xref: /linux-6.15/include/linux/kvm_host.h (revision 2ff072ba)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54  * used in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100 #define KVM_PFN_ERR_NEEDS_IO	(KVM_PFN_ERR_MASK + 4)
101 
102 /*
103  * error pfns indicate that the gfn is in slot but faild to
104  * translate it to pfn on host.
105  */
106 static inline bool is_error_pfn(kvm_pfn_t pfn)
107 {
108 	return !!(pfn & KVM_PFN_ERR_MASK);
109 }
110 
111 /*
112  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
113  * by a pending signal.  Note, the signal may or may not be fatal.
114  */
115 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
116 {
117 	return pfn == KVM_PFN_ERR_SIGPENDING;
118 }
119 
120 /*
121  * error_noslot pfns indicate that the gfn can not be
122  * translated to pfn - it is not in slot or failed to
123  * translate it to pfn.
124  */
125 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
126 {
127 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
128 }
129 
130 /* noslot pfn indicates that the gfn is not in slot. */
131 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
132 {
133 	return pfn == KVM_PFN_NOSLOT;
134 }
135 
136 /*
137  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
138  * provide own defines and kvm_is_error_hva
139  */
140 #ifndef KVM_HVA_ERR_BAD
141 
142 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
143 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
144 
145 static inline bool kvm_is_error_hva(unsigned long addr)
146 {
147 	return addr >= PAGE_OFFSET;
148 }
149 
150 #endif
151 
152 static inline bool kvm_is_error_gpa(gpa_t gpa)
153 {
154 	return gpa == INVALID_GPA;
155 }
156 
157 #define KVM_REQUEST_MASK           GENMASK(7,0)
158 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
159 #define KVM_REQUEST_WAIT           BIT(9)
160 #define KVM_REQUEST_NO_ACTION      BIT(10)
161 /*
162  * Architecture-independent vcpu->requests bit members
163  * Bits 3-7 are reserved for more arch-independent bits.
164  */
165 #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
166 #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_UNBLOCK			2
168 #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
169 #define KVM_REQUEST_ARCH_BASE		8
170 
171 /*
172  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
173  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
174  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
175  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
176  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
177  * guarantee the vCPU received an IPI and has actually exited guest mode.
178  */
179 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
180 
181 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
182 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
183 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
184 })
185 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
186 
187 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
188 				 unsigned long *vcpu_bitmap);
189 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
190 
191 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
192 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
193 
194 extern struct mutex kvm_lock;
195 extern struct list_head vm_list;
196 
197 struct kvm_io_range {
198 	gpa_t addr;
199 	int len;
200 	struct kvm_io_device *dev;
201 };
202 
203 #define NR_IOBUS_DEVS 1000
204 
205 struct kvm_io_bus {
206 	int dev_count;
207 	int ioeventfd_count;
208 	struct kvm_io_range range[];
209 };
210 
211 enum kvm_bus {
212 	KVM_MMIO_BUS,
213 	KVM_PIO_BUS,
214 	KVM_VIRTIO_CCW_NOTIFY_BUS,
215 	KVM_FAST_MMIO_BUS,
216 	KVM_NR_BUSES
217 };
218 
219 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
220 		     int len, const void *val);
221 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
222 			    gpa_t addr, int len, const void *val, long cookie);
223 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
224 		    int len, void *val);
225 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
226 			    int len, struct kvm_io_device *dev);
227 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
228 			      struct kvm_io_device *dev);
229 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
230 					 gpa_t addr);
231 
232 #ifdef CONFIG_KVM_ASYNC_PF
233 struct kvm_async_pf {
234 	struct work_struct work;
235 	struct list_head link;
236 	struct list_head queue;
237 	struct kvm_vcpu *vcpu;
238 	gpa_t cr2_or_gpa;
239 	unsigned long addr;
240 	struct kvm_arch_async_pf arch;
241 	bool   wakeup_all;
242 	bool notpresent_injected;
243 };
244 
245 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
246 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
247 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
248 			unsigned long hva, struct kvm_arch_async_pf *arch);
249 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
250 #endif
251 
252 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
253 union kvm_mmu_notifier_arg {
254 	unsigned long attributes;
255 };
256 
257 struct kvm_gfn_range {
258 	struct kvm_memory_slot *slot;
259 	gfn_t start;
260 	gfn_t end;
261 	union kvm_mmu_notifier_arg arg;
262 	bool may_block;
263 };
264 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
265 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
266 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
267 #endif
268 
269 enum {
270 	OUTSIDE_GUEST_MODE,
271 	IN_GUEST_MODE,
272 	EXITING_GUEST_MODE,
273 	READING_SHADOW_PAGE_TABLES,
274 };
275 
276 struct kvm_host_map {
277 	/*
278 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
279 	 * a 'struct page' for it. When using mem= kernel parameter some memory
280 	 * can be used as guest memory but they are not managed by host
281 	 * kernel).
282 	 */
283 	struct page *refcounted_page;
284 	struct page *page;
285 	void *hva;
286 	kvm_pfn_t pfn;
287 	kvm_pfn_t gfn;
288 };
289 
290 /*
291  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
292  * directly to check for that.
293  */
294 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
295 {
296 	return !!map->hva;
297 }
298 
299 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
300 {
301 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
302 }
303 
304 /*
305  * Sometimes a large or cross-page mmio needs to be broken up into separate
306  * exits for userspace servicing.
307  */
308 struct kvm_mmio_fragment {
309 	gpa_t gpa;
310 	void *data;
311 	unsigned len;
312 };
313 
314 struct kvm_vcpu {
315 	struct kvm *kvm;
316 #ifdef CONFIG_PREEMPT_NOTIFIERS
317 	struct preempt_notifier preempt_notifier;
318 #endif
319 	int cpu;
320 	int vcpu_id; /* id given by userspace at creation */
321 	int vcpu_idx; /* index into kvm->vcpu_array */
322 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
323 #ifdef CONFIG_PROVE_RCU
324 	int srcu_depth;
325 #endif
326 	int mode;
327 	u64 requests;
328 	unsigned long guest_debug;
329 
330 	struct mutex mutex;
331 	struct kvm_run *run;
332 
333 #ifndef __KVM_HAVE_ARCH_WQP
334 	struct rcuwait wait;
335 #endif
336 	struct pid __rcu *pid;
337 	int sigset_active;
338 	sigset_t sigset;
339 	unsigned int halt_poll_ns;
340 	bool valid_wakeup;
341 
342 #ifdef CONFIG_HAS_IOMEM
343 	int mmio_needed;
344 	int mmio_read_completed;
345 	int mmio_is_write;
346 	int mmio_cur_fragment;
347 	int mmio_nr_fragments;
348 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
349 #endif
350 
351 #ifdef CONFIG_KVM_ASYNC_PF
352 	struct {
353 		u32 queued;
354 		struct list_head queue;
355 		struct list_head done;
356 		spinlock_t lock;
357 	} async_pf;
358 #endif
359 
360 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
361 	/*
362 	 * Cpu relax intercept or pause loop exit optimization
363 	 * in_spin_loop: set when a vcpu does a pause loop exit
364 	 *  or cpu relax intercepted.
365 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
366 	 */
367 	struct {
368 		bool in_spin_loop;
369 		bool dy_eligible;
370 	} spin_loop;
371 #endif
372 	bool wants_to_run;
373 	bool preempted;
374 	bool ready;
375 	bool scheduled_out;
376 	struct kvm_vcpu_arch arch;
377 	struct kvm_vcpu_stat stat;
378 	char stats_id[KVM_STATS_NAME_SIZE];
379 	struct kvm_dirty_ring dirty_ring;
380 
381 	/*
382 	 * The most recently used memslot by this vCPU and the slots generation
383 	 * for which it is valid.
384 	 * No wraparound protection is needed since generations won't overflow in
385 	 * thousands of years, even assuming 1M memslot operations per second.
386 	 */
387 	struct kvm_memory_slot *last_used_slot;
388 	u64 last_used_slot_gen;
389 };
390 
391 /*
392  * Start accounting time towards a guest.
393  * Must be called before entering guest context.
394  */
395 static __always_inline void guest_timing_enter_irqoff(void)
396 {
397 	/*
398 	 * This is running in ioctl context so its safe to assume that it's the
399 	 * stime pending cputime to flush.
400 	 */
401 	instrumentation_begin();
402 	vtime_account_guest_enter();
403 	instrumentation_end();
404 }
405 
406 /*
407  * Enter guest context and enter an RCU extended quiescent state.
408  *
409  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
410  * unsafe to use any code which may directly or indirectly use RCU, tracing
411  * (including IRQ flag tracing), or lockdep. All code in this period must be
412  * non-instrumentable.
413  */
414 static __always_inline void guest_context_enter_irqoff(void)
415 {
416 	/*
417 	 * KVM does not hold any references to rcu protected data when it
418 	 * switches CPU into a guest mode. In fact switching to a guest mode
419 	 * is very similar to exiting to userspace from rcu point of view. In
420 	 * addition CPU may stay in a guest mode for quite a long time (up to
421 	 * one time slice). Lets treat guest mode as quiescent state, just like
422 	 * we do with user-mode execution.
423 	 */
424 	if (!context_tracking_guest_enter()) {
425 		instrumentation_begin();
426 		rcu_virt_note_context_switch();
427 		instrumentation_end();
428 	}
429 }
430 
431 /*
432  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
433  * guest_state_enter_irqoff().
434  */
435 static __always_inline void guest_enter_irqoff(void)
436 {
437 	guest_timing_enter_irqoff();
438 	guest_context_enter_irqoff();
439 }
440 
441 /**
442  * guest_state_enter_irqoff - Fixup state when entering a guest
443  *
444  * Entry to a guest will enable interrupts, but the kernel state is interrupts
445  * disabled when this is invoked. Also tell RCU about it.
446  *
447  * 1) Trace interrupts on state
448  * 2) Invoke context tracking if enabled to adjust RCU state
449  * 3) Tell lockdep that interrupts are enabled
450  *
451  * Invoked from architecture specific code before entering a guest.
452  * Must be called with interrupts disabled and the caller must be
453  * non-instrumentable.
454  * The caller has to invoke guest_timing_enter_irqoff() before this.
455  *
456  * Note: this is analogous to exit_to_user_mode().
457  */
458 static __always_inline void guest_state_enter_irqoff(void)
459 {
460 	instrumentation_begin();
461 	trace_hardirqs_on_prepare();
462 	lockdep_hardirqs_on_prepare();
463 	instrumentation_end();
464 
465 	guest_context_enter_irqoff();
466 	lockdep_hardirqs_on(CALLER_ADDR0);
467 }
468 
469 /*
470  * Exit guest context and exit an RCU extended quiescent state.
471  *
472  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
473  * unsafe to use any code which may directly or indirectly use RCU, tracing
474  * (including IRQ flag tracing), or lockdep. All code in this period must be
475  * non-instrumentable.
476  */
477 static __always_inline void guest_context_exit_irqoff(void)
478 {
479 	/*
480 	 * Guest mode is treated as a quiescent state, see
481 	 * guest_context_enter_irqoff() for more details.
482 	 */
483 	if (!context_tracking_guest_exit()) {
484 		instrumentation_begin();
485 		rcu_virt_note_context_switch();
486 		instrumentation_end();
487 	}
488 }
489 
490 /*
491  * Stop accounting time towards a guest.
492  * Must be called after exiting guest context.
493  */
494 static __always_inline void guest_timing_exit_irqoff(void)
495 {
496 	instrumentation_begin();
497 	/* Flush the guest cputime we spent on the guest */
498 	vtime_account_guest_exit();
499 	instrumentation_end();
500 }
501 
502 /*
503  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
504  * guest_timing_exit_irqoff().
505  */
506 static __always_inline void guest_exit_irqoff(void)
507 {
508 	guest_context_exit_irqoff();
509 	guest_timing_exit_irqoff();
510 }
511 
512 static inline void guest_exit(void)
513 {
514 	unsigned long flags;
515 
516 	local_irq_save(flags);
517 	guest_exit_irqoff();
518 	local_irq_restore(flags);
519 }
520 
521 /**
522  * guest_state_exit_irqoff - Establish state when returning from guest mode
523  *
524  * Entry from a guest disables interrupts, but guest mode is traced as
525  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
526  *
527  * 1) Tell lockdep that interrupts are disabled
528  * 2) Invoke context tracking if enabled to reactivate RCU
529  * 3) Trace interrupts off state
530  *
531  * Invoked from architecture specific code after exiting a guest.
532  * Must be invoked with interrupts disabled and the caller must be
533  * non-instrumentable.
534  * The caller has to invoke guest_timing_exit_irqoff() after this.
535  *
536  * Note: this is analogous to enter_from_user_mode().
537  */
538 static __always_inline void guest_state_exit_irqoff(void)
539 {
540 	lockdep_hardirqs_off(CALLER_ADDR0);
541 	guest_context_exit_irqoff();
542 
543 	instrumentation_begin();
544 	trace_hardirqs_off_finish();
545 	instrumentation_end();
546 }
547 
548 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
549 {
550 	/*
551 	 * The memory barrier ensures a previous write to vcpu->requests cannot
552 	 * be reordered with the read of vcpu->mode.  It pairs with the general
553 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
554 	 */
555 	smp_mb__before_atomic();
556 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
557 }
558 
559 /*
560  * Some of the bitops functions do not support too long bitmaps.
561  * This number must be determined not to exceed such limits.
562  */
563 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
564 
565 /*
566  * Since at idle each memslot belongs to two memslot sets it has to contain
567  * two embedded nodes for each data structure that it forms a part of.
568  *
569  * Two memslot sets (one active and one inactive) are necessary so the VM
570  * continues to run on one memslot set while the other is being modified.
571  *
572  * These two memslot sets normally point to the same set of memslots.
573  * They can, however, be desynchronized when performing a memslot management
574  * operation by replacing the memslot to be modified by its copy.
575  * After the operation is complete, both memslot sets once again point to
576  * the same, common set of memslot data.
577  *
578  * The memslots themselves are independent of each other so they can be
579  * individually added or deleted.
580  */
581 struct kvm_memory_slot {
582 	struct hlist_node id_node[2];
583 	struct interval_tree_node hva_node[2];
584 	struct rb_node gfn_node[2];
585 	gfn_t base_gfn;
586 	unsigned long npages;
587 	unsigned long *dirty_bitmap;
588 	struct kvm_arch_memory_slot arch;
589 	unsigned long userspace_addr;
590 	u32 flags;
591 	short id;
592 	u16 as_id;
593 
594 #ifdef CONFIG_KVM_PRIVATE_MEM
595 	struct {
596 		struct file __rcu *file;
597 		pgoff_t pgoff;
598 	} gmem;
599 #endif
600 };
601 
602 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
603 {
604 	return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
605 }
606 
607 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
608 {
609 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
610 }
611 
612 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
613 {
614 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
615 }
616 
617 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
618 {
619 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
620 
621 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
622 }
623 
624 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
625 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
626 #endif
627 
628 struct kvm_s390_adapter_int {
629 	u64 ind_addr;
630 	u64 summary_addr;
631 	u64 ind_offset;
632 	u32 summary_offset;
633 	u32 adapter_id;
634 };
635 
636 struct kvm_hv_sint {
637 	u32 vcpu;
638 	u32 sint;
639 };
640 
641 struct kvm_xen_evtchn {
642 	u32 port;
643 	u32 vcpu_id;
644 	int vcpu_idx;
645 	u32 priority;
646 };
647 
648 struct kvm_kernel_irq_routing_entry {
649 	u32 gsi;
650 	u32 type;
651 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
652 		   struct kvm *kvm, int irq_source_id, int level,
653 		   bool line_status);
654 	union {
655 		struct {
656 			unsigned irqchip;
657 			unsigned pin;
658 		} irqchip;
659 		struct {
660 			u32 address_lo;
661 			u32 address_hi;
662 			u32 data;
663 			u32 flags;
664 			u32 devid;
665 		} msi;
666 		struct kvm_s390_adapter_int adapter;
667 		struct kvm_hv_sint hv_sint;
668 		struct kvm_xen_evtchn xen_evtchn;
669 	};
670 	struct hlist_node link;
671 };
672 
673 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
674 struct kvm_irq_routing_table {
675 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
676 	u32 nr_rt_entries;
677 	/*
678 	 * Array indexed by gsi. Each entry contains list of irq chips
679 	 * the gsi is connected to.
680 	 */
681 	struct hlist_head map[] __counted_by(nr_rt_entries);
682 };
683 #endif
684 
685 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
686 
687 #ifndef KVM_INTERNAL_MEM_SLOTS
688 #define KVM_INTERNAL_MEM_SLOTS 0
689 #endif
690 
691 #define KVM_MEM_SLOTS_NUM SHRT_MAX
692 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
693 
694 #if KVM_MAX_NR_ADDRESS_SPACES == 1
695 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
696 {
697 	return KVM_MAX_NR_ADDRESS_SPACES;
698 }
699 
700 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
701 {
702 	return 0;
703 }
704 #endif
705 
706 /*
707  * Arch code must define kvm_arch_has_private_mem if support for private memory
708  * is enabled.
709  */
710 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
711 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
712 {
713 	return false;
714 }
715 #endif
716 
717 #ifndef kvm_arch_has_readonly_mem
718 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
719 {
720 	return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
721 }
722 #endif
723 
724 struct kvm_memslots {
725 	u64 generation;
726 	atomic_long_t last_used_slot;
727 	struct rb_root_cached hva_tree;
728 	struct rb_root gfn_tree;
729 	/*
730 	 * The mapping table from slot id to memslot.
731 	 *
732 	 * 7-bit bucket count matches the size of the old id to index array for
733 	 * 512 slots, while giving good performance with this slot count.
734 	 * Higher bucket counts bring only small performance improvements but
735 	 * always result in higher memory usage (even for lower memslot counts).
736 	 */
737 	DECLARE_HASHTABLE(id_hash, 7);
738 	int node_idx;
739 };
740 
741 struct kvm {
742 #ifdef KVM_HAVE_MMU_RWLOCK
743 	rwlock_t mmu_lock;
744 #else
745 	spinlock_t mmu_lock;
746 #endif /* KVM_HAVE_MMU_RWLOCK */
747 
748 	struct mutex slots_lock;
749 
750 	/*
751 	 * Protects the arch-specific fields of struct kvm_memory_slots in
752 	 * use by the VM. To be used under the slots_lock (above) or in a
753 	 * kvm->srcu critical section where acquiring the slots_lock would
754 	 * lead to deadlock with the synchronize_srcu in
755 	 * kvm_swap_active_memslots().
756 	 */
757 	struct mutex slots_arch_lock;
758 	struct mm_struct *mm; /* userspace tied to this vm */
759 	unsigned long nr_memslot_pages;
760 	/* The two memslot sets - active and inactive (per address space) */
761 	struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
762 	/* The current active memslot set for each address space */
763 	struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
764 	struct xarray vcpu_array;
765 	/*
766 	 * Protected by slots_lock, but can be read outside if an
767 	 * incorrect answer is acceptable.
768 	 */
769 	atomic_t nr_memslots_dirty_logging;
770 
771 	/* Used to wait for completion of MMU notifiers.  */
772 	spinlock_t mn_invalidate_lock;
773 	unsigned long mn_active_invalidate_count;
774 	struct rcuwait mn_memslots_update_rcuwait;
775 
776 	/* For management / invalidation of gfn_to_pfn_caches */
777 	spinlock_t gpc_lock;
778 	struct list_head gpc_list;
779 
780 	/*
781 	 * created_vcpus is protected by kvm->lock, and is incremented
782 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
783 	 * incremented after storing the kvm_vcpu pointer in vcpus,
784 	 * and is accessed atomically.
785 	 */
786 	atomic_t online_vcpus;
787 	int max_vcpus;
788 	int created_vcpus;
789 	int last_boosted_vcpu;
790 	struct list_head vm_list;
791 	struct mutex lock;
792 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
793 #ifdef CONFIG_HAVE_KVM_IRQCHIP
794 	struct {
795 		spinlock_t        lock;
796 		struct list_head  items;
797 		/* resampler_list update side is protected by resampler_lock. */
798 		struct list_head  resampler_list;
799 		struct mutex      resampler_lock;
800 	} irqfds;
801 #endif
802 	struct list_head ioeventfds;
803 	struct kvm_vm_stat stat;
804 	struct kvm_arch arch;
805 	refcount_t users_count;
806 #ifdef CONFIG_KVM_MMIO
807 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
808 	spinlock_t ring_lock;
809 	struct list_head coalesced_zones;
810 #endif
811 
812 	struct mutex irq_lock;
813 #ifdef CONFIG_HAVE_KVM_IRQCHIP
814 	/*
815 	 * Update side is protected by irq_lock.
816 	 */
817 	struct kvm_irq_routing_table __rcu *irq_routing;
818 
819 	struct hlist_head irq_ack_notifier_list;
820 #endif
821 
822 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
823 	struct mmu_notifier mmu_notifier;
824 	unsigned long mmu_invalidate_seq;
825 	long mmu_invalidate_in_progress;
826 	gfn_t mmu_invalidate_range_start;
827 	gfn_t mmu_invalidate_range_end;
828 #endif
829 	struct list_head devices;
830 	u64 manual_dirty_log_protect;
831 	struct dentry *debugfs_dentry;
832 	struct kvm_stat_data **debugfs_stat_data;
833 	struct srcu_struct srcu;
834 	struct srcu_struct irq_srcu;
835 	pid_t userspace_pid;
836 	bool override_halt_poll_ns;
837 	unsigned int max_halt_poll_ns;
838 	u32 dirty_ring_size;
839 	bool dirty_ring_with_bitmap;
840 	bool vm_bugged;
841 	bool vm_dead;
842 
843 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
844 	struct notifier_block pm_notifier;
845 #endif
846 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
847 	/* Protected by slots_locks (for writes) and RCU (for reads) */
848 	struct xarray mem_attr_array;
849 #endif
850 	char stats_id[KVM_STATS_NAME_SIZE];
851 };
852 
853 #define kvm_err(fmt, ...) \
854 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
855 #define kvm_info(fmt, ...) \
856 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
857 #define kvm_debug(fmt, ...) \
858 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
859 #define kvm_debug_ratelimited(fmt, ...) \
860 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
861 			     ## __VA_ARGS__)
862 #define kvm_pr_unimpl(fmt, ...) \
863 	pr_err_ratelimited("kvm [%i]: " fmt, \
864 			   task_tgid_nr(current), ## __VA_ARGS__)
865 
866 /* The guest did something we don't support. */
867 #define vcpu_unimpl(vcpu, fmt, ...)					\
868 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
869 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
870 
871 #define vcpu_debug(vcpu, fmt, ...)					\
872 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
873 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
874 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
875 			      ## __VA_ARGS__)
876 #define vcpu_err(vcpu, fmt, ...)					\
877 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
878 
879 static inline void kvm_vm_dead(struct kvm *kvm)
880 {
881 	kvm->vm_dead = true;
882 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
883 }
884 
885 static inline void kvm_vm_bugged(struct kvm *kvm)
886 {
887 	kvm->vm_bugged = true;
888 	kvm_vm_dead(kvm);
889 }
890 
891 
892 #define KVM_BUG(cond, kvm, fmt...)				\
893 ({								\
894 	bool __ret = !!(cond);					\
895 								\
896 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
897 		kvm_vm_bugged(kvm);				\
898 	unlikely(__ret);					\
899 })
900 
901 #define KVM_BUG_ON(cond, kvm)					\
902 ({								\
903 	bool __ret = !!(cond);					\
904 								\
905 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
906 		kvm_vm_bugged(kvm);				\
907 	unlikely(__ret);					\
908 })
909 
910 /*
911  * Note, "data corruption" refers to corruption of host kernel data structures,
912  * not guest data.  Guest data corruption, suspected or confirmed, that is tied
913  * and contained to a single VM should *never* BUG() and potentially panic the
914  * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
915  * is corrupted and that corruption can have a cascading effect to other parts
916  * of the hosts and/or to other VMs.
917  */
918 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)			\
919 ({								\
920 	bool __ret = !!(cond);					\
921 								\
922 	if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))		\
923 		BUG_ON(__ret);					\
924 	else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))	\
925 		kvm_vm_bugged(kvm);				\
926 	unlikely(__ret);					\
927 })
928 
929 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
930 {
931 #ifdef CONFIG_PROVE_RCU
932 	WARN_ONCE(vcpu->srcu_depth++,
933 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
934 #endif
935 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
936 }
937 
938 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
939 {
940 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
941 
942 #ifdef CONFIG_PROVE_RCU
943 	WARN_ONCE(--vcpu->srcu_depth,
944 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
945 #endif
946 }
947 
948 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
949 {
950 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
951 }
952 
953 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
954 {
955 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
956 				      lockdep_is_held(&kvm->slots_lock) ||
957 				      !refcount_read(&kvm->users_count));
958 }
959 
960 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
961 {
962 	int num_vcpus = atomic_read(&kvm->online_vcpus);
963 	i = array_index_nospec(i, num_vcpus);
964 
965 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
966 	smp_rmb();
967 	return xa_load(&kvm->vcpu_array, i);
968 }
969 
970 #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
971 	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
972 			  (atomic_read(&kvm->online_vcpus) - 1))
973 
974 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
975 {
976 	struct kvm_vcpu *vcpu = NULL;
977 	unsigned long i;
978 
979 	if (id < 0)
980 		return NULL;
981 	if (id < KVM_MAX_VCPUS)
982 		vcpu = kvm_get_vcpu(kvm, id);
983 	if (vcpu && vcpu->vcpu_id == id)
984 		return vcpu;
985 	kvm_for_each_vcpu(i, vcpu, kvm)
986 		if (vcpu->vcpu_id == id)
987 			return vcpu;
988 	return NULL;
989 }
990 
991 void kvm_destroy_vcpus(struct kvm *kvm);
992 
993 void vcpu_load(struct kvm_vcpu *vcpu);
994 void vcpu_put(struct kvm_vcpu *vcpu);
995 
996 #ifdef __KVM_HAVE_IOAPIC
997 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
998 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
999 #else
1000 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1001 {
1002 }
1003 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
1004 {
1005 }
1006 #endif
1007 
1008 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1009 int kvm_irqfd_init(void);
1010 void kvm_irqfd_exit(void);
1011 #else
1012 static inline int kvm_irqfd_init(void)
1013 {
1014 	return 0;
1015 }
1016 
1017 static inline void kvm_irqfd_exit(void)
1018 {
1019 }
1020 #endif
1021 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1022 void kvm_exit(void);
1023 
1024 void kvm_get_kvm(struct kvm *kvm);
1025 bool kvm_get_kvm_safe(struct kvm *kvm);
1026 void kvm_put_kvm(struct kvm *kvm);
1027 bool file_is_kvm(struct file *file);
1028 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1029 
1030 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1031 {
1032 	as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1033 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1034 			lockdep_is_held(&kvm->slots_lock) ||
1035 			!refcount_read(&kvm->users_count));
1036 }
1037 
1038 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1039 {
1040 	return __kvm_memslots(kvm, 0);
1041 }
1042 
1043 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1044 {
1045 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1046 
1047 	return __kvm_memslots(vcpu->kvm, as_id);
1048 }
1049 
1050 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1051 {
1052 	return RB_EMPTY_ROOT(&slots->gfn_tree);
1053 }
1054 
1055 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1056 
1057 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
1058 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1059 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
1060 		} else
1061 
1062 static inline
1063 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1064 {
1065 	struct kvm_memory_slot *slot;
1066 	int idx = slots->node_idx;
1067 
1068 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1069 		if (slot->id == id)
1070 			return slot;
1071 	}
1072 
1073 	return NULL;
1074 }
1075 
1076 /* Iterator used for walking memslots that overlap a gfn range. */
1077 struct kvm_memslot_iter {
1078 	struct kvm_memslots *slots;
1079 	struct rb_node *node;
1080 	struct kvm_memory_slot *slot;
1081 };
1082 
1083 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1084 {
1085 	iter->node = rb_next(iter->node);
1086 	if (!iter->node)
1087 		return;
1088 
1089 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1090 }
1091 
1092 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1093 					  struct kvm_memslots *slots,
1094 					  gfn_t start)
1095 {
1096 	int idx = slots->node_idx;
1097 	struct rb_node *tmp;
1098 	struct kvm_memory_slot *slot;
1099 
1100 	iter->slots = slots;
1101 
1102 	/*
1103 	 * Find the so called "upper bound" of a key - the first node that has
1104 	 * its key strictly greater than the searched one (the start gfn in our case).
1105 	 */
1106 	iter->node = NULL;
1107 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1108 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1109 		if (start < slot->base_gfn) {
1110 			iter->node = tmp;
1111 			tmp = tmp->rb_left;
1112 		} else {
1113 			tmp = tmp->rb_right;
1114 		}
1115 	}
1116 
1117 	/*
1118 	 * Find the slot with the lowest gfn that can possibly intersect with
1119 	 * the range, so we'll ideally have slot start <= range start
1120 	 */
1121 	if (iter->node) {
1122 		/*
1123 		 * A NULL previous node means that the very first slot
1124 		 * already has a higher start gfn.
1125 		 * In this case slot start > range start.
1126 		 */
1127 		tmp = rb_prev(iter->node);
1128 		if (tmp)
1129 			iter->node = tmp;
1130 	} else {
1131 		/* a NULL node below means no slots */
1132 		iter->node = rb_last(&slots->gfn_tree);
1133 	}
1134 
1135 	if (iter->node) {
1136 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1137 
1138 		/*
1139 		 * It is possible in the slot start < range start case that the
1140 		 * found slot ends before or at range start (slot end <= range start)
1141 		 * and so it does not overlap the requested range.
1142 		 *
1143 		 * In such non-overlapping case the next slot (if it exists) will
1144 		 * already have slot start > range start, otherwise the logic above
1145 		 * would have found it instead of the current slot.
1146 		 */
1147 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1148 			kvm_memslot_iter_next(iter);
1149 	}
1150 }
1151 
1152 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1153 {
1154 	if (!iter->node)
1155 		return false;
1156 
1157 	/*
1158 	 * If this slot starts beyond or at the end of the range so does
1159 	 * every next one
1160 	 */
1161 	return iter->slot->base_gfn < end;
1162 }
1163 
1164 /* Iterate over each memslot at least partially intersecting [start, end) range */
1165 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1166 	for (kvm_memslot_iter_start(iter, slots, start);		\
1167 	     kvm_memslot_iter_is_valid(iter, end);			\
1168 	     kvm_memslot_iter_next(iter))
1169 
1170 /*
1171  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1172  * - create a new memory slot
1173  * - delete an existing memory slot
1174  * - modify an existing memory slot
1175  *   -- move it in the guest physical memory space
1176  *   -- just change its flags
1177  *
1178  * Since flags can be changed by some of these operations, the following
1179  * differentiation is the best we can do for __kvm_set_memory_region():
1180  */
1181 enum kvm_mr_change {
1182 	KVM_MR_CREATE,
1183 	KVM_MR_DELETE,
1184 	KVM_MR_MOVE,
1185 	KVM_MR_FLAGS_ONLY,
1186 };
1187 
1188 int kvm_set_memory_region(struct kvm *kvm,
1189 			  const struct kvm_userspace_memory_region2 *mem);
1190 int __kvm_set_memory_region(struct kvm *kvm,
1191 			    const struct kvm_userspace_memory_region2 *mem);
1192 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1193 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1194 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1195 				const struct kvm_memory_slot *old,
1196 				struct kvm_memory_slot *new,
1197 				enum kvm_mr_change change);
1198 void kvm_arch_commit_memory_region(struct kvm *kvm,
1199 				struct kvm_memory_slot *old,
1200 				const struct kvm_memory_slot *new,
1201 				enum kvm_mr_change change);
1202 /* flush all memory translations */
1203 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1204 /* flush memory translations pointing to 'slot' */
1205 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1206 				   struct kvm_memory_slot *slot);
1207 
1208 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
1209 		       struct page **pages, int nr_pages);
1210 
1211 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1212 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1213 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1214 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1215 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1216 				      bool *writable);
1217 
1218 static inline void kvm_release_page_unused(struct page *page)
1219 {
1220 	if (!page)
1221 		return;
1222 
1223 	put_page(page);
1224 }
1225 
1226 void kvm_release_page_clean(struct page *page);
1227 void kvm_release_page_dirty(struct page *page);
1228 
1229 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1230 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1231 		      bool *writable);
1232 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1233 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1234 			       bool interruptible, bool no_wait,
1235 			       bool write_fault, bool *writable);
1236 
1237 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1238 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1239 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1240 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1241 
1242 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1243 			int len);
1244 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1245 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1246 			   void *data, unsigned long len);
1247 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1248 				 void *data, unsigned int offset,
1249 				 unsigned long len);
1250 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1251 			 int offset, int len);
1252 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1253 		    unsigned long len);
1254 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1255 			   void *data, unsigned long len);
1256 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1257 				  void *data, unsigned int offset,
1258 				  unsigned long len);
1259 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1260 			      gpa_t gpa, unsigned long len);
1261 
1262 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1263 ({									\
1264 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1265 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1266 	int __ret = -EFAULT;						\
1267 									\
1268 	if (!kvm_is_error_hva(__addr))					\
1269 		__ret = get_user(v, __uaddr);				\
1270 	__ret;								\
1271 })
1272 
1273 #define kvm_get_guest(kvm, gpa, v)					\
1274 ({									\
1275 	gpa_t __gpa = gpa;						\
1276 	struct kvm *__kvm = kvm;					\
1277 									\
1278 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1279 			offset_in_page(__gpa), v);			\
1280 })
1281 
1282 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1283 ({									\
1284 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1285 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1286 	int __ret = -EFAULT;						\
1287 									\
1288 	if (!kvm_is_error_hva(__addr))					\
1289 		__ret = put_user(v, __uaddr);				\
1290 	if (!__ret)							\
1291 		mark_page_dirty(kvm, gfn);				\
1292 	__ret;								\
1293 })
1294 
1295 #define kvm_put_guest(kvm, gpa, v)					\
1296 ({									\
1297 	gpa_t __gpa = gpa;						\
1298 	struct kvm *__kvm = kvm;					\
1299 									\
1300 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1301 			offset_in_page(__gpa), v);			\
1302 })
1303 
1304 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1305 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1306 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1307 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1308 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1309 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1310 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1311 
1312 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1313 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1314 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1315 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1316 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1317 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1318 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1319 			     int len);
1320 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1321 			       unsigned long len);
1322 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1323 			unsigned long len);
1324 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1325 			      int offset, int len);
1326 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1327 			 unsigned long len);
1328 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1329 
1330 /**
1331  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1332  *
1333  * @gpc:	   struct gfn_to_pfn_cache object.
1334  * @kvm:	   pointer to kvm instance.
1335  *
1336  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1337  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1338  * the caller before init).
1339  */
1340 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1341 
1342 /**
1343  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1344  *                    physical address.
1345  *
1346  * @gpc:	   struct gfn_to_pfn_cache object.
1347  * @gpa:	   guest physical address to map.
1348  * @len:	   sanity check; the range being access must fit a single page.
1349  *
1350  * @return:	   0 for success.
1351  *		   -EINVAL for a mapping which would cross a page boundary.
1352  *		   -EFAULT for an untranslatable guest physical address.
1353  *
1354  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1355  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1356  * to ensure that the cache is valid before accessing the target page.
1357  */
1358 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1359 
1360 /**
1361  * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1362  *
1363  * @gpc:          struct gfn_to_pfn_cache object.
1364  * @hva:          userspace virtual address to map.
1365  * @len:          sanity check; the range being access must fit a single page.
1366  *
1367  * @return:       0 for success.
1368  *                -EINVAL for a mapping which would cross a page boundary.
1369  *                -EFAULT for an untranslatable guest physical address.
1370  *
1371  * The semantics of this function are the same as those of kvm_gpc_activate(). It
1372  * merely bypasses a layer of address translation.
1373  */
1374 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1375 
1376 /**
1377  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1378  *
1379  * @gpc:	   struct gfn_to_pfn_cache object.
1380  * @len:	   sanity check; the range being access must fit a single page.
1381  *
1382  * @return:	   %true if the cache is still valid and the address matches.
1383  *		   %false if the cache is not valid.
1384  *
1385  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1386  * while calling this function, and then continue to hold the lock until the
1387  * access is complete.
1388  *
1389  * Callers in IN_GUEST_MODE may do so without locking, although they should
1390  * still hold a read lock on kvm->scru for the memslot checks.
1391  */
1392 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1393 
1394 /**
1395  * kvm_gpc_refresh - update a previously initialized cache.
1396  *
1397  * @gpc:	   struct gfn_to_pfn_cache object.
1398  * @len:	   sanity check; the range being access must fit a single page.
1399  *
1400  * @return:	   0 for success.
1401  *		   -EINVAL for a mapping which would cross a page boundary.
1402  *		   -EFAULT for an untranslatable guest physical address.
1403  *
1404  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1405  * return from this function does not mean the page can be immediately
1406  * accessed because it may have raced with an invalidation. Callers must
1407  * still lock and check the cache status, as this function does not return
1408  * with the lock still held to permit access.
1409  */
1410 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1411 
1412 /**
1413  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1414  *
1415  * @gpc:	   struct gfn_to_pfn_cache object.
1416  *
1417  * This removes a cache from the VM's list to be processed on MMU notifier
1418  * invocation.
1419  */
1420 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1421 
1422 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1423 {
1424 	return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1425 }
1426 
1427 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1428 {
1429 	return gpc->active && kvm_is_error_gpa(gpc->gpa);
1430 }
1431 
1432 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1433 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1434 
1435 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1436 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1437 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1438 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1439 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1440 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1441 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1442 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1443 
1444 void kvm_flush_remote_tlbs(struct kvm *kvm);
1445 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1446 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1447 				   const struct kvm_memory_slot *memslot);
1448 
1449 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1450 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1451 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1452 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1453 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1454 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1455 #endif
1456 
1457 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1458 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1459 void kvm_mmu_invalidate_end(struct kvm *kvm);
1460 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1461 
1462 long kvm_arch_dev_ioctl(struct file *filp,
1463 			unsigned int ioctl, unsigned long arg);
1464 long kvm_arch_vcpu_ioctl(struct file *filp,
1465 			 unsigned int ioctl, unsigned long arg);
1466 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1467 
1468 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1469 
1470 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1471 					struct kvm_memory_slot *slot,
1472 					gfn_t gfn_offset,
1473 					unsigned long mask);
1474 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1475 
1476 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1477 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1478 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1479 		      int *is_dirty, struct kvm_memory_slot **memslot);
1480 #endif
1481 
1482 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1483 			bool line_status);
1484 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1485 			    struct kvm_enable_cap *cap);
1486 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1487 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1488 			      unsigned long arg);
1489 
1490 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1491 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1492 
1493 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1494 				    struct kvm_translation *tr);
1495 
1496 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1497 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1498 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1499 				  struct kvm_sregs *sregs);
1500 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1501 				  struct kvm_sregs *sregs);
1502 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1503 				    struct kvm_mp_state *mp_state);
1504 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1505 				    struct kvm_mp_state *mp_state);
1506 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1507 					struct kvm_guest_debug *dbg);
1508 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1509 
1510 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1511 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1512 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1513 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1514 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1515 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1516 
1517 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1518 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1519 #endif
1520 
1521 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1522 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1523 #else
1524 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1525 #endif
1526 
1527 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1528 /*
1529  * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1530  * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1531  * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1532  * sequence, and at the end of the generic hardware disabling sequence.
1533  */
1534 void kvm_arch_enable_virtualization(void);
1535 void kvm_arch_disable_virtualization(void);
1536 /*
1537  * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1538  * do the actual twiddling of hardware bits.  The hooks are called on all
1539  * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1540  * when that CPU is onlined/offlined (including for Resume/Suspend).
1541  */
1542 int kvm_arch_enable_virtualization_cpu(void);
1543 void kvm_arch_disable_virtualization_cpu(void);
1544 #endif
1545 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1546 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1547 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1548 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1549 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1550 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1551 int kvm_arch_post_init_vm(struct kvm *kvm);
1552 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1553 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1554 
1555 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1556 /*
1557  * All architectures that want to use vzalloc currently also
1558  * need their own kvm_arch_alloc_vm implementation.
1559  */
1560 static inline struct kvm *kvm_arch_alloc_vm(void)
1561 {
1562 	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1563 }
1564 #endif
1565 
1566 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1567 {
1568 	kvfree(kvm);
1569 }
1570 
1571 #ifndef __KVM_HAVE_ARCH_VM_FREE
1572 static inline void kvm_arch_free_vm(struct kvm *kvm)
1573 {
1574 	__kvm_arch_free_vm(kvm);
1575 }
1576 #endif
1577 
1578 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1579 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1580 {
1581 	return -ENOTSUPP;
1582 }
1583 #else
1584 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1585 #endif
1586 
1587 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1588 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1589 						    gfn_t gfn, u64 nr_pages)
1590 {
1591 	return -EOPNOTSUPP;
1592 }
1593 #else
1594 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1595 #endif
1596 
1597 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1598 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1599 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1600 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1601 #else
1602 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1603 {
1604 }
1605 
1606 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1607 {
1608 }
1609 
1610 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1611 {
1612 	return false;
1613 }
1614 #endif
1615 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1616 void kvm_arch_start_assignment(struct kvm *kvm);
1617 void kvm_arch_end_assignment(struct kvm *kvm);
1618 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1619 #else
1620 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1621 {
1622 }
1623 
1624 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1625 {
1626 }
1627 
1628 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1629 {
1630 	return false;
1631 }
1632 #endif
1633 
1634 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1635 {
1636 #ifdef __KVM_HAVE_ARCH_WQP
1637 	return vcpu->arch.waitp;
1638 #else
1639 	return &vcpu->wait;
1640 #endif
1641 }
1642 
1643 /*
1644  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1645  * true if the vCPU was blocking and was awakened, false otherwise.
1646  */
1647 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1648 {
1649 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1650 }
1651 
1652 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1653 {
1654 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1655 }
1656 
1657 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1658 /*
1659  * returns true if the virtual interrupt controller is initialized and
1660  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1661  * controller is dynamically instantiated and this is not always true.
1662  */
1663 bool kvm_arch_intc_initialized(struct kvm *kvm);
1664 #else
1665 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1666 {
1667 	return true;
1668 }
1669 #endif
1670 
1671 #ifdef CONFIG_GUEST_PERF_EVENTS
1672 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1673 
1674 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1675 void kvm_unregister_perf_callbacks(void);
1676 #else
1677 static inline void kvm_register_perf_callbacks(void *ign) {}
1678 static inline void kvm_unregister_perf_callbacks(void) {}
1679 #endif /* CONFIG_GUEST_PERF_EVENTS */
1680 
1681 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1682 void kvm_arch_destroy_vm(struct kvm *kvm);
1683 void kvm_arch_sync_events(struct kvm *kvm);
1684 
1685 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1686 
1687 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1688 bool kvm_is_zone_device_page(struct page *page);
1689 
1690 struct kvm_irq_ack_notifier {
1691 	struct hlist_node link;
1692 	unsigned gsi;
1693 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1694 };
1695 
1696 int kvm_irq_map_gsi(struct kvm *kvm,
1697 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1698 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1699 
1700 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1701 		bool line_status);
1702 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1703 		int irq_source_id, int level, bool line_status);
1704 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1705 			       struct kvm *kvm, int irq_source_id,
1706 			       int level, bool line_status);
1707 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1708 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1709 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1710 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1711 				   struct kvm_irq_ack_notifier *kian);
1712 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1713 				   struct kvm_irq_ack_notifier *kian);
1714 int kvm_request_irq_source_id(struct kvm *kvm);
1715 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1716 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1717 
1718 /*
1719  * Returns a pointer to the memslot if it contains gfn.
1720  * Otherwise returns NULL.
1721  */
1722 static inline struct kvm_memory_slot *
1723 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1724 {
1725 	if (!slot)
1726 		return NULL;
1727 
1728 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1729 		return slot;
1730 	else
1731 		return NULL;
1732 }
1733 
1734 /*
1735  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1736  *
1737  * With "approx" set returns the memslot also when the address falls
1738  * in a hole. In that case one of the memslots bordering the hole is
1739  * returned.
1740  */
1741 static inline struct kvm_memory_slot *
1742 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1743 {
1744 	struct kvm_memory_slot *slot;
1745 	struct rb_node *node;
1746 	int idx = slots->node_idx;
1747 
1748 	slot = NULL;
1749 	for (node = slots->gfn_tree.rb_node; node; ) {
1750 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1751 		if (gfn >= slot->base_gfn) {
1752 			if (gfn < slot->base_gfn + slot->npages)
1753 				return slot;
1754 			node = node->rb_right;
1755 		} else
1756 			node = node->rb_left;
1757 	}
1758 
1759 	return approx ? slot : NULL;
1760 }
1761 
1762 static inline struct kvm_memory_slot *
1763 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1764 {
1765 	struct kvm_memory_slot *slot;
1766 
1767 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1768 	slot = try_get_memslot(slot, gfn);
1769 	if (slot)
1770 		return slot;
1771 
1772 	slot = search_memslots(slots, gfn, approx);
1773 	if (slot) {
1774 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1775 		return slot;
1776 	}
1777 
1778 	return NULL;
1779 }
1780 
1781 /*
1782  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1783  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1784  * because that would bloat other code too much.
1785  */
1786 static inline struct kvm_memory_slot *
1787 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1788 {
1789 	return ____gfn_to_memslot(slots, gfn, false);
1790 }
1791 
1792 static inline unsigned long
1793 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1794 {
1795 	/*
1796 	 * The index was checked originally in search_memslots.  To avoid
1797 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1798 	 * table walks, do not let the processor speculate loads outside
1799 	 * the guest's registered memslots.
1800 	 */
1801 	unsigned long offset = gfn - slot->base_gfn;
1802 	offset = array_index_nospec(offset, slot->npages);
1803 	return slot->userspace_addr + offset * PAGE_SIZE;
1804 }
1805 
1806 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1807 {
1808 	return gfn_to_memslot(kvm, gfn)->id;
1809 }
1810 
1811 static inline gfn_t
1812 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1813 {
1814 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1815 
1816 	return slot->base_gfn + gfn_offset;
1817 }
1818 
1819 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1820 {
1821 	return (gpa_t)gfn << PAGE_SHIFT;
1822 }
1823 
1824 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1825 {
1826 	return (gfn_t)(gpa >> PAGE_SHIFT);
1827 }
1828 
1829 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1830 {
1831 	return (hpa_t)pfn << PAGE_SHIFT;
1832 }
1833 
1834 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1835 {
1836 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1837 
1838 	return !kvm_is_error_hva(hva);
1839 }
1840 
1841 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1842 {
1843 	lockdep_assert_held(&gpc->lock);
1844 
1845 	if (!gpc->memslot)
1846 		return;
1847 
1848 	mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1849 }
1850 
1851 enum kvm_stat_kind {
1852 	KVM_STAT_VM,
1853 	KVM_STAT_VCPU,
1854 };
1855 
1856 struct kvm_stat_data {
1857 	struct kvm *kvm;
1858 	const struct _kvm_stats_desc *desc;
1859 	enum kvm_stat_kind kind;
1860 };
1861 
1862 struct _kvm_stats_desc {
1863 	struct kvm_stats_desc desc;
1864 	char name[KVM_STATS_NAME_SIZE];
1865 };
1866 
1867 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1868 	.flags = type | unit | base |					       \
1869 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1870 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1871 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1872 	.exponent = exp,						       \
1873 	.size = sz,							       \
1874 	.bucket_size = bsz
1875 
1876 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1877 	{								       \
1878 		{							       \
1879 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1880 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1881 		},							       \
1882 		.name = #stat,						       \
1883 	}
1884 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1885 	{								       \
1886 		{							       \
1887 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1888 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1889 		},							       \
1890 		.name = #stat,						       \
1891 	}
1892 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1893 	{								       \
1894 		{							       \
1895 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1896 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1897 		},							       \
1898 		.name = #stat,						       \
1899 	}
1900 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1901 	{								       \
1902 		{							       \
1903 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1904 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1905 		},							       \
1906 		.name = #stat,						       \
1907 	}
1908 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1909 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1910 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1911 
1912 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1913 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1914 		unit, base, exponent, 1, 0)
1915 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1916 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1917 		unit, base, exponent, 1, 0)
1918 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1919 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1920 		unit, base, exponent, 1, 0)
1921 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1922 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1923 		unit, base, exponent, sz, bsz)
1924 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1925 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1926 		unit, base, exponent, sz, 0)
1927 
1928 /* Cumulative counter, read/write */
1929 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1930 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1931 		KVM_STATS_BASE_POW10, 0)
1932 /* Instantaneous counter, read only */
1933 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1934 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1935 		KVM_STATS_BASE_POW10, 0)
1936 /* Peak counter, read/write */
1937 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1938 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1939 		KVM_STATS_BASE_POW10, 0)
1940 
1941 /* Instantaneous boolean value, read only */
1942 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
1943 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1944 		KVM_STATS_BASE_POW10, 0)
1945 /* Peak (sticky) boolean value, read/write */
1946 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
1947 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1948 		KVM_STATS_BASE_POW10, 0)
1949 
1950 /* Cumulative time in nanosecond */
1951 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1952 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1953 		KVM_STATS_BASE_POW10, -9)
1954 /* Linear histogram for time in nanosecond */
1955 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1956 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1957 		KVM_STATS_BASE_POW10, -9, sz, bsz)
1958 /* Logarithmic histogram for time in nanosecond */
1959 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1960 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1961 		KVM_STATS_BASE_POW10, -9, sz)
1962 
1963 #define KVM_GENERIC_VM_STATS()						       \
1964 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1965 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1966 
1967 #define KVM_GENERIC_VCPU_STATS()					       \
1968 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1969 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1970 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1971 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1972 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1973 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1974 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1975 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1976 			HALT_POLL_HIST_COUNT),				       \
1977 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1978 			HALT_POLL_HIST_COUNT),				       \
1979 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1980 			HALT_POLL_HIST_COUNT),				       \
1981 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1982 
1983 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1984 		       const struct _kvm_stats_desc *desc,
1985 		       void *stats, size_t size_stats,
1986 		       char __user *user_buffer, size_t size, loff_t *offset);
1987 
1988 /**
1989  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1990  * statistics data.
1991  *
1992  * @data: start address of the stats data
1993  * @size: the number of bucket of the stats data
1994  * @value: the new value used to update the linear histogram's bucket
1995  * @bucket_size: the size (width) of a bucket
1996  */
1997 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1998 						u64 value, size_t bucket_size)
1999 {
2000 	size_t index = div64_u64(value, bucket_size);
2001 
2002 	index = min(index, size - 1);
2003 	++data[index];
2004 }
2005 
2006 /**
2007  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2008  * statistics data.
2009  *
2010  * @data: start address of the stats data
2011  * @size: the number of bucket of the stats data
2012  * @value: the new value used to update the logarithmic histogram's bucket
2013  */
2014 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2015 {
2016 	size_t index = fls64(value);
2017 
2018 	index = min(index, size - 1);
2019 	++data[index];
2020 }
2021 
2022 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
2023 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2024 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
2025 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2026 
2027 
2028 extern const struct kvm_stats_header kvm_vm_stats_header;
2029 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2030 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2031 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2032 
2033 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
2034 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2035 {
2036 	if (unlikely(kvm->mmu_invalidate_in_progress))
2037 		return 1;
2038 	/*
2039 	 * Ensure the read of mmu_invalidate_in_progress happens before
2040 	 * the read of mmu_invalidate_seq.  This interacts with the
2041 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2042 	 * that the caller either sees the old (non-zero) value of
2043 	 * mmu_invalidate_in_progress or the new (incremented) value of
2044 	 * mmu_invalidate_seq.
2045 	 *
2046 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2047 	 * than under kvm->mmu_lock, for scalability, so can't rely on
2048 	 * kvm->mmu_lock to keep things ordered.
2049 	 */
2050 	smp_rmb();
2051 	if (kvm->mmu_invalidate_seq != mmu_seq)
2052 		return 1;
2053 	return 0;
2054 }
2055 
2056 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2057 					   unsigned long mmu_seq,
2058 					   gfn_t gfn)
2059 {
2060 	lockdep_assert_held(&kvm->mmu_lock);
2061 	/*
2062 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2063 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2064 	 * that might be being invalidated. Note that it may include some false
2065 	 * positives, due to shortcuts when handing concurrent invalidations.
2066 	 */
2067 	if (unlikely(kvm->mmu_invalidate_in_progress)) {
2068 		/*
2069 		 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2070 		 * but before updating the range is a KVM bug.
2071 		 */
2072 		if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2073 				 kvm->mmu_invalidate_range_end == INVALID_GPA))
2074 			return 1;
2075 
2076 		if (gfn >= kvm->mmu_invalidate_range_start &&
2077 		    gfn < kvm->mmu_invalidate_range_end)
2078 			return 1;
2079 	}
2080 
2081 	if (kvm->mmu_invalidate_seq != mmu_seq)
2082 		return 1;
2083 	return 0;
2084 }
2085 
2086 /*
2087  * This lockless version of the range-based retry check *must* be paired with a
2088  * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2089  * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2090  * get false negatives and false positives.
2091  */
2092 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2093 						   unsigned long mmu_seq,
2094 						   gfn_t gfn)
2095 {
2096 	/*
2097 	 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2098 	 * are always read from memory, e.g. so that checking for retry in a
2099 	 * loop won't result in an infinite retry loop.  Don't force loads for
2100 	 * start+end, as the key to avoiding infinite retry loops is observing
2101 	 * the 1=>0 transition of in-progress, i.e. getting false negatives
2102 	 * due to stale start+end values is acceptable.
2103 	 */
2104 	if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2105 	    gfn >= kvm->mmu_invalidate_range_start &&
2106 	    gfn < kvm->mmu_invalidate_range_end)
2107 		return true;
2108 
2109 	return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2110 }
2111 #endif
2112 
2113 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2114 
2115 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2116 
2117 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2118 int kvm_set_irq_routing(struct kvm *kvm,
2119 			const struct kvm_irq_routing_entry *entries,
2120 			unsigned nr,
2121 			unsigned flags);
2122 int kvm_init_irq_routing(struct kvm *kvm);
2123 int kvm_set_routing_entry(struct kvm *kvm,
2124 			  struct kvm_kernel_irq_routing_entry *e,
2125 			  const struct kvm_irq_routing_entry *ue);
2126 void kvm_free_irq_routing(struct kvm *kvm);
2127 
2128 #else
2129 
2130 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2131 
2132 static inline int kvm_init_irq_routing(struct kvm *kvm)
2133 {
2134 	return 0;
2135 }
2136 
2137 #endif
2138 
2139 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2140 
2141 void kvm_eventfd_init(struct kvm *kvm);
2142 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2143 
2144 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2145 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2146 void kvm_irqfd_release(struct kvm *kvm);
2147 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2148 				unsigned int irqchip,
2149 				unsigned int pin);
2150 void kvm_irq_routing_update(struct kvm *);
2151 #else
2152 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2153 {
2154 	return -EINVAL;
2155 }
2156 
2157 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2158 
2159 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2160 					      unsigned int irqchip,
2161 					      unsigned int pin)
2162 {
2163 	return false;
2164 }
2165 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2166 
2167 void kvm_arch_irq_routing_update(struct kvm *kvm);
2168 
2169 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2170 {
2171 	/*
2172 	 * Ensure the rest of the request is published to kvm_check_request's
2173 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2174 	 */
2175 	smp_wmb();
2176 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2177 }
2178 
2179 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2180 {
2181 	/*
2182 	 * Request that don't require vCPU action should never be logged in
2183 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2184 	 * logged indefinitely and prevent the vCPU from entering the guest.
2185 	 */
2186 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2187 		     (req & KVM_REQUEST_NO_ACTION));
2188 
2189 	__kvm_make_request(req, vcpu);
2190 }
2191 
2192 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2193 {
2194 	return READ_ONCE(vcpu->requests);
2195 }
2196 
2197 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2198 {
2199 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2200 }
2201 
2202 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2203 {
2204 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2205 }
2206 
2207 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2208 {
2209 	if (kvm_test_request(req, vcpu)) {
2210 		kvm_clear_request(req, vcpu);
2211 
2212 		/*
2213 		 * Ensure the rest of the request is visible to kvm_check_request's
2214 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2215 		 */
2216 		smp_mb__after_atomic();
2217 		return true;
2218 	} else {
2219 		return false;
2220 	}
2221 }
2222 
2223 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2224 extern bool kvm_rebooting;
2225 #endif
2226 
2227 extern unsigned int halt_poll_ns;
2228 extern unsigned int halt_poll_ns_grow;
2229 extern unsigned int halt_poll_ns_grow_start;
2230 extern unsigned int halt_poll_ns_shrink;
2231 
2232 struct kvm_device {
2233 	const struct kvm_device_ops *ops;
2234 	struct kvm *kvm;
2235 	void *private;
2236 	struct list_head vm_node;
2237 };
2238 
2239 /* create, destroy, and name are mandatory */
2240 struct kvm_device_ops {
2241 	const char *name;
2242 
2243 	/*
2244 	 * create is called holding kvm->lock and any operations not suitable
2245 	 * to do while holding the lock should be deferred to init (see
2246 	 * below).
2247 	 */
2248 	int (*create)(struct kvm_device *dev, u32 type);
2249 
2250 	/*
2251 	 * init is called after create if create is successful and is called
2252 	 * outside of holding kvm->lock.
2253 	 */
2254 	void (*init)(struct kvm_device *dev);
2255 
2256 	/*
2257 	 * Destroy is responsible for freeing dev.
2258 	 *
2259 	 * Destroy may be called before or after destructors are called
2260 	 * on emulated I/O regions, depending on whether a reference is
2261 	 * held by a vcpu or other kvm component that gets destroyed
2262 	 * after the emulated I/O.
2263 	 */
2264 	void (*destroy)(struct kvm_device *dev);
2265 
2266 	/*
2267 	 * Release is an alternative method to free the device. It is
2268 	 * called when the device file descriptor is closed. Once
2269 	 * release is called, the destroy method will not be called
2270 	 * anymore as the device is removed from the device list of
2271 	 * the VM. kvm->lock is held.
2272 	 */
2273 	void (*release)(struct kvm_device *dev);
2274 
2275 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2276 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2277 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2278 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2279 		      unsigned long arg);
2280 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2281 };
2282 
2283 struct kvm_device *kvm_device_from_filp(struct file *filp);
2284 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2285 void kvm_unregister_device_ops(u32 type);
2286 
2287 extern struct kvm_device_ops kvm_mpic_ops;
2288 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2289 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2290 
2291 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2292 
2293 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2294 {
2295 	vcpu->spin_loop.in_spin_loop = val;
2296 }
2297 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2298 {
2299 	vcpu->spin_loop.dy_eligible = val;
2300 }
2301 
2302 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2303 
2304 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2305 {
2306 }
2307 
2308 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2309 {
2310 }
2311 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2312 
2313 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2314 {
2315 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2316 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2317 }
2318 
2319 struct kvm_vcpu *kvm_get_running_vcpu(void);
2320 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2321 
2322 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2323 bool kvm_arch_has_irq_bypass(void);
2324 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2325 			   struct irq_bypass_producer *);
2326 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2327 			   struct irq_bypass_producer *);
2328 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2329 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2330 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2331 				  uint32_t guest_irq, bool set);
2332 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2333 				  struct kvm_kernel_irq_routing_entry *);
2334 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2335 
2336 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2337 /* If we wakeup during the poll time, was it a sucessful poll? */
2338 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2339 {
2340 	return vcpu->valid_wakeup;
2341 }
2342 
2343 #else
2344 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2345 {
2346 	return true;
2347 }
2348 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2349 
2350 #ifdef CONFIG_HAVE_KVM_NO_POLL
2351 /* Callback that tells if we must not poll */
2352 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2353 #else
2354 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2355 {
2356 	return false;
2357 }
2358 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2359 
2360 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2361 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2362 			       unsigned int ioctl, unsigned long arg);
2363 #else
2364 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2365 					     unsigned int ioctl,
2366 					     unsigned long arg)
2367 {
2368 	return -ENOIOCTLCMD;
2369 }
2370 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2371 
2372 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2373 
2374 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2375 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2376 #else
2377 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2378 {
2379 	return 0;
2380 }
2381 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2382 
2383 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2384 
2385 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2386 				uintptr_t data, const char *name,
2387 				struct task_struct **thread_ptr);
2388 
2389 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2390 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2391 {
2392 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2393 	vcpu->stat.signal_exits++;
2394 }
2395 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2396 
2397 /*
2398  * If more than one page is being (un)accounted, @virt must be the address of
2399  * the first page of a block of pages what were allocated together (i.e
2400  * accounted together).
2401  *
2402  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2403  * is thread-safe.
2404  */
2405 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2406 {
2407 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2408 }
2409 
2410 /*
2411  * This defines how many reserved entries we want to keep before we
2412  * kick the vcpu to the userspace to avoid dirty ring full.  This
2413  * value can be tuned to higher if e.g. PML is enabled on the host.
2414  */
2415 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2416 
2417 /* Max number of entries allowed for each kvm dirty ring */
2418 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2419 
2420 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2421 						 gpa_t gpa, gpa_t size,
2422 						 bool is_write, bool is_exec,
2423 						 bool is_private)
2424 {
2425 	vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2426 	vcpu->run->memory_fault.gpa = gpa;
2427 	vcpu->run->memory_fault.size = size;
2428 
2429 	/* RWX flags are not (yet) defined or communicated to userspace. */
2430 	vcpu->run->memory_fault.flags = 0;
2431 	if (is_private)
2432 		vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2433 }
2434 
2435 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2436 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2437 {
2438 	return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2439 }
2440 
2441 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2442 				     unsigned long mask, unsigned long attrs);
2443 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2444 					struct kvm_gfn_range *range);
2445 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2446 					 struct kvm_gfn_range *range);
2447 
2448 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2449 {
2450 	return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2451 	       kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2452 }
2453 #else
2454 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2455 {
2456 	return false;
2457 }
2458 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2459 
2460 #ifdef CONFIG_KVM_PRIVATE_MEM
2461 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2462 		     gfn_t gfn, kvm_pfn_t *pfn, int *max_order);
2463 #else
2464 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2465 				   struct kvm_memory_slot *slot, gfn_t gfn,
2466 				   kvm_pfn_t *pfn, int *max_order)
2467 {
2468 	KVM_BUG_ON(1, kvm);
2469 	return -EIO;
2470 }
2471 #endif /* CONFIG_KVM_PRIVATE_MEM */
2472 
2473 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2474 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2475 #endif
2476 
2477 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2478 /**
2479  * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2480  *
2481  * @kvm: KVM instance
2482  * @gfn: starting GFN to be populated
2483  * @src: userspace-provided buffer containing data to copy into GFN range
2484  *       (passed to @post_populate, and incremented on each iteration
2485  *       if not NULL)
2486  * @npages: number of pages to copy from userspace-buffer
2487  * @post_populate: callback to issue for each gmem page that backs the GPA
2488  *                 range
2489  * @opaque: opaque data to pass to @post_populate callback
2490  *
2491  * This is primarily intended for cases where a gmem-backed GPA range needs
2492  * to be initialized with userspace-provided data prior to being mapped into
2493  * the guest as a private page. This should be called with the slots->lock
2494  * held so that caller-enforced invariants regarding the expected memory
2495  * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2496  *
2497  * Returns the number of pages that were populated.
2498  */
2499 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2500 				    void __user *src, int order, void *opaque);
2501 
2502 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2503 		       kvm_gmem_populate_cb post_populate, void *opaque);
2504 #endif
2505 
2506 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2507 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2508 #endif
2509 
2510 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2511 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2512 				    struct kvm_pre_fault_memory *range);
2513 #endif
2514 
2515 #endif
2516