1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 59 /* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80 /* Two fragments for cross MMIO pages. */ 81 #define KVM_MAX_MMIO_FRAGMENTS 2 82 83 #ifndef KVM_MAX_NR_ADDRESS_SPACES 84 #define KVM_MAX_NR_ADDRESS_SPACES 1 85 #endif 86 87 /* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94 #define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100 #define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4) 101 102 /* 103 * error pfns indicate that the gfn is in slot but faild to 104 * translate it to pfn on host. 105 */ 106 static inline bool is_error_pfn(kvm_pfn_t pfn) 107 { 108 return !!(pfn & KVM_PFN_ERR_MASK); 109 } 110 111 /* 112 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 113 * by a pending signal. Note, the signal may or may not be fatal. 114 */ 115 static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 116 { 117 return pfn == KVM_PFN_ERR_SIGPENDING; 118 } 119 120 /* 121 * error_noslot pfns indicate that the gfn can not be 122 * translated to pfn - it is not in slot or failed to 123 * translate it to pfn. 124 */ 125 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 126 { 127 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 128 } 129 130 /* noslot pfn indicates that the gfn is not in slot. */ 131 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 132 { 133 return pfn == KVM_PFN_NOSLOT; 134 } 135 136 /* 137 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 138 * provide own defines and kvm_is_error_hva 139 */ 140 #ifndef KVM_HVA_ERR_BAD 141 142 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 143 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 144 145 static inline bool kvm_is_error_hva(unsigned long addr) 146 { 147 return addr >= PAGE_OFFSET; 148 } 149 150 #endif 151 152 static inline bool kvm_is_error_gpa(gpa_t gpa) 153 { 154 return gpa == INVALID_GPA; 155 } 156 157 #define KVM_REQUEST_MASK GENMASK(7,0) 158 #define KVM_REQUEST_NO_WAKEUP BIT(8) 159 #define KVM_REQUEST_WAIT BIT(9) 160 #define KVM_REQUEST_NO_ACTION BIT(10) 161 /* 162 * Architecture-independent vcpu->requests bit members 163 * Bits 3-7 are reserved for more arch-independent bits. 164 */ 165 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 166 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 167 #define KVM_REQ_UNBLOCK 2 168 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3 169 #define KVM_REQUEST_ARCH_BASE 8 170 171 /* 172 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 173 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 174 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 175 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 176 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 177 * guarantee the vCPU received an IPI and has actually exited guest mode. 178 */ 179 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 180 181 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 182 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 183 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 184 }) 185 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 186 187 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 188 unsigned long *vcpu_bitmap); 189 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 190 191 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 192 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 193 194 extern struct mutex kvm_lock; 195 extern struct list_head vm_list; 196 197 struct kvm_io_range { 198 gpa_t addr; 199 int len; 200 struct kvm_io_device *dev; 201 }; 202 203 #define NR_IOBUS_DEVS 1000 204 205 struct kvm_io_bus { 206 int dev_count; 207 int ioeventfd_count; 208 struct kvm_io_range range[]; 209 }; 210 211 enum kvm_bus { 212 KVM_MMIO_BUS, 213 KVM_PIO_BUS, 214 KVM_VIRTIO_CCW_NOTIFY_BUS, 215 KVM_FAST_MMIO_BUS, 216 KVM_NR_BUSES 217 }; 218 219 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 220 int len, const void *val); 221 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 222 gpa_t addr, int len, const void *val, long cookie); 223 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 224 int len, void *val); 225 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 226 int len, struct kvm_io_device *dev); 227 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 228 struct kvm_io_device *dev); 229 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 230 gpa_t addr); 231 232 #ifdef CONFIG_KVM_ASYNC_PF 233 struct kvm_async_pf { 234 struct work_struct work; 235 struct list_head link; 236 struct list_head queue; 237 struct kvm_vcpu *vcpu; 238 gpa_t cr2_or_gpa; 239 unsigned long addr; 240 struct kvm_arch_async_pf arch; 241 bool wakeup_all; 242 bool notpresent_injected; 243 }; 244 245 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 246 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 247 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 248 unsigned long hva, struct kvm_arch_async_pf *arch); 249 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 250 #endif 251 252 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 253 union kvm_mmu_notifier_arg { 254 unsigned long attributes; 255 }; 256 257 struct kvm_gfn_range { 258 struct kvm_memory_slot *slot; 259 gfn_t start; 260 gfn_t end; 261 union kvm_mmu_notifier_arg arg; 262 bool may_block; 263 }; 264 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 265 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 266 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 267 #endif 268 269 enum { 270 OUTSIDE_GUEST_MODE, 271 IN_GUEST_MODE, 272 EXITING_GUEST_MODE, 273 READING_SHADOW_PAGE_TABLES, 274 }; 275 276 struct kvm_host_map { 277 /* 278 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 279 * a 'struct page' for it. When using mem= kernel parameter some memory 280 * can be used as guest memory but they are not managed by host 281 * kernel). 282 */ 283 struct page *pinned_page; 284 struct page *page; 285 void *hva; 286 kvm_pfn_t pfn; 287 kvm_pfn_t gfn; 288 bool writable; 289 }; 290 291 /* 292 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 293 * directly to check for that. 294 */ 295 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 296 { 297 return !!map->hva; 298 } 299 300 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 301 { 302 return single_task_running() && !need_resched() && ktime_before(cur, stop); 303 } 304 305 /* 306 * Sometimes a large or cross-page mmio needs to be broken up into separate 307 * exits for userspace servicing. 308 */ 309 struct kvm_mmio_fragment { 310 gpa_t gpa; 311 void *data; 312 unsigned len; 313 }; 314 315 struct kvm_vcpu { 316 struct kvm *kvm; 317 #ifdef CONFIG_PREEMPT_NOTIFIERS 318 struct preempt_notifier preempt_notifier; 319 #endif 320 int cpu; 321 int vcpu_id; /* id given by userspace at creation */ 322 int vcpu_idx; /* index into kvm->vcpu_array */ 323 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 324 #ifdef CONFIG_PROVE_RCU 325 int srcu_depth; 326 #endif 327 int mode; 328 u64 requests; 329 unsigned long guest_debug; 330 331 struct mutex mutex; 332 struct kvm_run *run; 333 334 #ifndef __KVM_HAVE_ARCH_WQP 335 struct rcuwait wait; 336 #endif 337 struct pid __rcu *pid; 338 int sigset_active; 339 sigset_t sigset; 340 unsigned int halt_poll_ns; 341 bool valid_wakeup; 342 343 #ifdef CONFIG_HAS_IOMEM 344 int mmio_needed; 345 int mmio_read_completed; 346 int mmio_is_write; 347 int mmio_cur_fragment; 348 int mmio_nr_fragments; 349 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 350 #endif 351 352 #ifdef CONFIG_KVM_ASYNC_PF 353 struct { 354 u32 queued; 355 struct list_head queue; 356 struct list_head done; 357 spinlock_t lock; 358 } async_pf; 359 #endif 360 361 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 362 /* 363 * Cpu relax intercept or pause loop exit optimization 364 * in_spin_loop: set when a vcpu does a pause loop exit 365 * or cpu relax intercepted. 366 * dy_eligible: indicates whether vcpu is eligible for directed yield. 367 */ 368 struct { 369 bool in_spin_loop; 370 bool dy_eligible; 371 } spin_loop; 372 #endif 373 bool wants_to_run; 374 bool preempted; 375 bool ready; 376 bool scheduled_out; 377 struct kvm_vcpu_arch arch; 378 struct kvm_vcpu_stat stat; 379 char stats_id[KVM_STATS_NAME_SIZE]; 380 struct kvm_dirty_ring dirty_ring; 381 382 /* 383 * The most recently used memslot by this vCPU and the slots generation 384 * for which it is valid. 385 * No wraparound protection is needed since generations won't overflow in 386 * thousands of years, even assuming 1M memslot operations per second. 387 */ 388 struct kvm_memory_slot *last_used_slot; 389 u64 last_used_slot_gen; 390 }; 391 392 /* 393 * Start accounting time towards a guest. 394 * Must be called before entering guest context. 395 */ 396 static __always_inline void guest_timing_enter_irqoff(void) 397 { 398 /* 399 * This is running in ioctl context so its safe to assume that it's the 400 * stime pending cputime to flush. 401 */ 402 instrumentation_begin(); 403 vtime_account_guest_enter(); 404 instrumentation_end(); 405 } 406 407 /* 408 * Enter guest context and enter an RCU extended quiescent state. 409 * 410 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 411 * unsafe to use any code which may directly or indirectly use RCU, tracing 412 * (including IRQ flag tracing), or lockdep. All code in this period must be 413 * non-instrumentable. 414 */ 415 static __always_inline void guest_context_enter_irqoff(void) 416 { 417 /* 418 * KVM does not hold any references to rcu protected data when it 419 * switches CPU into a guest mode. In fact switching to a guest mode 420 * is very similar to exiting to userspace from rcu point of view. In 421 * addition CPU may stay in a guest mode for quite a long time (up to 422 * one time slice). Lets treat guest mode as quiescent state, just like 423 * we do with user-mode execution. 424 */ 425 if (!context_tracking_guest_enter()) { 426 instrumentation_begin(); 427 rcu_virt_note_context_switch(); 428 instrumentation_end(); 429 } 430 } 431 432 /* 433 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 434 * guest_state_enter_irqoff(). 435 */ 436 static __always_inline void guest_enter_irqoff(void) 437 { 438 guest_timing_enter_irqoff(); 439 guest_context_enter_irqoff(); 440 } 441 442 /** 443 * guest_state_enter_irqoff - Fixup state when entering a guest 444 * 445 * Entry to a guest will enable interrupts, but the kernel state is interrupts 446 * disabled when this is invoked. Also tell RCU about it. 447 * 448 * 1) Trace interrupts on state 449 * 2) Invoke context tracking if enabled to adjust RCU state 450 * 3) Tell lockdep that interrupts are enabled 451 * 452 * Invoked from architecture specific code before entering a guest. 453 * Must be called with interrupts disabled and the caller must be 454 * non-instrumentable. 455 * The caller has to invoke guest_timing_enter_irqoff() before this. 456 * 457 * Note: this is analogous to exit_to_user_mode(). 458 */ 459 static __always_inline void guest_state_enter_irqoff(void) 460 { 461 instrumentation_begin(); 462 trace_hardirqs_on_prepare(); 463 lockdep_hardirqs_on_prepare(); 464 instrumentation_end(); 465 466 guest_context_enter_irqoff(); 467 lockdep_hardirqs_on(CALLER_ADDR0); 468 } 469 470 /* 471 * Exit guest context and exit an RCU extended quiescent state. 472 * 473 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 474 * unsafe to use any code which may directly or indirectly use RCU, tracing 475 * (including IRQ flag tracing), or lockdep. All code in this period must be 476 * non-instrumentable. 477 */ 478 static __always_inline void guest_context_exit_irqoff(void) 479 { 480 /* 481 * Guest mode is treated as a quiescent state, see 482 * guest_context_enter_irqoff() for more details. 483 */ 484 if (!context_tracking_guest_exit()) { 485 instrumentation_begin(); 486 rcu_virt_note_context_switch(); 487 instrumentation_end(); 488 } 489 } 490 491 /* 492 * Stop accounting time towards a guest. 493 * Must be called after exiting guest context. 494 */ 495 static __always_inline void guest_timing_exit_irqoff(void) 496 { 497 instrumentation_begin(); 498 /* Flush the guest cputime we spent on the guest */ 499 vtime_account_guest_exit(); 500 instrumentation_end(); 501 } 502 503 /* 504 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 505 * guest_timing_exit_irqoff(). 506 */ 507 static __always_inline void guest_exit_irqoff(void) 508 { 509 guest_context_exit_irqoff(); 510 guest_timing_exit_irqoff(); 511 } 512 513 static inline void guest_exit(void) 514 { 515 unsigned long flags; 516 517 local_irq_save(flags); 518 guest_exit_irqoff(); 519 local_irq_restore(flags); 520 } 521 522 /** 523 * guest_state_exit_irqoff - Establish state when returning from guest mode 524 * 525 * Entry from a guest disables interrupts, but guest mode is traced as 526 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 527 * 528 * 1) Tell lockdep that interrupts are disabled 529 * 2) Invoke context tracking if enabled to reactivate RCU 530 * 3) Trace interrupts off state 531 * 532 * Invoked from architecture specific code after exiting a guest. 533 * Must be invoked with interrupts disabled and the caller must be 534 * non-instrumentable. 535 * The caller has to invoke guest_timing_exit_irqoff() after this. 536 * 537 * Note: this is analogous to enter_from_user_mode(). 538 */ 539 static __always_inline void guest_state_exit_irqoff(void) 540 { 541 lockdep_hardirqs_off(CALLER_ADDR0); 542 guest_context_exit_irqoff(); 543 544 instrumentation_begin(); 545 trace_hardirqs_off_finish(); 546 instrumentation_end(); 547 } 548 549 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 550 { 551 /* 552 * The memory barrier ensures a previous write to vcpu->requests cannot 553 * be reordered with the read of vcpu->mode. It pairs with the general 554 * memory barrier following the write of vcpu->mode in VCPU RUN. 555 */ 556 smp_mb__before_atomic(); 557 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 558 } 559 560 /* 561 * Some of the bitops functions do not support too long bitmaps. 562 * This number must be determined not to exceed such limits. 563 */ 564 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 565 566 /* 567 * Since at idle each memslot belongs to two memslot sets it has to contain 568 * two embedded nodes for each data structure that it forms a part of. 569 * 570 * Two memslot sets (one active and one inactive) are necessary so the VM 571 * continues to run on one memslot set while the other is being modified. 572 * 573 * These two memslot sets normally point to the same set of memslots. 574 * They can, however, be desynchronized when performing a memslot management 575 * operation by replacing the memslot to be modified by its copy. 576 * After the operation is complete, both memslot sets once again point to 577 * the same, common set of memslot data. 578 * 579 * The memslots themselves are independent of each other so they can be 580 * individually added or deleted. 581 */ 582 struct kvm_memory_slot { 583 struct hlist_node id_node[2]; 584 struct interval_tree_node hva_node[2]; 585 struct rb_node gfn_node[2]; 586 gfn_t base_gfn; 587 unsigned long npages; 588 unsigned long *dirty_bitmap; 589 struct kvm_arch_memory_slot arch; 590 unsigned long userspace_addr; 591 u32 flags; 592 short id; 593 u16 as_id; 594 595 #ifdef CONFIG_KVM_PRIVATE_MEM 596 struct { 597 struct file __rcu *file; 598 pgoff_t pgoff; 599 } gmem; 600 #endif 601 }; 602 603 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot) 604 { 605 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD); 606 } 607 608 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 609 { 610 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 611 } 612 613 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 614 { 615 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 616 } 617 618 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 619 { 620 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 621 622 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 623 } 624 625 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 626 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 627 #endif 628 629 struct kvm_s390_adapter_int { 630 u64 ind_addr; 631 u64 summary_addr; 632 u64 ind_offset; 633 u32 summary_offset; 634 u32 adapter_id; 635 }; 636 637 struct kvm_hv_sint { 638 u32 vcpu; 639 u32 sint; 640 }; 641 642 struct kvm_xen_evtchn { 643 u32 port; 644 u32 vcpu_id; 645 int vcpu_idx; 646 u32 priority; 647 }; 648 649 struct kvm_kernel_irq_routing_entry { 650 u32 gsi; 651 u32 type; 652 int (*set)(struct kvm_kernel_irq_routing_entry *e, 653 struct kvm *kvm, int irq_source_id, int level, 654 bool line_status); 655 union { 656 struct { 657 unsigned irqchip; 658 unsigned pin; 659 } irqchip; 660 struct { 661 u32 address_lo; 662 u32 address_hi; 663 u32 data; 664 u32 flags; 665 u32 devid; 666 } msi; 667 struct kvm_s390_adapter_int adapter; 668 struct kvm_hv_sint hv_sint; 669 struct kvm_xen_evtchn xen_evtchn; 670 }; 671 struct hlist_node link; 672 }; 673 674 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 675 struct kvm_irq_routing_table { 676 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 677 u32 nr_rt_entries; 678 /* 679 * Array indexed by gsi. Each entry contains list of irq chips 680 * the gsi is connected to. 681 */ 682 struct hlist_head map[] __counted_by(nr_rt_entries); 683 }; 684 #endif 685 686 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 687 688 #ifndef KVM_INTERNAL_MEM_SLOTS 689 #define KVM_INTERNAL_MEM_SLOTS 0 690 #endif 691 692 #define KVM_MEM_SLOTS_NUM SHRT_MAX 693 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 694 695 #if KVM_MAX_NR_ADDRESS_SPACES == 1 696 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm) 697 { 698 return KVM_MAX_NR_ADDRESS_SPACES; 699 } 700 701 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 702 { 703 return 0; 704 } 705 #endif 706 707 /* 708 * Arch code must define kvm_arch_has_private_mem if support for private memory 709 * is enabled. 710 */ 711 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) 712 static inline bool kvm_arch_has_private_mem(struct kvm *kvm) 713 { 714 return false; 715 } 716 #endif 717 718 #ifndef kvm_arch_has_readonly_mem 719 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm) 720 { 721 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM); 722 } 723 #endif 724 725 struct kvm_memslots { 726 u64 generation; 727 atomic_long_t last_used_slot; 728 struct rb_root_cached hva_tree; 729 struct rb_root gfn_tree; 730 /* 731 * The mapping table from slot id to memslot. 732 * 733 * 7-bit bucket count matches the size of the old id to index array for 734 * 512 slots, while giving good performance with this slot count. 735 * Higher bucket counts bring only small performance improvements but 736 * always result in higher memory usage (even for lower memslot counts). 737 */ 738 DECLARE_HASHTABLE(id_hash, 7); 739 int node_idx; 740 }; 741 742 struct kvm { 743 #ifdef KVM_HAVE_MMU_RWLOCK 744 rwlock_t mmu_lock; 745 #else 746 spinlock_t mmu_lock; 747 #endif /* KVM_HAVE_MMU_RWLOCK */ 748 749 struct mutex slots_lock; 750 751 /* 752 * Protects the arch-specific fields of struct kvm_memory_slots in 753 * use by the VM. To be used under the slots_lock (above) or in a 754 * kvm->srcu critical section where acquiring the slots_lock would 755 * lead to deadlock with the synchronize_srcu in 756 * kvm_swap_active_memslots(). 757 */ 758 struct mutex slots_arch_lock; 759 struct mm_struct *mm; /* userspace tied to this vm */ 760 unsigned long nr_memslot_pages; 761 /* The two memslot sets - active and inactive (per address space) */ 762 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2]; 763 /* The current active memslot set for each address space */ 764 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES]; 765 struct xarray vcpu_array; 766 /* 767 * Protected by slots_lock, but can be read outside if an 768 * incorrect answer is acceptable. 769 */ 770 atomic_t nr_memslots_dirty_logging; 771 772 /* Used to wait for completion of MMU notifiers. */ 773 spinlock_t mn_invalidate_lock; 774 unsigned long mn_active_invalidate_count; 775 struct rcuwait mn_memslots_update_rcuwait; 776 777 /* For management / invalidation of gfn_to_pfn_caches */ 778 spinlock_t gpc_lock; 779 struct list_head gpc_list; 780 781 /* 782 * created_vcpus is protected by kvm->lock, and is incremented 783 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 784 * incremented after storing the kvm_vcpu pointer in vcpus, 785 * and is accessed atomically. 786 */ 787 atomic_t online_vcpus; 788 int max_vcpus; 789 int created_vcpus; 790 int last_boosted_vcpu; 791 struct list_head vm_list; 792 struct mutex lock; 793 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 794 #ifdef CONFIG_HAVE_KVM_IRQCHIP 795 struct { 796 spinlock_t lock; 797 struct list_head items; 798 /* resampler_list update side is protected by resampler_lock. */ 799 struct list_head resampler_list; 800 struct mutex resampler_lock; 801 } irqfds; 802 #endif 803 struct list_head ioeventfds; 804 struct kvm_vm_stat stat; 805 struct kvm_arch arch; 806 refcount_t users_count; 807 #ifdef CONFIG_KVM_MMIO 808 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 809 spinlock_t ring_lock; 810 struct list_head coalesced_zones; 811 #endif 812 813 struct mutex irq_lock; 814 #ifdef CONFIG_HAVE_KVM_IRQCHIP 815 /* 816 * Update side is protected by irq_lock. 817 */ 818 struct kvm_irq_routing_table __rcu *irq_routing; 819 820 struct hlist_head irq_ack_notifier_list; 821 #endif 822 823 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 824 struct mmu_notifier mmu_notifier; 825 unsigned long mmu_invalidate_seq; 826 long mmu_invalidate_in_progress; 827 gfn_t mmu_invalidate_range_start; 828 gfn_t mmu_invalidate_range_end; 829 #endif 830 struct list_head devices; 831 u64 manual_dirty_log_protect; 832 struct dentry *debugfs_dentry; 833 struct kvm_stat_data **debugfs_stat_data; 834 struct srcu_struct srcu; 835 struct srcu_struct irq_srcu; 836 pid_t userspace_pid; 837 bool override_halt_poll_ns; 838 unsigned int max_halt_poll_ns; 839 u32 dirty_ring_size; 840 bool dirty_ring_with_bitmap; 841 bool vm_bugged; 842 bool vm_dead; 843 844 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 845 struct notifier_block pm_notifier; 846 #endif 847 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 848 /* Protected by slots_locks (for writes) and RCU (for reads) */ 849 struct xarray mem_attr_array; 850 #endif 851 char stats_id[KVM_STATS_NAME_SIZE]; 852 }; 853 854 #define kvm_err(fmt, ...) \ 855 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 856 #define kvm_info(fmt, ...) \ 857 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 858 #define kvm_debug(fmt, ...) \ 859 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 860 #define kvm_debug_ratelimited(fmt, ...) \ 861 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 862 ## __VA_ARGS__) 863 #define kvm_pr_unimpl(fmt, ...) \ 864 pr_err_ratelimited("kvm [%i]: " fmt, \ 865 task_tgid_nr(current), ## __VA_ARGS__) 866 867 /* The guest did something we don't support. */ 868 #define vcpu_unimpl(vcpu, fmt, ...) \ 869 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 870 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 871 872 #define vcpu_debug(vcpu, fmt, ...) \ 873 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 874 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 875 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 876 ## __VA_ARGS__) 877 #define vcpu_err(vcpu, fmt, ...) \ 878 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 879 880 static inline void kvm_vm_dead(struct kvm *kvm) 881 { 882 kvm->vm_dead = true; 883 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 884 } 885 886 static inline void kvm_vm_bugged(struct kvm *kvm) 887 { 888 kvm->vm_bugged = true; 889 kvm_vm_dead(kvm); 890 } 891 892 893 #define KVM_BUG(cond, kvm, fmt...) \ 894 ({ \ 895 bool __ret = !!(cond); \ 896 \ 897 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 898 kvm_vm_bugged(kvm); \ 899 unlikely(__ret); \ 900 }) 901 902 #define KVM_BUG_ON(cond, kvm) \ 903 ({ \ 904 bool __ret = !!(cond); \ 905 \ 906 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 907 kvm_vm_bugged(kvm); \ 908 unlikely(__ret); \ 909 }) 910 911 /* 912 * Note, "data corruption" refers to corruption of host kernel data structures, 913 * not guest data. Guest data corruption, suspected or confirmed, that is tied 914 * and contained to a single VM should *never* BUG() and potentially panic the 915 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure 916 * is corrupted and that corruption can have a cascading effect to other parts 917 * of the hosts and/or to other VMs. 918 */ 919 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ 920 ({ \ 921 bool __ret = !!(cond); \ 922 \ 923 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ 924 BUG_ON(__ret); \ 925 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 926 kvm_vm_bugged(kvm); \ 927 unlikely(__ret); \ 928 }) 929 930 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 931 { 932 #ifdef CONFIG_PROVE_RCU 933 WARN_ONCE(vcpu->srcu_depth++, 934 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 935 #endif 936 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 937 } 938 939 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 940 { 941 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 942 943 #ifdef CONFIG_PROVE_RCU 944 WARN_ONCE(--vcpu->srcu_depth, 945 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 946 #endif 947 } 948 949 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 950 { 951 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 952 } 953 954 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 955 { 956 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 957 lockdep_is_held(&kvm->slots_lock) || 958 !refcount_read(&kvm->users_count)); 959 } 960 961 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 962 { 963 int num_vcpus = atomic_read(&kvm->online_vcpus); 964 i = array_index_nospec(i, num_vcpus); 965 966 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 967 smp_rmb(); 968 return xa_load(&kvm->vcpu_array, i); 969 } 970 971 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 972 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 973 (atomic_read(&kvm->online_vcpus) - 1)) 974 975 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 976 { 977 struct kvm_vcpu *vcpu = NULL; 978 unsigned long i; 979 980 if (id < 0) 981 return NULL; 982 if (id < KVM_MAX_VCPUS) 983 vcpu = kvm_get_vcpu(kvm, id); 984 if (vcpu && vcpu->vcpu_id == id) 985 return vcpu; 986 kvm_for_each_vcpu(i, vcpu, kvm) 987 if (vcpu->vcpu_id == id) 988 return vcpu; 989 return NULL; 990 } 991 992 void kvm_destroy_vcpus(struct kvm *kvm); 993 994 void vcpu_load(struct kvm_vcpu *vcpu); 995 void vcpu_put(struct kvm_vcpu *vcpu); 996 997 #ifdef __KVM_HAVE_IOAPIC 998 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 999 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 1000 #else 1001 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 1002 { 1003 } 1004 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 1005 { 1006 } 1007 #endif 1008 1009 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1010 int kvm_irqfd_init(void); 1011 void kvm_irqfd_exit(void); 1012 #else 1013 static inline int kvm_irqfd_init(void) 1014 { 1015 return 0; 1016 } 1017 1018 static inline void kvm_irqfd_exit(void) 1019 { 1020 } 1021 #endif 1022 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 1023 void kvm_exit(void); 1024 1025 void kvm_get_kvm(struct kvm *kvm); 1026 bool kvm_get_kvm_safe(struct kvm *kvm); 1027 void kvm_put_kvm(struct kvm *kvm); 1028 bool file_is_kvm(struct file *file); 1029 void kvm_put_kvm_no_destroy(struct kvm *kvm); 1030 1031 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 1032 { 1033 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES); 1034 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 1035 lockdep_is_held(&kvm->slots_lock) || 1036 !refcount_read(&kvm->users_count)); 1037 } 1038 1039 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 1040 { 1041 return __kvm_memslots(kvm, 0); 1042 } 1043 1044 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 1045 { 1046 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 1047 1048 return __kvm_memslots(vcpu->kvm, as_id); 1049 } 1050 1051 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 1052 { 1053 return RB_EMPTY_ROOT(&slots->gfn_tree); 1054 } 1055 1056 bool kvm_are_all_memslots_empty(struct kvm *kvm); 1057 1058 #define kvm_for_each_memslot(memslot, bkt, slots) \ 1059 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 1060 if (WARN_ON_ONCE(!memslot->npages)) { \ 1061 } else 1062 1063 static inline 1064 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1065 { 1066 struct kvm_memory_slot *slot; 1067 int idx = slots->node_idx; 1068 1069 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1070 if (slot->id == id) 1071 return slot; 1072 } 1073 1074 return NULL; 1075 } 1076 1077 /* Iterator used for walking memslots that overlap a gfn range. */ 1078 struct kvm_memslot_iter { 1079 struct kvm_memslots *slots; 1080 struct rb_node *node; 1081 struct kvm_memory_slot *slot; 1082 }; 1083 1084 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1085 { 1086 iter->node = rb_next(iter->node); 1087 if (!iter->node) 1088 return; 1089 1090 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1091 } 1092 1093 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1094 struct kvm_memslots *slots, 1095 gfn_t start) 1096 { 1097 int idx = slots->node_idx; 1098 struct rb_node *tmp; 1099 struct kvm_memory_slot *slot; 1100 1101 iter->slots = slots; 1102 1103 /* 1104 * Find the so called "upper bound" of a key - the first node that has 1105 * its key strictly greater than the searched one (the start gfn in our case). 1106 */ 1107 iter->node = NULL; 1108 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1109 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1110 if (start < slot->base_gfn) { 1111 iter->node = tmp; 1112 tmp = tmp->rb_left; 1113 } else { 1114 tmp = tmp->rb_right; 1115 } 1116 } 1117 1118 /* 1119 * Find the slot with the lowest gfn that can possibly intersect with 1120 * the range, so we'll ideally have slot start <= range start 1121 */ 1122 if (iter->node) { 1123 /* 1124 * A NULL previous node means that the very first slot 1125 * already has a higher start gfn. 1126 * In this case slot start > range start. 1127 */ 1128 tmp = rb_prev(iter->node); 1129 if (tmp) 1130 iter->node = tmp; 1131 } else { 1132 /* a NULL node below means no slots */ 1133 iter->node = rb_last(&slots->gfn_tree); 1134 } 1135 1136 if (iter->node) { 1137 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1138 1139 /* 1140 * It is possible in the slot start < range start case that the 1141 * found slot ends before or at range start (slot end <= range start) 1142 * and so it does not overlap the requested range. 1143 * 1144 * In such non-overlapping case the next slot (if it exists) will 1145 * already have slot start > range start, otherwise the logic above 1146 * would have found it instead of the current slot. 1147 */ 1148 if (iter->slot->base_gfn + iter->slot->npages <= start) 1149 kvm_memslot_iter_next(iter); 1150 } 1151 } 1152 1153 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1154 { 1155 if (!iter->node) 1156 return false; 1157 1158 /* 1159 * If this slot starts beyond or at the end of the range so does 1160 * every next one 1161 */ 1162 return iter->slot->base_gfn < end; 1163 } 1164 1165 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1166 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1167 for (kvm_memslot_iter_start(iter, slots, start); \ 1168 kvm_memslot_iter_is_valid(iter, end); \ 1169 kvm_memslot_iter_next(iter)) 1170 1171 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1172 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1173 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1174 1175 /* 1176 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1177 * - create a new memory slot 1178 * - delete an existing memory slot 1179 * - modify an existing memory slot 1180 * -- move it in the guest physical memory space 1181 * -- just change its flags 1182 * 1183 * Since flags can be changed by some of these operations, the following 1184 * differentiation is the best we can do for __kvm_set_memory_region(): 1185 */ 1186 enum kvm_mr_change { 1187 KVM_MR_CREATE, 1188 KVM_MR_DELETE, 1189 KVM_MR_MOVE, 1190 KVM_MR_FLAGS_ONLY, 1191 }; 1192 1193 int kvm_set_memory_region(struct kvm *kvm, 1194 const struct kvm_userspace_memory_region2 *mem); 1195 int __kvm_set_memory_region(struct kvm *kvm, 1196 const struct kvm_userspace_memory_region2 *mem); 1197 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1198 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1199 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1200 const struct kvm_memory_slot *old, 1201 struct kvm_memory_slot *new, 1202 enum kvm_mr_change change); 1203 void kvm_arch_commit_memory_region(struct kvm *kvm, 1204 struct kvm_memory_slot *old, 1205 const struct kvm_memory_slot *new, 1206 enum kvm_mr_change change); 1207 /* flush all memory translations */ 1208 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1209 /* flush memory translations pointing to 'slot' */ 1210 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1211 struct kvm_memory_slot *slot); 1212 1213 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, 1214 struct page **pages, int nr_pages); 1215 1216 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write); 1217 static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1218 { 1219 return __gfn_to_page(kvm, gfn, true); 1220 } 1221 1222 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1223 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1224 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1225 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1226 bool *writable); 1227 1228 static inline void kvm_release_page_unused(struct page *page) 1229 { 1230 if (!page) 1231 return; 1232 1233 put_page(page); 1234 } 1235 1236 void kvm_release_page_clean(struct page *page); 1237 void kvm_release_page_dirty(struct page *page); 1238 1239 static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page, 1240 bool unused, bool dirty) 1241 { 1242 lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused); 1243 1244 if (!page) 1245 return; 1246 1247 /* 1248 * If the page that KVM got from the *primary MMU* is writable, and KVM 1249 * installed or reused a SPTE, mark the page/folio dirty. Note, this 1250 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if 1251 * the GFN is write-protected. Folios can't be safely marked dirty 1252 * outside of mmu_lock as doing so could race with writeback on the 1253 * folio. As a result, KVM can't mark folios dirty in the fast page 1254 * fault handler, and so KVM must (somewhat) speculatively mark the 1255 * folio dirty if KVM could locklessly make the SPTE writable. 1256 */ 1257 if (unused) 1258 kvm_release_page_unused(page); 1259 else if (dirty) 1260 kvm_release_page_dirty(page); 1261 else 1262 kvm_release_page_clean(page); 1263 } 1264 1265 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, 1266 unsigned int foll, bool *writable, 1267 struct page **refcounted_page); 1268 1269 static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 1270 bool write, bool *writable, 1271 struct page **refcounted_page) 1272 { 1273 return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, 1274 write ? FOLL_WRITE : 0, writable, refcounted_page); 1275 } 1276 1277 void kvm_release_pfn_clean(kvm_pfn_t pfn); 1278 void kvm_release_pfn_dirty(kvm_pfn_t pfn); 1279 void kvm_set_pfn_dirty(kvm_pfn_t pfn); 1280 void kvm_set_pfn_accessed(kvm_pfn_t pfn); 1281 1282 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1283 int len); 1284 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1285 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1286 void *data, unsigned long len); 1287 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1288 void *data, unsigned int offset, 1289 unsigned long len); 1290 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1291 int offset, int len); 1292 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1293 unsigned long len); 1294 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1295 void *data, unsigned long len); 1296 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1297 void *data, unsigned int offset, 1298 unsigned long len); 1299 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1300 gpa_t gpa, unsigned long len); 1301 1302 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1303 ({ \ 1304 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1305 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1306 int __ret = -EFAULT; \ 1307 \ 1308 if (!kvm_is_error_hva(__addr)) \ 1309 __ret = get_user(v, __uaddr); \ 1310 __ret; \ 1311 }) 1312 1313 #define kvm_get_guest(kvm, gpa, v) \ 1314 ({ \ 1315 gpa_t __gpa = gpa; \ 1316 struct kvm *__kvm = kvm; \ 1317 \ 1318 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1319 offset_in_page(__gpa), v); \ 1320 }) 1321 1322 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1323 ({ \ 1324 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1325 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1326 int __ret = -EFAULT; \ 1327 \ 1328 if (!kvm_is_error_hva(__addr)) \ 1329 __ret = put_user(v, __uaddr); \ 1330 if (!__ret) \ 1331 mark_page_dirty(kvm, gfn); \ 1332 __ret; \ 1333 }) 1334 1335 #define kvm_put_guest(kvm, gpa, v) \ 1336 ({ \ 1337 gpa_t __gpa = gpa; \ 1338 struct kvm *__kvm = kvm; \ 1339 \ 1340 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1341 offset_in_page(__gpa), v); \ 1342 }) 1343 1344 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1345 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1346 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1347 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1348 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1349 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1350 1351 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map, 1352 bool writable); 1353 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map); 1354 1355 static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, 1356 struct kvm_host_map *map) 1357 { 1358 return __kvm_vcpu_map(vcpu, gpa, map, true); 1359 } 1360 1361 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa, 1362 struct kvm_host_map *map) 1363 { 1364 return __kvm_vcpu_map(vcpu, gpa, map, false); 1365 } 1366 1367 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1368 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1369 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1370 int len); 1371 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1372 unsigned long len); 1373 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1374 unsigned long len); 1375 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1376 int offset, int len); 1377 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1378 unsigned long len); 1379 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1380 1381 /** 1382 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1383 * 1384 * @gpc: struct gfn_to_pfn_cache object. 1385 * @kvm: pointer to kvm instance. 1386 * 1387 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1388 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1389 * the caller before init). 1390 */ 1391 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm); 1392 1393 /** 1394 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1395 * physical address. 1396 * 1397 * @gpc: struct gfn_to_pfn_cache object. 1398 * @gpa: guest physical address to map. 1399 * @len: sanity check; the range being access must fit a single page. 1400 * 1401 * @return: 0 for success. 1402 * -EINVAL for a mapping which would cross a page boundary. 1403 * -EFAULT for an untranslatable guest physical address. 1404 * 1405 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1406 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1407 * to ensure that the cache is valid before accessing the target page. 1408 */ 1409 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1410 1411 /** 1412 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA. 1413 * 1414 * @gpc: struct gfn_to_pfn_cache object. 1415 * @hva: userspace virtual address to map. 1416 * @len: sanity check; the range being access must fit a single page. 1417 * 1418 * @return: 0 for success. 1419 * -EINVAL for a mapping which would cross a page boundary. 1420 * -EFAULT for an untranslatable guest physical address. 1421 * 1422 * The semantics of this function are the same as those of kvm_gpc_activate(). It 1423 * merely bypasses a layer of address translation. 1424 */ 1425 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len); 1426 1427 /** 1428 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1429 * 1430 * @gpc: struct gfn_to_pfn_cache object. 1431 * @len: sanity check; the range being access must fit a single page. 1432 * 1433 * @return: %true if the cache is still valid and the address matches. 1434 * %false if the cache is not valid. 1435 * 1436 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1437 * while calling this function, and then continue to hold the lock until the 1438 * access is complete. 1439 * 1440 * Callers in IN_GUEST_MODE may do so without locking, although they should 1441 * still hold a read lock on kvm->scru for the memslot checks. 1442 */ 1443 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1444 1445 /** 1446 * kvm_gpc_refresh - update a previously initialized cache. 1447 * 1448 * @gpc: struct gfn_to_pfn_cache object. 1449 * @len: sanity check; the range being access must fit a single page. 1450 * 1451 * @return: 0 for success. 1452 * -EINVAL for a mapping which would cross a page boundary. 1453 * -EFAULT for an untranslatable guest physical address. 1454 * 1455 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1456 * return from this function does not mean the page can be immediately 1457 * accessed because it may have raced with an invalidation. Callers must 1458 * still lock and check the cache status, as this function does not return 1459 * with the lock still held to permit access. 1460 */ 1461 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1462 1463 /** 1464 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1465 * 1466 * @gpc: struct gfn_to_pfn_cache object. 1467 * 1468 * This removes a cache from the VM's list to be processed on MMU notifier 1469 * invocation. 1470 */ 1471 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1472 1473 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc) 1474 { 1475 return gpc->active && !kvm_is_error_gpa(gpc->gpa); 1476 } 1477 1478 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc) 1479 { 1480 return gpc->active && kvm_is_error_gpa(gpc->gpa); 1481 } 1482 1483 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1484 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1485 1486 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1487 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1488 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1489 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1490 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1491 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1492 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1493 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1494 1495 void kvm_flush_remote_tlbs(struct kvm *kvm); 1496 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1497 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 1498 const struct kvm_memory_slot *memslot); 1499 1500 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1501 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1502 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1503 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1504 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1505 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1506 #endif 1507 1508 void kvm_mmu_invalidate_begin(struct kvm *kvm); 1509 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end); 1510 void kvm_mmu_invalidate_end(struct kvm *kvm); 1511 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 1512 1513 long kvm_arch_dev_ioctl(struct file *filp, 1514 unsigned int ioctl, unsigned long arg); 1515 long kvm_arch_vcpu_ioctl(struct file *filp, 1516 unsigned int ioctl, unsigned long arg); 1517 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1518 1519 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1520 1521 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1522 struct kvm_memory_slot *slot, 1523 gfn_t gfn_offset, 1524 unsigned long mask); 1525 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1526 1527 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1528 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1529 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1530 int *is_dirty, struct kvm_memory_slot **memslot); 1531 #endif 1532 1533 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1534 bool line_status); 1535 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1536 struct kvm_enable_cap *cap); 1537 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1538 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1539 unsigned long arg); 1540 1541 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1542 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1543 1544 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1545 struct kvm_translation *tr); 1546 1547 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1548 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1549 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1550 struct kvm_sregs *sregs); 1551 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1552 struct kvm_sregs *sregs); 1553 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1554 struct kvm_mp_state *mp_state); 1555 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1556 struct kvm_mp_state *mp_state); 1557 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1558 struct kvm_guest_debug *dbg); 1559 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1560 1561 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1562 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1563 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1564 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1565 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1566 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1567 1568 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1569 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1570 #endif 1571 1572 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1573 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1574 #else 1575 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1576 #endif 1577 1578 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1579 /* 1580 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under 1581 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of 1582 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling 1583 * sequence, and at the end of the generic hardware disabling sequence. 1584 */ 1585 void kvm_arch_enable_virtualization(void); 1586 void kvm_arch_disable_virtualization(void); 1587 /* 1588 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to 1589 * do the actual twiddling of hardware bits. The hooks are called on all 1590 * online CPUs when KVM enables/disabled virtualization, and on a single CPU 1591 * when that CPU is onlined/offlined (including for Resume/Suspend). 1592 */ 1593 int kvm_arch_enable_virtualization_cpu(void); 1594 void kvm_arch_disable_virtualization_cpu(void); 1595 #endif 1596 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1597 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1598 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1599 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1600 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1601 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu); 1602 int kvm_arch_post_init_vm(struct kvm *kvm); 1603 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1604 void kvm_arch_create_vm_debugfs(struct kvm *kvm); 1605 1606 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1607 /* 1608 * All architectures that want to use vzalloc currently also 1609 * need their own kvm_arch_alloc_vm implementation. 1610 */ 1611 static inline struct kvm *kvm_arch_alloc_vm(void) 1612 { 1613 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1614 } 1615 #endif 1616 1617 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1618 { 1619 kvfree(kvm); 1620 } 1621 1622 #ifndef __KVM_HAVE_ARCH_VM_FREE 1623 static inline void kvm_arch_free_vm(struct kvm *kvm) 1624 { 1625 __kvm_arch_free_vm(kvm); 1626 } 1627 #endif 1628 1629 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1630 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1631 { 1632 return -ENOTSUPP; 1633 } 1634 #else 1635 int kvm_arch_flush_remote_tlbs(struct kvm *kvm); 1636 #endif 1637 1638 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1639 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 1640 gfn_t gfn, u64 nr_pages) 1641 { 1642 return -EOPNOTSUPP; 1643 } 1644 #else 1645 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1646 #endif 1647 1648 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1649 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1650 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1651 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1652 #else 1653 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1654 { 1655 } 1656 1657 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1658 { 1659 } 1660 1661 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1662 { 1663 return false; 1664 } 1665 #endif 1666 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1667 void kvm_arch_start_assignment(struct kvm *kvm); 1668 void kvm_arch_end_assignment(struct kvm *kvm); 1669 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1670 #else 1671 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1672 { 1673 } 1674 1675 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1676 { 1677 } 1678 1679 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1680 { 1681 return false; 1682 } 1683 #endif 1684 1685 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1686 { 1687 #ifdef __KVM_HAVE_ARCH_WQP 1688 return vcpu->arch.waitp; 1689 #else 1690 return &vcpu->wait; 1691 #endif 1692 } 1693 1694 /* 1695 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1696 * true if the vCPU was blocking and was awakened, false otherwise. 1697 */ 1698 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1699 { 1700 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1701 } 1702 1703 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1704 { 1705 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1706 } 1707 1708 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1709 /* 1710 * returns true if the virtual interrupt controller is initialized and 1711 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1712 * controller is dynamically instantiated and this is not always true. 1713 */ 1714 bool kvm_arch_intc_initialized(struct kvm *kvm); 1715 #else 1716 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1717 { 1718 return true; 1719 } 1720 #endif 1721 1722 #ifdef CONFIG_GUEST_PERF_EVENTS 1723 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1724 1725 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1726 void kvm_unregister_perf_callbacks(void); 1727 #else 1728 static inline void kvm_register_perf_callbacks(void *ign) {} 1729 static inline void kvm_unregister_perf_callbacks(void) {} 1730 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1731 1732 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1733 void kvm_arch_destroy_vm(struct kvm *kvm); 1734 void kvm_arch_sync_events(struct kvm *kvm); 1735 1736 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1737 1738 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn); 1739 bool kvm_is_zone_device_page(struct page *page); 1740 1741 struct kvm_irq_ack_notifier { 1742 struct hlist_node link; 1743 unsigned gsi; 1744 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1745 }; 1746 1747 int kvm_irq_map_gsi(struct kvm *kvm, 1748 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1749 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1750 1751 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1752 bool line_status); 1753 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1754 int irq_source_id, int level, bool line_status); 1755 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1756 struct kvm *kvm, int irq_source_id, 1757 int level, bool line_status); 1758 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1759 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1760 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1761 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1762 struct kvm_irq_ack_notifier *kian); 1763 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1764 struct kvm_irq_ack_notifier *kian); 1765 int kvm_request_irq_source_id(struct kvm *kvm); 1766 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1767 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1768 1769 /* 1770 * Returns a pointer to the memslot if it contains gfn. 1771 * Otherwise returns NULL. 1772 */ 1773 static inline struct kvm_memory_slot * 1774 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1775 { 1776 if (!slot) 1777 return NULL; 1778 1779 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1780 return slot; 1781 else 1782 return NULL; 1783 } 1784 1785 /* 1786 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1787 * 1788 * With "approx" set returns the memslot also when the address falls 1789 * in a hole. In that case one of the memslots bordering the hole is 1790 * returned. 1791 */ 1792 static inline struct kvm_memory_slot * 1793 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1794 { 1795 struct kvm_memory_slot *slot; 1796 struct rb_node *node; 1797 int idx = slots->node_idx; 1798 1799 slot = NULL; 1800 for (node = slots->gfn_tree.rb_node; node; ) { 1801 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1802 if (gfn >= slot->base_gfn) { 1803 if (gfn < slot->base_gfn + slot->npages) 1804 return slot; 1805 node = node->rb_right; 1806 } else 1807 node = node->rb_left; 1808 } 1809 1810 return approx ? slot : NULL; 1811 } 1812 1813 static inline struct kvm_memory_slot * 1814 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1815 { 1816 struct kvm_memory_slot *slot; 1817 1818 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1819 slot = try_get_memslot(slot, gfn); 1820 if (slot) 1821 return slot; 1822 1823 slot = search_memslots(slots, gfn, approx); 1824 if (slot) { 1825 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1826 return slot; 1827 } 1828 1829 return NULL; 1830 } 1831 1832 /* 1833 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1834 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1835 * because that would bloat other code too much. 1836 */ 1837 static inline struct kvm_memory_slot * 1838 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1839 { 1840 return ____gfn_to_memslot(slots, gfn, false); 1841 } 1842 1843 static inline unsigned long 1844 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1845 { 1846 /* 1847 * The index was checked originally in search_memslots. To avoid 1848 * that a malicious guest builds a Spectre gadget out of e.g. page 1849 * table walks, do not let the processor speculate loads outside 1850 * the guest's registered memslots. 1851 */ 1852 unsigned long offset = gfn - slot->base_gfn; 1853 offset = array_index_nospec(offset, slot->npages); 1854 return slot->userspace_addr + offset * PAGE_SIZE; 1855 } 1856 1857 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1858 { 1859 return gfn_to_memslot(kvm, gfn)->id; 1860 } 1861 1862 static inline gfn_t 1863 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1864 { 1865 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1866 1867 return slot->base_gfn + gfn_offset; 1868 } 1869 1870 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1871 { 1872 return (gpa_t)gfn << PAGE_SHIFT; 1873 } 1874 1875 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1876 { 1877 return (gfn_t)(gpa >> PAGE_SHIFT); 1878 } 1879 1880 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1881 { 1882 return (hpa_t)pfn << PAGE_SHIFT; 1883 } 1884 1885 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa) 1886 { 1887 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1888 1889 return !kvm_is_error_hva(hva); 1890 } 1891 1892 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc) 1893 { 1894 lockdep_assert_held(&gpc->lock); 1895 1896 if (!gpc->memslot) 1897 return; 1898 1899 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa)); 1900 } 1901 1902 enum kvm_stat_kind { 1903 KVM_STAT_VM, 1904 KVM_STAT_VCPU, 1905 }; 1906 1907 struct kvm_stat_data { 1908 struct kvm *kvm; 1909 const struct _kvm_stats_desc *desc; 1910 enum kvm_stat_kind kind; 1911 }; 1912 1913 struct _kvm_stats_desc { 1914 struct kvm_stats_desc desc; 1915 char name[KVM_STATS_NAME_SIZE]; 1916 }; 1917 1918 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1919 .flags = type | unit | base | \ 1920 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1921 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1922 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1923 .exponent = exp, \ 1924 .size = sz, \ 1925 .bucket_size = bsz 1926 1927 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1928 { \ 1929 { \ 1930 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1931 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1932 }, \ 1933 .name = #stat, \ 1934 } 1935 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1936 { \ 1937 { \ 1938 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1939 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1940 }, \ 1941 .name = #stat, \ 1942 } 1943 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1944 { \ 1945 { \ 1946 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1947 .offset = offsetof(struct kvm_vm_stat, stat) \ 1948 }, \ 1949 .name = #stat, \ 1950 } 1951 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1952 { \ 1953 { \ 1954 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1955 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1956 }, \ 1957 .name = #stat, \ 1958 } 1959 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1960 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1961 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1962 1963 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1964 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1965 unit, base, exponent, 1, 0) 1966 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1967 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1968 unit, base, exponent, 1, 0) 1969 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1970 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1971 unit, base, exponent, 1, 0) 1972 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1973 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1974 unit, base, exponent, sz, bsz) 1975 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1976 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1977 unit, base, exponent, sz, 0) 1978 1979 /* Cumulative counter, read/write */ 1980 #define STATS_DESC_COUNTER(SCOPE, name) \ 1981 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1982 KVM_STATS_BASE_POW10, 0) 1983 /* Instantaneous counter, read only */ 1984 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1985 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1986 KVM_STATS_BASE_POW10, 0) 1987 /* Peak counter, read/write */ 1988 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1989 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1990 KVM_STATS_BASE_POW10, 0) 1991 1992 /* Instantaneous boolean value, read only */ 1993 #define STATS_DESC_IBOOLEAN(SCOPE, name) \ 1994 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1995 KVM_STATS_BASE_POW10, 0) 1996 /* Peak (sticky) boolean value, read/write */ 1997 #define STATS_DESC_PBOOLEAN(SCOPE, name) \ 1998 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1999 KVM_STATS_BASE_POW10, 0) 2000 2001 /* Cumulative time in nanosecond */ 2002 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 2003 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2004 KVM_STATS_BASE_POW10, -9) 2005 /* Linear histogram for time in nanosecond */ 2006 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 2007 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2008 KVM_STATS_BASE_POW10, -9, sz, bsz) 2009 /* Logarithmic histogram for time in nanosecond */ 2010 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 2011 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2012 KVM_STATS_BASE_POW10, -9, sz) 2013 2014 #define KVM_GENERIC_VM_STATS() \ 2015 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 2016 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 2017 2018 #define KVM_GENERIC_VCPU_STATS() \ 2019 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 2020 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 2021 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 2022 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 2023 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 2024 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 2025 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 2026 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 2027 HALT_POLL_HIST_COUNT), \ 2028 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 2029 HALT_POLL_HIST_COUNT), \ 2030 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 2031 HALT_POLL_HIST_COUNT), \ 2032 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 2033 2034 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 2035 const struct _kvm_stats_desc *desc, 2036 void *stats, size_t size_stats, 2037 char __user *user_buffer, size_t size, loff_t *offset); 2038 2039 /** 2040 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 2041 * statistics data. 2042 * 2043 * @data: start address of the stats data 2044 * @size: the number of bucket of the stats data 2045 * @value: the new value used to update the linear histogram's bucket 2046 * @bucket_size: the size (width) of a bucket 2047 */ 2048 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 2049 u64 value, size_t bucket_size) 2050 { 2051 size_t index = div64_u64(value, bucket_size); 2052 2053 index = min(index, size - 1); 2054 ++data[index]; 2055 } 2056 2057 /** 2058 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 2059 * statistics data. 2060 * 2061 * @data: start address of the stats data 2062 * @size: the number of bucket of the stats data 2063 * @value: the new value used to update the logarithmic histogram's bucket 2064 */ 2065 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 2066 { 2067 size_t index = fls64(value); 2068 2069 index = min(index, size - 1); 2070 ++data[index]; 2071 } 2072 2073 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 2074 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 2075 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 2076 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 2077 2078 2079 extern const struct kvm_stats_header kvm_vm_stats_header; 2080 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 2081 extern const struct kvm_stats_header kvm_vcpu_stats_header; 2082 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 2083 2084 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 2085 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 2086 { 2087 if (unlikely(kvm->mmu_invalidate_in_progress)) 2088 return 1; 2089 /* 2090 * Ensure the read of mmu_invalidate_in_progress happens before 2091 * the read of mmu_invalidate_seq. This interacts with the 2092 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 2093 * that the caller either sees the old (non-zero) value of 2094 * mmu_invalidate_in_progress or the new (incremented) value of 2095 * mmu_invalidate_seq. 2096 * 2097 * PowerPC Book3s HV KVM calls this under a per-page lock rather 2098 * than under kvm->mmu_lock, for scalability, so can't rely on 2099 * kvm->mmu_lock to keep things ordered. 2100 */ 2101 smp_rmb(); 2102 if (kvm->mmu_invalidate_seq != mmu_seq) 2103 return 1; 2104 return 0; 2105 } 2106 2107 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm, 2108 unsigned long mmu_seq, 2109 gfn_t gfn) 2110 { 2111 lockdep_assert_held(&kvm->mmu_lock); 2112 /* 2113 * If mmu_invalidate_in_progress is non-zero, then the range maintained 2114 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 2115 * that might be being invalidated. Note that it may include some false 2116 * positives, due to shortcuts when handing concurrent invalidations. 2117 */ 2118 if (unlikely(kvm->mmu_invalidate_in_progress)) { 2119 /* 2120 * Dropping mmu_lock after bumping mmu_invalidate_in_progress 2121 * but before updating the range is a KVM bug. 2122 */ 2123 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA || 2124 kvm->mmu_invalidate_range_end == INVALID_GPA)) 2125 return 1; 2126 2127 if (gfn >= kvm->mmu_invalidate_range_start && 2128 gfn < kvm->mmu_invalidate_range_end) 2129 return 1; 2130 } 2131 2132 if (kvm->mmu_invalidate_seq != mmu_seq) 2133 return 1; 2134 return 0; 2135 } 2136 2137 /* 2138 * This lockless version of the range-based retry check *must* be paired with a 2139 * call to the locked version after acquiring mmu_lock, i.e. this is safe to 2140 * use only as a pre-check to avoid contending mmu_lock. This version *will* 2141 * get false negatives and false positives. 2142 */ 2143 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm, 2144 unsigned long mmu_seq, 2145 gfn_t gfn) 2146 { 2147 /* 2148 * Use READ_ONCE() to ensure the in-progress flag and sequence counter 2149 * are always read from memory, e.g. so that checking for retry in a 2150 * loop won't result in an infinite retry loop. Don't force loads for 2151 * start+end, as the key to avoiding infinite retry loops is observing 2152 * the 1=>0 transition of in-progress, i.e. getting false negatives 2153 * due to stale start+end values is acceptable. 2154 */ 2155 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) && 2156 gfn >= kvm->mmu_invalidate_range_start && 2157 gfn < kvm->mmu_invalidate_range_end) 2158 return true; 2159 2160 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq; 2161 } 2162 #endif 2163 2164 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2165 2166 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 2167 2168 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 2169 int kvm_set_irq_routing(struct kvm *kvm, 2170 const struct kvm_irq_routing_entry *entries, 2171 unsigned nr, 2172 unsigned flags); 2173 int kvm_init_irq_routing(struct kvm *kvm); 2174 int kvm_set_routing_entry(struct kvm *kvm, 2175 struct kvm_kernel_irq_routing_entry *e, 2176 const struct kvm_irq_routing_entry *ue); 2177 void kvm_free_irq_routing(struct kvm *kvm); 2178 2179 #else 2180 2181 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 2182 2183 static inline int kvm_init_irq_routing(struct kvm *kvm) 2184 { 2185 return 0; 2186 } 2187 2188 #endif 2189 2190 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2191 2192 void kvm_eventfd_init(struct kvm *kvm); 2193 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2194 2195 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2196 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2197 void kvm_irqfd_release(struct kvm *kvm); 2198 bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2199 unsigned int irqchip, 2200 unsigned int pin); 2201 void kvm_irq_routing_update(struct kvm *); 2202 #else 2203 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2204 { 2205 return -EINVAL; 2206 } 2207 2208 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2209 2210 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2211 unsigned int irqchip, 2212 unsigned int pin) 2213 { 2214 return false; 2215 } 2216 #endif /* CONFIG_HAVE_KVM_IRQCHIP */ 2217 2218 void kvm_arch_irq_routing_update(struct kvm *kvm); 2219 2220 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2221 { 2222 /* 2223 * Ensure the rest of the request is published to kvm_check_request's 2224 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2225 */ 2226 smp_wmb(); 2227 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2228 } 2229 2230 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2231 { 2232 /* 2233 * Request that don't require vCPU action should never be logged in 2234 * vcpu->requests. The vCPU won't clear the request, so it will stay 2235 * logged indefinitely and prevent the vCPU from entering the guest. 2236 */ 2237 BUILD_BUG_ON(!__builtin_constant_p(req) || 2238 (req & KVM_REQUEST_NO_ACTION)); 2239 2240 __kvm_make_request(req, vcpu); 2241 } 2242 2243 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2244 { 2245 return READ_ONCE(vcpu->requests); 2246 } 2247 2248 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2249 { 2250 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2251 } 2252 2253 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2254 { 2255 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2256 } 2257 2258 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2259 { 2260 if (kvm_test_request(req, vcpu)) { 2261 kvm_clear_request(req, vcpu); 2262 2263 /* 2264 * Ensure the rest of the request is visible to kvm_check_request's 2265 * caller. Paired with the smp_wmb in kvm_make_request. 2266 */ 2267 smp_mb__after_atomic(); 2268 return true; 2269 } else { 2270 return false; 2271 } 2272 } 2273 2274 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2275 extern bool kvm_rebooting; 2276 #endif 2277 2278 extern unsigned int halt_poll_ns; 2279 extern unsigned int halt_poll_ns_grow; 2280 extern unsigned int halt_poll_ns_grow_start; 2281 extern unsigned int halt_poll_ns_shrink; 2282 2283 struct kvm_device { 2284 const struct kvm_device_ops *ops; 2285 struct kvm *kvm; 2286 void *private; 2287 struct list_head vm_node; 2288 }; 2289 2290 /* create, destroy, and name are mandatory */ 2291 struct kvm_device_ops { 2292 const char *name; 2293 2294 /* 2295 * create is called holding kvm->lock and any operations not suitable 2296 * to do while holding the lock should be deferred to init (see 2297 * below). 2298 */ 2299 int (*create)(struct kvm_device *dev, u32 type); 2300 2301 /* 2302 * init is called after create if create is successful and is called 2303 * outside of holding kvm->lock. 2304 */ 2305 void (*init)(struct kvm_device *dev); 2306 2307 /* 2308 * Destroy is responsible for freeing dev. 2309 * 2310 * Destroy may be called before or after destructors are called 2311 * on emulated I/O regions, depending on whether a reference is 2312 * held by a vcpu or other kvm component that gets destroyed 2313 * after the emulated I/O. 2314 */ 2315 void (*destroy)(struct kvm_device *dev); 2316 2317 /* 2318 * Release is an alternative method to free the device. It is 2319 * called when the device file descriptor is closed. Once 2320 * release is called, the destroy method will not be called 2321 * anymore as the device is removed from the device list of 2322 * the VM. kvm->lock is held. 2323 */ 2324 void (*release)(struct kvm_device *dev); 2325 2326 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2327 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2328 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2329 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2330 unsigned long arg); 2331 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2332 }; 2333 2334 struct kvm_device *kvm_device_from_filp(struct file *filp); 2335 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2336 void kvm_unregister_device_ops(u32 type); 2337 2338 extern struct kvm_device_ops kvm_mpic_ops; 2339 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2340 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2341 2342 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2343 2344 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2345 { 2346 vcpu->spin_loop.in_spin_loop = val; 2347 } 2348 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2349 { 2350 vcpu->spin_loop.dy_eligible = val; 2351 } 2352 2353 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2354 2355 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2356 { 2357 } 2358 2359 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2360 { 2361 } 2362 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2363 2364 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2365 { 2366 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2367 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2368 } 2369 2370 struct kvm_vcpu *kvm_get_running_vcpu(void); 2371 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2372 2373 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2374 bool kvm_arch_has_irq_bypass(void); 2375 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2376 struct irq_bypass_producer *); 2377 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2378 struct irq_bypass_producer *); 2379 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2380 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2381 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2382 uint32_t guest_irq, bool set); 2383 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2384 struct kvm_kernel_irq_routing_entry *); 2385 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2386 2387 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2388 /* If we wakeup during the poll time, was it a sucessful poll? */ 2389 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2390 { 2391 return vcpu->valid_wakeup; 2392 } 2393 2394 #else 2395 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2396 { 2397 return true; 2398 } 2399 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2400 2401 #ifdef CONFIG_HAVE_KVM_NO_POLL 2402 /* Callback that tells if we must not poll */ 2403 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2404 #else 2405 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2406 { 2407 return false; 2408 } 2409 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2410 2411 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2412 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2413 unsigned int ioctl, unsigned long arg); 2414 #else 2415 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2416 unsigned int ioctl, 2417 unsigned long arg) 2418 { 2419 return -ENOIOCTLCMD; 2420 } 2421 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2422 2423 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2424 2425 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2426 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2427 #else 2428 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2429 { 2430 return 0; 2431 } 2432 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2433 2434 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 2435 2436 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 2437 uintptr_t data, const char *name, 2438 struct task_struct **thread_ptr); 2439 2440 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2441 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2442 { 2443 vcpu->run->exit_reason = KVM_EXIT_INTR; 2444 vcpu->stat.signal_exits++; 2445 } 2446 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2447 2448 /* 2449 * If more than one page is being (un)accounted, @virt must be the address of 2450 * the first page of a block of pages what were allocated together (i.e 2451 * accounted together). 2452 * 2453 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2454 * is thread-safe. 2455 */ 2456 static inline void kvm_account_pgtable_pages(void *virt, int nr) 2457 { 2458 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2459 } 2460 2461 /* 2462 * This defines how many reserved entries we want to keep before we 2463 * kick the vcpu to the userspace to avoid dirty ring full. This 2464 * value can be tuned to higher if e.g. PML is enabled on the host. 2465 */ 2466 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2467 2468 /* Max number of entries allowed for each kvm dirty ring */ 2469 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2470 2471 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, 2472 gpa_t gpa, gpa_t size, 2473 bool is_write, bool is_exec, 2474 bool is_private) 2475 { 2476 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT; 2477 vcpu->run->memory_fault.gpa = gpa; 2478 vcpu->run->memory_fault.size = size; 2479 2480 /* RWX flags are not (yet) defined or communicated to userspace. */ 2481 vcpu->run->memory_fault.flags = 0; 2482 if (is_private) 2483 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE; 2484 } 2485 2486 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2487 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn) 2488 { 2489 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn)); 2490 } 2491 2492 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2493 unsigned long mask, unsigned long attrs); 2494 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 2495 struct kvm_gfn_range *range); 2496 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 2497 struct kvm_gfn_range *range); 2498 2499 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2500 { 2501 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) && 2502 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE; 2503 } 2504 #else 2505 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2506 { 2507 return false; 2508 } 2509 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2510 2511 #ifdef CONFIG_KVM_PRIVATE_MEM 2512 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot, 2513 gfn_t gfn, kvm_pfn_t *pfn, struct page **page, 2514 int *max_order); 2515 #else 2516 static inline int kvm_gmem_get_pfn(struct kvm *kvm, 2517 struct kvm_memory_slot *slot, gfn_t gfn, 2518 kvm_pfn_t *pfn, struct page **page, 2519 int *max_order) 2520 { 2521 KVM_BUG_ON(1, kvm); 2522 return -EIO; 2523 } 2524 #endif /* CONFIG_KVM_PRIVATE_MEM */ 2525 2526 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 2527 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order); 2528 #endif 2529 2530 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM 2531 /** 2532 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data 2533 * 2534 * @kvm: KVM instance 2535 * @gfn: starting GFN to be populated 2536 * @src: userspace-provided buffer containing data to copy into GFN range 2537 * (passed to @post_populate, and incremented on each iteration 2538 * if not NULL) 2539 * @npages: number of pages to copy from userspace-buffer 2540 * @post_populate: callback to issue for each gmem page that backs the GPA 2541 * range 2542 * @opaque: opaque data to pass to @post_populate callback 2543 * 2544 * This is primarily intended for cases where a gmem-backed GPA range needs 2545 * to be initialized with userspace-provided data prior to being mapped into 2546 * the guest as a private page. This should be called with the slots->lock 2547 * held so that caller-enforced invariants regarding the expected memory 2548 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES. 2549 * 2550 * Returns the number of pages that were populated. 2551 */ 2552 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2553 void __user *src, int order, void *opaque); 2554 2555 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages, 2556 kvm_gmem_populate_cb post_populate, void *opaque); 2557 #endif 2558 2559 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 2560 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); 2561 #endif 2562 2563 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 2564 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 2565 struct kvm_pre_fault_memory *range); 2566 #endif 2567 2568 #endif 2569