern unsigned int halt_poll_ns_grow; 1812 extern unsigned int halt_poll_ns_grow_start; 1813 extern unsigned int halt_poll_ns_shrink; 1814 1815 struct kvm_device { 1816 const struct kvm_device_ops *ops; 1817 struct kvm *kvm; 1818 void *private; 1819 struct list_head vm_node; 1820 }; 1821 1822 /* create, destroy, and name are mandatory */ 1823 struct kvm_device_ops { 1824 const char *name; 1825 1826 /* 1827 * create is called holding kvm->lock and any operations not suitable 1828 * to do while holding the lock should be deferred to init (see 1829 * below). 1830 */ 1831 int (*create)(struct kvm_device *dev, u32 type); 1832 1833 /* 1834 * init is called after create if create is successful and is called 1835 * outside of holding kvm->lock. 1836 */ 1837 void (*init)(struct kvm_device *dev); 1838 1839 /* 1840 * Destroy is responsible for freeing dev. 1841 * 1842 * Destroy may be called before or after destructors are called 1843 * on emulated I/O regions, depending on whether a reference is 1844 * held by a vcpu or other kvm component that gets destroyed 1845 * after the emulated I/O. 1846 */ 1847 void (*destroy)(struct kvm_device *dev); 1848 1849 /* 1850 * Release is an alternative method to free the device. It is 1851 * called when the device file descriptor is closed. Once 1852 * release is called, the destroy method will not be called 1853 * anymore as the device is removed from the device list of 1854 * the VM. kvm->lock is held. 1855 */ 1856 void (*release)(struct kvm_device *dev); 1857 1858 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1859 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1860 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1861 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1862 unsigned long arg); 1863 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1864 }; 1865 1866 void kvm_device_get(struct kvm_device *dev); 1867 void kvm_device_put(struct kvm_device *dev); 1868 struct kvm_device *kvm_device_from_filp(struct file *filp); 1869 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 1870 void kvm_unregister_device_ops(u32 type); 1871 1872 extern struct kvm_device_ops kvm_mpic_ops; 1873 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1874 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1875 1876 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1877 1878 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1879 { 1880 vcpu->spin_loop.in_spin_loop = val; 1881 } 1882 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1883 { 1884 vcpu->spin_loop.dy_eligible = val; 1885 } 1886 1887 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1888 1889 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1890 { 1891 } 1892 1893 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1894 { 1895 } 1896 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1897 1898 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 1899 { 1900 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 1901 !(memslot->flags & KVM_MEMSLOT_INVALID)); 1902 } 1903 1904 struct kvm_vcpu *kvm_get_running_vcpu(void); 1905 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 1906 1907 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1908 bool kvm_arch_has_irq_bypass(void); 1909 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1910 struct irq_bypass_producer *); 1911 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1912 struct irq_bypass_producer *); 1913 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1914 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1915 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1916 uint32_t guest_irq, bool set); 1917 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 1918 struct kvm_kernel_irq_routing_entry *); 1919 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1920 1921 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1922 /* If we wakeup during the poll time, was it a sucessful poll? */ 1923 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1924 { 1925 return vcpu->valid_wakeup; 1926 } 1927 1928 #else 1929 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1930 { 1931 return true; 1932 } 1933 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1934 1935 #ifdef CONFIG_HAVE_KVM_NO_POLL 1936 /* Callback that tells if we must not poll */ 1937 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1938 #else 1939 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1940 { 1941 return false; 1942 } 1943 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 1944 1945 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1946 long kvm_arch_vcpu_async_ioctl(struct file *filp, 1947 unsigned int ioctl, unsigned long arg); 1948 #else 1949 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1950 unsigned int ioctl, 1951 unsigned long arg) 1952 { 1953 return -ENOIOCTLCMD; 1954 } 1955 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1956 1957 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1958 unsigned long start, unsigned long end); 1959 1960 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1961 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1962 #else 1963 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1964 { 1965 return 0; 1966 } 1967 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1968 1969 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 1970 1971 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 1972 uintptr_t data, const char *name, 1973 struct task_struct **thread_ptr); 1974 1975 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 1976 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 1977 { 1978 vcpu->run->exit_reason = KVM_EXIT_INTR; 1979 vcpu->stat.signal_exits++; 1980 } 1981 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 1982 1983 /* 1984 * This defines how many reserved entries we want to keep before we 1985 * kick the vcpu to the userspace to avoid dirty ring full. This 1986 * value can be tuned to higher if e.g. PML is enabled on the host. 1987 */ 1988 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 1989 1990 /* Max number of entries allowed for each kvm dirty ring */ 1991 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 1992 1993 #endif 1994