1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 59 /* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80 /* Two fragments for cross MMIO pages. */ 81 #define KVM_MAX_MMIO_FRAGMENTS 2 82 83 #ifndef KVM_MAX_NR_ADDRESS_SPACES 84 #define KVM_MAX_NR_ADDRESS_SPACES 1 85 #endif 86 87 /* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94 #define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100 #define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4) 101 102 /* 103 * error pfns indicate that the gfn is in slot but faild to 104 * translate it to pfn on host. 105 */ 106 static inline bool is_error_pfn(kvm_pfn_t pfn) 107 { 108 return !!(pfn & KVM_PFN_ERR_MASK); 109 } 110 111 /* 112 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 113 * by a pending signal. Note, the signal may or may not be fatal. 114 */ 115 static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 116 { 117 return pfn == KVM_PFN_ERR_SIGPENDING; 118 } 119 120 /* 121 * error_noslot pfns indicate that the gfn can not be 122 * translated to pfn - it is not in slot or failed to 123 * translate it to pfn. 124 */ 125 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 126 { 127 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 128 } 129 130 /* noslot pfn indicates that the gfn is not in slot. */ 131 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 132 { 133 return pfn == KVM_PFN_NOSLOT; 134 } 135 136 /* 137 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 138 * provide own defines and kvm_is_error_hva 139 */ 140 #ifndef KVM_HVA_ERR_BAD 141 142 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 143 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 144 145 static inline bool kvm_is_error_hva(unsigned long addr) 146 { 147 return addr >= PAGE_OFFSET; 148 } 149 150 #endif 151 152 static inline bool kvm_is_error_gpa(gpa_t gpa) 153 { 154 return gpa == INVALID_GPA; 155 } 156 157 #define KVM_REQUEST_MASK GENMASK(7,0) 158 #define KVM_REQUEST_NO_WAKEUP BIT(8) 159 #define KVM_REQUEST_WAIT BIT(9) 160 #define KVM_REQUEST_NO_ACTION BIT(10) 161 /* 162 * Architecture-independent vcpu->requests bit members 163 * Bits 3-7 are reserved for more arch-independent bits. 164 */ 165 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 166 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 167 #define KVM_REQ_UNBLOCK 2 168 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3 169 #define KVM_REQUEST_ARCH_BASE 8 170 171 /* 172 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 173 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 174 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 175 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 176 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 177 * guarantee the vCPU received an IPI and has actually exited guest mode. 178 */ 179 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 180 181 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 182 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 183 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 184 }) 185 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 186 187 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 188 unsigned long *vcpu_bitmap); 189 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 190 191 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 192 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 193 194 extern struct mutex kvm_lock; 195 extern struct list_head vm_list; 196 197 struct kvm_io_range { 198 gpa_t addr; 199 int len; 200 struct kvm_io_device *dev; 201 }; 202 203 #define NR_IOBUS_DEVS 1000 204 205 struct kvm_io_bus { 206 int dev_count; 207 int ioeventfd_count; 208 struct kvm_io_range range[]; 209 }; 210 211 enum kvm_bus { 212 KVM_MMIO_BUS, 213 KVM_PIO_BUS, 214 KVM_VIRTIO_CCW_NOTIFY_BUS, 215 KVM_FAST_MMIO_BUS, 216 KVM_IOCSR_BUS, 217 KVM_NR_BUSES 218 }; 219 220 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 221 int len, const void *val); 222 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 223 gpa_t addr, int len, const void *val, long cookie); 224 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 225 int len, void *val); 226 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 227 int len, struct kvm_io_device *dev); 228 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 229 struct kvm_io_device *dev); 230 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 231 gpa_t addr); 232 233 #ifdef CONFIG_KVM_ASYNC_PF 234 struct kvm_async_pf { 235 struct work_struct work; 236 struct list_head link; 237 struct list_head queue; 238 struct kvm_vcpu *vcpu; 239 gpa_t cr2_or_gpa; 240 unsigned long addr; 241 struct kvm_arch_async_pf arch; 242 bool wakeup_all; 243 bool notpresent_injected; 244 }; 245 246 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 247 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 248 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 249 unsigned long hva, struct kvm_arch_async_pf *arch); 250 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 251 #endif 252 253 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 254 union kvm_mmu_notifier_arg { 255 unsigned long attributes; 256 }; 257 258 struct kvm_gfn_range { 259 struct kvm_memory_slot *slot; 260 gfn_t start; 261 gfn_t end; 262 union kvm_mmu_notifier_arg arg; 263 bool may_block; 264 }; 265 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 266 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 267 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 268 #endif 269 270 enum { 271 OUTSIDE_GUEST_MODE, 272 IN_GUEST_MODE, 273 EXITING_GUEST_MODE, 274 READING_SHADOW_PAGE_TABLES, 275 }; 276 277 struct kvm_host_map { 278 /* 279 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 280 * a 'struct page' for it. When using mem= kernel parameter some memory 281 * can be used as guest memory but they are not managed by host 282 * kernel). 283 */ 284 struct page *pinned_page; 285 struct page *page; 286 void *hva; 287 kvm_pfn_t pfn; 288 kvm_pfn_t gfn; 289 bool writable; 290 }; 291 292 /* 293 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 294 * directly to check for that. 295 */ 296 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 297 { 298 return !!map->hva; 299 } 300 301 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 302 { 303 return single_task_running() && !need_resched() && ktime_before(cur, stop); 304 } 305 306 /* 307 * Sometimes a large or cross-page mmio needs to be broken up into separate 308 * exits for userspace servicing. 309 */ 310 struct kvm_mmio_fragment { 311 gpa_t gpa; 312 void *data; 313 unsigned len; 314 }; 315 316 struct kvm_vcpu { 317 struct kvm *kvm; 318 #ifdef CONFIG_PREEMPT_NOTIFIERS 319 struct preempt_notifier preempt_notifier; 320 #endif 321 int cpu; 322 int vcpu_id; /* id given by userspace at creation */ 323 int vcpu_idx; /* index into kvm->vcpu_array */ 324 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 325 #ifdef CONFIG_PROVE_RCU 326 int srcu_depth; 327 #endif 328 int mode; 329 u64 requests; 330 unsigned long guest_debug; 331 332 struct mutex mutex; 333 struct kvm_run *run; 334 335 #ifndef __KVM_HAVE_ARCH_WQP 336 struct rcuwait wait; 337 #endif 338 struct pid *pid; 339 rwlock_t pid_lock; 340 int sigset_active; 341 sigset_t sigset; 342 unsigned int halt_poll_ns; 343 bool valid_wakeup; 344 345 #ifdef CONFIG_HAS_IOMEM 346 int mmio_needed; 347 int mmio_read_completed; 348 int mmio_is_write; 349 int mmio_cur_fragment; 350 int mmio_nr_fragments; 351 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 352 #endif 353 354 #ifdef CONFIG_KVM_ASYNC_PF 355 struct { 356 u32 queued; 357 struct list_head queue; 358 struct list_head done; 359 spinlock_t lock; 360 } async_pf; 361 #endif 362 363 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 364 /* 365 * Cpu relax intercept or pause loop exit optimization 366 * in_spin_loop: set when a vcpu does a pause loop exit 367 * or cpu relax intercepted. 368 * dy_eligible: indicates whether vcpu is eligible for directed yield. 369 */ 370 struct { 371 bool in_spin_loop; 372 bool dy_eligible; 373 } spin_loop; 374 #endif 375 bool wants_to_run; 376 bool preempted; 377 bool ready; 378 bool scheduled_out; 379 struct kvm_vcpu_arch arch; 380 struct kvm_vcpu_stat stat; 381 char stats_id[KVM_STATS_NAME_SIZE]; 382 struct kvm_dirty_ring dirty_ring; 383 384 /* 385 * The most recently used memslot by this vCPU and the slots generation 386 * for which it is valid. 387 * No wraparound protection is needed since generations won't overflow in 388 * thousands of years, even assuming 1M memslot operations per second. 389 */ 390 struct kvm_memory_slot *last_used_slot; 391 u64 last_used_slot_gen; 392 }; 393 394 /* 395 * Start accounting time towards a guest. 396 * Must be called before entering guest context. 397 */ 398 static __always_inline void guest_timing_enter_irqoff(void) 399 { 400 /* 401 * This is running in ioctl context so its safe to assume that it's the 402 * stime pending cputime to flush. 403 */ 404 instrumentation_begin(); 405 vtime_account_guest_enter(); 406 instrumentation_end(); 407 } 408 409 /* 410 * Enter guest context and enter an RCU extended quiescent state. 411 * 412 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 413 * unsafe to use any code which may directly or indirectly use RCU, tracing 414 * (including IRQ flag tracing), or lockdep. All code in this period must be 415 * non-instrumentable. 416 */ 417 static __always_inline void guest_context_enter_irqoff(void) 418 { 419 /* 420 * KVM does not hold any references to rcu protected data when it 421 * switches CPU into a guest mode. In fact switching to a guest mode 422 * is very similar to exiting to userspace from rcu point of view. In 423 * addition CPU may stay in a guest mode for quite a long time (up to 424 * one time slice). Lets treat guest mode as quiescent state, just like 425 * we do with user-mode execution. 426 */ 427 if (!context_tracking_guest_enter()) { 428 instrumentation_begin(); 429 rcu_virt_note_context_switch(); 430 instrumentation_end(); 431 } 432 } 433 434 /* 435 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 436 * guest_state_enter_irqoff(). 437 */ 438 static __always_inline void guest_enter_irqoff(void) 439 { 440 guest_timing_enter_irqoff(); 441 guest_context_enter_irqoff(); 442 } 443 444 /** 445 * guest_state_enter_irqoff - Fixup state when entering a guest 446 * 447 * Entry to a guest will enable interrupts, but the kernel state is interrupts 448 * disabled when this is invoked. Also tell RCU about it. 449 * 450 * 1) Trace interrupts on state 451 * 2) Invoke context tracking if enabled to adjust RCU state 452 * 3) Tell lockdep that interrupts are enabled 453 * 454 * Invoked from architecture specific code before entering a guest. 455 * Must be called with interrupts disabled and the caller must be 456 * non-instrumentable. 457 * The caller has to invoke guest_timing_enter_irqoff() before this. 458 * 459 * Note: this is analogous to exit_to_user_mode(). 460 */ 461 static __always_inline void guest_state_enter_irqoff(void) 462 { 463 instrumentation_begin(); 464 trace_hardirqs_on_prepare(); 465 lockdep_hardirqs_on_prepare(); 466 instrumentation_end(); 467 468 guest_context_enter_irqoff(); 469 lockdep_hardirqs_on(CALLER_ADDR0); 470 } 471 472 /* 473 * Exit guest context and exit an RCU extended quiescent state. 474 * 475 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 476 * unsafe to use any code which may directly or indirectly use RCU, tracing 477 * (including IRQ flag tracing), or lockdep. All code in this period must be 478 * non-instrumentable. 479 */ 480 static __always_inline void guest_context_exit_irqoff(void) 481 { 482 /* 483 * Guest mode is treated as a quiescent state, see 484 * guest_context_enter_irqoff() for more details. 485 */ 486 if (!context_tracking_guest_exit()) { 487 instrumentation_begin(); 488 rcu_virt_note_context_switch(); 489 instrumentation_end(); 490 } 491 } 492 493 /* 494 * Stop accounting time towards a guest. 495 * Must be called after exiting guest context. 496 */ 497 static __always_inline void guest_timing_exit_irqoff(void) 498 { 499 instrumentation_begin(); 500 /* Flush the guest cputime we spent on the guest */ 501 vtime_account_guest_exit(); 502 instrumentation_end(); 503 } 504 505 /* 506 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 507 * guest_timing_exit_irqoff(). 508 */ 509 static __always_inline void guest_exit_irqoff(void) 510 { 511 guest_context_exit_irqoff(); 512 guest_timing_exit_irqoff(); 513 } 514 515 static inline void guest_exit(void) 516 { 517 unsigned long flags; 518 519 local_irq_save(flags); 520 guest_exit_irqoff(); 521 local_irq_restore(flags); 522 } 523 524 /** 525 * guest_state_exit_irqoff - Establish state when returning from guest mode 526 * 527 * Entry from a guest disables interrupts, but guest mode is traced as 528 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 529 * 530 * 1) Tell lockdep that interrupts are disabled 531 * 2) Invoke context tracking if enabled to reactivate RCU 532 * 3) Trace interrupts off state 533 * 534 * Invoked from architecture specific code after exiting a guest. 535 * Must be invoked with interrupts disabled and the caller must be 536 * non-instrumentable. 537 * The caller has to invoke guest_timing_exit_irqoff() after this. 538 * 539 * Note: this is analogous to enter_from_user_mode(). 540 */ 541 static __always_inline void guest_state_exit_irqoff(void) 542 { 543 lockdep_hardirqs_off(CALLER_ADDR0); 544 guest_context_exit_irqoff(); 545 546 instrumentation_begin(); 547 trace_hardirqs_off_finish(); 548 instrumentation_end(); 549 } 550 551 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 552 { 553 /* 554 * The memory barrier ensures a previous write to vcpu->requests cannot 555 * be reordered with the read of vcpu->mode. It pairs with the general 556 * memory barrier following the write of vcpu->mode in VCPU RUN. 557 */ 558 smp_mb__before_atomic(); 559 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 560 } 561 562 /* 563 * Some of the bitops functions do not support too long bitmaps. 564 * This number must be determined not to exceed such limits. 565 */ 566 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 567 568 /* 569 * Since at idle each memslot belongs to two memslot sets it has to contain 570 * two embedded nodes for each data structure that it forms a part of. 571 * 572 * Two memslot sets (one active and one inactive) are necessary so the VM 573 * continues to run on one memslot set while the other is being modified. 574 * 575 * These two memslot sets normally point to the same set of memslots. 576 * They can, however, be desynchronized when performing a memslot management 577 * operation by replacing the memslot to be modified by its copy. 578 * After the operation is complete, both memslot sets once again point to 579 * the same, common set of memslot data. 580 * 581 * The memslots themselves are independent of each other so they can be 582 * individually added or deleted. 583 */ 584 struct kvm_memory_slot { 585 struct hlist_node id_node[2]; 586 struct interval_tree_node hva_node[2]; 587 struct rb_node gfn_node[2]; 588 gfn_t base_gfn; 589 unsigned long npages; 590 unsigned long *dirty_bitmap; 591 struct kvm_arch_memory_slot arch; 592 unsigned long userspace_addr; 593 u32 flags; 594 short id; 595 u16 as_id; 596 597 #ifdef CONFIG_KVM_PRIVATE_MEM 598 struct { 599 struct file __rcu *file; 600 pgoff_t pgoff; 601 } gmem; 602 #endif 603 }; 604 605 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot) 606 { 607 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD); 608 } 609 610 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 611 { 612 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 613 } 614 615 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 616 { 617 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 618 } 619 620 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 621 { 622 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 623 624 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 625 } 626 627 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 628 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 629 #endif 630 631 struct kvm_s390_adapter_int { 632 u64 ind_addr; 633 u64 summary_addr; 634 u64 ind_offset; 635 u32 summary_offset; 636 u32 adapter_id; 637 }; 638 639 struct kvm_hv_sint { 640 u32 vcpu; 641 u32 sint; 642 }; 643 644 struct kvm_xen_evtchn { 645 u32 port; 646 u32 vcpu_id; 647 int vcpu_idx; 648 u32 priority; 649 }; 650 651 struct kvm_kernel_irq_routing_entry { 652 u32 gsi; 653 u32 type; 654 int (*set)(struct kvm_kernel_irq_routing_entry *e, 655 struct kvm *kvm, int irq_source_id, int level, 656 bool line_status); 657 union { 658 struct { 659 unsigned irqchip; 660 unsigned pin; 661 } irqchip; 662 struct { 663 u32 address_lo; 664 u32 address_hi; 665 u32 data; 666 u32 flags; 667 u32 devid; 668 } msi; 669 struct kvm_s390_adapter_int adapter; 670 struct kvm_hv_sint hv_sint; 671 struct kvm_xen_evtchn xen_evtchn; 672 }; 673 struct hlist_node link; 674 }; 675 676 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 677 struct kvm_irq_routing_table { 678 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 679 u32 nr_rt_entries; 680 /* 681 * Array indexed by gsi. Each entry contains list of irq chips 682 * the gsi is connected to. 683 */ 684 struct hlist_head map[] __counted_by(nr_rt_entries); 685 }; 686 #endif 687 688 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 689 690 #ifndef KVM_INTERNAL_MEM_SLOTS 691 #define KVM_INTERNAL_MEM_SLOTS 0 692 #endif 693 694 #define KVM_MEM_SLOTS_NUM SHRT_MAX 695 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 696 697 #if KVM_MAX_NR_ADDRESS_SPACES == 1 698 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm) 699 { 700 return KVM_MAX_NR_ADDRESS_SPACES; 701 } 702 703 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 704 { 705 return 0; 706 } 707 #endif 708 709 /* 710 * Arch code must define kvm_arch_has_private_mem if support for private memory 711 * is enabled. 712 */ 713 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) 714 static inline bool kvm_arch_has_private_mem(struct kvm *kvm) 715 { 716 return false; 717 } 718 #endif 719 720 #ifndef kvm_arch_has_readonly_mem 721 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm) 722 { 723 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM); 724 } 725 #endif 726 727 struct kvm_memslots { 728 u64 generation; 729 atomic_long_t last_used_slot; 730 struct rb_root_cached hva_tree; 731 struct rb_root gfn_tree; 732 /* 733 * The mapping table from slot id to memslot. 734 * 735 * 7-bit bucket count matches the size of the old id to index array for 736 * 512 slots, while giving good performance with this slot count. 737 * Higher bucket counts bring only small performance improvements but 738 * always result in higher memory usage (even for lower memslot counts). 739 */ 740 DECLARE_HASHTABLE(id_hash, 7); 741 int node_idx; 742 }; 743 744 struct kvm { 745 #ifdef KVM_HAVE_MMU_RWLOCK 746 rwlock_t mmu_lock; 747 #else 748 spinlock_t mmu_lock; 749 #endif /* KVM_HAVE_MMU_RWLOCK */ 750 751 struct mutex slots_lock; 752 753 /* 754 * Protects the arch-specific fields of struct kvm_memory_slots in 755 * use by the VM. To be used under the slots_lock (above) or in a 756 * kvm->srcu critical section where acquiring the slots_lock would 757 * lead to deadlock with the synchronize_srcu in 758 * kvm_swap_active_memslots(). 759 */ 760 struct mutex slots_arch_lock; 761 struct mm_struct *mm; /* userspace tied to this vm */ 762 unsigned long nr_memslot_pages; 763 /* The two memslot sets - active and inactive (per address space) */ 764 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2]; 765 /* The current active memslot set for each address space */ 766 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES]; 767 struct xarray vcpu_array; 768 /* 769 * Protected by slots_lock, but can be read outside if an 770 * incorrect answer is acceptable. 771 */ 772 atomic_t nr_memslots_dirty_logging; 773 774 /* Used to wait for completion of MMU notifiers. */ 775 spinlock_t mn_invalidate_lock; 776 unsigned long mn_active_invalidate_count; 777 struct rcuwait mn_memslots_update_rcuwait; 778 779 /* For management / invalidation of gfn_to_pfn_caches */ 780 spinlock_t gpc_lock; 781 struct list_head gpc_list; 782 783 /* 784 * created_vcpus is protected by kvm->lock, and is incremented 785 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 786 * incremented after storing the kvm_vcpu pointer in vcpus, 787 * and is accessed atomically. 788 */ 789 atomic_t online_vcpus; 790 int max_vcpus; 791 int created_vcpus; 792 int last_boosted_vcpu; 793 struct list_head vm_list; 794 struct mutex lock; 795 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 796 #ifdef CONFIG_HAVE_KVM_IRQCHIP 797 struct { 798 spinlock_t lock; 799 struct list_head items; 800 /* resampler_list update side is protected by resampler_lock. */ 801 struct list_head resampler_list; 802 struct mutex resampler_lock; 803 } irqfds; 804 #endif 805 struct list_head ioeventfds; 806 struct kvm_vm_stat stat; 807 struct kvm_arch arch; 808 refcount_t users_count; 809 #ifdef CONFIG_KVM_MMIO 810 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 811 spinlock_t ring_lock; 812 struct list_head coalesced_zones; 813 #endif 814 815 struct mutex irq_lock; 816 #ifdef CONFIG_HAVE_KVM_IRQCHIP 817 /* 818 * Update side is protected by irq_lock. 819 */ 820 struct kvm_irq_routing_table __rcu *irq_routing; 821 822 struct hlist_head irq_ack_notifier_list; 823 #endif 824 825 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 826 struct mmu_notifier mmu_notifier; 827 unsigned long mmu_invalidate_seq; 828 long mmu_invalidate_in_progress; 829 gfn_t mmu_invalidate_range_start; 830 gfn_t mmu_invalidate_range_end; 831 #endif 832 struct list_head devices; 833 u64 manual_dirty_log_protect; 834 struct dentry *debugfs_dentry; 835 struct kvm_stat_data **debugfs_stat_data; 836 struct srcu_struct srcu; 837 struct srcu_struct irq_srcu; 838 pid_t userspace_pid; 839 bool override_halt_poll_ns; 840 unsigned int max_halt_poll_ns; 841 u32 dirty_ring_size; 842 bool dirty_ring_with_bitmap; 843 bool vm_bugged; 844 bool vm_dead; 845 846 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 847 struct notifier_block pm_notifier; 848 #endif 849 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 850 /* Protected by slots_locks (for writes) and RCU (for reads) */ 851 struct xarray mem_attr_array; 852 #endif 853 char stats_id[KVM_STATS_NAME_SIZE]; 854 }; 855 856 #define kvm_err(fmt, ...) \ 857 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 858 #define kvm_info(fmt, ...) \ 859 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 860 #define kvm_debug(fmt, ...) \ 861 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 862 #define kvm_debug_ratelimited(fmt, ...) \ 863 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 864 ## __VA_ARGS__) 865 #define kvm_pr_unimpl(fmt, ...) \ 866 pr_err_ratelimited("kvm [%i]: " fmt, \ 867 task_tgid_nr(current), ## __VA_ARGS__) 868 869 /* The guest did something we don't support. */ 870 #define vcpu_unimpl(vcpu, fmt, ...) \ 871 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 872 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 873 874 #define vcpu_debug(vcpu, fmt, ...) \ 875 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 876 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 877 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 878 ## __VA_ARGS__) 879 #define vcpu_err(vcpu, fmt, ...) \ 880 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 881 882 static inline void kvm_vm_dead(struct kvm *kvm) 883 { 884 kvm->vm_dead = true; 885 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 886 } 887 888 static inline void kvm_vm_bugged(struct kvm *kvm) 889 { 890 kvm->vm_bugged = true; 891 kvm_vm_dead(kvm); 892 } 893 894 895 #define KVM_BUG(cond, kvm, fmt...) \ 896 ({ \ 897 bool __ret = !!(cond); \ 898 \ 899 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 900 kvm_vm_bugged(kvm); \ 901 unlikely(__ret); \ 902 }) 903 904 #define KVM_BUG_ON(cond, kvm) \ 905 ({ \ 906 bool __ret = !!(cond); \ 907 \ 908 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 909 kvm_vm_bugged(kvm); \ 910 unlikely(__ret); \ 911 }) 912 913 /* 914 * Note, "data corruption" refers to corruption of host kernel data structures, 915 * not guest data. Guest data corruption, suspected or confirmed, that is tied 916 * and contained to a single VM should *never* BUG() and potentially panic the 917 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure 918 * is corrupted and that corruption can have a cascading effect to other parts 919 * of the hosts and/or to other VMs. 920 */ 921 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ 922 ({ \ 923 bool __ret = !!(cond); \ 924 \ 925 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ 926 BUG_ON(__ret); \ 927 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 928 kvm_vm_bugged(kvm); \ 929 unlikely(__ret); \ 930 }) 931 932 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 933 { 934 #ifdef CONFIG_PROVE_RCU 935 WARN_ONCE(vcpu->srcu_depth++, 936 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 937 #endif 938 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 939 } 940 941 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 942 { 943 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 944 945 #ifdef CONFIG_PROVE_RCU 946 WARN_ONCE(--vcpu->srcu_depth, 947 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 948 #endif 949 } 950 951 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 952 { 953 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 954 } 955 956 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 957 { 958 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 959 lockdep_is_held(&kvm->slots_lock) || 960 !refcount_read(&kvm->users_count)); 961 } 962 963 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 964 { 965 int num_vcpus = atomic_read(&kvm->online_vcpus); 966 967 /* 968 * Explicitly verify the target vCPU is online, as the anti-speculation 969 * logic only limits the CPU's ability to speculate, e.g. given a "bad" 970 * index, clamping the index to 0 would return vCPU0, not NULL. 971 */ 972 if (i >= num_vcpus) 973 return NULL; 974 975 i = array_index_nospec(i, num_vcpus); 976 977 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 978 smp_rmb(); 979 return xa_load(&kvm->vcpu_array, i); 980 } 981 982 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 983 if (atomic_read(&kvm->online_vcpus)) \ 984 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 985 (atomic_read(&kvm->online_vcpus) - 1)) 986 987 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 988 { 989 struct kvm_vcpu *vcpu = NULL; 990 unsigned long i; 991 992 if (id < 0) 993 return NULL; 994 if (id < KVM_MAX_VCPUS) 995 vcpu = kvm_get_vcpu(kvm, id); 996 if (vcpu && vcpu->vcpu_id == id) 997 return vcpu; 998 kvm_for_each_vcpu(i, vcpu, kvm) 999 if (vcpu->vcpu_id == id) 1000 return vcpu; 1001 return NULL; 1002 } 1003 1004 void kvm_destroy_vcpus(struct kvm *kvm); 1005 1006 void vcpu_load(struct kvm_vcpu *vcpu); 1007 void vcpu_put(struct kvm_vcpu *vcpu); 1008 1009 #ifdef __KVM_HAVE_IOAPIC 1010 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 1011 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 1012 #else 1013 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 1014 { 1015 } 1016 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 1017 { 1018 } 1019 #endif 1020 1021 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1022 int kvm_irqfd_init(void); 1023 void kvm_irqfd_exit(void); 1024 #else 1025 static inline int kvm_irqfd_init(void) 1026 { 1027 return 0; 1028 } 1029 1030 static inline void kvm_irqfd_exit(void) 1031 { 1032 } 1033 #endif 1034 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 1035 void kvm_exit(void); 1036 1037 void kvm_get_kvm(struct kvm *kvm); 1038 bool kvm_get_kvm_safe(struct kvm *kvm); 1039 void kvm_put_kvm(struct kvm *kvm); 1040 bool file_is_kvm(struct file *file); 1041 void kvm_put_kvm_no_destroy(struct kvm *kvm); 1042 1043 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 1044 { 1045 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES); 1046 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 1047 lockdep_is_held(&kvm->slots_lock) || 1048 !refcount_read(&kvm->users_count)); 1049 } 1050 1051 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 1052 { 1053 return __kvm_memslots(kvm, 0); 1054 } 1055 1056 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 1057 { 1058 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 1059 1060 return __kvm_memslots(vcpu->kvm, as_id); 1061 } 1062 1063 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 1064 { 1065 return RB_EMPTY_ROOT(&slots->gfn_tree); 1066 } 1067 1068 bool kvm_are_all_memslots_empty(struct kvm *kvm); 1069 1070 #define kvm_for_each_memslot(memslot, bkt, slots) \ 1071 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 1072 if (WARN_ON_ONCE(!memslot->npages)) { \ 1073 } else 1074 1075 static inline 1076 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1077 { 1078 struct kvm_memory_slot *slot; 1079 int idx = slots->node_idx; 1080 1081 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1082 if (slot->id == id) 1083 return slot; 1084 } 1085 1086 return NULL; 1087 } 1088 1089 /* Iterator used for walking memslots that overlap a gfn range. */ 1090 struct kvm_memslot_iter { 1091 struct kvm_memslots *slots; 1092 struct rb_node *node; 1093 struct kvm_memory_slot *slot; 1094 }; 1095 1096 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1097 { 1098 iter->node = rb_next(iter->node); 1099 if (!iter->node) 1100 return; 1101 1102 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1103 } 1104 1105 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1106 struct kvm_memslots *slots, 1107 gfn_t start) 1108 { 1109 int idx = slots->node_idx; 1110 struct rb_node *tmp; 1111 struct kvm_memory_slot *slot; 1112 1113 iter->slots = slots; 1114 1115 /* 1116 * Find the so called "upper bound" of a key - the first node that has 1117 * its key strictly greater than the searched one (the start gfn in our case). 1118 */ 1119 iter->node = NULL; 1120 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1121 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1122 if (start < slot->base_gfn) { 1123 iter->node = tmp; 1124 tmp = tmp->rb_left; 1125 } else { 1126 tmp = tmp->rb_right; 1127 } 1128 } 1129 1130 /* 1131 * Find the slot with the lowest gfn that can possibly intersect with 1132 * the range, so we'll ideally have slot start <= range start 1133 */ 1134 if (iter->node) { 1135 /* 1136 * A NULL previous node means that the very first slot 1137 * already has a higher start gfn. 1138 * In this case slot start > range start. 1139 */ 1140 tmp = rb_prev(iter->node); 1141 if (tmp) 1142 iter->node = tmp; 1143 } else { 1144 /* a NULL node below means no slots */ 1145 iter->node = rb_last(&slots->gfn_tree); 1146 } 1147 1148 if (iter->node) { 1149 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1150 1151 /* 1152 * It is possible in the slot start < range start case that the 1153 * found slot ends before or at range start (slot end <= range start) 1154 * and so it does not overlap the requested range. 1155 * 1156 * In such non-overlapping case the next slot (if it exists) will 1157 * already have slot start > range start, otherwise the logic above 1158 * would have found it instead of the current slot. 1159 */ 1160 if (iter->slot->base_gfn + iter->slot->npages <= start) 1161 kvm_memslot_iter_next(iter); 1162 } 1163 } 1164 1165 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1166 { 1167 if (!iter->node) 1168 return false; 1169 1170 /* 1171 * If this slot starts beyond or at the end of the range so does 1172 * every next one 1173 */ 1174 return iter->slot->base_gfn < end; 1175 } 1176 1177 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1178 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1179 for (kvm_memslot_iter_start(iter, slots, start); \ 1180 kvm_memslot_iter_is_valid(iter, end); \ 1181 kvm_memslot_iter_next(iter)) 1182 1183 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1184 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1185 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1186 1187 /* 1188 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1189 * - create a new memory slot 1190 * - delete an existing memory slot 1191 * - modify an existing memory slot 1192 * -- move it in the guest physical memory space 1193 * -- just change its flags 1194 * 1195 * Since flags can be changed by some of these operations, the following 1196 * differentiation is the best we can do for __kvm_set_memory_region(): 1197 */ 1198 enum kvm_mr_change { 1199 KVM_MR_CREATE, 1200 KVM_MR_DELETE, 1201 KVM_MR_MOVE, 1202 KVM_MR_FLAGS_ONLY, 1203 }; 1204 1205 int kvm_set_memory_region(struct kvm *kvm, 1206 const struct kvm_userspace_memory_region2 *mem); 1207 int __kvm_set_memory_region(struct kvm *kvm, 1208 const struct kvm_userspace_memory_region2 *mem); 1209 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1210 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1211 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1212 const struct kvm_memory_slot *old, 1213 struct kvm_memory_slot *new, 1214 enum kvm_mr_change change); 1215 void kvm_arch_commit_memory_region(struct kvm *kvm, 1216 struct kvm_memory_slot *old, 1217 const struct kvm_memory_slot *new, 1218 enum kvm_mr_change change); 1219 /* flush all memory translations */ 1220 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1221 /* flush memory translations pointing to 'slot' */ 1222 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1223 struct kvm_memory_slot *slot); 1224 1225 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, 1226 struct page **pages, int nr_pages); 1227 1228 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write); 1229 static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1230 { 1231 return __gfn_to_page(kvm, gfn, true); 1232 } 1233 1234 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1235 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1236 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1237 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1238 bool *writable); 1239 1240 static inline void kvm_release_page_unused(struct page *page) 1241 { 1242 if (!page) 1243 return; 1244 1245 put_page(page); 1246 } 1247 1248 void kvm_release_page_clean(struct page *page); 1249 void kvm_release_page_dirty(struct page *page); 1250 1251 static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page, 1252 bool unused, bool dirty) 1253 { 1254 lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused); 1255 1256 if (!page) 1257 return; 1258 1259 /* 1260 * If the page that KVM got from the *primary MMU* is writable, and KVM 1261 * installed or reused a SPTE, mark the page/folio dirty. Note, this 1262 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if 1263 * the GFN is write-protected. Folios can't be safely marked dirty 1264 * outside of mmu_lock as doing so could race with writeback on the 1265 * folio. As a result, KVM can't mark folios dirty in the fast page 1266 * fault handler, and so KVM must (somewhat) speculatively mark the 1267 * folio dirty if KVM could locklessly make the SPTE writable. 1268 */ 1269 if (unused) 1270 kvm_release_page_unused(page); 1271 else if (dirty) 1272 kvm_release_page_dirty(page); 1273 else 1274 kvm_release_page_clean(page); 1275 } 1276 1277 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, 1278 unsigned int foll, bool *writable, 1279 struct page **refcounted_page); 1280 1281 static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 1282 bool write, bool *writable, 1283 struct page **refcounted_page) 1284 { 1285 return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, 1286 write ? FOLL_WRITE : 0, writable, refcounted_page); 1287 } 1288 1289 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1290 int len); 1291 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1292 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1293 void *data, unsigned long len); 1294 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1295 void *data, unsigned int offset, 1296 unsigned long len); 1297 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1298 int offset, int len); 1299 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1300 unsigned long len); 1301 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1302 void *data, unsigned long len); 1303 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1304 void *data, unsigned int offset, 1305 unsigned long len); 1306 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1307 gpa_t gpa, unsigned long len); 1308 1309 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1310 ({ \ 1311 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1312 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1313 int __ret = -EFAULT; \ 1314 \ 1315 if (!kvm_is_error_hva(__addr)) \ 1316 __ret = get_user(v, __uaddr); \ 1317 __ret; \ 1318 }) 1319 1320 #define kvm_get_guest(kvm, gpa, v) \ 1321 ({ \ 1322 gpa_t __gpa = gpa; \ 1323 struct kvm *__kvm = kvm; \ 1324 \ 1325 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1326 offset_in_page(__gpa), v); \ 1327 }) 1328 1329 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1330 ({ \ 1331 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1332 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1333 int __ret = -EFAULT; \ 1334 \ 1335 if (!kvm_is_error_hva(__addr)) \ 1336 __ret = put_user(v, __uaddr); \ 1337 if (!__ret) \ 1338 mark_page_dirty(kvm, gfn); \ 1339 __ret; \ 1340 }) 1341 1342 #define kvm_put_guest(kvm, gpa, v) \ 1343 ({ \ 1344 gpa_t __gpa = gpa; \ 1345 struct kvm *__kvm = kvm; \ 1346 \ 1347 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1348 offset_in_page(__gpa), v); \ 1349 }) 1350 1351 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1352 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1353 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1354 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1355 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1356 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1357 1358 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map, 1359 bool writable); 1360 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map); 1361 1362 static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, 1363 struct kvm_host_map *map) 1364 { 1365 return __kvm_vcpu_map(vcpu, gpa, map, true); 1366 } 1367 1368 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa, 1369 struct kvm_host_map *map) 1370 { 1371 return __kvm_vcpu_map(vcpu, gpa, map, false); 1372 } 1373 1374 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1375 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1376 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1377 int len); 1378 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1379 unsigned long len); 1380 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1381 unsigned long len); 1382 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1383 int offset, int len); 1384 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1385 unsigned long len); 1386 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1387 1388 /** 1389 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1390 * 1391 * @gpc: struct gfn_to_pfn_cache object. 1392 * @kvm: pointer to kvm instance. 1393 * 1394 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1395 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1396 * the caller before init). 1397 */ 1398 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm); 1399 1400 /** 1401 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1402 * physical address. 1403 * 1404 * @gpc: struct gfn_to_pfn_cache object. 1405 * @gpa: guest physical address to map. 1406 * @len: sanity check; the range being access must fit a single page. 1407 * 1408 * @return: 0 for success. 1409 * -EINVAL for a mapping which would cross a page boundary. 1410 * -EFAULT for an untranslatable guest physical address. 1411 * 1412 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1413 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1414 * to ensure that the cache is valid before accessing the target page. 1415 */ 1416 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1417 1418 /** 1419 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA. 1420 * 1421 * @gpc: struct gfn_to_pfn_cache object. 1422 * @hva: userspace virtual address to map. 1423 * @len: sanity check; the range being access must fit a single page. 1424 * 1425 * @return: 0 for success. 1426 * -EINVAL for a mapping which would cross a page boundary. 1427 * -EFAULT for an untranslatable guest physical address. 1428 * 1429 * The semantics of this function are the same as those of kvm_gpc_activate(). It 1430 * merely bypasses a layer of address translation. 1431 */ 1432 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len); 1433 1434 /** 1435 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1436 * 1437 * @gpc: struct gfn_to_pfn_cache object. 1438 * @len: sanity check; the range being access must fit a single page. 1439 * 1440 * @return: %true if the cache is still valid and the address matches. 1441 * %false if the cache is not valid. 1442 * 1443 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1444 * while calling this function, and then continue to hold the lock until the 1445 * access is complete. 1446 * 1447 * Callers in IN_GUEST_MODE may do so without locking, although they should 1448 * still hold a read lock on kvm->scru for the memslot checks. 1449 */ 1450 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1451 1452 /** 1453 * kvm_gpc_refresh - update a previously initialized cache. 1454 * 1455 * @gpc: struct gfn_to_pfn_cache object. 1456 * @len: sanity check; the range being access must fit a single page. 1457 * 1458 * @return: 0 for success. 1459 * -EINVAL for a mapping which would cross a page boundary. 1460 * -EFAULT for an untranslatable guest physical address. 1461 * 1462 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1463 * return from this function does not mean the page can be immediately 1464 * accessed because it may have raced with an invalidation. Callers must 1465 * still lock and check the cache status, as this function does not return 1466 * with the lock still held to permit access. 1467 */ 1468 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1469 1470 /** 1471 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1472 * 1473 * @gpc: struct gfn_to_pfn_cache object. 1474 * 1475 * This removes a cache from the VM's list to be processed on MMU notifier 1476 * invocation. 1477 */ 1478 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1479 1480 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc) 1481 { 1482 return gpc->active && !kvm_is_error_gpa(gpc->gpa); 1483 } 1484 1485 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc) 1486 { 1487 return gpc->active && kvm_is_error_gpa(gpc->gpa); 1488 } 1489 1490 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1491 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1492 1493 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1494 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1495 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1496 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1497 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1498 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1499 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1500 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1501 1502 void kvm_flush_remote_tlbs(struct kvm *kvm); 1503 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1504 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 1505 const struct kvm_memory_slot *memslot); 1506 1507 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1508 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1509 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1510 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1511 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1512 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1513 #endif 1514 1515 void kvm_mmu_invalidate_begin(struct kvm *kvm); 1516 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end); 1517 void kvm_mmu_invalidate_end(struct kvm *kvm); 1518 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 1519 1520 long kvm_arch_dev_ioctl(struct file *filp, 1521 unsigned int ioctl, unsigned long arg); 1522 long kvm_arch_vcpu_ioctl(struct file *filp, 1523 unsigned int ioctl, unsigned long arg); 1524 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1525 1526 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1527 1528 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1529 struct kvm_memory_slot *slot, 1530 gfn_t gfn_offset, 1531 unsigned long mask); 1532 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1533 1534 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1535 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1536 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1537 int *is_dirty, struct kvm_memory_slot **memslot); 1538 #endif 1539 1540 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1541 bool line_status); 1542 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1543 struct kvm_enable_cap *cap); 1544 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1545 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1546 unsigned long arg); 1547 1548 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1549 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1550 1551 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1552 struct kvm_translation *tr); 1553 1554 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1555 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1556 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1557 struct kvm_sregs *sregs); 1558 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1559 struct kvm_sregs *sregs); 1560 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1561 struct kvm_mp_state *mp_state); 1562 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1563 struct kvm_mp_state *mp_state); 1564 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1565 struct kvm_guest_debug *dbg); 1566 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1567 1568 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1569 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1570 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1571 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1572 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1573 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1574 1575 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1576 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1577 #endif 1578 1579 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1580 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1581 #else 1582 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1583 #endif 1584 1585 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1586 /* 1587 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under 1588 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of 1589 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling 1590 * sequence, and at the end of the generic hardware disabling sequence. 1591 */ 1592 void kvm_arch_enable_virtualization(void); 1593 void kvm_arch_disable_virtualization(void); 1594 /* 1595 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to 1596 * do the actual twiddling of hardware bits. The hooks are called on all 1597 * online CPUs when KVM enables/disabled virtualization, and on a single CPU 1598 * when that CPU is onlined/offlined (including for Resume/Suspend). 1599 */ 1600 int kvm_arch_enable_virtualization_cpu(void); 1601 void kvm_arch_disable_virtualization_cpu(void); 1602 #endif 1603 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1604 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1605 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1606 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1607 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1608 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu); 1609 int kvm_arch_post_init_vm(struct kvm *kvm); 1610 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1611 void kvm_arch_create_vm_debugfs(struct kvm *kvm); 1612 1613 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1614 /* 1615 * All architectures that want to use vzalloc currently also 1616 * need their own kvm_arch_alloc_vm implementation. 1617 */ 1618 static inline struct kvm *kvm_arch_alloc_vm(void) 1619 { 1620 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1621 } 1622 #endif 1623 1624 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1625 { 1626 kvfree(kvm); 1627 } 1628 1629 #ifndef __KVM_HAVE_ARCH_VM_FREE 1630 static inline void kvm_arch_free_vm(struct kvm *kvm) 1631 { 1632 __kvm_arch_free_vm(kvm); 1633 } 1634 #endif 1635 1636 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1637 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1638 { 1639 return -ENOTSUPP; 1640 } 1641 #else 1642 int kvm_arch_flush_remote_tlbs(struct kvm *kvm); 1643 #endif 1644 1645 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1646 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 1647 gfn_t gfn, u64 nr_pages) 1648 { 1649 return -EOPNOTSUPP; 1650 } 1651 #else 1652 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1653 #endif 1654 1655 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1656 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1657 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1658 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1659 #else 1660 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1661 { 1662 } 1663 1664 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1665 { 1666 } 1667 1668 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1669 { 1670 return false; 1671 } 1672 #endif 1673 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1674 void kvm_arch_start_assignment(struct kvm *kvm); 1675 void kvm_arch_end_assignment(struct kvm *kvm); 1676 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1677 #else 1678 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1679 { 1680 } 1681 1682 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1683 { 1684 } 1685 1686 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1687 { 1688 return false; 1689 } 1690 #endif 1691 1692 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1693 { 1694 #ifdef __KVM_HAVE_ARCH_WQP 1695 return vcpu->arch.waitp; 1696 #else 1697 return &vcpu->wait; 1698 #endif 1699 } 1700 1701 /* 1702 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1703 * true if the vCPU was blocking and was awakened, false otherwise. 1704 */ 1705 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1706 { 1707 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1708 } 1709 1710 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1711 { 1712 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1713 } 1714 1715 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1716 /* 1717 * returns true if the virtual interrupt controller is initialized and 1718 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1719 * controller is dynamically instantiated and this is not always true. 1720 */ 1721 bool kvm_arch_intc_initialized(struct kvm *kvm); 1722 #else 1723 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1724 { 1725 return true; 1726 } 1727 #endif 1728 1729 #ifdef CONFIG_GUEST_PERF_EVENTS 1730 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1731 1732 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1733 void kvm_unregister_perf_callbacks(void); 1734 #else 1735 static inline void kvm_register_perf_callbacks(void *ign) {} 1736 static inline void kvm_unregister_perf_callbacks(void) {} 1737 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1738 1739 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1740 void kvm_arch_destroy_vm(struct kvm *kvm); 1741 void kvm_arch_sync_events(struct kvm *kvm); 1742 1743 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1744 1745 struct kvm_irq_ack_notifier { 1746 struct hlist_node link; 1747 unsigned gsi; 1748 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1749 }; 1750 1751 int kvm_irq_map_gsi(struct kvm *kvm, 1752 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1753 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1754 1755 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1756 bool line_status); 1757 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1758 int irq_source_id, int level, bool line_status); 1759 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1760 struct kvm *kvm, int irq_source_id, 1761 int level, bool line_status); 1762 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1763 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1764 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1765 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1766 struct kvm_irq_ack_notifier *kian); 1767 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1768 struct kvm_irq_ack_notifier *kian); 1769 int kvm_request_irq_source_id(struct kvm *kvm); 1770 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1771 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1772 1773 /* 1774 * Returns a pointer to the memslot if it contains gfn. 1775 * Otherwise returns NULL. 1776 */ 1777 static inline struct kvm_memory_slot * 1778 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1779 { 1780 if (!slot) 1781 return NULL; 1782 1783 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1784 return slot; 1785 else 1786 return NULL; 1787 } 1788 1789 /* 1790 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1791 * 1792 * With "approx" set returns the memslot also when the address falls 1793 * in a hole. In that case one of the memslots bordering the hole is 1794 * returned. 1795 */ 1796 static inline struct kvm_memory_slot * 1797 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1798 { 1799 struct kvm_memory_slot *slot; 1800 struct rb_node *node; 1801 int idx = slots->node_idx; 1802 1803 slot = NULL; 1804 for (node = slots->gfn_tree.rb_node; node; ) { 1805 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1806 if (gfn >= slot->base_gfn) { 1807 if (gfn < slot->base_gfn + slot->npages) 1808 return slot; 1809 node = node->rb_right; 1810 } else 1811 node = node->rb_left; 1812 } 1813 1814 return approx ? slot : NULL; 1815 } 1816 1817 static inline struct kvm_memory_slot * 1818 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1819 { 1820 struct kvm_memory_slot *slot; 1821 1822 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1823 slot = try_get_memslot(slot, gfn); 1824 if (slot) 1825 return slot; 1826 1827 slot = search_memslots(slots, gfn, approx); 1828 if (slot) { 1829 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1830 return slot; 1831 } 1832 1833 return NULL; 1834 } 1835 1836 /* 1837 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1838 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1839 * because that would bloat other code too much. 1840 */ 1841 static inline struct kvm_memory_slot * 1842 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1843 { 1844 return ____gfn_to_memslot(slots, gfn, false); 1845 } 1846 1847 static inline unsigned long 1848 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1849 { 1850 /* 1851 * The index was checked originally in search_memslots. To avoid 1852 * that a malicious guest builds a Spectre gadget out of e.g. page 1853 * table walks, do not let the processor speculate loads outside 1854 * the guest's registered memslots. 1855 */ 1856 unsigned long offset = gfn - slot->base_gfn; 1857 offset = array_index_nospec(offset, slot->npages); 1858 return slot->userspace_addr + offset * PAGE_SIZE; 1859 } 1860 1861 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1862 { 1863 return gfn_to_memslot(kvm, gfn)->id; 1864 } 1865 1866 static inline gfn_t 1867 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1868 { 1869 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1870 1871 return slot->base_gfn + gfn_offset; 1872 } 1873 1874 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1875 { 1876 return (gpa_t)gfn << PAGE_SHIFT; 1877 } 1878 1879 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1880 { 1881 return (gfn_t)(gpa >> PAGE_SHIFT); 1882 } 1883 1884 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1885 { 1886 return (hpa_t)pfn << PAGE_SHIFT; 1887 } 1888 1889 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa) 1890 { 1891 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1892 1893 return !kvm_is_error_hva(hva); 1894 } 1895 1896 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc) 1897 { 1898 lockdep_assert_held(&gpc->lock); 1899 1900 if (!gpc->memslot) 1901 return; 1902 1903 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa)); 1904 } 1905 1906 enum kvm_stat_kind { 1907 KVM_STAT_VM, 1908 KVM_STAT_VCPU, 1909 }; 1910 1911 struct kvm_stat_data { 1912 struct kvm *kvm; 1913 const struct _kvm_stats_desc *desc; 1914 enum kvm_stat_kind kind; 1915 }; 1916 1917 struct _kvm_stats_desc { 1918 struct kvm_stats_desc desc; 1919 char name[KVM_STATS_NAME_SIZE]; 1920 }; 1921 1922 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1923 .flags = type | unit | base | \ 1924 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1925 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1926 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1927 .exponent = exp, \ 1928 .size = sz, \ 1929 .bucket_size = bsz 1930 1931 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1932 { \ 1933 { \ 1934 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1935 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1936 }, \ 1937 .name = #stat, \ 1938 } 1939 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1940 { \ 1941 { \ 1942 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1943 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1944 }, \ 1945 .name = #stat, \ 1946 } 1947 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1948 { \ 1949 { \ 1950 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1951 .offset = offsetof(struct kvm_vm_stat, stat) \ 1952 }, \ 1953 .name = #stat, \ 1954 } 1955 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1956 { \ 1957 { \ 1958 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1959 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1960 }, \ 1961 .name = #stat, \ 1962 } 1963 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1964 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1965 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1966 1967 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1968 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1969 unit, base, exponent, 1, 0) 1970 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1971 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1972 unit, base, exponent, 1, 0) 1973 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1974 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1975 unit, base, exponent, 1, 0) 1976 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1977 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1978 unit, base, exponent, sz, bsz) 1979 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1980 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1981 unit, base, exponent, sz, 0) 1982 1983 /* Cumulative counter, read/write */ 1984 #define STATS_DESC_COUNTER(SCOPE, name) \ 1985 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1986 KVM_STATS_BASE_POW10, 0) 1987 /* Instantaneous counter, read only */ 1988 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1989 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1990 KVM_STATS_BASE_POW10, 0) 1991 /* Peak counter, read/write */ 1992 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1993 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1994 KVM_STATS_BASE_POW10, 0) 1995 1996 /* Instantaneous boolean value, read only */ 1997 #define STATS_DESC_IBOOLEAN(SCOPE, name) \ 1998 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1999 KVM_STATS_BASE_POW10, 0) 2000 /* Peak (sticky) boolean value, read/write */ 2001 #define STATS_DESC_PBOOLEAN(SCOPE, name) \ 2002 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 2003 KVM_STATS_BASE_POW10, 0) 2004 2005 /* Cumulative time in nanosecond */ 2006 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 2007 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2008 KVM_STATS_BASE_POW10, -9) 2009 /* Linear histogram for time in nanosecond */ 2010 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 2011 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2012 KVM_STATS_BASE_POW10, -9, sz, bsz) 2013 /* Logarithmic histogram for time in nanosecond */ 2014 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 2015 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2016 KVM_STATS_BASE_POW10, -9, sz) 2017 2018 #define KVM_GENERIC_VM_STATS() \ 2019 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 2020 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 2021 2022 #define KVM_GENERIC_VCPU_STATS() \ 2023 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 2024 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 2025 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 2026 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 2027 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 2028 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 2029 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 2030 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 2031 HALT_POLL_HIST_COUNT), \ 2032 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 2033 HALT_POLL_HIST_COUNT), \ 2034 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 2035 HALT_POLL_HIST_COUNT), \ 2036 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 2037 2038 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 2039 const struct _kvm_stats_desc *desc, 2040 void *stats, size_t size_stats, 2041 char __user *user_buffer, size_t size, loff_t *offset); 2042 2043 /** 2044 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 2045 * statistics data. 2046 * 2047 * @data: start address of the stats data 2048 * @size: the number of bucket of the stats data 2049 * @value: the new value used to update the linear histogram's bucket 2050 * @bucket_size: the size (width) of a bucket 2051 */ 2052 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 2053 u64 value, size_t bucket_size) 2054 { 2055 size_t index = div64_u64(value, bucket_size); 2056 2057 index = min(index, size - 1); 2058 ++data[index]; 2059 } 2060 2061 /** 2062 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 2063 * statistics data. 2064 * 2065 * @data: start address of the stats data 2066 * @size: the number of bucket of the stats data 2067 * @value: the new value used to update the logarithmic histogram's bucket 2068 */ 2069 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 2070 { 2071 size_t index = fls64(value); 2072 2073 index = min(index, size - 1); 2074 ++data[index]; 2075 } 2076 2077 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 2078 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 2079 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 2080 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 2081 2082 2083 extern const struct kvm_stats_header kvm_vm_stats_header; 2084 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 2085 extern const struct kvm_stats_header kvm_vcpu_stats_header; 2086 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 2087 2088 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 2089 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 2090 { 2091 if (unlikely(kvm->mmu_invalidate_in_progress)) 2092 return 1; 2093 /* 2094 * Ensure the read of mmu_invalidate_in_progress happens before 2095 * the read of mmu_invalidate_seq. This interacts with the 2096 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 2097 * that the caller either sees the old (non-zero) value of 2098 * mmu_invalidate_in_progress or the new (incremented) value of 2099 * mmu_invalidate_seq. 2100 * 2101 * PowerPC Book3s HV KVM calls this under a per-page lock rather 2102 * than under kvm->mmu_lock, for scalability, so can't rely on 2103 * kvm->mmu_lock to keep things ordered. 2104 */ 2105 smp_rmb(); 2106 if (kvm->mmu_invalidate_seq != mmu_seq) 2107 return 1; 2108 return 0; 2109 } 2110 2111 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm, 2112 unsigned long mmu_seq, 2113 gfn_t gfn) 2114 { 2115 lockdep_assert_held(&kvm->mmu_lock); 2116 /* 2117 * If mmu_invalidate_in_progress is non-zero, then the range maintained 2118 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 2119 * that might be being invalidated. Note that it may include some false 2120 * positives, due to shortcuts when handing concurrent invalidations. 2121 */ 2122 if (unlikely(kvm->mmu_invalidate_in_progress)) { 2123 /* 2124 * Dropping mmu_lock after bumping mmu_invalidate_in_progress 2125 * but before updating the range is a KVM bug. 2126 */ 2127 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA || 2128 kvm->mmu_invalidate_range_end == INVALID_GPA)) 2129 return 1; 2130 2131 if (gfn >= kvm->mmu_invalidate_range_start && 2132 gfn < kvm->mmu_invalidate_range_end) 2133 return 1; 2134 } 2135 2136 if (kvm->mmu_invalidate_seq != mmu_seq) 2137 return 1; 2138 return 0; 2139 } 2140 2141 /* 2142 * This lockless version of the range-based retry check *must* be paired with a 2143 * call to the locked version after acquiring mmu_lock, i.e. this is safe to 2144 * use only as a pre-check to avoid contending mmu_lock. This version *will* 2145 * get false negatives and false positives. 2146 */ 2147 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm, 2148 unsigned long mmu_seq, 2149 gfn_t gfn) 2150 { 2151 /* 2152 * Use READ_ONCE() to ensure the in-progress flag and sequence counter 2153 * are always read from memory, e.g. so that checking for retry in a 2154 * loop won't result in an infinite retry loop. Don't force loads for 2155 * start+end, as the key to avoiding infinite retry loops is observing 2156 * the 1=>0 transition of in-progress, i.e. getting false negatives 2157 * due to stale start+end values is acceptable. 2158 */ 2159 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) && 2160 gfn >= kvm->mmu_invalidate_range_start && 2161 gfn < kvm->mmu_invalidate_range_end) 2162 return true; 2163 2164 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq; 2165 } 2166 #endif 2167 2168 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2169 2170 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 2171 2172 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 2173 int kvm_set_irq_routing(struct kvm *kvm, 2174 const struct kvm_irq_routing_entry *entries, 2175 unsigned nr, 2176 unsigned flags); 2177 int kvm_init_irq_routing(struct kvm *kvm); 2178 int kvm_set_routing_entry(struct kvm *kvm, 2179 struct kvm_kernel_irq_routing_entry *e, 2180 const struct kvm_irq_routing_entry *ue); 2181 void kvm_free_irq_routing(struct kvm *kvm); 2182 2183 #else 2184 2185 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 2186 2187 static inline int kvm_init_irq_routing(struct kvm *kvm) 2188 { 2189 return 0; 2190 } 2191 2192 #endif 2193 2194 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2195 2196 void kvm_eventfd_init(struct kvm *kvm); 2197 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2198 2199 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2200 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2201 void kvm_irqfd_release(struct kvm *kvm); 2202 bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2203 unsigned int irqchip, 2204 unsigned int pin); 2205 void kvm_irq_routing_update(struct kvm *); 2206 #else 2207 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2208 { 2209 return -EINVAL; 2210 } 2211 2212 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2213 2214 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2215 unsigned int irqchip, 2216 unsigned int pin) 2217 { 2218 return false; 2219 } 2220 #endif /* CONFIG_HAVE_KVM_IRQCHIP */ 2221 2222 void kvm_arch_irq_routing_update(struct kvm *kvm); 2223 2224 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2225 { 2226 /* 2227 * Ensure the rest of the request is published to kvm_check_request's 2228 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2229 */ 2230 smp_wmb(); 2231 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2232 } 2233 2234 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2235 { 2236 /* 2237 * Request that don't require vCPU action should never be logged in 2238 * vcpu->requests. The vCPU won't clear the request, so it will stay 2239 * logged indefinitely and prevent the vCPU from entering the guest. 2240 */ 2241 BUILD_BUG_ON(!__builtin_constant_p(req) || 2242 (req & KVM_REQUEST_NO_ACTION)); 2243 2244 __kvm_make_request(req, vcpu); 2245 } 2246 2247 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2248 { 2249 return READ_ONCE(vcpu->requests); 2250 } 2251 2252 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2253 { 2254 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2255 } 2256 2257 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2258 { 2259 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2260 } 2261 2262 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2263 { 2264 if (kvm_test_request(req, vcpu)) { 2265 kvm_clear_request(req, vcpu); 2266 2267 /* 2268 * Ensure the rest of the request is visible to kvm_check_request's 2269 * caller. Paired with the smp_wmb in kvm_make_request. 2270 */ 2271 smp_mb__after_atomic(); 2272 return true; 2273 } else { 2274 return false; 2275 } 2276 } 2277 2278 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2279 extern bool kvm_rebooting; 2280 #endif 2281 2282 extern unsigned int halt_poll_ns; 2283 extern unsigned int halt_poll_ns_grow; 2284 extern unsigned int halt_poll_ns_grow_start; 2285 extern unsigned int halt_poll_ns_shrink; 2286 2287 struct kvm_device { 2288 const struct kvm_device_ops *ops; 2289 struct kvm *kvm; 2290 void *private; 2291 struct list_head vm_node; 2292 }; 2293 2294 /* create, destroy, and name are mandatory */ 2295 struct kvm_device_ops { 2296 const char *name; 2297 2298 /* 2299 * create is called holding kvm->lock and any operations not suitable 2300 * to do while holding the lock should be deferred to init (see 2301 * below). 2302 */ 2303 int (*create)(struct kvm_device *dev, u32 type); 2304 2305 /* 2306 * init is called after create if create is successful and is called 2307 * outside of holding kvm->lock. 2308 */ 2309 void (*init)(struct kvm_device *dev); 2310 2311 /* 2312 * Destroy is responsible for freeing dev. 2313 * 2314 * Destroy may be called before or after destructors are called 2315 * on emulated I/O regions, depending on whether a reference is 2316 * held by a vcpu or other kvm component that gets destroyed 2317 * after the emulated I/O. 2318 */ 2319 void (*destroy)(struct kvm_device *dev); 2320 2321 /* 2322 * Release is an alternative method to free the device. It is 2323 * called when the device file descriptor is closed. Once 2324 * release is called, the destroy method will not be called 2325 * anymore as the device is removed from the device list of 2326 * the VM. kvm->lock is held. 2327 */ 2328 void (*release)(struct kvm_device *dev); 2329 2330 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2331 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2332 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2333 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2334 unsigned long arg); 2335 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2336 }; 2337 2338 struct kvm_device *kvm_device_from_filp(struct file *filp); 2339 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2340 void kvm_unregister_device_ops(u32 type); 2341 2342 extern struct kvm_device_ops kvm_mpic_ops; 2343 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2344 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2345 2346 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2347 2348 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2349 { 2350 vcpu->spin_loop.in_spin_loop = val; 2351 } 2352 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2353 { 2354 vcpu->spin_loop.dy_eligible = val; 2355 } 2356 2357 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2358 2359 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2360 { 2361 } 2362 2363 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2364 { 2365 } 2366 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2367 2368 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2369 { 2370 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2371 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2372 } 2373 2374 struct kvm_vcpu *kvm_get_running_vcpu(void); 2375 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2376 2377 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2378 bool kvm_arch_has_irq_bypass(void); 2379 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2380 struct irq_bypass_producer *); 2381 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2382 struct irq_bypass_producer *); 2383 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2384 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2385 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2386 uint32_t guest_irq, bool set); 2387 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2388 struct kvm_kernel_irq_routing_entry *); 2389 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2390 2391 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2392 /* If we wakeup during the poll time, was it a sucessful poll? */ 2393 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2394 { 2395 return vcpu->valid_wakeup; 2396 } 2397 2398 #else 2399 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2400 { 2401 return true; 2402 } 2403 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2404 2405 #ifdef CONFIG_HAVE_KVM_NO_POLL 2406 /* Callback that tells if we must not poll */ 2407 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2408 #else 2409 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2410 { 2411 return false; 2412 } 2413 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2414 2415 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2416 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2417 unsigned int ioctl, unsigned long arg); 2418 #else 2419 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2420 unsigned int ioctl, 2421 unsigned long arg) 2422 { 2423 return -ENOIOCTLCMD; 2424 } 2425 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2426 2427 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2428 2429 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2430 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2431 #else 2432 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2433 { 2434 return 0; 2435 } 2436 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2437 2438 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2439 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2440 { 2441 vcpu->run->exit_reason = KVM_EXIT_INTR; 2442 vcpu->stat.signal_exits++; 2443 } 2444 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2445 2446 /* 2447 * If more than one page is being (un)accounted, @virt must be the address of 2448 * the first page of a block of pages what were allocated together (i.e 2449 * accounted together). 2450 * 2451 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2452 * is thread-safe. 2453 */ 2454 static inline void kvm_account_pgtable_pages(void *virt, int nr) 2455 { 2456 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2457 } 2458 2459 /* 2460 * This defines how many reserved entries we want to keep before we 2461 * kick the vcpu to the userspace to avoid dirty ring full. This 2462 * value can be tuned to higher if e.g. PML is enabled on the host. 2463 */ 2464 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2465 2466 /* Max number of entries allowed for each kvm dirty ring */ 2467 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2468 2469 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, 2470 gpa_t gpa, gpa_t size, 2471 bool is_write, bool is_exec, 2472 bool is_private) 2473 { 2474 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT; 2475 vcpu->run->memory_fault.gpa = gpa; 2476 vcpu->run->memory_fault.size = size; 2477 2478 /* RWX flags are not (yet) defined or communicated to userspace. */ 2479 vcpu->run->memory_fault.flags = 0; 2480 if (is_private) 2481 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE; 2482 } 2483 2484 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2485 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn) 2486 { 2487 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn)); 2488 } 2489 2490 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2491 unsigned long mask, unsigned long attrs); 2492 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 2493 struct kvm_gfn_range *range); 2494 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 2495 struct kvm_gfn_range *range); 2496 2497 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2498 { 2499 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) && 2500 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE; 2501 } 2502 #else 2503 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2504 { 2505 return false; 2506 } 2507 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2508 2509 #ifdef CONFIG_KVM_PRIVATE_MEM 2510 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot, 2511 gfn_t gfn, kvm_pfn_t *pfn, struct page **page, 2512 int *max_order); 2513 #else 2514 static inline int kvm_gmem_get_pfn(struct kvm *kvm, 2515 struct kvm_memory_slot *slot, gfn_t gfn, 2516 kvm_pfn_t *pfn, struct page **page, 2517 int *max_order) 2518 { 2519 KVM_BUG_ON(1, kvm); 2520 return -EIO; 2521 } 2522 #endif /* CONFIG_KVM_PRIVATE_MEM */ 2523 2524 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 2525 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order); 2526 #endif 2527 2528 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM 2529 /** 2530 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data 2531 * 2532 * @kvm: KVM instance 2533 * @gfn: starting GFN to be populated 2534 * @src: userspace-provided buffer containing data to copy into GFN range 2535 * (passed to @post_populate, and incremented on each iteration 2536 * if not NULL) 2537 * @npages: number of pages to copy from userspace-buffer 2538 * @post_populate: callback to issue for each gmem page that backs the GPA 2539 * range 2540 * @opaque: opaque data to pass to @post_populate callback 2541 * 2542 * This is primarily intended for cases where a gmem-backed GPA range needs 2543 * to be initialized with userspace-provided data prior to being mapped into 2544 * the guest as a private page. This should be called with the slots->lock 2545 * held so that caller-enforced invariants regarding the expected memory 2546 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES. 2547 * 2548 * Returns the number of pages that were populated. 2549 */ 2550 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2551 void __user *src, int order, void *opaque); 2552 2553 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages, 2554 kvm_gmem_populate_cb post_populate, void *opaque); 2555 #endif 2556 2557 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 2558 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); 2559 #endif 2560 2561 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 2562 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 2563 struct kvm_pre_fault_memory *range); 2564 #endif 2565 2566 #endif 2567