1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/hashtable.h> 33 #include <linux/interval_tree.h> 34 #include <linux/rbtree.h> 35 #include <linux/xarray.h> 36 #include <asm/signal.h> 37 38 #include <linux/kvm.h> 39 #include <linux/kvm_para.h> 40 41 #include <linux/kvm_types.h> 42 43 #include <asm/kvm_host.h> 44 #include <linux/kvm_dirty_ring.h> 45 46 #ifndef KVM_MAX_VCPU_IDS 47 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 48 #endif 49 50 /* 51 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 52 * in kvm, other bits are visible for userspace which are defined in 53 * include/linux/kvm_h. 54 */ 55 #define KVM_MEMSLOT_INVALID (1UL << 16) 56 57 /* 58 * Bit 63 of the memslot generation number is an "update in-progress flag", 59 * e.g. is temporarily set for the duration of install_new_memslots(). 60 * This flag effectively creates a unique generation number that is used to 61 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 62 * i.e. may (or may not) have come from the previous memslots generation. 63 * 64 * This is necessary because the actual memslots update is not atomic with 65 * respect to the generation number update. Updating the generation number 66 * first would allow a vCPU to cache a spte from the old memslots using the 67 * new generation number, and updating the generation number after switching 68 * to the new memslots would allow cache hits using the old generation number 69 * to reference the defunct memslots. 70 * 71 * This mechanism is used to prevent getting hits in KVM's caches while a 72 * memslot update is in-progress, and to prevent cache hits *after* updating 73 * the actual generation number against accesses that were inserted into the 74 * cache *before* the memslots were updated. 75 */ 76 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 77 78 /* Two fragments for cross MMIO pages. */ 79 #define KVM_MAX_MMIO_FRAGMENTS 2 80 81 #ifndef KVM_ADDRESS_SPACE_NUM 82 #define KVM_ADDRESS_SPACE_NUM 1 83 #endif 84 85 /* 86 * For the normal pfn, the highest 12 bits should be zero, 87 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 88 * mask bit 63 to indicate the noslot pfn. 89 */ 90 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 91 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 92 #define KVM_PFN_NOSLOT (0x1ULL << 63) 93 94 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 95 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 96 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 97 98 /* 99 * error pfns indicate that the gfn is in slot but faild to 100 * translate it to pfn on host. 101 */ 102 static inline bool is_error_pfn(kvm_pfn_t pfn) 103 { 104 return !!(pfn & KVM_PFN_ERR_MASK); 105 } 106 107 /* 108 * error_noslot pfns indicate that the gfn can not be 109 * translated to pfn - it is not in slot or failed to 110 * translate it to pfn. 111 */ 112 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 113 { 114 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 115 } 116 117 /* noslot pfn indicates that the gfn is not in slot. */ 118 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 119 { 120 return pfn == KVM_PFN_NOSLOT; 121 } 122 123 /* 124 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 125 * provide own defines and kvm_is_error_hva 126 */ 127 #ifndef KVM_HVA_ERR_BAD 128 129 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 130 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 131 132 static inline bool kvm_is_error_hva(unsigned long addr) 133 { 134 return addr >= PAGE_OFFSET; 135 } 136 137 #endif 138 139 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 140 141 static inline bool is_error_page(struct page *page) 142 { 143 return IS_ERR(page); 144 } 145 146 #define KVM_REQUEST_MASK GENMASK(7,0) 147 #define KVM_REQUEST_NO_WAKEUP BIT(8) 148 #define KVM_REQUEST_WAIT BIT(9) 149 /* 150 * Architecture-independent vcpu->requests bit members 151 * Bits 4-7 are reserved for more arch-independent bits. 152 */ 153 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 154 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 155 #define KVM_REQ_UNBLOCK 2 156 #define KVM_REQ_UNHALT 3 157 #define KVM_REQ_VM_DEAD (4 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 158 #define KVM_REQ_GPC_INVALIDATE (5 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 159 #define KVM_REQUEST_ARCH_BASE 8 160 161 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 162 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 163 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 164 }) 165 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 166 167 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 168 unsigned long *vcpu_bitmap); 169 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 170 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 171 struct kvm_vcpu *except); 172 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 173 unsigned long *vcpu_bitmap); 174 175 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 176 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 177 178 extern struct mutex kvm_lock; 179 extern struct list_head vm_list; 180 181 struct kvm_io_range { 182 gpa_t addr; 183 int len; 184 struct kvm_io_device *dev; 185 }; 186 187 #define NR_IOBUS_DEVS 1000 188 189 struct kvm_io_bus { 190 int dev_count; 191 int ioeventfd_count; 192 struct kvm_io_range range[]; 193 }; 194 195 enum kvm_bus { 196 KVM_MMIO_BUS, 197 KVM_PIO_BUS, 198 KVM_VIRTIO_CCW_NOTIFY_BUS, 199 KVM_FAST_MMIO_BUS, 200 KVM_NR_BUSES 201 }; 202 203 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 204 int len, const void *val); 205 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 206 gpa_t addr, int len, const void *val, long cookie); 207 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 208 int len, void *val); 209 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 210 int len, struct kvm_io_device *dev); 211 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 212 struct kvm_io_device *dev); 213 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 214 gpa_t addr); 215 216 #ifdef CONFIG_KVM_ASYNC_PF 217 struct kvm_async_pf { 218 struct work_struct work; 219 struct list_head link; 220 struct list_head queue; 221 struct kvm_vcpu *vcpu; 222 struct mm_struct *mm; 223 gpa_t cr2_or_gpa; 224 unsigned long addr; 225 struct kvm_arch_async_pf arch; 226 bool wakeup_all; 227 bool notpresent_injected; 228 }; 229 230 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 231 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 232 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 233 unsigned long hva, struct kvm_arch_async_pf *arch); 234 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 235 #endif 236 237 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER 238 struct kvm_gfn_range { 239 struct kvm_memory_slot *slot; 240 gfn_t start; 241 gfn_t end; 242 pte_t pte; 243 bool may_block; 244 }; 245 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 246 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 247 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 248 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 249 #endif 250 251 enum { 252 OUTSIDE_GUEST_MODE, 253 IN_GUEST_MODE, 254 EXITING_GUEST_MODE, 255 READING_SHADOW_PAGE_TABLES, 256 }; 257 258 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 259 260 struct kvm_host_map { 261 /* 262 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 263 * a 'struct page' for it. When using mem= kernel parameter some memory 264 * can be used as guest memory but they are not managed by host 265 * kernel). 266 * If 'pfn' is not managed by the host kernel, this field is 267 * initialized to KVM_UNMAPPED_PAGE. 268 */ 269 struct page *page; 270 void *hva; 271 kvm_pfn_t pfn; 272 kvm_pfn_t gfn; 273 }; 274 275 /* 276 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 277 * directly to check for that. 278 */ 279 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 280 { 281 return !!map->hva; 282 } 283 284 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 285 { 286 return single_task_running() && !need_resched() && ktime_before(cur, stop); 287 } 288 289 /* 290 * Sometimes a large or cross-page mmio needs to be broken up into separate 291 * exits for userspace servicing. 292 */ 293 struct kvm_mmio_fragment { 294 gpa_t gpa; 295 void *data; 296 unsigned len; 297 }; 298 299 struct kvm_vcpu { 300 struct kvm *kvm; 301 #ifdef CONFIG_PREEMPT_NOTIFIERS 302 struct preempt_notifier preempt_notifier; 303 #endif 304 int cpu; 305 int vcpu_id; /* id given by userspace at creation */ 306 int vcpu_idx; /* index in kvm->vcpus array */ 307 int srcu_idx; 308 int mode; 309 u64 requests; 310 unsigned long guest_debug; 311 312 int pre_pcpu; 313 struct list_head blocked_vcpu_list; 314 315 struct mutex mutex; 316 struct kvm_run *run; 317 318 #ifndef __KVM_HAVE_ARCH_WQP 319 struct rcuwait wait; 320 #endif 321 struct pid __rcu *pid; 322 int sigset_active; 323 sigset_t sigset; 324 unsigned int halt_poll_ns; 325 bool valid_wakeup; 326 327 #ifdef CONFIG_HAS_IOMEM 328 int mmio_needed; 329 int mmio_read_completed; 330 int mmio_is_write; 331 int mmio_cur_fragment; 332 int mmio_nr_fragments; 333 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 334 #endif 335 336 #ifdef CONFIG_KVM_ASYNC_PF 337 struct { 338 u32 queued; 339 struct list_head queue; 340 struct list_head done; 341 spinlock_t lock; 342 } async_pf; 343 #endif 344 345 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 346 /* 347 * Cpu relax intercept or pause loop exit optimization 348 * in_spin_loop: set when a vcpu does a pause loop exit 349 * or cpu relax intercepted. 350 * dy_eligible: indicates whether vcpu is eligible for directed yield. 351 */ 352 struct { 353 bool in_spin_loop; 354 bool dy_eligible; 355 } spin_loop; 356 #endif 357 bool preempted; 358 bool ready; 359 struct kvm_vcpu_arch arch; 360 struct kvm_vcpu_stat stat; 361 char stats_id[KVM_STATS_NAME_SIZE]; 362 struct kvm_dirty_ring dirty_ring; 363 364 /* 365 * The most recently used memslot by this vCPU and the slots generation 366 * for which it is valid. 367 * No wraparound protection is needed since generations won't overflow in 368 * thousands of years, even assuming 1M memslot operations per second. 369 */ 370 struct kvm_memory_slot *last_used_slot; 371 u64 last_used_slot_gen; 372 }; 373 374 /* must be called with irqs disabled */ 375 static __always_inline void guest_enter_irqoff(void) 376 { 377 /* 378 * This is running in ioctl context so its safe to assume that it's the 379 * stime pending cputime to flush. 380 */ 381 instrumentation_begin(); 382 vtime_account_guest_enter(); 383 instrumentation_end(); 384 385 /* 386 * KVM does not hold any references to rcu protected data when it 387 * switches CPU into a guest mode. In fact switching to a guest mode 388 * is very similar to exiting to userspace from rcu point of view. In 389 * addition CPU may stay in a guest mode for quite a long time (up to 390 * one time slice). Lets treat guest mode as quiescent state, just like 391 * we do with user-mode execution. 392 */ 393 if (!context_tracking_guest_enter()) { 394 instrumentation_begin(); 395 rcu_virt_note_context_switch(smp_processor_id()); 396 instrumentation_end(); 397 } 398 } 399 400 static __always_inline void guest_exit_irqoff(void) 401 { 402 context_tracking_guest_exit(); 403 404 instrumentation_begin(); 405 /* Flush the guest cputime we spent on the guest */ 406 vtime_account_guest_exit(); 407 instrumentation_end(); 408 } 409 410 static inline void guest_exit(void) 411 { 412 unsigned long flags; 413 414 local_irq_save(flags); 415 guest_exit_irqoff(); 416 local_irq_restore(flags); 417 } 418 419 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 420 { 421 /* 422 * The memory barrier ensures a previous write to vcpu->requests cannot 423 * be reordered with the read of vcpu->mode. It pairs with the general 424 * memory barrier following the write of vcpu->mode in VCPU RUN. 425 */ 426 smp_mb__before_atomic(); 427 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 428 } 429 430 /* 431 * Some of the bitops functions do not support too long bitmaps. 432 * This number must be determined not to exceed such limits. 433 */ 434 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 435 436 /* 437 * Since at idle each memslot belongs to two memslot sets it has to contain 438 * two embedded nodes for each data structure that it forms a part of. 439 * 440 * Two memslot sets (one active and one inactive) are necessary so the VM 441 * continues to run on one memslot set while the other is being modified. 442 * 443 * These two memslot sets normally point to the same set of memslots. 444 * They can, however, be desynchronized when performing a memslot management 445 * operation by replacing the memslot to be modified by its copy. 446 * After the operation is complete, both memslot sets once again point to 447 * the same, common set of memslot data. 448 * 449 * The memslots themselves are independent of each other so they can be 450 * individually added or deleted. 451 */ 452 struct kvm_memory_slot { 453 struct hlist_node id_node[2]; 454 struct interval_tree_node hva_node[2]; 455 struct rb_node gfn_node[2]; 456 gfn_t base_gfn; 457 unsigned long npages; 458 unsigned long *dirty_bitmap; 459 struct kvm_arch_memory_slot arch; 460 unsigned long userspace_addr; 461 u32 flags; 462 short id; 463 u16 as_id; 464 }; 465 466 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 467 { 468 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 469 } 470 471 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 472 { 473 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 474 } 475 476 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 477 { 478 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 479 480 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 481 } 482 483 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 484 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 485 #endif 486 487 struct kvm_s390_adapter_int { 488 u64 ind_addr; 489 u64 summary_addr; 490 u64 ind_offset; 491 u32 summary_offset; 492 u32 adapter_id; 493 }; 494 495 struct kvm_hv_sint { 496 u32 vcpu; 497 u32 sint; 498 }; 499 500 struct kvm_xen_evtchn { 501 u32 port; 502 u32 vcpu; 503 u32 priority; 504 }; 505 506 struct kvm_kernel_irq_routing_entry { 507 u32 gsi; 508 u32 type; 509 int (*set)(struct kvm_kernel_irq_routing_entry *e, 510 struct kvm *kvm, int irq_source_id, int level, 511 bool line_status); 512 union { 513 struct { 514 unsigned irqchip; 515 unsigned pin; 516 } irqchip; 517 struct { 518 u32 address_lo; 519 u32 address_hi; 520 u32 data; 521 u32 flags; 522 u32 devid; 523 } msi; 524 struct kvm_s390_adapter_int adapter; 525 struct kvm_hv_sint hv_sint; 526 struct kvm_xen_evtchn xen_evtchn; 527 }; 528 struct hlist_node link; 529 }; 530 531 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 532 struct kvm_irq_routing_table { 533 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 534 u32 nr_rt_entries; 535 /* 536 * Array indexed by gsi. Each entry contains list of irq chips 537 * the gsi is connected to. 538 */ 539 struct hlist_head map[]; 540 }; 541 #endif 542 543 #ifndef KVM_PRIVATE_MEM_SLOTS 544 #define KVM_PRIVATE_MEM_SLOTS 0 545 #endif 546 547 #define KVM_MEM_SLOTS_NUM SHRT_MAX 548 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS) 549 550 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 551 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 552 { 553 return 0; 554 } 555 #endif 556 557 struct kvm_memslots { 558 u64 generation; 559 atomic_long_t last_used_slot; 560 struct rb_root_cached hva_tree; 561 struct rb_root gfn_tree; 562 /* 563 * The mapping table from slot id to memslot. 564 * 565 * 7-bit bucket count matches the size of the old id to index array for 566 * 512 slots, while giving good performance with this slot count. 567 * Higher bucket counts bring only small performance improvements but 568 * always result in higher memory usage (even for lower memslot counts). 569 */ 570 DECLARE_HASHTABLE(id_hash, 7); 571 int node_idx; 572 }; 573 574 struct kvm { 575 #ifdef KVM_HAVE_MMU_RWLOCK 576 rwlock_t mmu_lock; 577 #else 578 spinlock_t mmu_lock; 579 #endif /* KVM_HAVE_MMU_RWLOCK */ 580 581 struct mutex slots_lock; 582 583 /* 584 * Protects the arch-specific fields of struct kvm_memory_slots in 585 * use by the VM. To be used under the slots_lock (above) or in a 586 * kvm->srcu critical section where acquiring the slots_lock would 587 * lead to deadlock with the synchronize_srcu in 588 * install_new_memslots. 589 */ 590 struct mutex slots_arch_lock; 591 struct mm_struct *mm; /* userspace tied to this vm */ 592 unsigned long nr_memslot_pages; 593 /* The two memslot sets - active and inactive (per address space) */ 594 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2]; 595 /* The current active memslot set for each address space */ 596 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 597 struct xarray vcpu_array; 598 599 /* Used to wait for completion of MMU notifiers. */ 600 spinlock_t mn_invalidate_lock; 601 unsigned long mn_active_invalidate_count; 602 struct rcuwait mn_memslots_update_rcuwait; 603 604 /* For management / invalidation of gfn_to_pfn_caches */ 605 spinlock_t gpc_lock; 606 struct list_head gpc_list; 607 608 /* 609 * created_vcpus is protected by kvm->lock, and is incremented 610 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 611 * incremented after storing the kvm_vcpu pointer in vcpus, 612 * and is accessed atomically. 613 */ 614 atomic_t online_vcpus; 615 int created_vcpus; 616 int last_boosted_vcpu; 617 struct list_head vm_list; 618 struct mutex lock; 619 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 620 #ifdef CONFIG_HAVE_KVM_EVENTFD 621 struct { 622 spinlock_t lock; 623 struct list_head items; 624 struct list_head resampler_list; 625 struct mutex resampler_lock; 626 } irqfds; 627 struct list_head ioeventfds; 628 #endif 629 struct kvm_vm_stat stat; 630 struct kvm_arch arch; 631 refcount_t users_count; 632 #ifdef CONFIG_KVM_MMIO 633 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 634 spinlock_t ring_lock; 635 struct list_head coalesced_zones; 636 #endif 637 638 struct mutex irq_lock; 639 #ifdef CONFIG_HAVE_KVM_IRQCHIP 640 /* 641 * Update side is protected by irq_lock. 642 */ 643 struct kvm_irq_routing_table __rcu *irq_routing; 644 #endif 645 #ifdef CONFIG_HAVE_KVM_IRQFD 646 struct hlist_head irq_ack_notifier_list; 647 #endif 648 649 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 650 struct mmu_notifier mmu_notifier; 651 unsigned long mmu_notifier_seq; 652 long mmu_notifier_count; 653 unsigned long mmu_notifier_range_start; 654 unsigned long mmu_notifier_range_end; 655 #endif 656 struct list_head devices; 657 u64 manual_dirty_log_protect; 658 struct dentry *debugfs_dentry; 659 struct kvm_stat_data **debugfs_stat_data; 660 struct srcu_struct srcu; 661 struct srcu_struct irq_srcu; 662 pid_t userspace_pid; 663 unsigned int max_halt_poll_ns; 664 u32 dirty_ring_size; 665 bool vm_bugged; 666 bool vm_dead; 667 668 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 669 struct notifier_block pm_notifier; 670 #endif 671 char stats_id[KVM_STATS_NAME_SIZE]; 672 }; 673 674 #define kvm_err(fmt, ...) \ 675 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 676 #define kvm_info(fmt, ...) \ 677 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 678 #define kvm_debug(fmt, ...) \ 679 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 680 #define kvm_debug_ratelimited(fmt, ...) \ 681 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 682 ## __VA_ARGS__) 683 #define kvm_pr_unimpl(fmt, ...) \ 684 pr_err_ratelimited("kvm [%i]: " fmt, \ 685 task_tgid_nr(current), ## __VA_ARGS__) 686 687 /* The guest did something we don't support. */ 688 #define vcpu_unimpl(vcpu, fmt, ...) \ 689 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 690 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 691 692 #define vcpu_debug(vcpu, fmt, ...) \ 693 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 694 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 695 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 696 ## __VA_ARGS__) 697 #define vcpu_err(vcpu, fmt, ...) \ 698 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 699 700 static inline void kvm_vm_dead(struct kvm *kvm) 701 { 702 kvm->vm_dead = true; 703 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 704 } 705 706 static inline void kvm_vm_bugged(struct kvm *kvm) 707 { 708 kvm->vm_bugged = true; 709 kvm_vm_dead(kvm); 710 } 711 712 713 #define KVM_BUG(cond, kvm, fmt...) \ 714 ({ \ 715 int __ret = (cond); \ 716 \ 717 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 718 kvm_vm_bugged(kvm); \ 719 unlikely(__ret); \ 720 }) 721 722 #define KVM_BUG_ON(cond, kvm) \ 723 ({ \ 724 int __ret = (cond); \ 725 \ 726 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 727 kvm_vm_bugged(kvm); \ 728 unlikely(__ret); \ 729 }) 730 731 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 732 { 733 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 734 } 735 736 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 737 { 738 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 739 lockdep_is_held(&kvm->slots_lock) || 740 !refcount_read(&kvm->users_count)); 741 } 742 743 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 744 { 745 int num_vcpus = atomic_read(&kvm->online_vcpus); 746 i = array_index_nospec(i, num_vcpus); 747 748 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 749 smp_rmb(); 750 return xa_load(&kvm->vcpu_array, i); 751 } 752 753 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 754 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 755 (atomic_read(&kvm->online_vcpus) - 1)) 756 757 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 758 { 759 struct kvm_vcpu *vcpu = NULL; 760 unsigned long i; 761 762 if (id < 0) 763 return NULL; 764 if (id < KVM_MAX_VCPUS) 765 vcpu = kvm_get_vcpu(kvm, id); 766 if (vcpu && vcpu->vcpu_id == id) 767 return vcpu; 768 kvm_for_each_vcpu(i, vcpu, kvm) 769 if (vcpu->vcpu_id == id) 770 return vcpu; 771 return NULL; 772 } 773 774 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 775 { 776 return vcpu->vcpu_idx; 777 } 778 779 void kvm_destroy_vcpus(struct kvm *kvm); 780 781 void vcpu_load(struct kvm_vcpu *vcpu); 782 void vcpu_put(struct kvm_vcpu *vcpu); 783 784 #ifdef __KVM_HAVE_IOAPIC 785 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 786 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 787 #else 788 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 789 { 790 } 791 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 792 { 793 } 794 #endif 795 796 #ifdef CONFIG_HAVE_KVM_IRQFD 797 int kvm_irqfd_init(void); 798 void kvm_irqfd_exit(void); 799 #else 800 static inline int kvm_irqfd_init(void) 801 { 802 return 0; 803 } 804 805 static inline void kvm_irqfd_exit(void) 806 { 807 } 808 #endif 809 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 810 struct module *module); 811 void kvm_exit(void); 812 813 void kvm_get_kvm(struct kvm *kvm); 814 bool kvm_get_kvm_safe(struct kvm *kvm); 815 void kvm_put_kvm(struct kvm *kvm); 816 bool file_is_kvm(struct file *file); 817 void kvm_put_kvm_no_destroy(struct kvm *kvm); 818 819 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 820 { 821 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 822 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 823 lockdep_is_held(&kvm->slots_lock) || 824 !refcount_read(&kvm->users_count)); 825 } 826 827 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 828 { 829 return __kvm_memslots(kvm, 0); 830 } 831 832 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 833 { 834 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 835 836 return __kvm_memslots(vcpu->kvm, as_id); 837 } 838 839 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 840 { 841 return RB_EMPTY_ROOT(&slots->gfn_tree); 842 } 843 844 #define kvm_for_each_memslot(memslot, bkt, slots) \ 845 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 846 if (WARN_ON_ONCE(!memslot->npages)) { \ 847 } else 848 849 static inline 850 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 851 { 852 struct kvm_memory_slot *slot; 853 int idx = slots->node_idx; 854 855 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 856 if (slot->id == id) 857 return slot; 858 } 859 860 return NULL; 861 } 862 863 /* Iterator used for walking memslots that overlap a gfn range. */ 864 struct kvm_memslot_iter { 865 struct kvm_memslots *slots; 866 struct rb_node *node; 867 struct kvm_memory_slot *slot; 868 }; 869 870 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 871 { 872 iter->node = rb_next(iter->node); 873 if (!iter->node) 874 return; 875 876 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 877 } 878 879 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 880 struct kvm_memslots *slots, 881 gfn_t start) 882 { 883 int idx = slots->node_idx; 884 struct rb_node *tmp; 885 struct kvm_memory_slot *slot; 886 887 iter->slots = slots; 888 889 /* 890 * Find the so called "upper bound" of a key - the first node that has 891 * its key strictly greater than the searched one (the start gfn in our case). 892 */ 893 iter->node = NULL; 894 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 895 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 896 if (start < slot->base_gfn) { 897 iter->node = tmp; 898 tmp = tmp->rb_left; 899 } else { 900 tmp = tmp->rb_right; 901 } 902 } 903 904 /* 905 * Find the slot with the lowest gfn that can possibly intersect with 906 * the range, so we'll ideally have slot start <= range start 907 */ 908 if (iter->node) { 909 /* 910 * A NULL previous node means that the very first slot 911 * already has a higher start gfn. 912 * In this case slot start > range start. 913 */ 914 tmp = rb_prev(iter->node); 915 if (tmp) 916 iter->node = tmp; 917 } else { 918 /* a NULL node below means no slots */ 919 iter->node = rb_last(&slots->gfn_tree); 920 } 921 922 if (iter->node) { 923 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 924 925 /* 926 * It is possible in the slot start < range start case that the 927 * found slot ends before or at range start (slot end <= range start) 928 * and so it does not overlap the requested range. 929 * 930 * In such non-overlapping case the next slot (if it exists) will 931 * already have slot start > range start, otherwise the logic above 932 * would have found it instead of the current slot. 933 */ 934 if (iter->slot->base_gfn + iter->slot->npages <= start) 935 kvm_memslot_iter_next(iter); 936 } 937 } 938 939 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 940 { 941 if (!iter->node) 942 return false; 943 944 /* 945 * If this slot starts beyond or at the end of the range so does 946 * every next one 947 */ 948 return iter->slot->base_gfn < end; 949 } 950 951 /* Iterate over each memslot at least partially intersecting [start, end) range */ 952 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 953 for (kvm_memslot_iter_start(iter, slots, start); \ 954 kvm_memslot_iter_is_valid(iter, end); \ 955 kvm_memslot_iter_next(iter)) 956 957 /* 958 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 959 * - create a new memory slot 960 * - delete an existing memory slot 961 * - modify an existing memory slot 962 * -- move it in the guest physical memory space 963 * -- just change its flags 964 * 965 * Since flags can be changed by some of these operations, the following 966 * differentiation is the best we can do for __kvm_set_memory_region(): 967 */ 968 enum kvm_mr_change { 969 KVM_MR_CREATE, 970 KVM_MR_DELETE, 971 KVM_MR_MOVE, 972 KVM_MR_FLAGS_ONLY, 973 }; 974 975 int kvm_set_memory_region(struct kvm *kvm, 976 const struct kvm_userspace_memory_region *mem); 977 int __kvm_set_memory_region(struct kvm *kvm, 978 const struct kvm_userspace_memory_region *mem); 979 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 980 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 981 int kvm_arch_prepare_memory_region(struct kvm *kvm, 982 const struct kvm_memory_slot *old, 983 struct kvm_memory_slot *new, 984 enum kvm_mr_change change); 985 void kvm_arch_commit_memory_region(struct kvm *kvm, 986 struct kvm_memory_slot *old, 987 const struct kvm_memory_slot *new, 988 enum kvm_mr_change change); 989 /* flush all memory translations */ 990 void kvm_arch_flush_shadow_all(struct kvm *kvm); 991 /* flush memory translations pointing to 'slot' */ 992 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 993 struct kvm_memory_slot *slot); 994 995 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 996 struct page **pages, int nr_pages); 997 998 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 999 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1000 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1001 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1002 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1003 bool *writable); 1004 void kvm_release_page_clean(struct page *page); 1005 void kvm_release_page_dirty(struct page *page); 1006 void kvm_set_page_accessed(struct page *page); 1007 1008 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 1009 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1010 bool *writable); 1011 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn); 1012 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn); 1013 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 1014 bool atomic, bool *async, bool write_fault, 1015 bool *writable, hva_t *hva); 1016 1017 void kvm_release_pfn_clean(kvm_pfn_t pfn); 1018 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 1019 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 1020 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 1021 1022 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty); 1023 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1024 int len); 1025 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1026 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1027 void *data, unsigned long len); 1028 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1029 void *data, unsigned int offset, 1030 unsigned long len); 1031 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1032 int offset, int len); 1033 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1034 unsigned long len); 1035 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1036 void *data, unsigned long len); 1037 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1038 void *data, unsigned int offset, 1039 unsigned long len); 1040 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1041 gpa_t gpa, unsigned long len); 1042 1043 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1044 ({ \ 1045 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1046 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1047 int __ret = -EFAULT; \ 1048 \ 1049 if (!kvm_is_error_hva(__addr)) \ 1050 __ret = get_user(v, __uaddr); \ 1051 __ret; \ 1052 }) 1053 1054 #define kvm_get_guest(kvm, gpa, v) \ 1055 ({ \ 1056 gpa_t __gpa = gpa; \ 1057 struct kvm *__kvm = kvm; \ 1058 \ 1059 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1060 offset_in_page(__gpa), v); \ 1061 }) 1062 1063 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1064 ({ \ 1065 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1066 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1067 int __ret = -EFAULT; \ 1068 \ 1069 if (!kvm_is_error_hva(__addr)) \ 1070 __ret = put_user(v, __uaddr); \ 1071 if (!__ret) \ 1072 mark_page_dirty(kvm, gfn); \ 1073 __ret; \ 1074 }) 1075 1076 #define kvm_put_guest(kvm, gpa, v) \ 1077 ({ \ 1078 gpa_t __gpa = gpa; \ 1079 struct kvm *__kvm = kvm; \ 1080 \ 1081 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1082 offset_in_page(__gpa), v); \ 1083 }) 1084 1085 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1086 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1087 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1088 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1089 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1090 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1091 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1092 1093 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1094 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1095 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 1096 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1097 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 1098 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 1099 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 1100 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1101 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1102 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1103 int len); 1104 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1105 unsigned long len); 1106 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1107 unsigned long len); 1108 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1109 int offset, int len); 1110 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1111 unsigned long len); 1112 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1113 1114 /** 1115 * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a 1116 * given guest physical address. 1117 * 1118 * @kvm: pointer to kvm instance. 1119 * @gpc: struct gfn_to_pfn_cache object. 1120 * @vcpu: vCPU to be used for marking pages dirty and to be woken on 1121 * invalidation. 1122 * @guest_uses_pa: indicates that the resulting host physical PFN is used while 1123 * @vcpu is IN_GUEST_MODE so invalidations should wake it. 1124 * @kernel_map: requests a kernel virtual mapping (kmap / memremap). 1125 * @gpa: guest physical address to map. 1126 * @len: sanity check; the range being access must fit a single page. 1127 * @dirty: mark the cache dirty immediately. 1128 * 1129 * @return: 0 for success. 1130 * -EINVAL for a mapping which would cross a page boundary. 1131 * -EFAULT for an untranslatable guest physical address. 1132 * 1133 * This primes a gfn_to_pfn_cache and links it into the @kvm's list for 1134 * invalidations to be processed. Invalidation callbacks to @vcpu using 1135 * %KVM_REQ_GPC_INVALIDATE will occur only for MMU notifiers, not for KVM 1136 * memslot changes. Callers are required to use kvm_gfn_to_pfn_cache_check() 1137 * to ensure that the cache is valid before accessing the target page. 1138 */ 1139 int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1140 struct kvm_vcpu *vcpu, bool guest_uses_pa, 1141 bool kernel_map, gpa_t gpa, unsigned long len, 1142 bool dirty); 1143 1144 /** 1145 * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache. 1146 * 1147 * @kvm: pointer to kvm instance. 1148 * @gpc: struct gfn_to_pfn_cache object. 1149 * @gpa: current guest physical address to map. 1150 * @len: sanity check; the range being access must fit a single page. 1151 * @dirty: mark the cache dirty immediately. 1152 * 1153 * @return: %true if the cache is still valid and the address matches. 1154 * %false if the cache is not valid. 1155 * 1156 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1157 * while calling this function, and then continue to hold the lock until the 1158 * access is complete. 1159 * 1160 * Callers in IN_GUEST_MODE may do so without locking, although they should 1161 * still hold a read lock on kvm->scru for the memslot checks. 1162 */ 1163 bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1164 gpa_t gpa, unsigned long len); 1165 1166 /** 1167 * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache. 1168 * 1169 * @kvm: pointer to kvm instance. 1170 * @gpc: struct gfn_to_pfn_cache object. 1171 * @gpa: updated guest physical address to map. 1172 * @len: sanity check; the range being access must fit a single page. 1173 * @dirty: mark the cache dirty immediately. 1174 * 1175 * @return: 0 for success. 1176 * -EINVAL for a mapping which would cross a page boundary. 1177 * -EFAULT for an untranslatable guest physical address. 1178 * 1179 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1180 * returm from this function does not mean the page can be immediately 1181 * accessed because it may have raced with an invalidation. Callers must 1182 * still lock and check the cache status, as this function does not return 1183 * with the lock still held to permit access. 1184 */ 1185 int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc, 1186 gpa_t gpa, unsigned long len, bool dirty); 1187 1188 /** 1189 * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache. 1190 * 1191 * @kvm: pointer to kvm instance. 1192 * @gpc: struct gfn_to_pfn_cache object. 1193 * 1194 * This unmaps the referenced page and marks it dirty, if appropriate. The 1195 * cache is left in the invalid state but at least the mapping from GPA to 1196 * userspace HVA will remain cached and can be reused on a subsequent 1197 * refresh. 1198 */ 1199 void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc); 1200 1201 /** 1202 * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache. 1203 * 1204 * @kvm: pointer to kvm instance. 1205 * @gpc: struct gfn_to_pfn_cache object. 1206 * 1207 * This removes a cache from the @kvm's list to be processed on MMU notifier 1208 * invocation. 1209 */ 1210 void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc); 1211 1212 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1213 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1214 1215 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1216 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1217 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1218 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1219 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1220 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1221 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1222 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 1223 1224 void kvm_flush_remote_tlbs(struct kvm *kvm); 1225 void kvm_reload_remote_mmus(struct kvm *kvm); 1226 1227 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1228 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1229 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1230 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1231 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1232 #endif 1233 1234 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 1235 unsigned long end); 1236 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 1237 unsigned long end); 1238 1239 long kvm_arch_dev_ioctl(struct file *filp, 1240 unsigned int ioctl, unsigned long arg); 1241 long kvm_arch_vcpu_ioctl(struct file *filp, 1242 unsigned int ioctl, unsigned long arg); 1243 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1244 1245 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1246 1247 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1248 struct kvm_memory_slot *slot, 1249 gfn_t gfn_offset, 1250 unsigned long mask); 1251 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1252 1253 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1254 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1255 const struct kvm_memory_slot *memslot); 1256 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1257 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1258 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1259 int *is_dirty, struct kvm_memory_slot **memslot); 1260 #endif 1261 1262 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1263 bool line_status); 1264 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1265 struct kvm_enable_cap *cap); 1266 long kvm_arch_vm_ioctl(struct file *filp, 1267 unsigned int ioctl, unsigned long arg); 1268 1269 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1270 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1271 1272 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1273 struct kvm_translation *tr); 1274 1275 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1276 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1277 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1278 struct kvm_sregs *sregs); 1279 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1280 struct kvm_sregs *sregs); 1281 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1282 struct kvm_mp_state *mp_state); 1283 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1284 struct kvm_mp_state *mp_state); 1285 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1286 struct kvm_guest_debug *dbg); 1287 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1288 1289 int kvm_arch_init(void *opaque); 1290 void kvm_arch_exit(void); 1291 1292 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 1293 1294 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1295 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1296 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1297 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1298 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1299 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1300 1301 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1302 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1303 #endif 1304 1305 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1306 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1307 #endif 1308 1309 int kvm_arch_hardware_enable(void); 1310 void kvm_arch_hardware_disable(void); 1311 int kvm_arch_hardware_setup(void *opaque); 1312 void kvm_arch_hardware_unsetup(void); 1313 int kvm_arch_check_processor_compat(void *opaque); 1314 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1315 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1316 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1317 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1318 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1319 int kvm_arch_post_init_vm(struct kvm *kvm); 1320 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1321 int kvm_arch_create_vm_debugfs(struct kvm *kvm); 1322 1323 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1324 /* 1325 * All architectures that want to use vzalloc currently also 1326 * need their own kvm_arch_alloc_vm implementation. 1327 */ 1328 static inline struct kvm *kvm_arch_alloc_vm(void) 1329 { 1330 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 1331 } 1332 #endif 1333 1334 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1335 { 1336 kvfree(kvm); 1337 } 1338 1339 #ifndef __KVM_HAVE_ARCH_VM_FREE 1340 static inline void kvm_arch_free_vm(struct kvm *kvm) 1341 { 1342 __kvm_arch_free_vm(kvm); 1343 } 1344 #endif 1345 1346 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1347 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1348 { 1349 return -ENOTSUPP; 1350 } 1351 #endif 1352 1353 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1354 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1355 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1356 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1357 #else 1358 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1359 { 1360 } 1361 1362 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1363 { 1364 } 1365 1366 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1367 { 1368 return false; 1369 } 1370 #endif 1371 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1372 void kvm_arch_start_assignment(struct kvm *kvm); 1373 void kvm_arch_end_assignment(struct kvm *kvm); 1374 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1375 #else 1376 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1377 { 1378 } 1379 1380 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1381 { 1382 } 1383 1384 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1385 { 1386 return false; 1387 } 1388 #endif 1389 1390 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1391 { 1392 #ifdef __KVM_HAVE_ARCH_WQP 1393 return vcpu->arch.waitp; 1394 #else 1395 return &vcpu->wait; 1396 #endif 1397 } 1398 1399 /* 1400 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1401 * true if the vCPU was blocking and was awakened, false otherwise. 1402 */ 1403 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1404 { 1405 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1406 } 1407 1408 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1409 { 1410 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1411 } 1412 1413 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1414 /* 1415 * returns true if the virtual interrupt controller is initialized and 1416 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1417 * controller is dynamically instantiated and this is not always true. 1418 */ 1419 bool kvm_arch_intc_initialized(struct kvm *kvm); 1420 #else 1421 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1422 { 1423 return true; 1424 } 1425 #endif 1426 1427 #ifdef CONFIG_GUEST_PERF_EVENTS 1428 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1429 1430 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1431 void kvm_unregister_perf_callbacks(void); 1432 #else 1433 static inline void kvm_register_perf_callbacks(void *ign) {} 1434 static inline void kvm_unregister_perf_callbacks(void) {} 1435 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1436 1437 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1438 void kvm_arch_destroy_vm(struct kvm *kvm); 1439 void kvm_arch_sync_events(struct kvm *kvm); 1440 1441 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1442 1443 bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 1444 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 1445 1446 struct kvm_irq_ack_notifier { 1447 struct hlist_node link; 1448 unsigned gsi; 1449 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1450 }; 1451 1452 int kvm_irq_map_gsi(struct kvm *kvm, 1453 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1454 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1455 1456 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1457 bool line_status); 1458 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1459 int irq_source_id, int level, bool line_status); 1460 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1461 struct kvm *kvm, int irq_source_id, 1462 int level, bool line_status); 1463 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1464 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1465 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1466 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1467 struct kvm_irq_ack_notifier *kian); 1468 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1469 struct kvm_irq_ack_notifier *kian); 1470 int kvm_request_irq_source_id(struct kvm *kvm); 1471 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1472 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1473 1474 /* 1475 * Returns a pointer to the memslot if it contains gfn. 1476 * Otherwise returns NULL. 1477 */ 1478 static inline struct kvm_memory_slot * 1479 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1480 { 1481 if (!slot) 1482 return NULL; 1483 1484 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1485 return slot; 1486 else 1487 return NULL; 1488 } 1489 1490 /* 1491 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1492 * 1493 * With "approx" set returns the memslot also when the address falls 1494 * in a hole. In that case one of the memslots bordering the hole is 1495 * returned. 1496 */ 1497 static inline struct kvm_memory_slot * 1498 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1499 { 1500 struct kvm_memory_slot *slot; 1501 struct rb_node *node; 1502 int idx = slots->node_idx; 1503 1504 slot = NULL; 1505 for (node = slots->gfn_tree.rb_node; node; ) { 1506 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1507 if (gfn >= slot->base_gfn) { 1508 if (gfn < slot->base_gfn + slot->npages) 1509 return slot; 1510 node = node->rb_right; 1511 } else 1512 node = node->rb_left; 1513 } 1514 1515 return approx ? slot : NULL; 1516 } 1517 1518 static inline struct kvm_memory_slot * 1519 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1520 { 1521 struct kvm_memory_slot *slot; 1522 1523 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1524 slot = try_get_memslot(slot, gfn); 1525 if (slot) 1526 return slot; 1527 1528 slot = search_memslots(slots, gfn, approx); 1529 if (slot) { 1530 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1531 return slot; 1532 } 1533 1534 return NULL; 1535 } 1536 1537 /* 1538 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1539 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1540 * because that would bloat other code too much. 1541 */ 1542 static inline struct kvm_memory_slot * 1543 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1544 { 1545 return ____gfn_to_memslot(slots, gfn, false); 1546 } 1547 1548 static inline unsigned long 1549 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1550 { 1551 /* 1552 * The index was checked originally in search_memslots. To avoid 1553 * that a malicious guest builds a Spectre gadget out of e.g. page 1554 * table walks, do not let the processor speculate loads outside 1555 * the guest's registered memslots. 1556 */ 1557 unsigned long offset = gfn - slot->base_gfn; 1558 offset = array_index_nospec(offset, slot->npages); 1559 return slot->userspace_addr + offset * PAGE_SIZE; 1560 } 1561 1562 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1563 { 1564 return gfn_to_memslot(kvm, gfn)->id; 1565 } 1566 1567 static inline gfn_t 1568 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1569 { 1570 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1571 1572 return slot->base_gfn + gfn_offset; 1573 } 1574 1575 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1576 { 1577 return (gpa_t)gfn << PAGE_SHIFT; 1578 } 1579 1580 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1581 { 1582 return (gfn_t)(gpa >> PAGE_SHIFT); 1583 } 1584 1585 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1586 { 1587 return (hpa_t)pfn << PAGE_SHIFT; 1588 } 1589 1590 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1591 gpa_t gpa) 1592 { 1593 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1594 } 1595 1596 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1597 { 1598 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1599 1600 return kvm_is_error_hva(hva); 1601 } 1602 1603 enum kvm_stat_kind { 1604 KVM_STAT_VM, 1605 KVM_STAT_VCPU, 1606 }; 1607 1608 struct kvm_stat_data { 1609 struct kvm *kvm; 1610 const struct _kvm_stats_desc *desc; 1611 enum kvm_stat_kind kind; 1612 }; 1613 1614 struct _kvm_stats_desc { 1615 struct kvm_stats_desc desc; 1616 char name[KVM_STATS_NAME_SIZE]; 1617 }; 1618 1619 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1620 .flags = type | unit | base | \ 1621 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1622 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1623 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1624 .exponent = exp, \ 1625 .size = sz, \ 1626 .bucket_size = bsz 1627 1628 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1629 { \ 1630 { \ 1631 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1632 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1633 }, \ 1634 .name = #stat, \ 1635 } 1636 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1637 { \ 1638 { \ 1639 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1640 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1641 }, \ 1642 .name = #stat, \ 1643 } 1644 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1645 { \ 1646 { \ 1647 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1648 .offset = offsetof(struct kvm_vm_stat, stat) \ 1649 }, \ 1650 .name = #stat, \ 1651 } 1652 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1653 { \ 1654 { \ 1655 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1656 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1657 }, \ 1658 .name = #stat, \ 1659 } 1660 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1661 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1662 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1663 1664 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1665 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1666 unit, base, exponent, 1, 0) 1667 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1668 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1669 unit, base, exponent, 1, 0) 1670 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1671 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1672 unit, base, exponent, 1, 0) 1673 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1674 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1675 unit, base, exponent, sz, bsz) 1676 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1677 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1678 unit, base, exponent, sz, 0) 1679 1680 /* Cumulative counter, read/write */ 1681 #define STATS_DESC_COUNTER(SCOPE, name) \ 1682 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1683 KVM_STATS_BASE_POW10, 0) 1684 /* Instantaneous counter, read only */ 1685 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1686 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1687 KVM_STATS_BASE_POW10, 0) 1688 /* Peak counter, read/write */ 1689 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1690 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1691 KVM_STATS_BASE_POW10, 0) 1692 1693 /* Cumulative time in nanosecond */ 1694 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1695 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1696 KVM_STATS_BASE_POW10, -9) 1697 /* Linear histogram for time in nanosecond */ 1698 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1699 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1700 KVM_STATS_BASE_POW10, -9, sz, bsz) 1701 /* Logarithmic histogram for time in nanosecond */ 1702 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1703 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1704 KVM_STATS_BASE_POW10, -9, sz) 1705 1706 #define KVM_GENERIC_VM_STATS() \ 1707 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1708 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1709 1710 #define KVM_GENERIC_VCPU_STATS() \ 1711 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1712 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1713 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1714 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1715 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1716 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1717 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1718 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1719 HALT_POLL_HIST_COUNT), \ 1720 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1721 HALT_POLL_HIST_COUNT), \ 1722 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1723 HALT_POLL_HIST_COUNT), \ 1724 STATS_DESC_ICOUNTER(VCPU_GENERIC, blocking) 1725 1726 extern struct dentry *kvm_debugfs_dir; 1727 1728 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1729 const struct _kvm_stats_desc *desc, 1730 void *stats, size_t size_stats, 1731 char __user *user_buffer, size_t size, loff_t *offset); 1732 1733 /** 1734 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1735 * statistics data. 1736 * 1737 * @data: start address of the stats data 1738 * @size: the number of bucket of the stats data 1739 * @value: the new value used to update the linear histogram's bucket 1740 * @bucket_size: the size (width) of a bucket 1741 */ 1742 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1743 u64 value, size_t bucket_size) 1744 { 1745 size_t index = div64_u64(value, bucket_size); 1746 1747 index = min(index, size - 1); 1748 ++data[index]; 1749 } 1750 1751 /** 1752 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1753 * statistics data. 1754 * 1755 * @data: start address of the stats data 1756 * @size: the number of bucket of the stats data 1757 * @value: the new value used to update the logarithmic histogram's bucket 1758 */ 1759 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 1760 { 1761 size_t index = fls64(value); 1762 1763 index = min(index, size - 1); 1764 ++data[index]; 1765 } 1766 1767 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 1768 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 1769 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 1770 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 1771 1772 1773 extern const struct kvm_stats_header kvm_vm_stats_header; 1774 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 1775 extern const struct kvm_stats_header kvm_vcpu_stats_header; 1776 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 1777 1778 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1779 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1780 { 1781 if (unlikely(kvm->mmu_notifier_count)) 1782 return 1; 1783 /* 1784 * Ensure the read of mmu_notifier_count happens before the read 1785 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1786 * mmu_notifier_invalidate_range_end to make sure that the caller 1787 * either sees the old (non-zero) value of mmu_notifier_count or 1788 * the new (incremented) value of mmu_notifier_seq. 1789 * PowerPC Book3s HV KVM calls this under a per-page lock 1790 * rather than under kvm->mmu_lock, for scalability, so 1791 * can't rely on kvm->mmu_lock to keep things ordered. 1792 */ 1793 smp_rmb(); 1794 if (kvm->mmu_notifier_seq != mmu_seq) 1795 return 1; 1796 return 0; 1797 } 1798 1799 static inline int mmu_notifier_retry_hva(struct kvm *kvm, 1800 unsigned long mmu_seq, 1801 unsigned long hva) 1802 { 1803 lockdep_assert_held(&kvm->mmu_lock); 1804 /* 1805 * If mmu_notifier_count is non-zero, then the range maintained by 1806 * kvm_mmu_notifier_invalidate_range_start contains all addresses that 1807 * might be being invalidated. Note that it may include some false 1808 * positives, due to shortcuts when handing concurrent invalidations. 1809 */ 1810 if (unlikely(kvm->mmu_notifier_count) && 1811 hva >= kvm->mmu_notifier_range_start && 1812 hva < kvm->mmu_notifier_range_end) 1813 return 1; 1814 if (kvm->mmu_notifier_seq != mmu_seq) 1815 return 1; 1816 return 0; 1817 } 1818 #endif 1819 1820 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1821 1822 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1823 1824 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1825 int kvm_set_irq_routing(struct kvm *kvm, 1826 const struct kvm_irq_routing_entry *entries, 1827 unsigned nr, 1828 unsigned flags); 1829 int kvm_set_routing_entry(struct kvm *kvm, 1830 struct kvm_kernel_irq_routing_entry *e, 1831 const struct kvm_irq_routing_entry *ue); 1832 void kvm_free_irq_routing(struct kvm *kvm); 1833 1834 #else 1835 1836 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1837 1838 #endif 1839 1840 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1841 1842 #ifdef CONFIG_HAVE_KVM_EVENTFD 1843 1844 void kvm_eventfd_init(struct kvm *kvm); 1845 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1846 1847 #ifdef CONFIG_HAVE_KVM_IRQFD 1848 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1849 void kvm_irqfd_release(struct kvm *kvm); 1850 void kvm_irq_routing_update(struct kvm *); 1851 #else 1852 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1853 { 1854 return -EINVAL; 1855 } 1856 1857 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1858 #endif 1859 1860 #else 1861 1862 static inline void kvm_eventfd_init(struct kvm *kvm) {} 1863 1864 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1865 { 1866 return -EINVAL; 1867 } 1868 1869 static inline void kvm_irqfd_release(struct kvm *kvm) {} 1870 1871 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1872 static inline void kvm_irq_routing_update(struct kvm *kvm) 1873 { 1874 } 1875 #endif 1876 1877 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1878 { 1879 return -ENOSYS; 1880 } 1881 1882 #endif /* CONFIG_HAVE_KVM_EVENTFD */ 1883 1884 void kvm_arch_irq_routing_update(struct kvm *kvm); 1885 1886 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1887 { 1888 /* 1889 * Ensure the rest of the request is published to kvm_check_request's 1890 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1891 */ 1892 smp_wmb(); 1893 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1894 } 1895 1896 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1897 { 1898 return READ_ONCE(vcpu->requests); 1899 } 1900 1901 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1902 { 1903 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1904 } 1905 1906 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1907 { 1908 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1909 } 1910 1911 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1912 { 1913 if (kvm_test_request(req, vcpu)) { 1914 kvm_clear_request(req, vcpu); 1915 1916 /* 1917 * Ensure the rest of the request is visible to kvm_check_request's 1918 * caller. Paired with the smp_wmb in kvm_make_request. 1919 */ 1920 smp_mb__after_atomic(); 1921 return true; 1922 } else { 1923 return false; 1924 } 1925 } 1926 1927 extern bool kvm_rebooting; 1928 1929 extern unsigned int halt_poll_ns; 1930 extern unsigned int halt_poll_ns_grow; 1931 extern unsigned int halt_poll_ns_grow_start; 1932 extern unsigned int halt_poll_ns_shrink; 1933 1934 struct kvm_device { 1935 const struct kvm_device_ops *ops; 1936 struct kvm *kvm; 1937 void *private; 1938 struct list_head vm_node; 1939 }; 1940 1941 /* create, destroy, and name are mandatory */ 1942 struct kvm_device_ops { 1943 const char *name; 1944 1945 /* 1946 * create is called holding kvm->lock and any operations not suitable 1947 * to do while holding the lock should be deferred to init (see 1948 * below). 1949 */ 1950 int (*create)(struct kvm_device *dev, u32 type); 1951 1952 /* 1953 * init is called after create if create is successful and is called 1954 * outside of holding kvm->lock. 1955 */ 1956 void (*init)(struct kvm_device *dev); 1957 1958 /* 1959 * Destroy is responsible for freeing dev. 1960 * 1961 * Destroy may be called before or after destructors are called 1962 * on emulated I/O regions, depending on whether a reference is 1963 * held by a vcpu or other kvm component that gets destroyed 1964 * after the emulated I/O. 1965 */ 1966 void (*destroy)(struct kvm_device *dev); 1967 1968 /* 1969 * Release is an alternative method to free the device. It is 1970 * called when the device file descriptor is closed. Once 1971 * release is called, the destroy method will not be called 1972 * anymore as the device is removed from the device list of 1973 * the VM. kvm->lock is held. 1974 */ 1975 void (*release)(struct kvm_device *dev); 1976 1977 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1978 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1979 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1980 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1981 unsigned long arg); 1982 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1983 }; 1984 1985 void kvm_device_get(struct kvm_device *dev); 1986 void kvm_device_put(struct kvm_device *dev); 1987 struct kvm_device *kvm_device_from_filp(struct file *filp); 1988 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 1989 void kvm_unregister_device_ops(u32 type); 1990 1991 extern struct kvm_device_ops kvm_mpic_ops; 1992 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1993 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1994 1995 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1996 1997 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1998 { 1999 vcpu->spin_loop.in_spin_loop = val; 2000 } 2001 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2002 { 2003 vcpu->spin_loop.dy_eligible = val; 2004 } 2005 2006 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2007 2008 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2009 { 2010 } 2011 2012 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2013 { 2014 } 2015 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2016 2017 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2018 { 2019 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2020 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2021 } 2022 2023 struct kvm_vcpu *kvm_get_running_vcpu(void); 2024 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2025 2026 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2027 bool kvm_arch_has_irq_bypass(void); 2028 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2029 struct irq_bypass_producer *); 2030 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2031 struct irq_bypass_producer *); 2032 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2033 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2034 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2035 uint32_t guest_irq, bool set); 2036 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2037 struct kvm_kernel_irq_routing_entry *); 2038 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2039 2040 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2041 /* If we wakeup during the poll time, was it a sucessful poll? */ 2042 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2043 { 2044 return vcpu->valid_wakeup; 2045 } 2046 2047 #else 2048 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2049 { 2050 return true; 2051 } 2052 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2053 2054 #ifdef CONFIG_HAVE_KVM_NO_POLL 2055 /* Callback that tells if we must not poll */ 2056 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2057 #else 2058 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2059 { 2060 return false; 2061 } 2062 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2063 2064 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2065 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2066 unsigned int ioctl, unsigned long arg); 2067 #else 2068 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2069 unsigned int ioctl, 2070 unsigned long arg) 2071 { 2072 return -ENOIOCTLCMD; 2073 } 2074 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2075 2076 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 2077 unsigned long start, unsigned long end); 2078 2079 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2080 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2081 #else 2082 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2083 { 2084 return 0; 2085 } 2086 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2087 2088 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 2089 2090 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 2091 uintptr_t data, const char *name, 2092 struct task_struct **thread_ptr); 2093 2094 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2095 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2096 { 2097 vcpu->run->exit_reason = KVM_EXIT_INTR; 2098 vcpu->stat.signal_exits++; 2099 } 2100 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2101 2102 /* 2103 * This defines how many reserved entries we want to keep before we 2104 * kick the vcpu to the userspace to avoid dirty ring full. This 2105 * value can be tuned to higher if e.g. PML is enabled on the host. 2106 */ 2107 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2108 2109 /* Max number of entries allowed for each kvm dirty ring */ 2110 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2111 2112 #endif 2113