1 #ifndef __KVM_HOST_H 2 #define __KVM_HOST_H 3 4 /* 5 * This work is licensed under the terms of the GNU GPL, version 2. See 6 * the COPYING file in the top-level directory. 7 */ 8 9 #include <linux/types.h> 10 #include <linux/hardirq.h> 11 #include <linux/list.h> 12 #include <linux/mutex.h> 13 #include <linux/spinlock.h> 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/bug.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_notifier.h> 19 #include <linux/preempt.h> 20 #include <linux/msi.h> 21 #include <linux/slab.h> 22 #include <linux/vmalloc.h> 23 #include <linux/rcupdate.h> 24 #include <linux/ratelimit.h> 25 #include <linux/err.h> 26 #include <linux/irqflags.h> 27 #include <linux/context_tracking.h> 28 #include <linux/irqbypass.h> 29 #include <linux/swait.h> 30 #include <linux/refcount.h> 31 #include <asm/signal.h> 32 33 #include <linux/kvm.h> 34 #include <linux/kvm_para.h> 35 36 #include <linux/kvm_types.h> 37 38 #include <asm/kvm_host.h> 39 40 #ifndef KVM_MAX_VCPU_ID 41 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 42 #endif 43 44 /* 45 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 46 * in kvm, other bits are visible for userspace which are defined in 47 * include/linux/kvm_h. 48 */ 49 #define KVM_MEMSLOT_INVALID (1UL << 16) 50 51 /* Two fragments for cross MMIO pages. */ 52 #define KVM_MAX_MMIO_FRAGMENTS 2 53 54 #ifndef KVM_ADDRESS_SPACE_NUM 55 #define KVM_ADDRESS_SPACE_NUM 1 56 #endif 57 58 /* 59 * For the normal pfn, the highest 12 bits should be zero, 60 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 61 * mask bit 63 to indicate the noslot pfn. 62 */ 63 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 64 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 65 #define KVM_PFN_NOSLOT (0x1ULL << 63) 66 67 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 68 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 69 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 70 71 /* 72 * error pfns indicate that the gfn is in slot but faild to 73 * translate it to pfn on host. 74 */ 75 static inline bool is_error_pfn(kvm_pfn_t pfn) 76 { 77 return !!(pfn & KVM_PFN_ERR_MASK); 78 } 79 80 /* 81 * error_noslot pfns indicate that the gfn can not be 82 * translated to pfn - it is not in slot or failed to 83 * translate it to pfn. 84 */ 85 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 86 { 87 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 88 } 89 90 /* noslot pfn indicates that the gfn is not in slot. */ 91 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 92 { 93 return pfn == KVM_PFN_NOSLOT; 94 } 95 96 /* 97 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 98 * provide own defines and kvm_is_error_hva 99 */ 100 #ifndef KVM_HVA_ERR_BAD 101 102 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 103 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 104 105 static inline bool kvm_is_error_hva(unsigned long addr) 106 { 107 return addr >= PAGE_OFFSET; 108 } 109 110 #endif 111 112 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 113 114 static inline bool is_error_page(struct page *page) 115 { 116 return IS_ERR(page); 117 } 118 119 #define KVM_REQUEST_MASK GENMASK(7,0) 120 #define KVM_REQUEST_NO_WAKEUP BIT(8) 121 #define KVM_REQUEST_WAIT BIT(9) 122 /* 123 * Architecture-independent vcpu->requests bit members 124 * Bits 4-7 are reserved for more arch-independent bits. 125 */ 126 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 127 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 128 #define KVM_REQ_PENDING_TIMER 2 129 #define KVM_REQ_UNHALT 3 130 #define KVM_REQUEST_ARCH_BASE 8 131 132 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 133 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 134 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 135 }) 136 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 137 138 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 139 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 140 141 extern struct kmem_cache *kvm_vcpu_cache; 142 143 extern spinlock_t kvm_lock; 144 extern struct list_head vm_list; 145 146 struct kvm_io_range { 147 gpa_t addr; 148 int len; 149 struct kvm_io_device *dev; 150 }; 151 152 #define NR_IOBUS_DEVS 1000 153 154 struct kvm_io_bus { 155 int dev_count; 156 int ioeventfd_count; 157 struct kvm_io_range range[]; 158 }; 159 160 enum kvm_bus { 161 KVM_MMIO_BUS, 162 KVM_PIO_BUS, 163 KVM_VIRTIO_CCW_NOTIFY_BUS, 164 KVM_FAST_MMIO_BUS, 165 KVM_NR_BUSES 166 }; 167 168 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 169 int len, const void *val); 170 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 171 gpa_t addr, int len, const void *val, long cookie); 172 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 173 int len, void *val); 174 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 175 int len, struct kvm_io_device *dev); 176 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 177 struct kvm_io_device *dev); 178 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 179 gpa_t addr); 180 181 #ifdef CONFIG_KVM_ASYNC_PF 182 struct kvm_async_pf { 183 struct work_struct work; 184 struct list_head link; 185 struct list_head queue; 186 struct kvm_vcpu *vcpu; 187 struct mm_struct *mm; 188 gva_t gva; 189 unsigned long addr; 190 struct kvm_arch_async_pf arch; 191 bool wakeup_all; 192 }; 193 194 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 195 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 196 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 197 struct kvm_arch_async_pf *arch); 198 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 199 #endif 200 201 enum { 202 OUTSIDE_GUEST_MODE, 203 IN_GUEST_MODE, 204 EXITING_GUEST_MODE, 205 READING_SHADOW_PAGE_TABLES, 206 }; 207 208 /* 209 * Sometimes a large or cross-page mmio needs to be broken up into separate 210 * exits for userspace servicing. 211 */ 212 struct kvm_mmio_fragment { 213 gpa_t gpa; 214 void *data; 215 unsigned len; 216 }; 217 218 struct kvm_vcpu { 219 struct kvm *kvm; 220 #ifdef CONFIG_PREEMPT_NOTIFIERS 221 struct preempt_notifier preempt_notifier; 222 #endif 223 int cpu; 224 int vcpu_id; 225 int srcu_idx; 226 int mode; 227 u64 requests; 228 unsigned long guest_debug; 229 230 int pre_pcpu; 231 struct list_head blocked_vcpu_list; 232 233 struct mutex mutex; 234 struct kvm_run *run; 235 236 int guest_xcr0_loaded; 237 struct swait_queue_head wq; 238 struct pid __rcu *pid; 239 int sigset_active; 240 sigset_t sigset; 241 struct kvm_vcpu_stat stat; 242 unsigned int halt_poll_ns; 243 bool valid_wakeup; 244 245 #ifdef CONFIG_HAS_IOMEM 246 int mmio_needed; 247 int mmio_read_completed; 248 int mmio_is_write; 249 int mmio_cur_fragment; 250 int mmio_nr_fragments; 251 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 252 #endif 253 254 #ifdef CONFIG_KVM_ASYNC_PF 255 struct { 256 u32 queued; 257 struct list_head queue; 258 struct list_head done; 259 spinlock_t lock; 260 } async_pf; 261 #endif 262 263 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 264 /* 265 * Cpu relax intercept or pause loop exit optimization 266 * in_spin_loop: set when a vcpu does a pause loop exit 267 * or cpu relax intercepted. 268 * dy_eligible: indicates whether vcpu is eligible for directed yield. 269 */ 270 struct { 271 bool in_spin_loop; 272 bool dy_eligible; 273 } spin_loop; 274 #endif 275 bool preempted; 276 struct kvm_vcpu_arch arch; 277 struct dentry *debugfs_dentry; 278 }; 279 280 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 281 { 282 /* 283 * The memory barrier ensures a previous write to vcpu->requests cannot 284 * be reordered with the read of vcpu->mode. It pairs with the general 285 * memory barrier following the write of vcpu->mode in VCPU RUN. 286 */ 287 smp_mb__before_atomic(); 288 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 289 } 290 291 /* 292 * Some of the bitops functions do not support too long bitmaps. 293 * This number must be determined not to exceed such limits. 294 */ 295 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 296 297 struct kvm_memory_slot { 298 gfn_t base_gfn; 299 unsigned long npages; 300 unsigned long *dirty_bitmap; 301 struct kvm_arch_memory_slot arch; 302 unsigned long userspace_addr; 303 u32 flags; 304 short id; 305 }; 306 307 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 308 { 309 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 310 } 311 312 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 313 { 314 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 315 316 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 317 } 318 319 struct kvm_s390_adapter_int { 320 u64 ind_addr; 321 u64 summary_addr; 322 u64 ind_offset; 323 u32 summary_offset; 324 u32 adapter_id; 325 }; 326 327 struct kvm_hv_sint { 328 u32 vcpu; 329 u32 sint; 330 }; 331 332 struct kvm_kernel_irq_routing_entry { 333 u32 gsi; 334 u32 type; 335 int (*set)(struct kvm_kernel_irq_routing_entry *e, 336 struct kvm *kvm, int irq_source_id, int level, 337 bool line_status); 338 union { 339 struct { 340 unsigned irqchip; 341 unsigned pin; 342 } irqchip; 343 struct { 344 u32 address_lo; 345 u32 address_hi; 346 u32 data; 347 u32 flags; 348 u32 devid; 349 } msi; 350 struct kvm_s390_adapter_int adapter; 351 struct kvm_hv_sint hv_sint; 352 }; 353 struct hlist_node link; 354 }; 355 356 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 357 struct kvm_irq_routing_table { 358 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 359 u32 nr_rt_entries; 360 /* 361 * Array indexed by gsi. Each entry contains list of irq chips 362 * the gsi is connected to. 363 */ 364 struct hlist_head map[0]; 365 }; 366 #endif 367 368 #ifndef KVM_PRIVATE_MEM_SLOTS 369 #define KVM_PRIVATE_MEM_SLOTS 0 370 #endif 371 372 #ifndef KVM_MEM_SLOTS_NUM 373 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 374 #endif 375 376 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 377 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 378 { 379 return 0; 380 } 381 #endif 382 383 /* 384 * Note: 385 * memslots are not sorted by id anymore, please use id_to_memslot() 386 * to get the memslot by its id. 387 */ 388 struct kvm_memslots { 389 u64 generation; 390 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 391 /* The mapping table from slot id to the index in memslots[]. */ 392 short id_to_index[KVM_MEM_SLOTS_NUM]; 393 atomic_t lru_slot; 394 int used_slots; 395 }; 396 397 struct kvm { 398 spinlock_t mmu_lock; 399 struct mutex slots_lock; 400 struct mm_struct *mm; /* userspace tied to this vm */ 401 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 402 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 403 404 /* 405 * created_vcpus is protected by kvm->lock, and is incremented 406 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 407 * incremented after storing the kvm_vcpu pointer in vcpus, 408 * and is accessed atomically. 409 */ 410 atomic_t online_vcpus; 411 int created_vcpus; 412 int last_boosted_vcpu; 413 struct list_head vm_list; 414 struct mutex lock; 415 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 416 #ifdef CONFIG_HAVE_KVM_EVENTFD 417 struct { 418 spinlock_t lock; 419 struct list_head items; 420 struct list_head resampler_list; 421 struct mutex resampler_lock; 422 } irqfds; 423 struct list_head ioeventfds; 424 #endif 425 struct kvm_vm_stat stat; 426 struct kvm_arch arch; 427 refcount_t users_count; 428 #ifdef CONFIG_KVM_MMIO 429 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 430 spinlock_t ring_lock; 431 struct list_head coalesced_zones; 432 #endif 433 434 struct mutex irq_lock; 435 #ifdef CONFIG_HAVE_KVM_IRQCHIP 436 /* 437 * Update side is protected by irq_lock. 438 */ 439 struct kvm_irq_routing_table __rcu *irq_routing; 440 #endif 441 #ifdef CONFIG_HAVE_KVM_IRQFD 442 struct hlist_head irq_ack_notifier_list; 443 #endif 444 445 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 446 struct mmu_notifier mmu_notifier; 447 unsigned long mmu_notifier_seq; 448 long mmu_notifier_count; 449 #endif 450 long tlbs_dirty; 451 struct list_head devices; 452 struct dentry *debugfs_dentry; 453 struct kvm_stat_data **debugfs_stat_data; 454 struct srcu_struct srcu; 455 struct srcu_struct irq_srcu; 456 pid_t userspace_pid; 457 }; 458 459 #define kvm_err(fmt, ...) \ 460 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 461 #define kvm_info(fmt, ...) \ 462 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 463 #define kvm_debug(fmt, ...) \ 464 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 465 #define kvm_debug_ratelimited(fmt, ...) \ 466 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 467 ## __VA_ARGS__) 468 #define kvm_pr_unimpl(fmt, ...) \ 469 pr_err_ratelimited("kvm [%i]: " fmt, \ 470 task_tgid_nr(current), ## __VA_ARGS__) 471 472 /* The guest did something we don't support. */ 473 #define vcpu_unimpl(vcpu, fmt, ...) \ 474 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 475 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 476 477 #define vcpu_debug(vcpu, fmt, ...) \ 478 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 479 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 480 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 481 ## __VA_ARGS__) 482 #define vcpu_err(vcpu, fmt, ...) \ 483 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 484 485 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 486 { 487 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 488 lockdep_is_held(&kvm->slots_lock) || 489 !refcount_read(&kvm->users_count)); 490 } 491 492 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 493 { 494 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu, in case 495 * the caller has read kvm->online_vcpus before (as is the case 496 * for kvm_for_each_vcpu, for example). 497 */ 498 smp_rmb(); 499 return kvm->vcpus[i]; 500 } 501 502 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 503 for (idx = 0; \ 504 idx < atomic_read(&kvm->online_vcpus) && \ 505 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 506 idx++) 507 508 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 509 { 510 struct kvm_vcpu *vcpu = NULL; 511 int i; 512 513 if (id < 0) 514 return NULL; 515 if (id < KVM_MAX_VCPUS) 516 vcpu = kvm_get_vcpu(kvm, id); 517 if (vcpu && vcpu->vcpu_id == id) 518 return vcpu; 519 kvm_for_each_vcpu(i, vcpu, kvm) 520 if (vcpu->vcpu_id == id) 521 return vcpu; 522 return NULL; 523 } 524 525 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 526 { 527 struct kvm_vcpu *tmp; 528 int idx; 529 530 kvm_for_each_vcpu(idx, tmp, vcpu->kvm) 531 if (tmp == vcpu) 532 return idx; 533 BUG(); 534 } 535 536 #define kvm_for_each_memslot(memslot, slots) \ 537 for (memslot = &slots->memslots[0]; \ 538 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 539 memslot++) 540 541 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 542 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 543 544 void vcpu_load(struct kvm_vcpu *vcpu); 545 void vcpu_put(struct kvm_vcpu *vcpu); 546 547 #ifdef __KVM_HAVE_IOAPIC 548 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 549 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 550 #else 551 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 552 { 553 } 554 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 555 { 556 } 557 #endif 558 559 #ifdef CONFIG_HAVE_KVM_IRQFD 560 int kvm_irqfd_init(void); 561 void kvm_irqfd_exit(void); 562 #else 563 static inline int kvm_irqfd_init(void) 564 { 565 return 0; 566 } 567 568 static inline void kvm_irqfd_exit(void) 569 { 570 } 571 #endif 572 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 573 struct module *module); 574 void kvm_exit(void); 575 576 void kvm_get_kvm(struct kvm *kvm); 577 void kvm_put_kvm(struct kvm *kvm); 578 579 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 580 { 581 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 582 lockdep_is_held(&kvm->slots_lock) || 583 !refcount_read(&kvm->users_count)); 584 } 585 586 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 587 { 588 return __kvm_memslots(kvm, 0); 589 } 590 591 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 592 { 593 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 594 595 return __kvm_memslots(vcpu->kvm, as_id); 596 } 597 598 static inline struct kvm_memory_slot * 599 id_to_memslot(struct kvm_memslots *slots, int id) 600 { 601 int index = slots->id_to_index[id]; 602 struct kvm_memory_slot *slot; 603 604 slot = &slots->memslots[index]; 605 606 WARN_ON(slot->id != id); 607 return slot; 608 } 609 610 /* 611 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 612 * - create a new memory slot 613 * - delete an existing memory slot 614 * - modify an existing memory slot 615 * -- move it in the guest physical memory space 616 * -- just change its flags 617 * 618 * Since flags can be changed by some of these operations, the following 619 * differentiation is the best we can do for __kvm_set_memory_region(): 620 */ 621 enum kvm_mr_change { 622 KVM_MR_CREATE, 623 KVM_MR_DELETE, 624 KVM_MR_MOVE, 625 KVM_MR_FLAGS_ONLY, 626 }; 627 628 int kvm_set_memory_region(struct kvm *kvm, 629 const struct kvm_userspace_memory_region *mem); 630 int __kvm_set_memory_region(struct kvm *kvm, 631 const struct kvm_userspace_memory_region *mem); 632 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 633 struct kvm_memory_slot *dont); 634 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 635 unsigned long npages); 636 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots); 637 int kvm_arch_prepare_memory_region(struct kvm *kvm, 638 struct kvm_memory_slot *memslot, 639 const struct kvm_userspace_memory_region *mem, 640 enum kvm_mr_change change); 641 void kvm_arch_commit_memory_region(struct kvm *kvm, 642 const struct kvm_userspace_memory_region *mem, 643 const struct kvm_memory_slot *old, 644 const struct kvm_memory_slot *new, 645 enum kvm_mr_change change); 646 bool kvm_largepages_enabled(void); 647 void kvm_disable_largepages(void); 648 /* flush all memory translations */ 649 void kvm_arch_flush_shadow_all(struct kvm *kvm); 650 /* flush memory translations pointing to 'slot' */ 651 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 652 struct kvm_memory_slot *slot); 653 654 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 655 struct page **pages, int nr_pages); 656 657 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 658 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 659 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 660 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 661 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 662 bool *writable); 663 void kvm_release_page_clean(struct page *page); 664 void kvm_release_page_dirty(struct page *page); 665 void kvm_set_page_accessed(struct page *page); 666 667 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 668 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 669 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 670 bool *writable); 671 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 672 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 673 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 674 bool atomic, bool *async, bool write_fault, 675 bool *writable); 676 677 void kvm_release_pfn_clean(kvm_pfn_t pfn); 678 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 679 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 680 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 681 void kvm_get_pfn(kvm_pfn_t pfn); 682 683 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 684 int len); 685 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 686 unsigned long len); 687 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 688 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 689 void *data, unsigned long len); 690 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 691 int offset, int len); 692 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 693 unsigned long len); 694 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 695 void *data, unsigned long len); 696 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 697 void *data, int offset, unsigned long len); 698 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 699 gpa_t gpa, unsigned long len); 700 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 701 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 702 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 703 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 704 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 705 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 706 707 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 708 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 709 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 710 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 711 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 712 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 713 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 714 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 715 int len); 716 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 717 unsigned long len); 718 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 719 unsigned long len); 720 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 721 int offset, int len); 722 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 723 unsigned long len); 724 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 725 726 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 727 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 728 729 void kvm_vcpu_block(struct kvm_vcpu *vcpu); 730 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 731 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 732 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 733 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 734 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 735 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 736 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu); 737 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu); 738 739 void kvm_flush_remote_tlbs(struct kvm *kvm); 740 void kvm_reload_remote_mmus(struct kvm *kvm); 741 742 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 743 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 744 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 745 746 long kvm_arch_dev_ioctl(struct file *filp, 747 unsigned int ioctl, unsigned long arg); 748 long kvm_arch_vcpu_ioctl(struct file *filp, 749 unsigned int ioctl, unsigned long arg); 750 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 751 752 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 753 754 int kvm_get_dirty_log(struct kvm *kvm, 755 struct kvm_dirty_log *log, int *is_dirty); 756 757 int kvm_get_dirty_log_protect(struct kvm *kvm, 758 struct kvm_dirty_log *log, bool *is_dirty); 759 760 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 761 struct kvm_memory_slot *slot, 762 gfn_t gfn_offset, 763 unsigned long mask); 764 765 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 766 struct kvm_dirty_log *log); 767 768 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 769 bool line_status); 770 long kvm_arch_vm_ioctl(struct file *filp, 771 unsigned int ioctl, unsigned long arg); 772 773 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 774 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 775 776 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 777 struct kvm_translation *tr); 778 779 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 780 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 781 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 782 struct kvm_sregs *sregs); 783 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 784 struct kvm_sregs *sregs); 785 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 786 struct kvm_mp_state *mp_state); 787 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 788 struct kvm_mp_state *mp_state); 789 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 790 struct kvm_guest_debug *dbg); 791 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 792 793 int kvm_arch_init(void *opaque); 794 void kvm_arch_exit(void); 795 796 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 797 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 798 799 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 800 801 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 802 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 803 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 804 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 805 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 806 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 807 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 808 809 bool kvm_arch_has_vcpu_debugfs(void); 810 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 811 812 int kvm_arch_hardware_enable(void); 813 void kvm_arch_hardware_disable(void); 814 int kvm_arch_hardware_setup(void); 815 void kvm_arch_hardware_unsetup(void); 816 void kvm_arch_check_processor_compat(void *rtn); 817 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 818 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 819 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 820 821 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 822 /* 823 * All architectures that want to use vzalloc currently also 824 * need their own kvm_arch_alloc_vm implementation. 825 */ 826 static inline struct kvm *kvm_arch_alloc_vm(void) 827 { 828 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 829 } 830 831 static inline void kvm_arch_free_vm(struct kvm *kvm) 832 { 833 kfree(kvm); 834 } 835 #endif 836 837 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 838 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 839 { 840 return -ENOTSUPP; 841 } 842 #endif 843 844 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 845 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 846 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 847 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 848 #else 849 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 850 { 851 } 852 853 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 854 { 855 } 856 857 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 858 { 859 return false; 860 } 861 #endif 862 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 863 void kvm_arch_start_assignment(struct kvm *kvm); 864 void kvm_arch_end_assignment(struct kvm *kvm); 865 bool kvm_arch_has_assigned_device(struct kvm *kvm); 866 #else 867 static inline void kvm_arch_start_assignment(struct kvm *kvm) 868 { 869 } 870 871 static inline void kvm_arch_end_assignment(struct kvm *kvm) 872 { 873 } 874 875 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 876 { 877 return false; 878 } 879 #endif 880 881 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 882 { 883 #ifdef __KVM_HAVE_ARCH_WQP 884 return vcpu->arch.wqp; 885 #else 886 return &vcpu->wq; 887 #endif 888 } 889 890 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 891 /* 892 * returns true if the virtual interrupt controller is initialized and 893 * ready to accept virtual IRQ. On some architectures the virtual interrupt 894 * controller is dynamically instantiated and this is not always true. 895 */ 896 bool kvm_arch_intc_initialized(struct kvm *kvm); 897 #else 898 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 899 { 900 return true; 901 } 902 #endif 903 904 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 905 void kvm_arch_destroy_vm(struct kvm *kvm); 906 void kvm_arch_sync_events(struct kvm *kvm); 907 908 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 909 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 910 911 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 912 913 struct kvm_irq_ack_notifier { 914 struct hlist_node link; 915 unsigned gsi; 916 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 917 }; 918 919 int kvm_irq_map_gsi(struct kvm *kvm, 920 struct kvm_kernel_irq_routing_entry *entries, int gsi); 921 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 922 923 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 924 bool line_status); 925 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 926 int irq_source_id, int level, bool line_status); 927 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 928 struct kvm *kvm, int irq_source_id, 929 int level, bool line_status); 930 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 931 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 932 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 933 void kvm_register_irq_ack_notifier(struct kvm *kvm, 934 struct kvm_irq_ack_notifier *kian); 935 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 936 struct kvm_irq_ack_notifier *kian); 937 int kvm_request_irq_source_id(struct kvm *kvm); 938 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 939 940 /* 941 * search_memslots() and __gfn_to_memslot() are here because they are 942 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 943 * gfn_to_memslot() itself isn't here as an inline because that would 944 * bloat other code too much. 945 */ 946 static inline struct kvm_memory_slot * 947 search_memslots(struct kvm_memslots *slots, gfn_t gfn) 948 { 949 int start = 0, end = slots->used_slots; 950 int slot = atomic_read(&slots->lru_slot); 951 struct kvm_memory_slot *memslots = slots->memslots; 952 953 if (gfn >= memslots[slot].base_gfn && 954 gfn < memslots[slot].base_gfn + memslots[slot].npages) 955 return &memslots[slot]; 956 957 while (start < end) { 958 slot = start + (end - start) / 2; 959 960 if (gfn >= memslots[slot].base_gfn) 961 end = slot; 962 else 963 start = slot + 1; 964 } 965 966 if (gfn >= memslots[start].base_gfn && 967 gfn < memslots[start].base_gfn + memslots[start].npages) { 968 atomic_set(&slots->lru_slot, start); 969 return &memslots[start]; 970 } 971 972 return NULL; 973 } 974 975 static inline struct kvm_memory_slot * 976 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 977 { 978 return search_memslots(slots, gfn); 979 } 980 981 static inline unsigned long 982 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 983 { 984 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 985 } 986 987 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 988 { 989 return gfn_to_memslot(kvm, gfn)->id; 990 } 991 992 static inline gfn_t 993 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 994 { 995 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 996 997 return slot->base_gfn + gfn_offset; 998 } 999 1000 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1001 { 1002 return (gpa_t)gfn << PAGE_SHIFT; 1003 } 1004 1005 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1006 { 1007 return (gfn_t)(gpa >> PAGE_SHIFT); 1008 } 1009 1010 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1011 { 1012 return (hpa_t)pfn << PAGE_SHIFT; 1013 } 1014 1015 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1016 gpa_t gpa) 1017 { 1018 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1019 } 1020 1021 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1022 { 1023 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1024 1025 return kvm_is_error_hva(hva); 1026 } 1027 1028 enum kvm_stat_kind { 1029 KVM_STAT_VM, 1030 KVM_STAT_VCPU, 1031 }; 1032 1033 struct kvm_stat_data { 1034 int offset; 1035 struct kvm *kvm; 1036 }; 1037 1038 struct kvm_stats_debugfs_item { 1039 const char *name; 1040 int offset; 1041 enum kvm_stat_kind kind; 1042 }; 1043 extern struct kvm_stats_debugfs_item debugfs_entries[]; 1044 extern struct dentry *kvm_debugfs_dir; 1045 1046 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1047 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1048 { 1049 if (unlikely(kvm->mmu_notifier_count)) 1050 return 1; 1051 /* 1052 * Ensure the read of mmu_notifier_count happens before the read 1053 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1054 * mmu_notifier_invalidate_range_end to make sure that the caller 1055 * either sees the old (non-zero) value of mmu_notifier_count or 1056 * the new (incremented) value of mmu_notifier_seq. 1057 * PowerPC Book3s HV KVM calls this under a per-page lock 1058 * rather than under kvm->mmu_lock, for scalability, so 1059 * can't rely on kvm->mmu_lock to keep things ordered. 1060 */ 1061 smp_rmb(); 1062 if (kvm->mmu_notifier_seq != mmu_seq) 1063 return 1; 1064 return 0; 1065 } 1066 #endif 1067 1068 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1069 1070 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1071 1072 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1073 int kvm_set_irq_routing(struct kvm *kvm, 1074 const struct kvm_irq_routing_entry *entries, 1075 unsigned nr, 1076 unsigned flags); 1077 int kvm_set_routing_entry(struct kvm *kvm, 1078 struct kvm_kernel_irq_routing_entry *e, 1079 const struct kvm_irq_routing_entry *ue); 1080 void kvm_free_irq_routing(struct kvm *kvm); 1081 1082 #else 1083 1084 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1085 1086 #endif 1087 1088 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1089 1090 #ifdef CONFIG_HAVE_KVM_EVENTFD 1091 1092 void kvm_eventfd_init(struct kvm *kvm); 1093 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1094 1095 #ifdef CONFIG_HAVE_KVM_IRQFD 1096 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1097 void kvm_irqfd_release(struct kvm *kvm); 1098 void kvm_irq_routing_update(struct kvm *); 1099 #else 1100 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1101 { 1102 return -EINVAL; 1103 } 1104 1105 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1106 #endif 1107 1108 #else 1109 1110 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1111 1112 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1113 { 1114 return -EINVAL; 1115 } 1116 1117 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1118 1119 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1120 static inline void kvm_irq_routing_update(struct kvm *kvm) 1121 { 1122 } 1123 #endif 1124 1125 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1126 { 1127 return -ENOSYS; 1128 } 1129 1130 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1131 1132 void kvm_arch_irq_routing_update(struct kvm *kvm); 1133 1134 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1135 { 1136 /* 1137 * Ensure the rest of the request is published to kvm_check_request's 1138 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1139 */ 1140 smp_wmb(); 1141 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1142 } 1143 1144 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1145 { 1146 return READ_ONCE(vcpu->requests); 1147 } 1148 1149 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1150 { 1151 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1152 } 1153 1154 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1155 { 1156 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1157 } 1158 1159 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1160 { 1161 if (kvm_test_request(req, vcpu)) { 1162 kvm_clear_request(req, vcpu); 1163 1164 /* 1165 * Ensure the rest of the request is visible to kvm_check_request's 1166 * caller. Paired with the smp_wmb in kvm_make_request. 1167 */ 1168 smp_mb__after_atomic(); 1169 return true; 1170 } else { 1171 return false; 1172 } 1173 } 1174 1175 extern bool kvm_rebooting; 1176 1177 extern unsigned int halt_poll_ns; 1178 extern unsigned int halt_poll_ns_grow; 1179 extern unsigned int halt_poll_ns_shrink; 1180 1181 struct kvm_device { 1182 struct kvm_device_ops *ops; 1183 struct kvm *kvm; 1184 void *private; 1185 struct list_head vm_node; 1186 }; 1187 1188 /* create, destroy, and name are mandatory */ 1189 struct kvm_device_ops { 1190 const char *name; 1191 1192 /* 1193 * create is called holding kvm->lock and any operations not suitable 1194 * to do while holding the lock should be deferred to init (see 1195 * below). 1196 */ 1197 int (*create)(struct kvm_device *dev, u32 type); 1198 1199 /* 1200 * init is called after create if create is successful and is called 1201 * outside of holding kvm->lock. 1202 */ 1203 void (*init)(struct kvm_device *dev); 1204 1205 /* 1206 * Destroy is responsible for freeing dev. 1207 * 1208 * Destroy may be called before or after destructors are called 1209 * on emulated I/O regions, depending on whether a reference is 1210 * held by a vcpu or other kvm component that gets destroyed 1211 * after the emulated I/O. 1212 */ 1213 void (*destroy)(struct kvm_device *dev); 1214 1215 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1216 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1217 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1218 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1219 unsigned long arg); 1220 }; 1221 1222 void kvm_device_get(struct kvm_device *dev); 1223 void kvm_device_put(struct kvm_device *dev); 1224 struct kvm_device *kvm_device_from_filp(struct file *filp); 1225 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1226 void kvm_unregister_device_ops(u32 type); 1227 1228 extern struct kvm_device_ops kvm_mpic_ops; 1229 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1230 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1231 1232 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1233 1234 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1235 { 1236 vcpu->spin_loop.in_spin_loop = val; 1237 } 1238 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1239 { 1240 vcpu->spin_loop.dy_eligible = val; 1241 } 1242 1243 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1244 1245 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1246 { 1247 } 1248 1249 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1250 { 1251 } 1252 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1253 1254 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1255 bool kvm_arch_has_irq_bypass(void); 1256 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1257 struct irq_bypass_producer *); 1258 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1259 struct irq_bypass_producer *); 1260 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1261 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1262 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1263 uint32_t guest_irq, bool set); 1264 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1265 1266 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1267 /* If we wakeup during the poll time, was it a sucessful poll? */ 1268 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1269 { 1270 return vcpu->valid_wakeup; 1271 } 1272 1273 #else 1274 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1275 { 1276 return true; 1277 } 1278 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1279 1280 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1281 long kvm_arch_vcpu_async_ioctl(struct file *filp, 1282 unsigned int ioctl, unsigned long arg); 1283 #else 1284 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1285 unsigned int ioctl, 1286 unsigned long arg) 1287 { 1288 return -ENOIOCTLCMD; 1289 } 1290 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1291 1292 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1293 unsigned long start, unsigned long end, bool blockable); 1294 1295 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1296 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1297 #else 1298 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1299 { 1300 return 0; 1301 } 1302 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1303 1304 #endif 1305