1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 59 /* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80 /* Two fragments for cross MMIO pages. */ 81 #define KVM_MAX_MMIO_FRAGMENTS 2 82 83 #ifndef KVM_MAX_NR_ADDRESS_SPACES 84 #define KVM_MAX_NR_ADDRESS_SPACES 1 85 #endif 86 87 /* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94 #define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100 #define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4) 101 102 /* 103 * error pfns indicate that the gfn is in slot but faild to 104 * translate it to pfn on host. 105 */ 106 static inline bool is_error_pfn(kvm_pfn_t pfn) 107 { 108 return !!(pfn & KVM_PFN_ERR_MASK); 109 } 110 111 /* 112 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 113 * by a pending signal. Note, the signal may or may not be fatal. 114 */ 115 static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 116 { 117 return pfn == KVM_PFN_ERR_SIGPENDING; 118 } 119 120 /* 121 * error_noslot pfns indicate that the gfn can not be 122 * translated to pfn - it is not in slot or failed to 123 * translate it to pfn. 124 */ 125 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 126 { 127 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 128 } 129 130 /* noslot pfn indicates that the gfn is not in slot. */ 131 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 132 { 133 return pfn == KVM_PFN_NOSLOT; 134 } 135 136 /* 137 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 138 * provide own defines and kvm_is_error_hva 139 */ 140 #ifndef KVM_HVA_ERR_BAD 141 142 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 143 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 144 145 static inline bool kvm_is_error_hva(unsigned long addr) 146 { 147 return addr >= PAGE_OFFSET; 148 } 149 150 #endif 151 152 static inline bool kvm_is_error_gpa(gpa_t gpa) 153 { 154 return gpa == INVALID_GPA; 155 } 156 157 #define KVM_REQUEST_MASK GENMASK(7,0) 158 #define KVM_REQUEST_NO_WAKEUP BIT(8) 159 #define KVM_REQUEST_WAIT BIT(9) 160 #define KVM_REQUEST_NO_ACTION BIT(10) 161 /* 162 * Architecture-independent vcpu->requests bit members 163 * Bits 3-7 are reserved for more arch-independent bits. 164 */ 165 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 166 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 167 #define KVM_REQ_UNBLOCK 2 168 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3 169 #define KVM_REQUEST_ARCH_BASE 8 170 171 /* 172 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 173 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 174 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 175 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 176 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 177 * guarantee the vCPU received an IPI and has actually exited guest mode. 178 */ 179 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 180 181 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 182 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 183 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 184 }) 185 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 186 187 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 188 unsigned long *vcpu_bitmap); 189 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 190 191 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 192 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 193 194 extern struct mutex kvm_lock; 195 extern struct list_head vm_list; 196 197 struct kvm_io_range { 198 gpa_t addr; 199 int len; 200 struct kvm_io_device *dev; 201 }; 202 203 #define NR_IOBUS_DEVS 1000 204 205 struct kvm_io_bus { 206 int dev_count; 207 int ioeventfd_count; 208 struct kvm_io_range range[]; 209 }; 210 211 enum kvm_bus { 212 KVM_MMIO_BUS, 213 KVM_PIO_BUS, 214 KVM_VIRTIO_CCW_NOTIFY_BUS, 215 KVM_FAST_MMIO_BUS, 216 KVM_NR_BUSES 217 }; 218 219 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 220 int len, const void *val); 221 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 222 gpa_t addr, int len, const void *val, long cookie); 223 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 224 int len, void *val); 225 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 226 int len, struct kvm_io_device *dev); 227 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 228 struct kvm_io_device *dev); 229 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 230 gpa_t addr); 231 232 #ifdef CONFIG_KVM_ASYNC_PF 233 struct kvm_async_pf { 234 struct work_struct work; 235 struct list_head link; 236 struct list_head queue; 237 struct kvm_vcpu *vcpu; 238 gpa_t cr2_or_gpa; 239 unsigned long addr; 240 struct kvm_arch_async_pf arch; 241 bool wakeup_all; 242 bool notpresent_injected; 243 }; 244 245 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 246 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 247 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 248 unsigned long hva, struct kvm_arch_async_pf *arch); 249 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 250 #endif 251 252 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 253 union kvm_mmu_notifier_arg { 254 unsigned long attributes; 255 }; 256 257 struct kvm_gfn_range { 258 struct kvm_memory_slot *slot; 259 gfn_t start; 260 gfn_t end; 261 union kvm_mmu_notifier_arg arg; 262 bool may_block; 263 }; 264 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 265 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 266 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 267 #endif 268 269 enum { 270 OUTSIDE_GUEST_MODE, 271 IN_GUEST_MODE, 272 EXITING_GUEST_MODE, 273 READING_SHADOW_PAGE_TABLES, 274 }; 275 276 struct kvm_host_map { 277 /* 278 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 279 * a 'struct page' for it. When using mem= kernel parameter some memory 280 * can be used as guest memory but they are not managed by host 281 * kernel). 282 */ 283 struct page *refcounted_page; 284 struct page *page; 285 void *hva; 286 kvm_pfn_t pfn; 287 kvm_pfn_t gfn; 288 }; 289 290 /* 291 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 292 * directly to check for that. 293 */ 294 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 295 { 296 return !!map->hva; 297 } 298 299 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 300 { 301 return single_task_running() && !need_resched() && ktime_before(cur, stop); 302 } 303 304 /* 305 * Sometimes a large or cross-page mmio needs to be broken up into separate 306 * exits for userspace servicing. 307 */ 308 struct kvm_mmio_fragment { 309 gpa_t gpa; 310 void *data; 311 unsigned len; 312 }; 313 314 struct kvm_vcpu { 315 struct kvm *kvm; 316 #ifdef CONFIG_PREEMPT_NOTIFIERS 317 struct preempt_notifier preempt_notifier; 318 #endif 319 int cpu; 320 int vcpu_id; /* id given by userspace at creation */ 321 int vcpu_idx; /* index into kvm->vcpu_array */ 322 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 323 #ifdef CONFIG_PROVE_RCU 324 int srcu_depth; 325 #endif 326 int mode; 327 u64 requests; 328 unsigned long guest_debug; 329 330 struct mutex mutex; 331 struct kvm_run *run; 332 333 #ifndef __KVM_HAVE_ARCH_WQP 334 struct rcuwait wait; 335 #endif 336 struct pid __rcu *pid; 337 int sigset_active; 338 sigset_t sigset; 339 unsigned int halt_poll_ns; 340 bool valid_wakeup; 341 342 #ifdef CONFIG_HAS_IOMEM 343 int mmio_needed; 344 int mmio_read_completed; 345 int mmio_is_write; 346 int mmio_cur_fragment; 347 int mmio_nr_fragments; 348 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 349 #endif 350 351 #ifdef CONFIG_KVM_ASYNC_PF 352 struct { 353 u32 queued; 354 struct list_head queue; 355 struct list_head done; 356 spinlock_t lock; 357 } async_pf; 358 #endif 359 360 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 361 /* 362 * Cpu relax intercept or pause loop exit optimization 363 * in_spin_loop: set when a vcpu does a pause loop exit 364 * or cpu relax intercepted. 365 * dy_eligible: indicates whether vcpu is eligible for directed yield. 366 */ 367 struct { 368 bool in_spin_loop; 369 bool dy_eligible; 370 } spin_loop; 371 #endif 372 bool wants_to_run; 373 bool preempted; 374 bool ready; 375 bool scheduled_out; 376 struct kvm_vcpu_arch arch; 377 struct kvm_vcpu_stat stat; 378 char stats_id[KVM_STATS_NAME_SIZE]; 379 struct kvm_dirty_ring dirty_ring; 380 381 /* 382 * The most recently used memslot by this vCPU and the slots generation 383 * for which it is valid. 384 * No wraparound protection is needed since generations won't overflow in 385 * thousands of years, even assuming 1M memslot operations per second. 386 */ 387 struct kvm_memory_slot *last_used_slot; 388 u64 last_used_slot_gen; 389 }; 390 391 /* 392 * Start accounting time towards a guest. 393 * Must be called before entering guest context. 394 */ 395 static __always_inline void guest_timing_enter_irqoff(void) 396 { 397 /* 398 * This is running in ioctl context so its safe to assume that it's the 399 * stime pending cputime to flush. 400 */ 401 instrumentation_begin(); 402 vtime_account_guest_enter(); 403 instrumentation_end(); 404 } 405 406 /* 407 * Enter guest context and enter an RCU extended quiescent state. 408 * 409 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 410 * unsafe to use any code which may directly or indirectly use RCU, tracing 411 * (including IRQ flag tracing), or lockdep. All code in this period must be 412 * non-instrumentable. 413 */ 414 static __always_inline void guest_context_enter_irqoff(void) 415 { 416 /* 417 * KVM does not hold any references to rcu protected data when it 418 * switches CPU into a guest mode. In fact switching to a guest mode 419 * is very similar to exiting to userspace from rcu point of view. In 420 * addition CPU may stay in a guest mode for quite a long time (up to 421 * one time slice). Lets treat guest mode as quiescent state, just like 422 * we do with user-mode execution. 423 */ 424 if (!context_tracking_guest_enter()) { 425 instrumentation_begin(); 426 rcu_virt_note_context_switch(); 427 instrumentation_end(); 428 } 429 } 430 431 /* 432 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 433 * guest_state_enter_irqoff(). 434 */ 435 static __always_inline void guest_enter_irqoff(void) 436 { 437 guest_timing_enter_irqoff(); 438 guest_context_enter_irqoff(); 439 } 440 441 /** 442 * guest_state_enter_irqoff - Fixup state when entering a guest 443 * 444 * Entry to a guest will enable interrupts, but the kernel state is interrupts 445 * disabled when this is invoked. Also tell RCU about it. 446 * 447 * 1) Trace interrupts on state 448 * 2) Invoke context tracking if enabled to adjust RCU state 449 * 3) Tell lockdep that interrupts are enabled 450 * 451 * Invoked from architecture specific code before entering a guest. 452 * Must be called with interrupts disabled and the caller must be 453 * non-instrumentable. 454 * The caller has to invoke guest_timing_enter_irqoff() before this. 455 * 456 * Note: this is analogous to exit_to_user_mode(). 457 */ 458 static __always_inline void guest_state_enter_irqoff(void) 459 { 460 instrumentation_begin(); 461 trace_hardirqs_on_prepare(); 462 lockdep_hardirqs_on_prepare(); 463 instrumentation_end(); 464 465 guest_context_enter_irqoff(); 466 lockdep_hardirqs_on(CALLER_ADDR0); 467 } 468 469 /* 470 * Exit guest context and exit an RCU extended quiescent state. 471 * 472 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 473 * unsafe to use any code which may directly or indirectly use RCU, tracing 474 * (including IRQ flag tracing), or lockdep. All code in this period must be 475 * non-instrumentable. 476 */ 477 static __always_inline void guest_context_exit_irqoff(void) 478 { 479 /* 480 * Guest mode is treated as a quiescent state, see 481 * guest_context_enter_irqoff() for more details. 482 */ 483 if (!context_tracking_guest_exit()) { 484 instrumentation_begin(); 485 rcu_virt_note_context_switch(); 486 instrumentation_end(); 487 } 488 } 489 490 /* 491 * Stop accounting time towards a guest. 492 * Must be called after exiting guest context. 493 */ 494 static __always_inline void guest_timing_exit_irqoff(void) 495 { 496 instrumentation_begin(); 497 /* Flush the guest cputime we spent on the guest */ 498 vtime_account_guest_exit(); 499 instrumentation_end(); 500 } 501 502 /* 503 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 504 * guest_timing_exit_irqoff(). 505 */ 506 static __always_inline void guest_exit_irqoff(void) 507 { 508 guest_context_exit_irqoff(); 509 guest_timing_exit_irqoff(); 510 } 511 512 static inline void guest_exit(void) 513 { 514 unsigned long flags; 515 516 local_irq_save(flags); 517 guest_exit_irqoff(); 518 local_irq_restore(flags); 519 } 520 521 /** 522 * guest_state_exit_irqoff - Establish state when returning from guest mode 523 * 524 * Entry from a guest disables interrupts, but guest mode is traced as 525 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 526 * 527 * 1) Tell lockdep that interrupts are disabled 528 * 2) Invoke context tracking if enabled to reactivate RCU 529 * 3) Trace interrupts off state 530 * 531 * Invoked from architecture specific code after exiting a guest. 532 * Must be invoked with interrupts disabled and the caller must be 533 * non-instrumentable. 534 * The caller has to invoke guest_timing_exit_irqoff() after this. 535 * 536 * Note: this is analogous to enter_from_user_mode(). 537 */ 538 static __always_inline void guest_state_exit_irqoff(void) 539 { 540 lockdep_hardirqs_off(CALLER_ADDR0); 541 guest_context_exit_irqoff(); 542 543 instrumentation_begin(); 544 trace_hardirqs_off_finish(); 545 instrumentation_end(); 546 } 547 548 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 549 { 550 /* 551 * The memory barrier ensures a previous write to vcpu->requests cannot 552 * be reordered with the read of vcpu->mode. It pairs with the general 553 * memory barrier following the write of vcpu->mode in VCPU RUN. 554 */ 555 smp_mb__before_atomic(); 556 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 557 } 558 559 /* 560 * Some of the bitops functions do not support too long bitmaps. 561 * This number must be determined not to exceed such limits. 562 */ 563 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 564 565 /* 566 * Since at idle each memslot belongs to two memslot sets it has to contain 567 * two embedded nodes for each data structure that it forms a part of. 568 * 569 * Two memslot sets (one active and one inactive) are necessary so the VM 570 * continues to run on one memslot set while the other is being modified. 571 * 572 * These two memslot sets normally point to the same set of memslots. 573 * They can, however, be desynchronized when performing a memslot management 574 * operation by replacing the memslot to be modified by its copy. 575 * After the operation is complete, both memslot sets once again point to 576 * the same, common set of memslot data. 577 * 578 * The memslots themselves are independent of each other so they can be 579 * individually added or deleted. 580 */ 581 struct kvm_memory_slot { 582 struct hlist_node id_node[2]; 583 struct interval_tree_node hva_node[2]; 584 struct rb_node gfn_node[2]; 585 gfn_t base_gfn; 586 unsigned long npages; 587 unsigned long *dirty_bitmap; 588 struct kvm_arch_memory_slot arch; 589 unsigned long userspace_addr; 590 u32 flags; 591 short id; 592 u16 as_id; 593 594 #ifdef CONFIG_KVM_PRIVATE_MEM 595 struct { 596 struct file __rcu *file; 597 pgoff_t pgoff; 598 } gmem; 599 #endif 600 }; 601 602 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot) 603 { 604 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD); 605 } 606 607 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 608 { 609 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 610 } 611 612 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 613 { 614 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 615 } 616 617 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 618 { 619 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 620 621 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 622 } 623 624 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 625 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 626 #endif 627 628 struct kvm_s390_adapter_int { 629 u64 ind_addr; 630 u64 summary_addr; 631 u64 ind_offset; 632 u32 summary_offset; 633 u32 adapter_id; 634 }; 635 636 struct kvm_hv_sint { 637 u32 vcpu; 638 u32 sint; 639 }; 640 641 struct kvm_xen_evtchn { 642 u32 port; 643 u32 vcpu_id; 644 int vcpu_idx; 645 u32 priority; 646 }; 647 648 struct kvm_kernel_irq_routing_entry { 649 u32 gsi; 650 u32 type; 651 int (*set)(struct kvm_kernel_irq_routing_entry *e, 652 struct kvm *kvm, int irq_source_id, int level, 653 bool line_status); 654 union { 655 struct { 656 unsigned irqchip; 657 unsigned pin; 658 } irqchip; 659 struct { 660 u32 address_lo; 661 u32 address_hi; 662 u32 data; 663 u32 flags; 664 u32 devid; 665 } msi; 666 struct kvm_s390_adapter_int adapter; 667 struct kvm_hv_sint hv_sint; 668 struct kvm_xen_evtchn xen_evtchn; 669 }; 670 struct hlist_node link; 671 }; 672 673 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 674 struct kvm_irq_routing_table { 675 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 676 u32 nr_rt_entries; 677 /* 678 * Array indexed by gsi. Each entry contains list of irq chips 679 * the gsi is connected to. 680 */ 681 struct hlist_head map[] __counted_by(nr_rt_entries); 682 }; 683 #endif 684 685 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 686 687 #ifndef KVM_INTERNAL_MEM_SLOTS 688 #define KVM_INTERNAL_MEM_SLOTS 0 689 #endif 690 691 #define KVM_MEM_SLOTS_NUM SHRT_MAX 692 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 693 694 #if KVM_MAX_NR_ADDRESS_SPACES == 1 695 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm) 696 { 697 return KVM_MAX_NR_ADDRESS_SPACES; 698 } 699 700 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 701 { 702 return 0; 703 } 704 #endif 705 706 /* 707 * Arch code must define kvm_arch_has_private_mem if support for private memory 708 * is enabled. 709 */ 710 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) 711 static inline bool kvm_arch_has_private_mem(struct kvm *kvm) 712 { 713 return false; 714 } 715 #endif 716 717 #ifndef kvm_arch_has_readonly_mem 718 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm) 719 { 720 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM); 721 } 722 #endif 723 724 struct kvm_memslots { 725 u64 generation; 726 atomic_long_t last_used_slot; 727 struct rb_root_cached hva_tree; 728 struct rb_root gfn_tree; 729 /* 730 * The mapping table from slot id to memslot. 731 * 732 * 7-bit bucket count matches the size of the old id to index array for 733 * 512 slots, while giving good performance with this slot count. 734 * Higher bucket counts bring only small performance improvements but 735 * always result in higher memory usage (even for lower memslot counts). 736 */ 737 DECLARE_HASHTABLE(id_hash, 7); 738 int node_idx; 739 }; 740 741 struct kvm { 742 #ifdef KVM_HAVE_MMU_RWLOCK 743 rwlock_t mmu_lock; 744 #else 745 spinlock_t mmu_lock; 746 #endif /* KVM_HAVE_MMU_RWLOCK */ 747 748 struct mutex slots_lock; 749 750 /* 751 * Protects the arch-specific fields of struct kvm_memory_slots in 752 * use by the VM. To be used under the slots_lock (above) or in a 753 * kvm->srcu critical section where acquiring the slots_lock would 754 * lead to deadlock with the synchronize_srcu in 755 * kvm_swap_active_memslots(). 756 */ 757 struct mutex slots_arch_lock; 758 struct mm_struct *mm; /* userspace tied to this vm */ 759 unsigned long nr_memslot_pages; 760 /* The two memslot sets - active and inactive (per address space) */ 761 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2]; 762 /* The current active memslot set for each address space */ 763 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES]; 764 struct xarray vcpu_array; 765 /* 766 * Protected by slots_lock, but can be read outside if an 767 * incorrect answer is acceptable. 768 */ 769 atomic_t nr_memslots_dirty_logging; 770 771 /* Used to wait for completion of MMU notifiers. */ 772 spinlock_t mn_invalidate_lock; 773 unsigned long mn_active_invalidate_count; 774 struct rcuwait mn_memslots_update_rcuwait; 775 776 /* For management / invalidation of gfn_to_pfn_caches */ 777 spinlock_t gpc_lock; 778 struct list_head gpc_list; 779 780 /* 781 * created_vcpus is protected by kvm->lock, and is incremented 782 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 783 * incremented after storing the kvm_vcpu pointer in vcpus, 784 * and is accessed atomically. 785 */ 786 atomic_t online_vcpus; 787 int max_vcpus; 788 int created_vcpus; 789 int last_boosted_vcpu; 790 struct list_head vm_list; 791 struct mutex lock; 792 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 793 #ifdef CONFIG_HAVE_KVM_IRQCHIP 794 struct { 795 spinlock_t lock; 796 struct list_head items; 797 /* resampler_list update side is protected by resampler_lock. */ 798 struct list_head resampler_list; 799 struct mutex resampler_lock; 800 } irqfds; 801 #endif 802 struct list_head ioeventfds; 803 struct kvm_vm_stat stat; 804 struct kvm_arch arch; 805 refcount_t users_count; 806 #ifdef CONFIG_KVM_MMIO 807 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 808 spinlock_t ring_lock; 809 struct list_head coalesced_zones; 810 #endif 811 812 struct mutex irq_lock; 813 #ifdef CONFIG_HAVE_KVM_IRQCHIP 814 /* 815 * Update side is protected by irq_lock. 816 */ 817 struct kvm_irq_routing_table __rcu *irq_routing; 818 819 struct hlist_head irq_ack_notifier_list; 820 #endif 821 822 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 823 struct mmu_notifier mmu_notifier; 824 unsigned long mmu_invalidate_seq; 825 long mmu_invalidate_in_progress; 826 gfn_t mmu_invalidate_range_start; 827 gfn_t mmu_invalidate_range_end; 828 #endif 829 struct list_head devices; 830 u64 manual_dirty_log_protect; 831 struct dentry *debugfs_dentry; 832 struct kvm_stat_data **debugfs_stat_data; 833 struct srcu_struct srcu; 834 struct srcu_struct irq_srcu; 835 pid_t userspace_pid; 836 bool override_halt_poll_ns; 837 unsigned int max_halt_poll_ns; 838 u32 dirty_ring_size; 839 bool dirty_ring_with_bitmap; 840 bool vm_bugged; 841 bool vm_dead; 842 843 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 844 struct notifier_block pm_notifier; 845 #endif 846 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 847 /* Protected by slots_locks (for writes) and RCU (for reads) */ 848 struct xarray mem_attr_array; 849 #endif 850 char stats_id[KVM_STATS_NAME_SIZE]; 851 }; 852 853 #define kvm_err(fmt, ...) \ 854 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 855 #define kvm_info(fmt, ...) \ 856 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 857 #define kvm_debug(fmt, ...) \ 858 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 859 #define kvm_debug_ratelimited(fmt, ...) \ 860 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 861 ## __VA_ARGS__) 862 #define kvm_pr_unimpl(fmt, ...) \ 863 pr_err_ratelimited("kvm [%i]: " fmt, \ 864 task_tgid_nr(current), ## __VA_ARGS__) 865 866 /* The guest did something we don't support. */ 867 #define vcpu_unimpl(vcpu, fmt, ...) \ 868 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 869 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 870 871 #define vcpu_debug(vcpu, fmt, ...) \ 872 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 873 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 874 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 875 ## __VA_ARGS__) 876 #define vcpu_err(vcpu, fmt, ...) \ 877 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 878 879 static inline void kvm_vm_dead(struct kvm *kvm) 880 { 881 kvm->vm_dead = true; 882 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 883 } 884 885 static inline void kvm_vm_bugged(struct kvm *kvm) 886 { 887 kvm->vm_bugged = true; 888 kvm_vm_dead(kvm); 889 } 890 891 892 #define KVM_BUG(cond, kvm, fmt...) \ 893 ({ \ 894 bool __ret = !!(cond); \ 895 \ 896 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 897 kvm_vm_bugged(kvm); \ 898 unlikely(__ret); \ 899 }) 900 901 #define KVM_BUG_ON(cond, kvm) \ 902 ({ \ 903 bool __ret = !!(cond); \ 904 \ 905 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 906 kvm_vm_bugged(kvm); \ 907 unlikely(__ret); \ 908 }) 909 910 /* 911 * Note, "data corruption" refers to corruption of host kernel data structures, 912 * not guest data. Guest data corruption, suspected or confirmed, that is tied 913 * and contained to a single VM should *never* BUG() and potentially panic the 914 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure 915 * is corrupted and that corruption can have a cascading effect to other parts 916 * of the hosts and/or to other VMs. 917 */ 918 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ 919 ({ \ 920 bool __ret = !!(cond); \ 921 \ 922 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ 923 BUG_ON(__ret); \ 924 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 925 kvm_vm_bugged(kvm); \ 926 unlikely(__ret); \ 927 }) 928 929 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 930 { 931 #ifdef CONFIG_PROVE_RCU 932 WARN_ONCE(vcpu->srcu_depth++, 933 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 934 #endif 935 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 936 } 937 938 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 939 { 940 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 941 942 #ifdef CONFIG_PROVE_RCU 943 WARN_ONCE(--vcpu->srcu_depth, 944 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 945 #endif 946 } 947 948 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 949 { 950 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 951 } 952 953 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 954 { 955 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 956 lockdep_is_held(&kvm->slots_lock) || 957 !refcount_read(&kvm->users_count)); 958 } 959 960 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 961 { 962 int num_vcpus = atomic_read(&kvm->online_vcpus); 963 i = array_index_nospec(i, num_vcpus); 964 965 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 966 smp_rmb(); 967 return xa_load(&kvm->vcpu_array, i); 968 } 969 970 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 971 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 972 (atomic_read(&kvm->online_vcpus) - 1)) 973 974 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 975 { 976 struct kvm_vcpu *vcpu = NULL; 977 unsigned long i; 978 979 if (id < 0) 980 return NULL; 981 if (id < KVM_MAX_VCPUS) 982 vcpu = kvm_get_vcpu(kvm, id); 983 if (vcpu && vcpu->vcpu_id == id) 984 return vcpu; 985 kvm_for_each_vcpu(i, vcpu, kvm) 986 if (vcpu->vcpu_id == id) 987 return vcpu; 988 return NULL; 989 } 990 991 void kvm_destroy_vcpus(struct kvm *kvm); 992 993 void vcpu_load(struct kvm_vcpu *vcpu); 994 void vcpu_put(struct kvm_vcpu *vcpu); 995 996 #ifdef __KVM_HAVE_IOAPIC 997 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 998 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 999 #else 1000 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 1001 { 1002 } 1003 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 1004 { 1005 } 1006 #endif 1007 1008 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1009 int kvm_irqfd_init(void); 1010 void kvm_irqfd_exit(void); 1011 #else 1012 static inline int kvm_irqfd_init(void) 1013 { 1014 return 0; 1015 } 1016 1017 static inline void kvm_irqfd_exit(void) 1018 { 1019 } 1020 #endif 1021 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 1022 void kvm_exit(void); 1023 1024 void kvm_get_kvm(struct kvm *kvm); 1025 bool kvm_get_kvm_safe(struct kvm *kvm); 1026 void kvm_put_kvm(struct kvm *kvm); 1027 bool file_is_kvm(struct file *file); 1028 void kvm_put_kvm_no_destroy(struct kvm *kvm); 1029 1030 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 1031 { 1032 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES); 1033 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 1034 lockdep_is_held(&kvm->slots_lock) || 1035 !refcount_read(&kvm->users_count)); 1036 } 1037 1038 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 1039 { 1040 return __kvm_memslots(kvm, 0); 1041 } 1042 1043 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 1044 { 1045 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 1046 1047 return __kvm_memslots(vcpu->kvm, as_id); 1048 } 1049 1050 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 1051 { 1052 return RB_EMPTY_ROOT(&slots->gfn_tree); 1053 } 1054 1055 bool kvm_are_all_memslots_empty(struct kvm *kvm); 1056 1057 #define kvm_for_each_memslot(memslot, bkt, slots) \ 1058 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 1059 if (WARN_ON_ONCE(!memslot->npages)) { \ 1060 } else 1061 1062 static inline 1063 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1064 { 1065 struct kvm_memory_slot *slot; 1066 int idx = slots->node_idx; 1067 1068 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1069 if (slot->id == id) 1070 return slot; 1071 } 1072 1073 return NULL; 1074 } 1075 1076 /* Iterator used for walking memslots that overlap a gfn range. */ 1077 struct kvm_memslot_iter { 1078 struct kvm_memslots *slots; 1079 struct rb_node *node; 1080 struct kvm_memory_slot *slot; 1081 }; 1082 1083 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1084 { 1085 iter->node = rb_next(iter->node); 1086 if (!iter->node) 1087 return; 1088 1089 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1090 } 1091 1092 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1093 struct kvm_memslots *slots, 1094 gfn_t start) 1095 { 1096 int idx = slots->node_idx; 1097 struct rb_node *tmp; 1098 struct kvm_memory_slot *slot; 1099 1100 iter->slots = slots; 1101 1102 /* 1103 * Find the so called "upper bound" of a key - the first node that has 1104 * its key strictly greater than the searched one (the start gfn in our case). 1105 */ 1106 iter->node = NULL; 1107 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1108 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1109 if (start < slot->base_gfn) { 1110 iter->node = tmp; 1111 tmp = tmp->rb_left; 1112 } else { 1113 tmp = tmp->rb_right; 1114 } 1115 } 1116 1117 /* 1118 * Find the slot with the lowest gfn that can possibly intersect with 1119 * the range, so we'll ideally have slot start <= range start 1120 */ 1121 if (iter->node) { 1122 /* 1123 * A NULL previous node means that the very first slot 1124 * already has a higher start gfn. 1125 * In this case slot start > range start. 1126 */ 1127 tmp = rb_prev(iter->node); 1128 if (tmp) 1129 iter->node = tmp; 1130 } else { 1131 /* a NULL node below means no slots */ 1132 iter->node = rb_last(&slots->gfn_tree); 1133 } 1134 1135 if (iter->node) { 1136 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1137 1138 /* 1139 * It is possible in the slot start < range start case that the 1140 * found slot ends before or at range start (slot end <= range start) 1141 * and so it does not overlap the requested range. 1142 * 1143 * In such non-overlapping case the next slot (if it exists) will 1144 * already have slot start > range start, otherwise the logic above 1145 * would have found it instead of the current slot. 1146 */ 1147 if (iter->slot->base_gfn + iter->slot->npages <= start) 1148 kvm_memslot_iter_next(iter); 1149 } 1150 } 1151 1152 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1153 { 1154 if (!iter->node) 1155 return false; 1156 1157 /* 1158 * If this slot starts beyond or at the end of the range so does 1159 * every next one 1160 */ 1161 return iter->slot->base_gfn < end; 1162 } 1163 1164 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1165 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1166 for (kvm_memslot_iter_start(iter, slots, start); \ 1167 kvm_memslot_iter_is_valid(iter, end); \ 1168 kvm_memslot_iter_next(iter)) 1169 1170 /* 1171 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1172 * - create a new memory slot 1173 * - delete an existing memory slot 1174 * - modify an existing memory slot 1175 * -- move it in the guest physical memory space 1176 * -- just change its flags 1177 * 1178 * Since flags can be changed by some of these operations, the following 1179 * differentiation is the best we can do for __kvm_set_memory_region(): 1180 */ 1181 enum kvm_mr_change { 1182 KVM_MR_CREATE, 1183 KVM_MR_DELETE, 1184 KVM_MR_MOVE, 1185 KVM_MR_FLAGS_ONLY, 1186 }; 1187 1188 int kvm_set_memory_region(struct kvm *kvm, 1189 const struct kvm_userspace_memory_region2 *mem); 1190 int __kvm_set_memory_region(struct kvm *kvm, 1191 const struct kvm_userspace_memory_region2 *mem); 1192 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1193 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1194 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1195 const struct kvm_memory_slot *old, 1196 struct kvm_memory_slot *new, 1197 enum kvm_mr_change change); 1198 void kvm_arch_commit_memory_region(struct kvm *kvm, 1199 struct kvm_memory_slot *old, 1200 const struct kvm_memory_slot *new, 1201 enum kvm_mr_change change); 1202 /* flush all memory translations */ 1203 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1204 /* flush memory translations pointing to 'slot' */ 1205 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1206 struct kvm_memory_slot *slot); 1207 1208 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, 1209 struct page **pages, int nr_pages); 1210 1211 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 1212 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1213 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1214 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1215 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1216 bool *writable); 1217 1218 static inline void kvm_release_page_unused(struct page *page) 1219 { 1220 if (!page) 1221 return; 1222 1223 put_page(page); 1224 } 1225 1226 void kvm_release_page_clean(struct page *page); 1227 void kvm_release_page_dirty(struct page *page); 1228 1229 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 1230 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1231 bool *writable); 1232 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); 1233 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 1234 bool interruptible, bool no_wait, 1235 bool write_fault, bool *writable); 1236 1237 void kvm_release_pfn_clean(kvm_pfn_t pfn); 1238 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 1239 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 1240 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 1241 1242 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1243 int len); 1244 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1245 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1246 void *data, unsigned long len); 1247 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1248 void *data, unsigned int offset, 1249 unsigned long len); 1250 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1251 int offset, int len); 1252 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1253 unsigned long len); 1254 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1255 void *data, unsigned long len); 1256 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1257 void *data, unsigned int offset, 1258 unsigned long len); 1259 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1260 gpa_t gpa, unsigned long len); 1261 1262 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1263 ({ \ 1264 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1265 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1266 int __ret = -EFAULT; \ 1267 \ 1268 if (!kvm_is_error_hva(__addr)) \ 1269 __ret = get_user(v, __uaddr); \ 1270 __ret; \ 1271 }) 1272 1273 #define kvm_get_guest(kvm, gpa, v) \ 1274 ({ \ 1275 gpa_t __gpa = gpa; \ 1276 struct kvm *__kvm = kvm; \ 1277 \ 1278 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1279 offset_in_page(__gpa), v); \ 1280 }) 1281 1282 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1283 ({ \ 1284 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1285 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1286 int __ret = -EFAULT; \ 1287 \ 1288 if (!kvm_is_error_hva(__addr)) \ 1289 __ret = put_user(v, __uaddr); \ 1290 if (!__ret) \ 1291 mark_page_dirty(kvm, gfn); \ 1292 __ret; \ 1293 }) 1294 1295 #define kvm_put_guest(kvm, gpa, v) \ 1296 ({ \ 1297 gpa_t __gpa = gpa; \ 1298 struct kvm *__kvm = kvm; \ 1299 \ 1300 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1301 offset_in_page(__gpa), v); \ 1302 }) 1303 1304 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1305 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1306 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1307 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1308 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1309 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1310 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1311 1312 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1313 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1314 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 1315 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 1316 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1317 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1318 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1319 int len); 1320 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1321 unsigned long len); 1322 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1323 unsigned long len); 1324 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1325 int offset, int len); 1326 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1327 unsigned long len); 1328 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1329 1330 /** 1331 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1332 * 1333 * @gpc: struct gfn_to_pfn_cache object. 1334 * @kvm: pointer to kvm instance. 1335 * 1336 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1337 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1338 * the caller before init). 1339 */ 1340 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm); 1341 1342 /** 1343 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1344 * physical address. 1345 * 1346 * @gpc: struct gfn_to_pfn_cache object. 1347 * @gpa: guest physical address to map. 1348 * @len: sanity check; the range being access must fit a single page. 1349 * 1350 * @return: 0 for success. 1351 * -EINVAL for a mapping which would cross a page boundary. 1352 * -EFAULT for an untranslatable guest physical address. 1353 * 1354 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1355 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1356 * to ensure that the cache is valid before accessing the target page. 1357 */ 1358 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1359 1360 /** 1361 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA. 1362 * 1363 * @gpc: struct gfn_to_pfn_cache object. 1364 * @hva: userspace virtual address to map. 1365 * @len: sanity check; the range being access must fit a single page. 1366 * 1367 * @return: 0 for success. 1368 * -EINVAL for a mapping which would cross a page boundary. 1369 * -EFAULT for an untranslatable guest physical address. 1370 * 1371 * The semantics of this function are the same as those of kvm_gpc_activate(). It 1372 * merely bypasses a layer of address translation. 1373 */ 1374 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len); 1375 1376 /** 1377 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1378 * 1379 * @gpc: struct gfn_to_pfn_cache object. 1380 * @len: sanity check; the range being access must fit a single page. 1381 * 1382 * @return: %true if the cache is still valid and the address matches. 1383 * %false if the cache is not valid. 1384 * 1385 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1386 * while calling this function, and then continue to hold the lock until the 1387 * access is complete. 1388 * 1389 * Callers in IN_GUEST_MODE may do so without locking, although they should 1390 * still hold a read lock on kvm->scru for the memslot checks. 1391 */ 1392 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1393 1394 /** 1395 * kvm_gpc_refresh - update a previously initialized cache. 1396 * 1397 * @gpc: struct gfn_to_pfn_cache object. 1398 * @len: sanity check; the range being access must fit a single page. 1399 * 1400 * @return: 0 for success. 1401 * -EINVAL for a mapping which would cross a page boundary. 1402 * -EFAULT for an untranslatable guest physical address. 1403 * 1404 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1405 * return from this function does not mean the page can be immediately 1406 * accessed because it may have raced with an invalidation. Callers must 1407 * still lock and check the cache status, as this function does not return 1408 * with the lock still held to permit access. 1409 */ 1410 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1411 1412 /** 1413 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1414 * 1415 * @gpc: struct gfn_to_pfn_cache object. 1416 * 1417 * This removes a cache from the VM's list to be processed on MMU notifier 1418 * invocation. 1419 */ 1420 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1421 1422 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc) 1423 { 1424 return gpc->active && !kvm_is_error_gpa(gpc->gpa); 1425 } 1426 1427 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc) 1428 { 1429 return gpc->active && kvm_is_error_gpa(gpc->gpa); 1430 } 1431 1432 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1433 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1434 1435 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1436 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1437 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1438 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1439 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1440 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1441 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1442 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1443 1444 void kvm_flush_remote_tlbs(struct kvm *kvm); 1445 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1446 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 1447 const struct kvm_memory_slot *memslot); 1448 1449 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1450 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1451 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1452 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1453 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1454 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1455 #endif 1456 1457 void kvm_mmu_invalidate_begin(struct kvm *kvm); 1458 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end); 1459 void kvm_mmu_invalidate_end(struct kvm *kvm); 1460 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 1461 1462 long kvm_arch_dev_ioctl(struct file *filp, 1463 unsigned int ioctl, unsigned long arg); 1464 long kvm_arch_vcpu_ioctl(struct file *filp, 1465 unsigned int ioctl, unsigned long arg); 1466 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1467 1468 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1469 1470 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1471 struct kvm_memory_slot *slot, 1472 gfn_t gfn_offset, 1473 unsigned long mask); 1474 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1475 1476 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1477 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1478 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1479 int *is_dirty, struct kvm_memory_slot **memslot); 1480 #endif 1481 1482 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1483 bool line_status); 1484 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1485 struct kvm_enable_cap *cap); 1486 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1487 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1488 unsigned long arg); 1489 1490 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1491 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1492 1493 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1494 struct kvm_translation *tr); 1495 1496 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1497 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1498 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1499 struct kvm_sregs *sregs); 1500 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1501 struct kvm_sregs *sregs); 1502 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1503 struct kvm_mp_state *mp_state); 1504 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1505 struct kvm_mp_state *mp_state); 1506 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1507 struct kvm_guest_debug *dbg); 1508 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1509 1510 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1511 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1512 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1513 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1514 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1515 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1516 1517 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1518 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1519 #endif 1520 1521 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1522 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1523 #else 1524 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1525 #endif 1526 1527 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1528 /* 1529 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under 1530 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of 1531 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling 1532 * sequence, and at the end of the generic hardware disabling sequence. 1533 */ 1534 void kvm_arch_enable_virtualization(void); 1535 void kvm_arch_disable_virtualization(void); 1536 /* 1537 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to 1538 * do the actual twiddling of hardware bits. The hooks are called on all 1539 * online CPUs when KVM enables/disabled virtualization, and on a single CPU 1540 * when that CPU is onlined/offlined (including for Resume/Suspend). 1541 */ 1542 int kvm_arch_enable_virtualization_cpu(void); 1543 void kvm_arch_disable_virtualization_cpu(void); 1544 #endif 1545 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1546 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1547 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1548 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1549 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1550 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu); 1551 int kvm_arch_post_init_vm(struct kvm *kvm); 1552 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1553 void kvm_arch_create_vm_debugfs(struct kvm *kvm); 1554 1555 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1556 /* 1557 * All architectures that want to use vzalloc currently also 1558 * need their own kvm_arch_alloc_vm implementation. 1559 */ 1560 static inline struct kvm *kvm_arch_alloc_vm(void) 1561 { 1562 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1563 } 1564 #endif 1565 1566 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1567 { 1568 kvfree(kvm); 1569 } 1570 1571 #ifndef __KVM_HAVE_ARCH_VM_FREE 1572 static inline void kvm_arch_free_vm(struct kvm *kvm) 1573 { 1574 __kvm_arch_free_vm(kvm); 1575 } 1576 #endif 1577 1578 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1579 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1580 { 1581 return -ENOTSUPP; 1582 } 1583 #else 1584 int kvm_arch_flush_remote_tlbs(struct kvm *kvm); 1585 #endif 1586 1587 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1588 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 1589 gfn_t gfn, u64 nr_pages) 1590 { 1591 return -EOPNOTSUPP; 1592 } 1593 #else 1594 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1595 #endif 1596 1597 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1598 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1599 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1600 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1601 #else 1602 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1603 { 1604 } 1605 1606 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1607 { 1608 } 1609 1610 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1611 { 1612 return false; 1613 } 1614 #endif 1615 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1616 void kvm_arch_start_assignment(struct kvm *kvm); 1617 void kvm_arch_end_assignment(struct kvm *kvm); 1618 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1619 #else 1620 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1621 { 1622 } 1623 1624 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1625 { 1626 } 1627 1628 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1629 { 1630 return false; 1631 } 1632 #endif 1633 1634 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1635 { 1636 #ifdef __KVM_HAVE_ARCH_WQP 1637 return vcpu->arch.waitp; 1638 #else 1639 return &vcpu->wait; 1640 #endif 1641 } 1642 1643 /* 1644 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1645 * true if the vCPU was blocking and was awakened, false otherwise. 1646 */ 1647 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1648 { 1649 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1650 } 1651 1652 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1653 { 1654 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1655 } 1656 1657 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1658 /* 1659 * returns true if the virtual interrupt controller is initialized and 1660 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1661 * controller is dynamically instantiated and this is not always true. 1662 */ 1663 bool kvm_arch_intc_initialized(struct kvm *kvm); 1664 #else 1665 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1666 { 1667 return true; 1668 } 1669 #endif 1670 1671 #ifdef CONFIG_GUEST_PERF_EVENTS 1672 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1673 1674 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1675 void kvm_unregister_perf_callbacks(void); 1676 #else 1677 static inline void kvm_register_perf_callbacks(void *ign) {} 1678 static inline void kvm_unregister_perf_callbacks(void) {} 1679 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1680 1681 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1682 void kvm_arch_destroy_vm(struct kvm *kvm); 1683 void kvm_arch_sync_events(struct kvm *kvm); 1684 1685 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1686 1687 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn); 1688 bool kvm_is_zone_device_page(struct page *page); 1689 1690 struct kvm_irq_ack_notifier { 1691 struct hlist_node link; 1692 unsigned gsi; 1693 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1694 }; 1695 1696 int kvm_irq_map_gsi(struct kvm *kvm, 1697 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1698 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1699 1700 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1701 bool line_status); 1702 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1703 int irq_source_id, int level, bool line_status); 1704 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1705 struct kvm *kvm, int irq_source_id, 1706 int level, bool line_status); 1707 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1708 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1709 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1710 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1711 struct kvm_irq_ack_notifier *kian); 1712 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1713 struct kvm_irq_ack_notifier *kian); 1714 int kvm_request_irq_source_id(struct kvm *kvm); 1715 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1716 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1717 1718 /* 1719 * Returns a pointer to the memslot if it contains gfn. 1720 * Otherwise returns NULL. 1721 */ 1722 static inline struct kvm_memory_slot * 1723 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1724 { 1725 if (!slot) 1726 return NULL; 1727 1728 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1729 return slot; 1730 else 1731 return NULL; 1732 } 1733 1734 /* 1735 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1736 * 1737 * With "approx" set returns the memslot also when the address falls 1738 * in a hole. In that case one of the memslots bordering the hole is 1739 * returned. 1740 */ 1741 static inline struct kvm_memory_slot * 1742 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1743 { 1744 struct kvm_memory_slot *slot; 1745 struct rb_node *node; 1746 int idx = slots->node_idx; 1747 1748 slot = NULL; 1749 for (node = slots->gfn_tree.rb_node; node; ) { 1750 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1751 if (gfn >= slot->base_gfn) { 1752 if (gfn < slot->base_gfn + slot->npages) 1753 return slot; 1754 node = node->rb_right; 1755 } else 1756 node = node->rb_left; 1757 } 1758 1759 return approx ? slot : NULL; 1760 } 1761 1762 static inline struct kvm_memory_slot * 1763 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1764 { 1765 struct kvm_memory_slot *slot; 1766 1767 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1768 slot = try_get_memslot(slot, gfn); 1769 if (slot) 1770 return slot; 1771 1772 slot = search_memslots(slots, gfn, approx); 1773 if (slot) { 1774 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1775 return slot; 1776 } 1777 1778 return NULL; 1779 } 1780 1781 /* 1782 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1783 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1784 * because that would bloat other code too much. 1785 */ 1786 static inline struct kvm_memory_slot * 1787 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1788 { 1789 return ____gfn_to_memslot(slots, gfn, false); 1790 } 1791 1792 static inline unsigned long 1793 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1794 { 1795 /* 1796 * The index was checked originally in search_memslots. To avoid 1797 * that a malicious guest builds a Spectre gadget out of e.g. page 1798 * table walks, do not let the processor speculate loads outside 1799 * the guest's registered memslots. 1800 */ 1801 unsigned long offset = gfn - slot->base_gfn; 1802 offset = array_index_nospec(offset, slot->npages); 1803 return slot->userspace_addr + offset * PAGE_SIZE; 1804 } 1805 1806 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1807 { 1808 return gfn_to_memslot(kvm, gfn)->id; 1809 } 1810 1811 static inline gfn_t 1812 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1813 { 1814 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1815 1816 return slot->base_gfn + gfn_offset; 1817 } 1818 1819 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1820 { 1821 return (gpa_t)gfn << PAGE_SHIFT; 1822 } 1823 1824 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1825 { 1826 return (gfn_t)(gpa >> PAGE_SHIFT); 1827 } 1828 1829 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1830 { 1831 return (hpa_t)pfn << PAGE_SHIFT; 1832 } 1833 1834 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa) 1835 { 1836 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1837 1838 return !kvm_is_error_hva(hva); 1839 } 1840 1841 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc) 1842 { 1843 lockdep_assert_held(&gpc->lock); 1844 1845 if (!gpc->memslot) 1846 return; 1847 1848 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa)); 1849 } 1850 1851 enum kvm_stat_kind { 1852 KVM_STAT_VM, 1853 KVM_STAT_VCPU, 1854 }; 1855 1856 struct kvm_stat_data { 1857 struct kvm *kvm; 1858 const struct _kvm_stats_desc *desc; 1859 enum kvm_stat_kind kind; 1860 }; 1861 1862 struct _kvm_stats_desc { 1863 struct kvm_stats_desc desc; 1864 char name[KVM_STATS_NAME_SIZE]; 1865 }; 1866 1867 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1868 .flags = type | unit | base | \ 1869 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1870 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1871 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1872 .exponent = exp, \ 1873 .size = sz, \ 1874 .bucket_size = bsz 1875 1876 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1877 { \ 1878 { \ 1879 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1880 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1881 }, \ 1882 .name = #stat, \ 1883 } 1884 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1885 { \ 1886 { \ 1887 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1888 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1889 }, \ 1890 .name = #stat, \ 1891 } 1892 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1893 { \ 1894 { \ 1895 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1896 .offset = offsetof(struct kvm_vm_stat, stat) \ 1897 }, \ 1898 .name = #stat, \ 1899 } 1900 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1901 { \ 1902 { \ 1903 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1904 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1905 }, \ 1906 .name = #stat, \ 1907 } 1908 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1909 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1910 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1911 1912 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1913 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1914 unit, base, exponent, 1, 0) 1915 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1916 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1917 unit, base, exponent, 1, 0) 1918 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1919 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1920 unit, base, exponent, 1, 0) 1921 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1922 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1923 unit, base, exponent, sz, bsz) 1924 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1925 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1926 unit, base, exponent, sz, 0) 1927 1928 /* Cumulative counter, read/write */ 1929 #define STATS_DESC_COUNTER(SCOPE, name) \ 1930 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1931 KVM_STATS_BASE_POW10, 0) 1932 /* Instantaneous counter, read only */ 1933 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1934 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1935 KVM_STATS_BASE_POW10, 0) 1936 /* Peak counter, read/write */ 1937 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1938 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1939 KVM_STATS_BASE_POW10, 0) 1940 1941 /* Instantaneous boolean value, read only */ 1942 #define STATS_DESC_IBOOLEAN(SCOPE, name) \ 1943 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1944 KVM_STATS_BASE_POW10, 0) 1945 /* Peak (sticky) boolean value, read/write */ 1946 #define STATS_DESC_PBOOLEAN(SCOPE, name) \ 1947 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1948 KVM_STATS_BASE_POW10, 0) 1949 1950 /* Cumulative time in nanosecond */ 1951 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1952 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1953 KVM_STATS_BASE_POW10, -9) 1954 /* Linear histogram for time in nanosecond */ 1955 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1956 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1957 KVM_STATS_BASE_POW10, -9, sz, bsz) 1958 /* Logarithmic histogram for time in nanosecond */ 1959 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1960 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1961 KVM_STATS_BASE_POW10, -9, sz) 1962 1963 #define KVM_GENERIC_VM_STATS() \ 1964 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1965 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1966 1967 #define KVM_GENERIC_VCPU_STATS() \ 1968 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1969 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1970 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1971 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1972 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1973 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1974 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1975 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1976 HALT_POLL_HIST_COUNT), \ 1977 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1978 HALT_POLL_HIST_COUNT), \ 1979 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1980 HALT_POLL_HIST_COUNT), \ 1981 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 1982 1983 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1984 const struct _kvm_stats_desc *desc, 1985 void *stats, size_t size_stats, 1986 char __user *user_buffer, size_t size, loff_t *offset); 1987 1988 /** 1989 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1990 * statistics data. 1991 * 1992 * @data: start address of the stats data 1993 * @size: the number of bucket of the stats data 1994 * @value: the new value used to update the linear histogram's bucket 1995 * @bucket_size: the size (width) of a bucket 1996 */ 1997 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1998 u64 value, size_t bucket_size) 1999 { 2000 size_t index = div64_u64(value, bucket_size); 2001 2002 index = min(index, size - 1); 2003 ++data[index]; 2004 } 2005 2006 /** 2007 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 2008 * statistics data. 2009 * 2010 * @data: start address of the stats data 2011 * @size: the number of bucket of the stats data 2012 * @value: the new value used to update the logarithmic histogram's bucket 2013 */ 2014 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 2015 { 2016 size_t index = fls64(value); 2017 2018 index = min(index, size - 1); 2019 ++data[index]; 2020 } 2021 2022 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 2023 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 2024 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 2025 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 2026 2027 2028 extern const struct kvm_stats_header kvm_vm_stats_header; 2029 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 2030 extern const struct kvm_stats_header kvm_vcpu_stats_header; 2031 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 2032 2033 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 2034 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 2035 { 2036 if (unlikely(kvm->mmu_invalidate_in_progress)) 2037 return 1; 2038 /* 2039 * Ensure the read of mmu_invalidate_in_progress happens before 2040 * the read of mmu_invalidate_seq. This interacts with the 2041 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 2042 * that the caller either sees the old (non-zero) value of 2043 * mmu_invalidate_in_progress or the new (incremented) value of 2044 * mmu_invalidate_seq. 2045 * 2046 * PowerPC Book3s HV KVM calls this under a per-page lock rather 2047 * than under kvm->mmu_lock, for scalability, so can't rely on 2048 * kvm->mmu_lock to keep things ordered. 2049 */ 2050 smp_rmb(); 2051 if (kvm->mmu_invalidate_seq != mmu_seq) 2052 return 1; 2053 return 0; 2054 } 2055 2056 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm, 2057 unsigned long mmu_seq, 2058 gfn_t gfn) 2059 { 2060 lockdep_assert_held(&kvm->mmu_lock); 2061 /* 2062 * If mmu_invalidate_in_progress is non-zero, then the range maintained 2063 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 2064 * that might be being invalidated. Note that it may include some false 2065 * positives, due to shortcuts when handing concurrent invalidations. 2066 */ 2067 if (unlikely(kvm->mmu_invalidate_in_progress)) { 2068 /* 2069 * Dropping mmu_lock after bumping mmu_invalidate_in_progress 2070 * but before updating the range is a KVM bug. 2071 */ 2072 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA || 2073 kvm->mmu_invalidate_range_end == INVALID_GPA)) 2074 return 1; 2075 2076 if (gfn >= kvm->mmu_invalidate_range_start && 2077 gfn < kvm->mmu_invalidate_range_end) 2078 return 1; 2079 } 2080 2081 if (kvm->mmu_invalidate_seq != mmu_seq) 2082 return 1; 2083 return 0; 2084 } 2085 2086 /* 2087 * This lockless version of the range-based retry check *must* be paired with a 2088 * call to the locked version after acquiring mmu_lock, i.e. this is safe to 2089 * use only as a pre-check to avoid contending mmu_lock. This version *will* 2090 * get false negatives and false positives. 2091 */ 2092 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm, 2093 unsigned long mmu_seq, 2094 gfn_t gfn) 2095 { 2096 /* 2097 * Use READ_ONCE() to ensure the in-progress flag and sequence counter 2098 * are always read from memory, e.g. so that checking for retry in a 2099 * loop won't result in an infinite retry loop. Don't force loads for 2100 * start+end, as the key to avoiding infinite retry loops is observing 2101 * the 1=>0 transition of in-progress, i.e. getting false negatives 2102 * due to stale start+end values is acceptable. 2103 */ 2104 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) && 2105 gfn >= kvm->mmu_invalidate_range_start && 2106 gfn < kvm->mmu_invalidate_range_end) 2107 return true; 2108 2109 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq; 2110 } 2111 #endif 2112 2113 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2114 2115 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 2116 2117 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 2118 int kvm_set_irq_routing(struct kvm *kvm, 2119 const struct kvm_irq_routing_entry *entries, 2120 unsigned nr, 2121 unsigned flags); 2122 int kvm_init_irq_routing(struct kvm *kvm); 2123 int kvm_set_routing_entry(struct kvm *kvm, 2124 struct kvm_kernel_irq_routing_entry *e, 2125 const struct kvm_irq_routing_entry *ue); 2126 void kvm_free_irq_routing(struct kvm *kvm); 2127 2128 #else 2129 2130 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 2131 2132 static inline int kvm_init_irq_routing(struct kvm *kvm) 2133 { 2134 return 0; 2135 } 2136 2137 #endif 2138 2139 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2140 2141 void kvm_eventfd_init(struct kvm *kvm); 2142 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2143 2144 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2145 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2146 void kvm_irqfd_release(struct kvm *kvm); 2147 bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2148 unsigned int irqchip, 2149 unsigned int pin); 2150 void kvm_irq_routing_update(struct kvm *); 2151 #else 2152 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2153 { 2154 return -EINVAL; 2155 } 2156 2157 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2158 2159 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2160 unsigned int irqchip, 2161 unsigned int pin) 2162 { 2163 return false; 2164 } 2165 #endif /* CONFIG_HAVE_KVM_IRQCHIP */ 2166 2167 void kvm_arch_irq_routing_update(struct kvm *kvm); 2168 2169 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2170 { 2171 /* 2172 * Ensure the rest of the request is published to kvm_check_request's 2173 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2174 */ 2175 smp_wmb(); 2176 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2177 } 2178 2179 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2180 { 2181 /* 2182 * Request that don't require vCPU action should never be logged in 2183 * vcpu->requests. The vCPU won't clear the request, so it will stay 2184 * logged indefinitely and prevent the vCPU from entering the guest. 2185 */ 2186 BUILD_BUG_ON(!__builtin_constant_p(req) || 2187 (req & KVM_REQUEST_NO_ACTION)); 2188 2189 __kvm_make_request(req, vcpu); 2190 } 2191 2192 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2193 { 2194 return READ_ONCE(vcpu->requests); 2195 } 2196 2197 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2198 { 2199 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2200 } 2201 2202 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2203 { 2204 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2205 } 2206 2207 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2208 { 2209 if (kvm_test_request(req, vcpu)) { 2210 kvm_clear_request(req, vcpu); 2211 2212 /* 2213 * Ensure the rest of the request is visible to kvm_check_request's 2214 * caller. Paired with the smp_wmb in kvm_make_request. 2215 */ 2216 smp_mb__after_atomic(); 2217 return true; 2218 } else { 2219 return false; 2220 } 2221 } 2222 2223 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2224 extern bool kvm_rebooting; 2225 #endif 2226 2227 extern unsigned int halt_poll_ns; 2228 extern unsigned int halt_poll_ns_grow; 2229 extern unsigned int halt_poll_ns_grow_start; 2230 extern unsigned int halt_poll_ns_shrink; 2231 2232 struct kvm_device { 2233 const struct kvm_device_ops *ops; 2234 struct kvm *kvm; 2235 void *private; 2236 struct list_head vm_node; 2237 }; 2238 2239 /* create, destroy, and name are mandatory */ 2240 struct kvm_device_ops { 2241 const char *name; 2242 2243 /* 2244 * create is called holding kvm->lock and any operations not suitable 2245 * to do while holding the lock should be deferred to init (see 2246 * below). 2247 */ 2248 int (*create)(struct kvm_device *dev, u32 type); 2249 2250 /* 2251 * init is called after create if create is successful and is called 2252 * outside of holding kvm->lock. 2253 */ 2254 void (*init)(struct kvm_device *dev); 2255 2256 /* 2257 * Destroy is responsible for freeing dev. 2258 * 2259 * Destroy may be called before or after destructors are called 2260 * on emulated I/O regions, depending on whether a reference is 2261 * held by a vcpu or other kvm component that gets destroyed 2262 * after the emulated I/O. 2263 */ 2264 void (*destroy)(struct kvm_device *dev); 2265 2266 /* 2267 * Release is an alternative method to free the device. It is 2268 * called when the device file descriptor is closed. Once 2269 * release is called, the destroy method will not be called 2270 * anymore as the device is removed from the device list of 2271 * the VM. kvm->lock is held. 2272 */ 2273 void (*release)(struct kvm_device *dev); 2274 2275 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2276 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2277 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2278 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2279 unsigned long arg); 2280 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2281 }; 2282 2283 struct kvm_device *kvm_device_from_filp(struct file *filp); 2284 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2285 void kvm_unregister_device_ops(u32 type); 2286 2287 extern struct kvm_device_ops kvm_mpic_ops; 2288 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2289 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2290 2291 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2292 2293 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2294 { 2295 vcpu->spin_loop.in_spin_loop = val; 2296 } 2297 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2298 { 2299 vcpu->spin_loop.dy_eligible = val; 2300 } 2301 2302 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2303 2304 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2305 { 2306 } 2307 2308 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2309 { 2310 } 2311 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2312 2313 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2314 { 2315 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2316 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2317 } 2318 2319 struct kvm_vcpu *kvm_get_running_vcpu(void); 2320 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2321 2322 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2323 bool kvm_arch_has_irq_bypass(void); 2324 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2325 struct irq_bypass_producer *); 2326 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2327 struct irq_bypass_producer *); 2328 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2329 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2330 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2331 uint32_t guest_irq, bool set); 2332 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2333 struct kvm_kernel_irq_routing_entry *); 2334 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2335 2336 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2337 /* If we wakeup during the poll time, was it a sucessful poll? */ 2338 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2339 { 2340 return vcpu->valid_wakeup; 2341 } 2342 2343 #else 2344 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2345 { 2346 return true; 2347 } 2348 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2349 2350 #ifdef CONFIG_HAVE_KVM_NO_POLL 2351 /* Callback that tells if we must not poll */ 2352 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2353 #else 2354 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2355 { 2356 return false; 2357 } 2358 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2359 2360 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2361 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2362 unsigned int ioctl, unsigned long arg); 2363 #else 2364 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2365 unsigned int ioctl, 2366 unsigned long arg) 2367 { 2368 return -ENOIOCTLCMD; 2369 } 2370 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2371 2372 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2373 2374 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2375 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2376 #else 2377 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2378 { 2379 return 0; 2380 } 2381 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2382 2383 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 2384 2385 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 2386 uintptr_t data, const char *name, 2387 struct task_struct **thread_ptr); 2388 2389 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2390 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2391 { 2392 vcpu->run->exit_reason = KVM_EXIT_INTR; 2393 vcpu->stat.signal_exits++; 2394 } 2395 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2396 2397 /* 2398 * If more than one page is being (un)accounted, @virt must be the address of 2399 * the first page of a block of pages what were allocated together (i.e 2400 * accounted together). 2401 * 2402 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2403 * is thread-safe. 2404 */ 2405 static inline void kvm_account_pgtable_pages(void *virt, int nr) 2406 { 2407 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2408 } 2409 2410 /* 2411 * This defines how many reserved entries we want to keep before we 2412 * kick the vcpu to the userspace to avoid dirty ring full. This 2413 * value can be tuned to higher if e.g. PML is enabled on the host. 2414 */ 2415 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2416 2417 /* Max number of entries allowed for each kvm dirty ring */ 2418 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2419 2420 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, 2421 gpa_t gpa, gpa_t size, 2422 bool is_write, bool is_exec, 2423 bool is_private) 2424 { 2425 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT; 2426 vcpu->run->memory_fault.gpa = gpa; 2427 vcpu->run->memory_fault.size = size; 2428 2429 /* RWX flags are not (yet) defined or communicated to userspace. */ 2430 vcpu->run->memory_fault.flags = 0; 2431 if (is_private) 2432 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE; 2433 } 2434 2435 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2436 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn) 2437 { 2438 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn)); 2439 } 2440 2441 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2442 unsigned long mask, unsigned long attrs); 2443 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 2444 struct kvm_gfn_range *range); 2445 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 2446 struct kvm_gfn_range *range); 2447 2448 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2449 { 2450 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) && 2451 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE; 2452 } 2453 #else 2454 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2455 { 2456 return false; 2457 } 2458 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2459 2460 #ifdef CONFIG_KVM_PRIVATE_MEM 2461 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot, 2462 gfn_t gfn, kvm_pfn_t *pfn, int *max_order); 2463 #else 2464 static inline int kvm_gmem_get_pfn(struct kvm *kvm, 2465 struct kvm_memory_slot *slot, gfn_t gfn, 2466 kvm_pfn_t *pfn, int *max_order) 2467 { 2468 KVM_BUG_ON(1, kvm); 2469 return -EIO; 2470 } 2471 #endif /* CONFIG_KVM_PRIVATE_MEM */ 2472 2473 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 2474 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order); 2475 #endif 2476 2477 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM 2478 /** 2479 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data 2480 * 2481 * @kvm: KVM instance 2482 * @gfn: starting GFN to be populated 2483 * @src: userspace-provided buffer containing data to copy into GFN range 2484 * (passed to @post_populate, and incremented on each iteration 2485 * if not NULL) 2486 * @npages: number of pages to copy from userspace-buffer 2487 * @post_populate: callback to issue for each gmem page that backs the GPA 2488 * range 2489 * @opaque: opaque data to pass to @post_populate callback 2490 * 2491 * This is primarily intended for cases where a gmem-backed GPA range needs 2492 * to be initialized with userspace-provided data prior to being mapped into 2493 * the guest as a private page. This should be called with the slots->lock 2494 * held so that caller-enforced invariants regarding the expected memory 2495 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES. 2496 * 2497 * Returns the number of pages that were populated. 2498 */ 2499 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2500 void __user *src, int order, void *opaque); 2501 2502 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages, 2503 kvm_gmem_populate_cb post_populate, void *opaque); 2504 #endif 2505 2506 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 2507 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); 2508 #endif 2509 2510 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 2511 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 2512 struct kvm_pre_fault_memory *range); 2513 #endif 2514 2515 #endif 2516