xref: /linux-6.15/include/linux/kvm_host.h (revision 0664dc74)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54  * used in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100 #define KVM_PFN_ERR_NEEDS_IO	(KVM_PFN_ERR_MASK + 4)
101 
102 /*
103  * error pfns indicate that the gfn is in slot but faild to
104  * translate it to pfn on host.
105  */
106 static inline bool is_error_pfn(kvm_pfn_t pfn)
107 {
108 	return !!(pfn & KVM_PFN_ERR_MASK);
109 }
110 
111 /*
112  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
113  * by a pending signal.  Note, the signal may or may not be fatal.
114  */
115 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
116 {
117 	return pfn == KVM_PFN_ERR_SIGPENDING;
118 }
119 
120 /*
121  * error_noslot pfns indicate that the gfn can not be
122  * translated to pfn - it is not in slot or failed to
123  * translate it to pfn.
124  */
125 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
126 {
127 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
128 }
129 
130 /* noslot pfn indicates that the gfn is not in slot. */
131 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
132 {
133 	return pfn == KVM_PFN_NOSLOT;
134 }
135 
136 /*
137  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
138  * provide own defines and kvm_is_error_hva
139  */
140 #ifndef KVM_HVA_ERR_BAD
141 
142 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
143 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
144 
145 static inline bool kvm_is_error_hva(unsigned long addr)
146 {
147 	return addr >= PAGE_OFFSET;
148 }
149 
150 #endif
151 
152 static inline bool kvm_is_error_gpa(gpa_t gpa)
153 {
154 	return gpa == INVALID_GPA;
155 }
156 
157 #define KVM_REQUEST_MASK           GENMASK(7,0)
158 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
159 #define KVM_REQUEST_WAIT           BIT(9)
160 #define KVM_REQUEST_NO_ACTION      BIT(10)
161 /*
162  * Architecture-independent vcpu->requests bit members
163  * Bits 3-7 are reserved for more arch-independent bits.
164  */
165 #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
166 #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_UNBLOCK			2
168 #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
169 #define KVM_REQUEST_ARCH_BASE		8
170 
171 /*
172  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
173  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
174  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
175  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
176  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
177  * guarantee the vCPU received an IPI and has actually exited guest mode.
178  */
179 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
180 
181 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
182 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
183 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
184 })
185 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
186 
187 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
188 				 unsigned long *vcpu_bitmap);
189 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
190 
191 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
192 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
193 
194 extern struct mutex kvm_lock;
195 extern struct list_head vm_list;
196 
197 struct kvm_io_range {
198 	gpa_t addr;
199 	int len;
200 	struct kvm_io_device *dev;
201 };
202 
203 #define NR_IOBUS_DEVS 1000
204 
205 struct kvm_io_bus {
206 	int dev_count;
207 	int ioeventfd_count;
208 	struct kvm_io_range range[];
209 };
210 
211 enum kvm_bus {
212 	KVM_MMIO_BUS,
213 	KVM_PIO_BUS,
214 	KVM_VIRTIO_CCW_NOTIFY_BUS,
215 	KVM_FAST_MMIO_BUS,
216 	KVM_IOCSR_BUS,
217 	KVM_NR_BUSES
218 };
219 
220 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
221 		     int len, const void *val);
222 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
223 			    gpa_t addr, int len, const void *val, long cookie);
224 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
225 		    int len, void *val);
226 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
227 			    int len, struct kvm_io_device *dev);
228 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
229 			      struct kvm_io_device *dev);
230 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
231 					 gpa_t addr);
232 
233 #ifdef CONFIG_KVM_ASYNC_PF
234 struct kvm_async_pf {
235 	struct work_struct work;
236 	struct list_head link;
237 	struct list_head queue;
238 	struct kvm_vcpu *vcpu;
239 	gpa_t cr2_or_gpa;
240 	unsigned long addr;
241 	struct kvm_arch_async_pf arch;
242 	bool   wakeup_all;
243 	bool notpresent_injected;
244 };
245 
246 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
247 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
248 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
249 			unsigned long hva, struct kvm_arch_async_pf *arch);
250 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
251 #endif
252 
253 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
254 union kvm_mmu_notifier_arg {
255 	unsigned long attributes;
256 };
257 
258 struct kvm_gfn_range {
259 	struct kvm_memory_slot *slot;
260 	gfn_t start;
261 	gfn_t end;
262 	union kvm_mmu_notifier_arg arg;
263 	bool may_block;
264 };
265 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
266 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
267 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
268 #endif
269 
270 enum {
271 	OUTSIDE_GUEST_MODE,
272 	IN_GUEST_MODE,
273 	EXITING_GUEST_MODE,
274 	READING_SHADOW_PAGE_TABLES,
275 };
276 
277 struct kvm_host_map {
278 	/*
279 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
280 	 * a 'struct page' for it. When using mem= kernel parameter some memory
281 	 * can be used as guest memory but they are not managed by host
282 	 * kernel).
283 	 */
284 	struct page *pinned_page;
285 	struct page *page;
286 	void *hva;
287 	kvm_pfn_t pfn;
288 	kvm_pfn_t gfn;
289 	bool writable;
290 };
291 
292 /*
293  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
294  * directly to check for that.
295  */
296 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
297 {
298 	return !!map->hva;
299 }
300 
301 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
302 {
303 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
304 }
305 
306 /*
307  * Sometimes a large or cross-page mmio needs to be broken up into separate
308  * exits for userspace servicing.
309  */
310 struct kvm_mmio_fragment {
311 	gpa_t gpa;
312 	void *data;
313 	unsigned len;
314 };
315 
316 struct kvm_vcpu {
317 	struct kvm *kvm;
318 #ifdef CONFIG_PREEMPT_NOTIFIERS
319 	struct preempt_notifier preempt_notifier;
320 #endif
321 	int cpu;
322 	int vcpu_id; /* id given by userspace at creation */
323 	int vcpu_idx; /* index into kvm->vcpu_array */
324 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
325 #ifdef CONFIG_PROVE_RCU
326 	int srcu_depth;
327 #endif
328 	int mode;
329 	u64 requests;
330 	unsigned long guest_debug;
331 
332 	struct mutex mutex;
333 	struct kvm_run *run;
334 
335 #ifndef __KVM_HAVE_ARCH_WQP
336 	struct rcuwait wait;
337 #endif
338 	struct pid *pid;
339 	rwlock_t pid_lock;
340 	int sigset_active;
341 	sigset_t sigset;
342 	unsigned int halt_poll_ns;
343 	bool valid_wakeup;
344 
345 #ifdef CONFIG_HAS_IOMEM
346 	int mmio_needed;
347 	int mmio_read_completed;
348 	int mmio_is_write;
349 	int mmio_cur_fragment;
350 	int mmio_nr_fragments;
351 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
352 #endif
353 
354 #ifdef CONFIG_KVM_ASYNC_PF
355 	struct {
356 		u32 queued;
357 		struct list_head queue;
358 		struct list_head done;
359 		spinlock_t lock;
360 	} async_pf;
361 #endif
362 
363 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
364 	/*
365 	 * Cpu relax intercept or pause loop exit optimization
366 	 * in_spin_loop: set when a vcpu does a pause loop exit
367 	 *  or cpu relax intercepted.
368 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
369 	 */
370 	struct {
371 		bool in_spin_loop;
372 		bool dy_eligible;
373 	} spin_loop;
374 #endif
375 	bool wants_to_run;
376 	bool preempted;
377 	bool ready;
378 	bool scheduled_out;
379 	struct kvm_vcpu_arch arch;
380 	struct kvm_vcpu_stat stat;
381 	char stats_id[KVM_STATS_NAME_SIZE];
382 	struct kvm_dirty_ring dirty_ring;
383 
384 	/*
385 	 * The most recently used memslot by this vCPU and the slots generation
386 	 * for which it is valid.
387 	 * No wraparound protection is needed since generations won't overflow in
388 	 * thousands of years, even assuming 1M memslot operations per second.
389 	 */
390 	struct kvm_memory_slot *last_used_slot;
391 	u64 last_used_slot_gen;
392 };
393 
394 /*
395  * Start accounting time towards a guest.
396  * Must be called before entering guest context.
397  */
398 static __always_inline void guest_timing_enter_irqoff(void)
399 {
400 	/*
401 	 * This is running in ioctl context so its safe to assume that it's the
402 	 * stime pending cputime to flush.
403 	 */
404 	instrumentation_begin();
405 	vtime_account_guest_enter();
406 	instrumentation_end();
407 }
408 
409 /*
410  * Enter guest context and enter an RCU extended quiescent state.
411  *
412  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
413  * unsafe to use any code which may directly or indirectly use RCU, tracing
414  * (including IRQ flag tracing), or lockdep. All code in this period must be
415  * non-instrumentable.
416  */
417 static __always_inline void guest_context_enter_irqoff(void)
418 {
419 	/*
420 	 * KVM does not hold any references to rcu protected data when it
421 	 * switches CPU into a guest mode. In fact switching to a guest mode
422 	 * is very similar to exiting to userspace from rcu point of view. In
423 	 * addition CPU may stay in a guest mode for quite a long time (up to
424 	 * one time slice). Lets treat guest mode as quiescent state, just like
425 	 * we do with user-mode execution.
426 	 */
427 	if (!context_tracking_guest_enter()) {
428 		instrumentation_begin();
429 		rcu_virt_note_context_switch();
430 		instrumentation_end();
431 	}
432 }
433 
434 /*
435  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
436  * guest_state_enter_irqoff().
437  */
438 static __always_inline void guest_enter_irqoff(void)
439 {
440 	guest_timing_enter_irqoff();
441 	guest_context_enter_irqoff();
442 }
443 
444 /**
445  * guest_state_enter_irqoff - Fixup state when entering a guest
446  *
447  * Entry to a guest will enable interrupts, but the kernel state is interrupts
448  * disabled when this is invoked. Also tell RCU about it.
449  *
450  * 1) Trace interrupts on state
451  * 2) Invoke context tracking if enabled to adjust RCU state
452  * 3) Tell lockdep that interrupts are enabled
453  *
454  * Invoked from architecture specific code before entering a guest.
455  * Must be called with interrupts disabled and the caller must be
456  * non-instrumentable.
457  * The caller has to invoke guest_timing_enter_irqoff() before this.
458  *
459  * Note: this is analogous to exit_to_user_mode().
460  */
461 static __always_inline void guest_state_enter_irqoff(void)
462 {
463 	instrumentation_begin();
464 	trace_hardirqs_on_prepare();
465 	lockdep_hardirqs_on_prepare();
466 	instrumentation_end();
467 
468 	guest_context_enter_irqoff();
469 	lockdep_hardirqs_on(CALLER_ADDR0);
470 }
471 
472 /*
473  * Exit guest context and exit an RCU extended quiescent state.
474  *
475  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
476  * unsafe to use any code which may directly or indirectly use RCU, tracing
477  * (including IRQ flag tracing), or lockdep. All code in this period must be
478  * non-instrumentable.
479  */
480 static __always_inline void guest_context_exit_irqoff(void)
481 {
482 	/*
483 	 * Guest mode is treated as a quiescent state, see
484 	 * guest_context_enter_irqoff() for more details.
485 	 */
486 	if (!context_tracking_guest_exit()) {
487 		instrumentation_begin();
488 		rcu_virt_note_context_switch();
489 		instrumentation_end();
490 	}
491 }
492 
493 /*
494  * Stop accounting time towards a guest.
495  * Must be called after exiting guest context.
496  */
497 static __always_inline void guest_timing_exit_irqoff(void)
498 {
499 	instrumentation_begin();
500 	/* Flush the guest cputime we spent on the guest */
501 	vtime_account_guest_exit();
502 	instrumentation_end();
503 }
504 
505 /*
506  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
507  * guest_timing_exit_irqoff().
508  */
509 static __always_inline void guest_exit_irqoff(void)
510 {
511 	guest_context_exit_irqoff();
512 	guest_timing_exit_irqoff();
513 }
514 
515 static inline void guest_exit(void)
516 {
517 	unsigned long flags;
518 
519 	local_irq_save(flags);
520 	guest_exit_irqoff();
521 	local_irq_restore(flags);
522 }
523 
524 /**
525  * guest_state_exit_irqoff - Establish state when returning from guest mode
526  *
527  * Entry from a guest disables interrupts, but guest mode is traced as
528  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
529  *
530  * 1) Tell lockdep that interrupts are disabled
531  * 2) Invoke context tracking if enabled to reactivate RCU
532  * 3) Trace interrupts off state
533  *
534  * Invoked from architecture specific code after exiting a guest.
535  * Must be invoked with interrupts disabled and the caller must be
536  * non-instrumentable.
537  * The caller has to invoke guest_timing_exit_irqoff() after this.
538  *
539  * Note: this is analogous to enter_from_user_mode().
540  */
541 static __always_inline void guest_state_exit_irqoff(void)
542 {
543 	lockdep_hardirqs_off(CALLER_ADDR0);
544 	guest_context_exit_irqoff();
545 
546 	instrumentation_begin();
547 	trace_hardirqs_off_finish();
548 	instrumentation_end();
549 }
550 
551 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
552 {
553 	/*
554 	 * The memory barrier ensures a previous write to vcpu->requests cannot
555 	 * be reordered with the read of vcpu->mode.  It pairs with the general
556 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
557 	 */
558 	smp_mb__before_atomic();
559 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
560 }
561 
562 /*
563  * Some of the bitops functions do not support too long bitmaps.
564  * This number must be determined not to exceed such limits.
565  */
566 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
567 
568 /*
569  * Since at idle each memslot belongs to two memslot sets it has to contain
570  * two embedded nodes for each data structure that it forms a part of.
571  *
572  * Two memslot sets (one active and one inactive) are necessary so the VM
573  * continues to run on one memslot set while the other is being modified.
574  *
575  * These two memslot sets normally point to the same set of memslots.
576  * They can, however, be desynchronized when performing a memslot management
577  * operation by replacing the memslot to be modified by its copy.
578  * After the operation is complete, both memslot sets once again point to
579  * the same, common set of memslot data.
580  *
581  * The memslots themselves are independent of each other so they can be
582  * individually added or deleted.
583  */
584 struct kvm_memory_slot {
585 	struct hlist_node id_node[2];
586 	struct interval_tree_node hva_node[2];
587 	struct rb_node gfn_node[2];
588 	gfn_t base_gfn;
589 	unsigned long npages;
590 	unsigned long *dirty_bitmap;
591 	struct kvm_arch_memory_slot arch;
592 	unsigned long userspace_addr;
593 	u32 flags;
594 	short id;
595 	u16 as_id;
596 
597 #ifdef CONFIG_KVM_PRIVATE_MEM
598 	struct {
599 		struct file __rcu *file;
600 		pgoff_t pgoff;
601 	} gmem;
602 #endif
603 };
604 
605 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
606 {
607 	return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
608 }
609 
610 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
611 {
612 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
613 }
614 
615 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
616 {
617 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
618 }
619 
620 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
621 {
622 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
623 
624 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
625 }
626 
627 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
628 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
629 #endif
630 
631 struct kvm_s390_adapter_int {
632 	u64 ind_addr;
633 	u64 summary_addr;
634 	u64 ind_offset;
635 	u32 summary_offset;
636 	u32 adapter_id;
637 };
638 
639 struct kvm_hv_sint {
640 	u32 vcpu;
641 	u32 sint;
642 };
643 
644 struct kvm_xen_evtchn {
645 	u32 port;
646 	u32 vcpu_id;
647 	int vcpu_idx;
648 	u32 priority;
649 };
650 
651 struct kvm_kernel_irq_routing_entry {
652 	u32 gsi;
653 	u32 type;
654 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
655 		   struct kvm *kvm, int irq_source_id, int level,
656 		   bool line_status);
657 	union {
658 		struct {
659 			unsigned irqchip;
660 			unsigned pin;
661 		} irqchip;
662 		struct {
663 			u32 address_lo;
664 			u32 address_hi;
665 			u32 data;
666 			u32 flags;
667 			u32 devid;
668 		} msi;
669 		struct kvm_s390_adapter_int adapter;
670 		struct kvm_hv_sint hv_sint;
671 		struct kvm_xen_evtchn xen_evtchn;
672 	};
673 	struct hlist_node link;
674 };
675 
676 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
677 struct kvm_irq_routing_table {
678 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
679 	u32 nr_rt_entries;
680 	/*
681 	 * Array indexed by gsi. Each entry contains list of irq chips
682 	 * the gsi is connected to.
683 	 */
684 	struct hlist_head map[] __counted_by(nr_rt_entries);
685 };
686 #endif
687 
688 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
689 
690 #ifndef KVM_INTERNAL_MEM_SLOTS
691 #define KVM_INTERNAL_MEM_SLOTS 0
692 #endif
693 
694 #define KVM_MEM_SLOTS_NUM SHRT_MAX
695 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
696 
697 #if KVM_MAX_NR_ADDRESS_SPACES == 1
698 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
699 {
700 	return KVM_MAX_NR_ADDRESS_SPACES;
701 }
702 
703 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
704 {
705 	return 0;
706 }
707 #endif
708 
709 /*
710  * Arch code must define kvm_arch_has_private_mem if support for private memory
711  * is enabled.
712  */
713 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
714 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
715 {
716 	return false;
717 }
718 #endif
719 
720 #ifndef kvm_arch_has_readonly_mem
721 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
722 {
723 	return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
724 }
725 #endif
726 
727 struct kvm_memslots {
728 	u64 generation;
729 	atomic_long_t last_used_slot;
730 	struct rb_root_cached hva_tree;
731 	struct rb_root gfn_tree;
732 	/*
733 	 * The mapping table from slot id to memslot.
734 	 *
735 	 * 7-bit bucket count matches the size of the old id to index array for
736 	 * 512 slots, while giving good performance with this slot count.
737 	 * Higher bucket counts bring only small performance improvements but
738 	 * always result in higher memory usage (even for lower memslot counts).
739 	 */
740 	DECLARE_HASHTABLE(id_hash, 7);
741 	int node_idx;
742 };
743 
744 struct kvm {
745 #ifdef KVM_HAVE_MMU_RWLOCK
746 	rwlock_t mmu_lock;
747 #else
748 	spinlock_t mmu_lock;
749 #endif /* KVM_HAVE_MMU_RWLOCK */
750 
751 	struct mutex slots_lock;
752 
753 	/*
754 	 * Protects the arch-specific fields of struct kvm_memory_slots in
755 	 * use by the VM. To be used under the slots_lock (above) or in a
756 	 * kvm->srcu critical section where acquiring the slots_lock would
757 	 * lead to deadlock with the synchronize_srcu in
758 	 * kvm_swap_active_memslots().
759 	 */
760 	struct mutex slots_arch_lock;
761 	struct mm_struct *mm; /* userspace tied to this vm */
762 	unsigned long nr_memslot_pages;
763 	/* The two memslot sets - active and inactive (per address space) */
764 	struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
765 	/* The current active memslot set for each address space */
766 	struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
767 	struct xarray vcpu_array;
768 	/*
769 	 * Protected by slots_lock, but can be read outside if an
770 	 * incorrect answer is acceptable.
771 	 */
772 	atomic_t nr_memslots_dirty_logging;
773 
774 	/* Used to wait for completion of MMU notifiers.  */
775 	spinlock_t mn_invalidate_lock;
776 	unsigned long mn_active_invalidate_count;
777 	struct rcuwait mn_memslots_update_rcuwait;
778 
779 	/* For management / invalidation of gfn_to_pfn_caches */
780 	spinlock_t gpc_lock;
781 	struct list_head gpc_list;
782 
783 	/*
784 	 * created_vcpus is protected by kvm->lock, and is incremented
785 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
786 	 * incremented after storing the kvm_vcpu pointer in vcpus,
787 	 * and is accessed atomically.
788 	 */
789 	atomic_t online_vcpus;
790 	int max_vcpus;
791 	int created_vcpus;
792 	int last_boosted_vcpu;
793 	struct list_head vm_list;
794 	struct mutex lock;
795 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
796 #ifdef CONFIG_HAVE_KVM_IRQCHIP
797 	struct {
798 		spinlock_t        lock;
799 		struct list_head  items;
800 		/* resampler_list update side is protected by resampler_lock. */
801 		struct list_head  resampler_list;
802 		struct mutex      resampler_lock;
803 	} irqfds;
804 #endif
805 	struct list_head ioeventfds;
806 	struct kvm_vm_stat stat;
807 	struct kvm_arch arch;
808 	refcount_t users_count;
809 #ifdef CONFIG_KVM_MMIO
810 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
811 	spinlock_t ring_lock;
812 	struct list_head coalesced_zones;
813 #endif
814 
815 	struct mutex irq_lock;
816 #ifdef CONFIG_HAVE_KVM_IRQCHIP
817 	/*
818 	 * Update side is protected by irq_lock.
819 	 */
820 	struct kvm_irq_routing_table __rcu *irq_routing;
821 
822 	struct hlist_head irq_ack_notifier_list;
823 #endif
824 
825 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
826 	struct mmu_notifier mmu_notifier;
827 	unsigned long mmu_invalidate_seq;
828 	long mmu_invalidate_in_progress;
829 	gfn_t mmu_invalidate_range_start;
830 	gfn_t mmu_invalidate_range_end;
831 #endif
832 	struct list_head devices;
833 	u64 manual_dirty_log_protect;
834 	struct dentry *debugfs_dentry;
835 	struct kvm_stat_data **debugfs_stat_data;
836 	struct srcu_struct srcu;
837 	struct srcu_struct irq_srcu;
838 	pid_t userspace_pid;
839 	bool override_halt_poll_ns;
840 	unsigned int max_halt_poll_ns;
841 	u32 dirty_ring_size;
842 	bool dirty_ring_with_bitmap;
843 	bool vm_bugged;
844 	bool vm_dead;
845 
846 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
847 	struct notifier_block pm_notifier;
848 #endif
849 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
850 	/* Protected by slots_locks (for writes) and RCU (for reads) */
851 	struct xarray mem_attr_array;
852 #endif
853 	char stats_id[KVM_STATS_NAME_SIZE];
854 };
855 
856 #define kvm_err(fmt, ...) \
857 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
858 #define kvm_info(fmt, ...) \
859 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
860 #define kvm_debug(fmt, ...) \
861 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
862 #define kvm_debug_ratelimited(fmt, ...) \
863 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
864 			     ## __VA_ARGS__)
865 #define kvm_pr_unimpl(fmt, ...) \
866 	pr_err_ratelimited("kvm [%i]: " fmt, \
867 			   task_tgid_nr(current), ## __VA_ARGS__)
868 
869 /* The guest did something we don't support. */
870 #define vcpu_unimpl(vcpu, fmt, ...)					\
871 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
872 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
873 
874 #define vcpu_debug(vcpu, fmt, ...)					\
875 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
876 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
877 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
878 			      ## __VA_ARGS__)
879 #define vcpu_err(vcpu, fmt, ...)					\
880 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
881 
882 static inline void kvm_vm_dead(struct kvm *kvm)
883 {
884 	kvm->vm_dead = true;
885 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
886 }
887 
888 static inline void kvm_vm_bugged(struct kvm *kvm)
889 {
890 	kvm->vm_bugged = true;
891 	kvm_vm_dead(kvm);
892 }
893 
894 
895 #define KVM_BUG(cond, kvm, fmt...)				\
896 ({								\
897 	bool __ret = !!(cond);					\
898 								\
899 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
900 		kvm_vm_bugged(kvm);				\
901 	unlikely(__ret);					\
902 })
903 
904 #define KVM_BUG_ON(cond, kvm)					\
905 ({								\
906 	bool __ret = !!(cond);					\
907 								\
908 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
909 		kvm_vm_bugged(kvm);				\
910 	unlikely(__ret);					\
911 })
912 
913 /*
914  * Note, "data corruption" refers to corruption of host kernel data structures,
915  * not guest data.  Guest data corruption, suspected or confirmed, that is tied
916  * and contained to a single VM should *never* BUG() and potentially panic the
917  * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
918  * is corrupted and that corruption can have a cascading effect to other parts
919  * of the hosts and/or to other VMs.
920  */
921 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)			\
922 ({								\
923 	bool __ret = !!(cond);					\
924 								\
925 	if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))		\
926 		BUG_ON(__ret);					\
927 	else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))	\
928 		kvm_vm_bugged(kvm);				\
929 	unlikely(__ret);					\
930 })
931 
932 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
933 {
934 #ifdef CONFIG_PROVE_RCU
935 	WARN_ONCE(vcpu->srcu_depth++,
936 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
937 #endif
938 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
939 }
940 
941 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
942 {
943 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
944 
945 #ifdef CONFIG_PROVE_RCU
946 	WARN_ONCE(--vcpu->srcu_depth,
947 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
948 #endif
949 }
950 
951 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
952 {
953 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
954 }
955 
956 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
957 {
958 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
959 				      lockdep_is_held(&kvm->slots_lock) ||
960 				      !refcount_read(&kvm->users_count));
961 }
962 
963 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
964 {
965 	int num_vcpus = atomic_read(&kvm->online_vcpus);
966 
967 	/*
968 	 * Explicitly verify the target vCPU is online, as the anti-speculation
969 	 * logic only limits the CPU's ability to speculate, e.g. given a "bad"
970 	 * index, clamping the index to 0 would return vCPU0, not NULL.
971 	 */
972 	if (i >= num_vcpus)
973 		return NULL;
974 
975 	i = array_index_nospec(i, num_vcpus);
976 
977 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
978 	smp_rmb();
979 	return xa_load(&kvm->vcpu_array, i);
980 }
981 
982 #define kvm_for_each_vcpu(idx, vcpup, kvm)				\
983 	if (atomic_read(&kvm->online_vcpus))				\
984 		xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0,	\
985 				  (atomic_read(&kvm->online_vcpus) - 1))
986 
987 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
988 {
989 	struct kvm_vcpu *vcpu = NULL;
990 	unsigned long i;
991 
992 	if (id < 0)
993 		return NULL;
994 	if (id < KVM_MAX_VCPUS)
995 		vcpu = kvm_get_vcpu(kvm, id);
996 	if (vcpu && vcpu->vcpu_id == id)
997 		return vcpu;
998 	kvm_for_each_vcpu(i, vcpu, kvm)
999 		if (vcpu->vcpu_id == id)
1000 			return vcpu;
1001 	return NULL;
1002 }
1003 
1004 void kvm_destroy_vcpus(struct kvm *kvm);
1005 
1006 void vcpu_load(struct kvm_vcpu *vcpu);
1007 void vcpu_put(struct kvm_vcpu *vcpu);
1008 
1009 #ifdef __KVM_HAVE_IOAPIC
1010 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1011 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
1012 #else
1013 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1014 {
1015 }
1016 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
1017 {
1018 }
1019 #endif
1020 
1021 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1022 int kvm_irqfd_init(void);
1023 void kvm_irqfd_exit(void);
1024 #else
1025 static inline int kvm_irqfd_init(void)
1026 {
1027 	return 0;
1028 }
1029 
1030 static inline void kvm_irqfd_exit(void)
1031 {
1032 }
1033 #endif
1034 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1035 void kvm_exit(void);
1036 
1037 void kvm_get_kvm(struct kvm *kvm);
1038 bool kvm_get_kvm_safe(struct kvm *kvm);
1039 void kvm_put_kvm(struct kvm *kvm);
1040 bool file_is_kvm(struct file *file);
1041 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1042 
1043 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1044 {
1045 	as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1046 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1047 			lockdep_is_held(&kvm->slots_lock) ||
1048 			!refcount_read(&kvm->users_count));
1049 }
1050 
1051 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1052 {
1053 	return __kvm_memslots(kvm, 0);
1054 }
1055 
1056 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1057 {
1058 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1059 
1060 	return __kvm_memslots(vcpu->kvm, as_id);
1061 }
1062 
1063 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1064 {
1065 	return RB_EMPTY_ROOT(&slots->gfn_tree);
1066 }
1067 
1068 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1069 
1070 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
1071 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1072 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
1073 		} else
1074 
1075 static inline
1076 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1077 {
1078 	struct kvm_memory_slot *slot;
1079 	int idx = slots->node_idx;
1080 
1081 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1082 		if (slot->id == id)
1083 			return slot;
1084 	}
1085 
1086 	return NULL;
1087 }
1088 
1089 /* Iterator used for walking memslots that overlap a gfn range. */
1090 struct kvm_memslot_iter {
1091 	struct kvm_memslots *slots;
1092 	struct rb_node *node;
1093 	struct kvm_memory_slot *slot;
1094 };
1095 
1096 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1097 {
1098 	iter->node = rb_next(iter->node);
1099 	if (!iter->node)
1100 		return;
1101 
1102 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1103 }
1104 
1105 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1106 					  struct kvm_memslots *slots,
1107 					  gfn_t start)
1108 {
1109 	int idx = slots->node_idx;
1110 	struct rb_node *tmp;
1111 	struct kvm_memory_slot *slot;
1112 
1113 	iter->slots = slots;
1114 
1115 	/*
1116 	 * Find the so called "upper bound" of a key - the first node that has
1117 	 * its key strictly greater than the searched one (the start gfn in our case).
1118 	 */
1119 	iter->node = NULL;
1120 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1121 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1122 		if (start < slot->base_gfn) {
1123 			iter->node = tmp;
1124 			tmp = tmp->rb_left;
1125 		} else {
1126 			tmp = tmp->rb_right;
1127 		}
1128 	}
1129 
1130 	/*
1131 	 * Find the slot with the lowest gfn that can possibly intersect with
1132 	 * the range, so we'll ideally have slot start <= range start
1133 	 */
1134 	if (iter->node) {
1135 		/*
1136 		 * A NULL previous node means that the very first slot
1137 		 * already has a higher start gfn.
1138 		 * In this case slot start > range start.
1139 		 */
1140 		tmp = rb_prev(iter->node);
1141 		if (tmp)
1142 			iter->node = tmp;
1143 	} else {
1144 		/* a NULL node below means no slots */
1145 		iter->node = rb_last(&slots->gfn_tree);
1146 	}
1147 
1148 	if (iter->node) {
1149 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1150 
1151 		/*
1152 		 * It is possible in the slot start < range start case that the
1153 		 * found slot ends before or at range start (slot end <= range start)
1154 		 * and so it does not overlap the requested range.
1155 		 *
1156 		 * In such non-overlapping case the next slot (if it exists) will
1157 		 * already have slot start > range start, otherwise the logic above
1158 		 * would have found it instead of the current slot.
1159 		 */
1160 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1161 			kvm_memslot_iter_next(iter);
1162 	}
1163 }
1164 
1165 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1166 {
1167 	if (!iter->node)
1168 		return false;
1169 
1170 	/*
1171 	 * If this slot starts beyond or at the end of the range so does
1172 	 * every next one
1173 	 */
1174 	return iter->slot->base_gfn < end;
1175 }
1176 
1177 /* Iterate over each memslot at least partially intersecting [start, end) range */
1178 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1179 	for (kvm_memslot_iter_start(iter, slots, start);		\
1180 	     kvm_memslot_iter_is_valid(iter, end);			\
1181 	     kvm_memslot_iter_next(iter))
1182 
1183 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1184 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1185 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1186 
1187 /*
1188  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1189  * - create a new memory slot
1190  * - delete an existing memory slot
1191  * - modify an existing memory slot
1192  *   -- move it in the guest physical memory space
1193  *   -- just change its flags
1194  *
1195  * Since flags can be changed by some of these operations, the following
1196  * differentiation is the best we can do for __kvm_set_memory_region():
1197  */
1198 enum kvm_mr_change {
1199 	KVM_MR_CREATE,
1200 	KVM_MR_DELETE,
1201 	KVM_MR_MOVE,
1202 	KVM_MR_FLAGS_ONLY,
1203 };
1204 
1205 int kvm_set_memory_region(struct kvm *kvm,
1206 			  const struct kvm_userspace_memory_region2 *mem);
1207 int __kvm_set_memory_region(struct kvm *kvm,
1208 			    const struct kvm_userspace_memory_region2 *mem);
1209 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1210 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1211 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1212 				const struct kvm_memory_slot *old,
1213 				struct kvm_memory_slot *new,
1214 				enum kvm_mr_change change);
1215 void kvm_arch_commit_memory_region(struct kvm *kvm,
1216 				struct kvm_memory_slot *old,
1217 				const struct kvm_memory_slot *new,
1218 				enum kvm_mr_change change);
1219 /* flush all memory translations */
1220 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1221 /* flush memory translations pointing to 'slot' */
1222 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1223 				   struct kvm_memory_slot *slot);
1224 
1225 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
1226 		       struct page **pages, int nr_pages);
1227 
1228 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write);
1229 static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1230 {
1231 	return __gfn_to_page(kvm, gfn, true);
1232 }
1233 
1234 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1235 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1236 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1237 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1238 				      bool *writable);
1239 
1240 static inline void kvm_release_page_unused(struct page *page)
1241 {
1242 	if (!page)
1243 		return;
1244 
1245 	put_page(page);
1246 }
1247 
1248 void kvm_release_page_clean(struct page *page);
1249 void kvm_release_page_dirty(struct page *page);
1250 
1251 static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page,
1252 					    bool unused, bool dirty)
1253 {
1254 	lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused);
1255 
1256 	if (!page)
1257 		return;
1258 
1259 	/*
1260 	 * If the page that KVM got from the *primary MMU* is writable, and KVM
1261 	 * installed or reused a SPTE, mark the page/folio dirty.  Note, this
1262 	 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if
1263 	 * the GFN is write-protected.  Folios can't be safely marked dirty
1264 	 * outside of mmu_lock as doing so could race with writeback on the
1265 	 * folio.  As a result, KVM can't mark folios dirty in the fast page
1266 	 * fault handler, and so KVM must (somewhat) speculatively mark the
1267 	 * folio dirty if KVM could locklessly make the SPTE writable.
1268 	 */
1269 	if (unused)
1270 		kvm_release_page_unused(page);
1271 	else if (dirty)
1272 		kvm_release_page_dirty(page);
1273 	else
1274 		kvm_release_page_clean(page);
1275 }
1276 
1277 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
1278 			    unsigned int foll, bool *writable,
1279 			    struct page **refcounted_page);
1280 
1281 static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
1282 					bool write, bool *writable,
1283 					struct page **refcounted_page)
1284 {
1285 	return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn,
1286 				 write ? FOLL_WRITE : 0, writable, refcounted_page);
1287 }
1288 
1289 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1290 			int len);
1291 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1292 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1293 			   void *data, unsigned long len);
1294 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1295 				 void *data, unsigned int offset,
1296 				 unsigned long len);
1297 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1298 			 int offset, int len);
1299 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1300 		    unsigned long len);
1301 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1302 			   void *data, unsigned long len);
1303 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1304 				  void *data, unsigned int offset,
1305 				  unsigned long len);
1306 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1307 			      gpa_t gpa, unsigned long len);
1308 
1309 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1310 ({									\
1311 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1312 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1313 	int __ret = -EFAULT;						\
1314 									\
1315 	if (!kvm_is_error_hva(__addr))					\
1316 		__ret = get_user(v, __uaddr);				\
1317 	__ret;								\
1318 })
1319 
1320 #define kvm_get_guest(kvm, gpa, v)					\
1321 ({									\
1322 	gpa_t __gpa = gpa;						\
1323 	struct kvm *__kvm = kvm;					\
1324 									\
1325 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1326 			offset_in_page(__gpa), v);			\
1327 })
1328 
1329 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1330 ({									\
1331 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1332 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1333 	int __ret = -EFAULT;						\
1334 									\
1335 	if (!kvm_is_error_hva(__addr))					\
1336 		__ret = put_user(v, __uaddr);				\
1337 	if (!__ret)							\
1338 		mark_page_dirty(kvm, gfn);				\
1339 	__ret;								\
1340 })
1341 
1342 #define kvm_put_guest(kvm, gpa, v)					\
1343 ({									\
1344 	gpa_t __gpa = gpa;						\
1345 	struct kvm *__kvm = kvm;					\
1346 									\
1347 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1348 			offset_in_page(__gpa), v);			\
1349 })
1350 
1351 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1352 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1353 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1354 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1355 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1356 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1357 
1358 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map,
1359 		   bool writable);
1360 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map);
1361 
1362 static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa,
1363 			       struct kvm_host_map *map)
1364 {
1365 	return __kvm_vcpu_map(vcpu, gpa, map, true);
1366 }
1367 
1368 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa,
1369 					struct kvm_host_map *map)
1370 {
1371 	return __kvm_vcpu_map(vcpu, gpa, map, false);
1372 }
1373 
1374 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1375 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1376 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1377 			     int len);
1378 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1379 			       unsigned long len);
1380 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1381 			unsigned long len);
1382 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1383 			      int offset, int len);
1384 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1385 			 unsigned long len);
1386 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1387 
1388 /**
1389  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1390  *
1391  * @gpc:	   struct gfn_to_pfn_cache object.
1392  * @kvm:	   pointer to kvm instance.
1393  *
1394  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1395  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1396  * the caller before init).
1397  */
1398 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1399 
1400 /**
1401  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1402  *                    physical address.
1403  *
1404  * @gpc:	   struct gfn_to_pfn_cache object.
1405  * @gpa:	   guest physical address to map.
1406  * @len:	   sanity check; the range being access must fit a single page.
1407  *
1408  * @return:	   0 for success.
1409  *		   -EINVAL for a mapping which would cross a page boundary.
1410  *		   -EFAULT for an untranslatable guest physical address.
1411  *
1412  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1413  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1414  * to ensure that the cache is valid before accessing the target page.
1415  */
1416 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1417 
1418 /**
1419  * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1420  *
1421  * @gpc:          struct gfn_to_pfn_cache object.
1422  * @hva:          userspace virtual address to map.
1423  * @len:          sanity check; the range being access must fit a single page.
1424  *
1425  * @return:       0 for success.
1426  *                -EINVAL for a mapping which would cross a page boundary.
1427  *                -EFAULT for an untranslatable guest physical address.
1428  *
1429  * The semantics of this function are the same as those of kvm_gpc_activate(). It
1430  * merely bypasses a layer of address translation.
1431  */
1432 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1433 
1434 /**
1435  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1436  *
1437  * @gpc:	   struct gfn_to_pfn_cache object.
1438  * @len:	   sanity check; the range being access must fit a single page.
1439  *
1440  * @return:	   %true if the cache is still valid and the address matches.
1441  *		   %false if the cache is not valid.
1442  *
1443  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1444  * while calling this function, and then continue to hold the lock until the
1445  * access is complete.
1446  *
1447  * Callers in IN_GUEST_MODE may do so without locking, although they should
1448  * still hold a read lock on kvm->scru for the memslot checks.
1449  */
1450 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1451 
1452 /**
1453  * kvm_gpc_refresh - update a previously initialized cache.
1454  *
1455  * @gpc:	   struct gfn_to_pfn_cache object.
1456  * @len:	   sanity check; the range being access must fit a single page.
1457  *
1458  * @return:	   0 for success.
1459  *		   -EINVAL for a mapping which would cross a page boundary.
1460  *		   -EFAULT for an untranslatable guest physical address.
1461  *
1462  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1463  * return from this function does not mean the page can be immediately
1464  * accessed because it may have raced with an invalidation. Callers must
1465  * still lock and check the cache status, as this function does not return
1466  * with the lock still held to permit access.
1467  */
1468 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1469 
1470 /**
1471  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1472  *
1473  * @gpc:	   struct gfn_to_pfn_cache object.
1474  *
1475  * This removes a cache from the VM's list to be processed on MMU notifier
1476  * invocation.
1477  */
1478 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1479 
1480 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1481 {
1482 	return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1483 }
1484 
1485 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1486 {
1487 	return gpc->active && kvm_is_error_gpa(gpc->gpa);
1488 }
1489 
1490 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1491 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1492 
1493 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1494 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1495 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1496 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1497 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1498 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1499 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1500 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1501 
1502 void kvm_flush_remote_tlbs(struct kvm *kvm);
1503 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1504 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1505 				   const struct kvm_memory_slot *memslot);
1506 
1507 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1508 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1509 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1510 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1511 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1512 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1513 #endif
1514 
1515 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1516 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1517 void kvm_mmu_invalidate_end(struct kvm *kvm);
1518 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1519 
1520 long kvm_arch_dev_ioctl(struct file *filp,
1521 			unsigned int ioctl, unsigned long arg);
1522 long kvm_arch_vcpu_ioctl(struct file *filp,
1523 			 unsigned int ioctl, unsigned long arg);
1524 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1525 
1526 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1527 
1528 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1529 					struct kvm_memory_slot *slot,
1530 					gfn_t gfn_offset,
1531 					unsigned long mask);
1532 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1533 
1534 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1535 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1536 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1537 		      int *is_dirty, struct kvm_memory_slot **memslot);
1538 #endif
1539 
1540 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1541 			bool line_status);
1542 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1543 			    struct kvm_enable_cap *cap);
1544 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1545 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1546 			      unsigned long arg);
1547 
1548 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1549 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1550 
1551 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1552 				    struct kvm_translation *tr);
1553 
1554 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1555 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1556 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1557 				  struct kvm_sregs *sregs);
1558 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1559 				  struct kvm_sregs *sregs);
1560 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1561 				    struct kvm_mp_state *mp_state);
1562 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1563 				    struct kvm_mp_state *mp_state);
1564 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1565 					struct kvm_guest_debug *dbg);
1566 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1567 
1568 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1569 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1570 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1571 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1572 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1573 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1574 
1575 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1576 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1577 #endif
1578 
1579 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1580 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1581 #else
1582 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1583 #endif
1584 
1585 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1586 /*
1587  * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1588  * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1589  * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1590  * sequence, and at the end of the generic hardware disabling sequence.
1591  */
1592 void kvm_arch_enable_virtualization(void);
1593 void kvm_arch_disable_virtualization(void);
1594 /*
1595  * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1596  * do the actual twiddling of hardware bits.  The hooks are called on all
1597  * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1598  * when that CPU is onlined/offlined (including for Resume/Suspend).
1599  */
1600 int kvm_arch_enable_virtualization_cpu(void);
1601 void kvm_arch_disable_virtualization_cpu(void);
1602 #endif
1603 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1604 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1605 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1606 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1607 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1608 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1609 int kvm_arch_post_init_vm(struct kvm *kvm);
1610 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1611 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1612 
1613 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1614 /*
1615  * All architectures that want to use vzalloc currently also
1616  * need their own kvm_arch_alloc_vm implementation.
1617  */
1618 static inline struct kvm *kvm_arch_alloc_vm(void)
1619 {
1620 	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1621 }
1622 #endif
1623 
1624 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1625 {
1626 	kvfree(kvm);
1627 }
1628 
1629 #ifndef __KVM_HAVE_ARCH_VM_FREE
1630 static inline void kvm_arch_free_vm(struct kvm *kvm)
1631 {
1632 	__kvm_arch_free_vm(kvm);
1633 }
1634 #endif
1635 
1636 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1637 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1638 {
1639 	return -ENOTSUPP;
1640 }
1641 #else
1642 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1643 #endif
1644 
1645 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1646 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1647 						    gfn_t gfn, u64 nr_pages)
1648 {
1649 	return -EOPNOTSUPP;
1650 }
1651 #else
1652 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1653 #endif
1654 
1655 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1656 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1657 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1658 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1659 #else
1660 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1661 {
1662 }
1663 
1664 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1665 {
1666 }
1667 
1668 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1669 {
1670 	return false;
1671 }
1672 #endif
1673 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1674 void kvm_arch_start_assignment(struct kvm *kvm);
1675 void kvm_arch_end_assignment(struct kvm *kvm);
1676 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1677 #else
1678 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1679 {
1680 }
1681 
1682 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1683 {
1684 }
1685 
1686 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1687 {
1688 	return false;
1689 }
1690 #endif
1691 
1692 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1693 {
1694 #ifdef __KVM_HAVE_ARCH_WQP
1695 	return vcpu->arch.waitp;
1696 #else
1697 	return &vcpu->wait;
1698 #endif
1699 }
1700 
1701 /*
1702  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1703  * true if the vCPU was blocking and was awakened, false otherwise.
1704  */
1705 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1706 {
1707 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1708 }
1709 
1710 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1711 {
1712 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1713 }
1714 
1715 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1716 /*
1717  * returns true if the virtual interrupt controller is initialized and
1718  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1719  * controller is dynamically instantiated and this is not always true.
1720  */
1721 bool kvm_arch_intc_initialized(struct kvm *kvm);
1722 #else
1723 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1724 {
1725 	return true;
1726 }
1727 #endif
1728 
1729 #ifdef CONFIG_GUEST_PERF_EVENTS
1730 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1731 
1732 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1733 void kvm_unregister_perf_callbacks(void);
1734 #else
1735 static inline void kvm_register_perf_callbacks(void *ign) {}
1736 static inline void kvm_unregister_perf_callbacks(void) {}
1737 #endif /* CONFIG_GUEST_PERF_EVENTS */
1738 
1739 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1740 void kvm_arch_destroy_vm(struct kvm *kvm);
1741 void kvm_arch_sync_events(struct kvm *kvm);
1742 
1743 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1744 
1745 struct kvm_irq_ack_notifier {
1746 	struct hlist_node link;
1747 	unsigned gsi;
1748 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1749 };
1750 
1751 int kvm_irq_map_gsi(struct kvm *kvm,
1752 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1753 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1754 
1755 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1756 		bool line_status);
1757 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1758 		int irq_source_id, int level, bool line_status);
1759 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1760 			       struct kvm *kvm, int irq_source_id,
1761 			       int level, bool line_status);
1762 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1763 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1764 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1765 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1766 				   struct kvm_irq_ack_notifier *kian);
1767 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1768 				   struct kvm_irq_ack_notifier *kian);
1769 int kvm_request_irq_source_id(struct kvm *kvm);
1770 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1771 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1772 
1773 /*
1774  * Returns a pointer to the memslot if it contains gfn.
1775  * Otherwise returns NULL.
1776  */
1777 static inline struct kvm_memory_slot *
1778 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1779 {
1780 	if (!slot)
1781 		return NULL;
1782 
1783 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1784 		return slot;
1785 	else
1786 		return NULL;
1787 }
1788 
1789 /*
1790  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1791  *
1792  * With "approx" set returns the memslot also when the address falls
1793  * in a hole. In that case one of the memslots bordering the hole is
1794  * returned.
1795  */
1796 static inline struct kvm_memory_slot *
1797 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1798 {
1799 	struct kvm_memory_slot *slot;
1800 	struct rb_node *node;
1801 	int idx = slots->node_idx;
1802 
1803 	slot = NULL;
1804 	for (node = slots->gfn_tree.rb_node; node; ) {
1805 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1806 		if (gfn >= slot->base_gfn) {
1807 			if (gfn < slot->base_gfn + slot->npages)
1808 				return slot;
1809 			node = node->rb_right;
1810 		} else
1811 			node = node->rb_left;
1812 	}
1813 
1814 	return approx ? slot : NULL;
1815 }
1816 
1817 static inline struct kvm_memory_slot *
1818 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1819 {
1820 	struct kvm_memory_slot *slot;
1821 
1822 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1823 	slot = try_get_memslot(slot, gfn);
1824 	if (slot)
1825 		return slot;
1826 
1827 	slot = search_memslots(slots, gfn, approx);
1828 	if (slot) {
1829 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1830 		return slot;
1831 	}
1832 
1833 	return NULL;
1834 }
1835 
1836 /*
1837  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1838  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1839  * because that would bloat other code too much.
1840  */
1841 static inline struct kvm_memory_slot *
1842 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1843 {
1844 	return ____gfn_to_memslot(slots, gfn, false);
1845 }
1846 
1847 static inline unsigned long
1848 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1849 {
1850 	/*
1851 	 * The index was checked originally in search_memslots.  To avoid
1852 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1853 	 * table walks, do not let the processor speculate loads outside
1854 	 * the guest's registered memslots.
1855 	 */
1856 	unsigned long offset = gfn - slot->base_gfn;
1857 	offset = array_index_nospec(offset, slot->npages);
1858 	return slot->userspace_addr + offset * PAGE_SIZE;
1859 }
1860 
1861 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1862 {
1863 	return gfn_to_memslot(kvm, gfn)->id;
1864 }
1865 
1866 static inline gfn_t
1867 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1868 {
1869 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1870 
1871 	return slot->base_gfn + gfn_offset;
1872 }
1873 
1874 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1875 {
1876 	return (gpa_t)gfn << PAGE_SHIFT;
1877 }
1878 
1879 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1880 {
1881 	return (gfn_t)(gpa >> PAGE_SHIFT);
1882 }
1883 
1884 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1885 {
1886 	return (hpa_t)pfn << PAGE_SHIFT;
1887 }
1888 
1889 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1890 {
1891 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1892 
1893 	return !kvm_is_error_hva(hva);
1894 }
1895 
1896 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1897 {
1898 	lockdep_assert_held(&gpc->lock);
1899 
1900 	if (!gpc->memslot)
1901 		return;
1902 
1903 	mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1904 }
1905 
1906 enum kvm_stat_kind {
1907 	KVM_STAT_VM,
1908 	KVM_STAT_VCPU,
1909 };
1910 
1911 struct kvm_stat_data {
1912 	struct kvm *kvm;
1913 	const struct _kvm_stats_desc *desc;
1914 	enum kvm_stat_kind kind;
1915 };
1916 
1917 struct _kvm_stats_desc {
1918 	struct kvm_stats_desc desc;
1919 	char name[KVM_STATS_NAME_SIZE];
1920 };
1921 
1922 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1923 	.flags = type | unit | base |					       \
1924 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1925 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1926 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1927 	.exponent = exp,						       \
1928 	.size = sz,							       \
1929 	.bucket_size = bsz
1930 
1931 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1932 	{								       \
1933 		{							       \
1934 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1935 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1936 		},							       \
1937 		.name = #stat,						       \
1938 	}
1939 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1940 	{								       \
1941 		{							       \
1942 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1943 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1944 		},							       \
1945 		.name = #stat,						       \
1946 	}
1947 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1948 	{								       \
1949 		{							       \
1950 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1951 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1952 		},							       \
1953 		.name = #stat,						       \
1954 	}
1955 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1956 	{								       \
1957 		{							       \
1958 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1959 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1960 		},							       \
1961 		.name = #stat,						       \
1962 	}
1963 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1964 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1965 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1966 
1967 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1968 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1969 		unit, base, exponent, 1, 0)
1970 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1971 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1972 		unit, base, exponent, 1, 0)
1973 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1974 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1975 		unit, base, exponent, 1, 0)
1976 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1977 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1978 		unit, base, exponent, sz, bsz)
1979 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1980 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1981 		unit, base, exponent, sz, 0)
1982 
1983 /* Cumulative counter, read/write */
1984 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1985 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1986 		KVM_STATS_BASE_POW10, 0)
1987 /* Instantaneous counter, read only */
1988 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1989 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1990 		KVM_STATS_BASE_POW10, 0)
1991 /* Peak counter, read/write */
1992 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1993 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1994 		KVM_STATS_BASE_POW10, 0)
1995 
1996 /* Instantaneous boolean value, read only */
1997 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
1998 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1999 		KVM_STATS_BASE_POW10, 0)
2000 /* Peak (sticky) boolean value, read/write */
2001 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
2002 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
2003 		KVM_STATS_BASE_POW10, 0)
2004 
2005 /* Cumulative time in nanosecond */
2006 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
2007 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2008 		KVM_STATS_BASE_POW10, -9)
2009 /* Linear histogram for time in nanosecond */
2010 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
2011 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2012 		KVM_STATS_BASE_POW10, -9, sz, bsz)
2013 /* Logarithmic histogram for time in nanosecond */
2014 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
2015 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2016 		KVM_STATS_BASE_POW10, -9, sz)
2017 
2018 #define KVM_GENERIC_VM_STATS()						       \
2019 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
2020 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
2021 
2022 #define KVM_GENERIC_VCPU_STATS()					       \
2023 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
2024 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
2025 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
2026 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
2027 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
2028 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
2029 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
2030 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
2031 			HALT_POLL_HIST_COUNT),				       \
2032 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
2033 			HALT_POLL_HIST_COUNT),				       \
2034 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
2035 			HALT_POLL_HIST_COUNT),				       \
2036 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
2037 
2038 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
2039 		       const struct _kvm_stats_desc *desc,
2040 		       void *stats, size_t size_stats,
2041 		       char __user *user_buffer, size_t size, loff_t *offset);
2042 
2043 /**
2044  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
2045  * statistics data.
2046  *
2047  * @data: start address of the stats data
2048  * @size: the number of bucket of the stats data
2049  * @value: the new value used to update the linear histogram's bucket
2050  * @bucket_size: the size (width) of a bucket
2051  */
2052 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
2053 						u64 value, size_t bucket_size)
2054 {
2055 	size_t index = div64_u64(value, bucket_size);
2056 
2057 	index = min(index, size - 1);
2058 	++data[index];
2059 }
2060 
2061 /**
2062  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2063  * statistics data.
2064  *
2065  * @data: start address of the stats data
2066  * @size: the number of bucket of the stats data
2067  * @value: the new value used to update the logarithmic histogram's bucket
2068  */
2069 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2070 {
2071 	size_t index = fls64(value);
2072 
2073 	index = min(index, size - 1);
2074 	++data[index];
2075 }
2076 
2077 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
2078 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2079 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
2080 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2081 
2082 
2083 extern const struct kvm_stats_header kvm_vm_stats_header;
2084 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2085 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2086 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2087 
2088 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
2089 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2090 {
2091 	if (unlikely(kvm->mmu_invalidate_in_progress))
2092 		return 1;
2093 	/*
2094 	 * Ensure the read of mmu_invalidate_in_progress happens before
2095 	 * the read of mmu_invalidate_seq.  This interacts with the
2096 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2097 	 * that the caller either sees the old (non-zero) value of
2098 	 * mmu_invalidate_in_progress or the new (incremented) value of
2099 	 * mmu_invalidate_seq.
2100 	 *
2101 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2102 	 * than under kvm->mmu_lock, for scalability, so can't rely on
2103 	 * kvm->mmu_lock to keep things ordered.
2104 	 */
2105 	smp_rmb();
2106 	if (kvm->mmu_invalidate_seq != mmu_seq)
2107 		return 1;
2108 	return 0;
2109 }
2110 
2111 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2112 					   unsigned long mmu_seq,
2113 					   gfn_t gfn)
2114 {
2115 	lockdep_assert_held(&kvm->mmu_lock);
2116 	/*
2117 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2118 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2119 	 * that might be being invalidated. Note that it may include some false
2120 	 * positives, due to shortcuts when handing concurrent invalidations.
2121 	 */
2122 	if (unlikely(kvm->mmu_invalidate_in_progress)) {
2123 		/*
2124 		 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2125 		 * but before updating the range is a KVM bug.
2126 		 */
2127 		if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2128 				 kvm->mmu_invalidate_range_end == INVALID_GPA))
2129 			return 1;
2130 
2131 		if (gfn >= kvm->mmu_invalidate_range_start &&
2132 		    gfn < kvm->mmu_invalidate_range_end)
2133 			return 1;
2134 	}
2135 
2136 	if (kvm->mmu_invalidate_seq != mmu_seq)
2137 		return 1;
2138 	return 0;
2139 }
2140 
2141 /*
2142  * This lockless version of the range-based retry check *must* be paired with a
2143  * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2144  * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2145  * get false negatives and false positives.
2146  */
2147 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2148 						   unsigned long mmu_seq,
2149 						   gfn_t gfn)
2150 {
2151 	/*
2152 	 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2153 	 * are always read from memory, e.g. so that checking for retry in a
2154 	 * loop won't result in an infinite retry loop.  Don't force loads for
2155 	 * start+end, as the key to avoiding infinite retry loops is observing
2156 	 * the 1=>0 transition of in-progress, i.e. getting false negatives
2157 	 * due to stale start+end values is acceptable.
2158 	 */
2159 	if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2160 	    gfn >= kvm->mmu_invalidate_range_start &&
2161 	    gfn < kvm->mmu_invalidate_range_end)
2162 		return true;
2163 
2164 	return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2165 }
2166 #endif
2167 
2168 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2169 
2170 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2171 
2172 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2173 int kvm_set_irq_routing(struct kvm *kvm,
2174 			const struct kvm_irq_routing_entry *entries,
2175 			unsigned nr,
2176 			unsigned flags);
2177 int kvm_init_irq_routing(struct kvm *kvm);
2178 int kvm_set_routing_entry(struct kvm *kvm,
2179 			  struct kvm_kernel_irq_routing_entry *e,
2180 			  const struct kvm_irq_routing_entry *ue);
2181 void kvm_free_irq_routing(struct kvm *kvm);
2182 
2183 #else
2184 
2185 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2186 
2187 static inline int kvm_init_irq_routing(struct kvm *kvm)
2188 {
2189 	return 0;
2190 }
2191 
2192 #endif
2193 
2194 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2195 
2196 void kvm_eventfd_init(struct kvm *kvm);
2197 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2198 
2199 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2200 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2201 void kvm_irqfd_release(struct kvm *kvm);
2202 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2203 				unsigned int irqchip,
2204 				unsigned int pin);
2205 void kvm_irq_routing_update(struct kvm *);
2206 #else
2207 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2208 {
2209 	return -EINVAL;
2210 }
2211 
2212 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2213 
2214 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2215 					      unsigned int irqchip,
2216 					      unsigned int pin)
2217 {
2218 	return false;
2219 }
2220 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2221 
2222 void kvm_arch_irq_routing_update(struct kvm *kvm);
2223 
2224 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2225 {
2226 	/*
2227 	 * Ensure the rest of the request is published to kvm_check_request's
2228 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2229 	 */
2230 	smp_wmb();
2231 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2232 }
2233 
2234 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2235 {
2236 	/*
2237 	 * Request that don't require vCPU action should never be logged in
2238 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2239 	 * logged indefinitely and prevent the vCPU from entering the guest.
2240 	 */
2241 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2242 		     (req & KVM_REQUEST_NO_ACTION));
2243 
2244 	__kvm_make_request(req, vcpu);
2245 }
2246 
2247 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2248 {
2249 	return READ_ONCE(vcpu->requests);
2250 }
2251 
2252 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2253 {
2254 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2255 }
2256 
2257 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2258 {
2259 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2260 }
2261 
2262 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2263 {
2264 	if (kvm_test_request(req, vcpu)) {
2265 		kvm_clear_request(req, vcpu);
2266 
2267 		/*
2268 		 * Ensure the rest of the request is visible to kvm_check_request's
2269 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2270 		 */
2271 		smp_mb__after_atomic();
2272 		return true;
2273 	} else {
2274 		return false;
2275 	}
2276 }
2277 
2278 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2279 extern bool kvm_rebooting;
2280 #endif
2281 
2282 extern unsigned int halt_poll_ns;
2283 extern unsigned int halt_poll_ns_grow;
2284 extern unsigned int halt_poll_ns_grow_start;
2285 extern unsigned int halt_poll_ns_shrink;
2286 
2287 struct kvm_device {
2288 	const struct kvm_device_ops *ops;
2289 	struct kvm *kvm;
2290 	void *private;
2291 	struct list_head vm_node;
2292 };
2293 
2294 /* create, destroy, and name are mandatory */
2295 struct kvm_device_ops {
2296 	const char *name;
2297 
2298 	/*
2299 	 * create is called holding kvm->lock and any operations not suitable
2300 	 * to do while holding the lock should be deferred to init (see
2301 	 * below).
2302 	 */
2303 	int (*create)(struct kvm_device *dev, u32 type);
2304 
2305 	/*
2306 	 * init is called after create if create is successful and is called
2307 	 * outside of holding kvm->lock.
2308 	 */
2309 	void (*init)(struct kvm_device *dev);
2310 
2311 	/*
2312 	 * Destroy is responsible for freeing dev.
2313 	 *
2314 	 * Destroy may be called before or after destructors are called
2315 	 * on emulated I/O regions, depending on whether a reference is
2316 	 * held by a vcpu or other kvm component that gets destroyed
2317 	 * after the emulated I/O.
2318 	 */
2319 	void (*destroy)(struct kvm_device *dev);
2320 
2321 	/*
2322 	 * Release is an alternative method to free the device. It is
2323 	 * called when the device file descriptor is closed. Once
2324 	 * release is called, the destroy method will not be called
2325 	 * anymore as the device is removed from the device list of
2326 	 * the VM. kvm->lock is held.
2327 	 */
2328 	void (*release)(struct kvm_device *dev);
2329 
2330 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2331 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2332 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2333 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2334 		      unsigned long arg);
2335 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2336 };
2337 
2338 struct kvm_device *kvm_device_from_filp(struct file *filp);
2339 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2340 void kvm_unregister_device_ops(u32 type);
2341 
2342 extern struct kvm_device_ops kvm_mpic_ops;
2343 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2344 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2345 
2346 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2347 
2348 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2349 {
2350 	vcpu->spin_loop.in_spin_loop = val;
2351 }
2352 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2353 {
2354 	vcpu->spin_loop.dy_eligible = val;
2355 }
2356 
2357 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2358 
2359 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2360 {
2361 }
2362 
2363 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2364 {
2365 }
2366 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2367 
2368 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2369 {
2370 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2371 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2372 }
2373 
2374 struct kvm_vcpu *kvm_get_running_vcpu(void);
2375 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2376 
2377 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2378 bool kvm_arch_has_irq_bypass(void);
2379 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2380 			   struct irq_bypass_producer *);
2381 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2382 			   struct irq_bypass_producer *);
2383 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2384 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2385 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2386 				  uint32_t guest_irq, bool set);
2387 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2388 				  struct kvm_kernel_irq_routing_entry *);
2389 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2390 
2391 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2392 /* If we wakeup during the poll time, was it a sucessful poll? */
2393 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2394 {
2395 	return vcpu->valid_wakeup;
2396 }
2397 
2398 #else
2399 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2400 {
2401 	return true;
2402 }
2403 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2404 
2405 #ifdef CONFIG_HAVE_KVM_NO_POLL
2406 /* Callback that tells if we must not poll */
2407 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2408 #else
2409 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2410 {
2411 	return false;
2412 }
2413 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2414 
2415 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2416 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2417 			       unsigned int ioctl, unsigned long arg);
2418 #else
2419 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2420 					     unsigned int ioctl,
2421 					     unsigned long arg)
2422 {
2423 	return -ENOIOCTLCMD;
2424 }
2425 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2426 
2427 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2428 
2429 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2430 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2431 #else
2432 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2433 {
2434 	return 0;
2435 }
2436 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2437 
2438 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2439 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2440 {
2441 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2442 	vcpu->stat.signal_exits++;
2443 }
2444 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2445 
2446 /*
2447  * If more than one page is being (un)accounted, @virt must be the address of
2448  * the first page of a block of pages what were allocated together (i.e
2449  * accounted together).
2450  *
2451  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2452  * is thread-safe.
2453  */
2454 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2455 {
2456 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2457 }
2458 
2459 /*
2460  * This defines how many reserved entries we want to keep before we
2461  * kick the vcpu to the userspace to avoid dirty ring full.  This
2462  * value can be tuned to higher if e.g. PML is enabled on the host.
2463  */
2464 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2465 
2466 /* Max number of entries allowed for each kvm dirty ring */
2467 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2468 
2469 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2470 						 gpa_t gpa, gpa_t size,
2471 						 bool is_write, bool is_exec,
2472 						 bool is_private)
2473 {
2474 	vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2475 	vcpu->run->memory_fault.gpa = gpa;
2476 	vcpu->run->memory_fault.size = size;
2477 
2478 	/* RWX flags are not (yet) defined or communicated to userspace. */
2479 	vcpu->run->memory_fault.flags = 0;
2480 	if (is_private)
2481 		vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2482 }
2483 
2484 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2485 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2486 {
2487 	return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2488 }
2489 
2490 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2491 				     unsigned long mask, unsigned long attrs);
2492 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2493 					struct kvm_gfn_range *range);
2494 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2495 					 struct kvm_gfn_range *range);
2496 
2497 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2498 {
2499 	return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2500 	       kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2501 }
2502 #else
2503 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2504 {
2505 	return false;
2506 }
2507 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2508 
2509 #ifdef CONFIG_KVM_PRIVATE_MEM
2510 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2511 		     gfn_t gfn, kvm_pfn_t *pfn, struct page **page,
2512 		     int *max_order);
2513 #else
2514 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2515 				   struct kvm_memory_slot *slot, gfn_t gfn,
2516 				   kvm_pfn_t *pfn, struct page **page,
2517 				   int *max_order)
2518 {
2519 	KVM_BUG_ON(1, kvm);
2520 	return -EIO;
2521 }
2522 #endif /* CONFIG_KVM_PRIVATE_MEM */
2523 
2524 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2525 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2526 #endif
2527 
2528 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2529 /**
2530  * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2531  *
2532  * @kvm: KVM instance
2533  * @gfn: starting GFN to be populated
2534  * @src: userspace-provided buffer containing data to copy into GFN range
2535  *       (passed to @post_populate, and incremented on each iteration
2536  *       if not NULL)
2537  * @npages: number of pages to copy from userspace-buffer
2538  * @post_populate: callback to issue for each gmem page that backs the GPA
2539  *                 range
2540  * @opaque: opaque data to pass to @post_populate callback
2541  *
2542  * This is primarily intended for cases where a gmem-backed GPA range needs
2543  * to be initialized with userspace-provided data prior to being mapped into
2544  * the guest as a private page. This should be called with the slots->lock
2545  * held so that caller-enforced invariants regarding the expected memory
2546  * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2547  *
2548  * Returns the number of pages that were populated.
2549  */
2550 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2551 				    void __user *src, int order, void *opaque);
2552 
2553 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2554 		       kvm_gmem_populate_cb post_populate, void *opaque);
2555 #endif
2556 
2557 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2558 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2559 #endif
2560 
2561 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2562 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2563 				    struct kvm_pre_fault_memory *range);
2564 #endif
2565 
2566 #endif
2567