xref: /linux-6.15/include/linux/kvm_host.h (revision 024bfd2e)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54  * used in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100 #define KVM_PFN_ERR_NEEDS_IO	(KVM_PFN_ERR_MASK + 4)
101 
102 /*
103  * error pfns indicate that the gfn is in slot but faild to
104  * translate it to pfn on host.
105  */
106 static inline bool is_error_pfn(kvm_pfn_t pfn)
107 {
108 	return !!(pfn & KVM_PFN_ERR_MASK);
109 }
110 
111 /*
112  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
113  * by a pending signal.  Note, the signal may or may not be fatal.
114  */
115 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
116 {
117 	return pfn == KVM_PFN_ERR_SIGPENDING;
118 }
119 
120 /*
121  * error_noslot pfns indicate that the gfn can not be
122  * translated to pfn - it is not in slot or failed to
123  * translate it to pfn.
124  */
125 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
126 {
127 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
128 }
129 
130 /* noslot pfn indicates that the gfn is not in slot. */
131 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
132 {
133 	return pfn == KVM_PFN_NOSLOT;
134 }
135 
136 /*
137  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
138  * provide own defines and kvm_is_error_hva
139  */
140 #ifndef KVM_HVA_ERR_BAD
141 
142 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
143 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
144 
145 static inline bool kvm_is_error_hva(unsigned long addr)
146 {
147 	return addr >= PAGE_OFFSET;
148 }
149 
150 #endif
151 
152 static inline bool kvm_is_error_gpa(gpa_t gpa)
153 {
154 	return gpa == INVALID_GPA;
155 }
156 
157 #define KVM_REQUEST_MASK           GENMASK(7,0)
158 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
159 #define KVM_REQUEST_WAIT           BIT(9)
160 #define KVM_REQUEST_NO_ACTION      BIT(10)
161 /*
162  * Architecture-independent vcpu->requests bit members
163  * Bits 3-7 are reserved for more arch-independent bits.
164  */
165 #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
166 #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_UNBLOCK			2
168 #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
169 #define KVM_REQUEST_ARCH_BASE		8
170 
171 /*
172  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
173  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
174  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
175  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
176  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
177  * guarantee the vCPU received an IPI and has actually exited guest mode.
178  */
179 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
180 
181 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
182 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
183 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
184 })
185 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
186 
187 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
188 				 unsigned long *vcpu_bitmap);
189 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
190 
191 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
192 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
193 
194 extern struct mutex kvm_lock;
195 extern struct list_head vm_list;
196 
197 struct kvm_io_range {
198 	gpa_t addr;
199 	int len;
200 	struct kvm_io_device *dev;
201 };
202 
203 #define NR_IOBUS_DEVS 1000
204 
205 struct kvm_io_bus {
206 	int dev_count;
207 	int ioeventfd_count;
208 	struct kvm_io_range range[];
209 };
210 
211 enum kvm_bus {
212 	KVM_MMIO_BUS,
213 	KVM_PIO_BUS,
214 	KVM_VIRTIO_CCW_NOTIFY_BUS,
215 	KVM_FAST_MMIO_BUS,
216 	KVM_IOCSR_BUS,
217 	KVM_NR_BUSES
218 };
219 
220 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
221 		     int len, const void *val);
222 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
223 			    gpa_t addr, int len, const void *val, long cookie);
224 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
225 		    int len, void *val);
226 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
227 			    int len, struct kvm_io_device *dev);
228 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
229 			      struct kvm_io_device *dev);
230 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
231 					 gpa_t addr);
232 
233 #ifdef CONFIG_KVM_ASYNC_PF
234 struct kvm_async_pf {
235 	struct work_struct work;
236 	struct list_head link;
237 	struct list_head queue;
238 	struct kvm_vcpu *vcpu;
239 	gpa_t cr2_or_gpa;
240 	unsigned long addr;
241 	struct kvm_arch_async_pf arch;
242 	bool   wakeup_all;
243 	bool notpresent_injected;
244 };
245 
246 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
247 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
248 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
249 			unsigned long hva, struct kvm_arch_async_pf *arch);
250 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
251 #endif
252 
253 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
254 union kvm_mmu_notifier_arg {
255 	unsigned long attributes;
256 };
257 
258 struct kvm_gfn_range {
259 	struct kvm_memory_slot *slot;
260 	gfn_t start;
261 	gfn_t end;
262 	union kvm_mmu_notifier_arg arg;
263 	bool may_block;
264 };
265 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
266 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
267 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
268 #endif
269 
270 enum {
271 	OUTSIDE_GUEST_MODE,
272 	IN_GUEST_MODE,
273 	EXITING_GUEST_MODE,
274 	READING_SHADOW_PAGE_TABLES,
275 };
276 
277 struct kvm_host_map {
278 	/*
279 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
280 	 * a 'struct page' for it. When using mem= kernel parameter some memory
281 	 * can be used as guest memory but they are not managed by host
282 	 * kernel).
283 	 */
284 	struct page *pinned_page;
285 	struct page *page;
286 	void *hva;
287 	kvm_pfn_t pfn;
288 	kvm_pfn_t gfn;
289 	bool writable;
290 };
291 
292 /*
293  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
294  * directly to check for that.
295  */
296 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
297 {
298 	return !!map->hva;
299 }
300 
301 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
302 {
303 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
304 }
305 
306 /*
307  * Sometimes a large or cross-page mmio needs to be broken up into separate
308  * exits for userspace servicing.
309  */
310 struct kvm_mmio_fragment {
311 	gpa_t gpa;
312 	void *data;
313 	unsigned len;
314 };
315 
316 struct kvm_vcpu {
317 	struct kvm *kvm;
318 #ifdef CONFIG_PREEMPT_NOTIFIERS
319 	struct preempt_notifier preempt_notifier;
320 #endif
321 	int cpu;
322 	int vcpu_id; /* id given by userspace at creation */
323 	int vcpu_idx; /* index into kvm->vcpu_array */
324 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
325 #ifdef CONFIG_PROVE_RCU
326 	int srcu_depth;
327 #endif
328 	int mode;
329 	u64 requests;
330 	unsigned long guest_debug;
331 
332 	struct mutex mutex;
333 	struct kvm_run *run;
334 
335 #ifndef __KVM_HAVE_ARCH_WQP
336 	struct rcuwait wait;
337 #endif
338 	struct pid *pid;
339 	rwlock_t pid_lock;
340 	int sigset_active;
341 	sigset_t sigset;
342 	unsigned int halt_poll_ns;
343 	bool valid_wakeup;
344 
345 #ifdef CONFIG_HAS_IOMEM
346 	int mmio_needed;
347 	int mmio_read_completed;
348 	int mmio_is_write;
349 	int mmio_cur_fragment;
350 	int mmio_nr_fragments;
351 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
352 #endif
353 
354 #ifdef CONFIG_KVM_ASYNC_PF
355 	struct {
356 		u32 queued;
357 		struct list_head queue;
358 		struct list_head done;
359 		spinlock_t lock;
360 	} async_pf;
361 #endif
362 
363 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
364 	/*
365 	 * Cpu relax intercept or pause loop exit optimization
366 	 * in_spin_loop: set when a vcpu does a pause loop exit
367 	 *  or cpu relax intercepted.
368 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
369 	 */
370 	struct {
371 		bool in_spin_loop;
372 		bool dy_eligible;
373 	} spin_loop;
374 #endif
375 	bool wants_to_run;
376 	bool preempted;
377 	bool ready;
378 	bool scheduled_out;
379 	struct kvm_vcpu_arch arch;
380 	struct kvm_vcpu_stat stat;
381 	char stats_id[KVM_STATS_NAME_SIZE];
382 	struct kvm_dirty_ring dirty_ring;
383 
384 	/*
385 	 * The most recently used memslot by this vCPU and the slots generation
386 	 * for which it is valid.
387 	 * No wraparound protection is needed since generations won't overflow in
388 	 * thousands of years, even assuming 1M memslot operations per second.
389 	 */
390 	struct kvm_memory_slot *last_used_slot;
391 	u64 last_used_slot_gen;
392 };
393 
394 /*
395  * Start accounting time towards a guest.
396  * Must be called before entering guest context.
397  */
398 static __always_inline void guest_timing_enter_irqoff(void)
399 {
400 	/*
401 	 * This is running in ioctl context so its safe to assume that it's the
402 	 * stime pending cputime to flush.
403 	 */
404 	instrumentation_begin();
405 	vtime_account_guest_enter();
406 	instrumentation_end();
407 }
408 
409 /*
410  * Enter guest context and enter an RCU extended quiescent state.
411  *
412  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
413  * unsafe to use any code which may directly or indirectly use RCU, tracing
414  * (including IRQ flag tracing), or lockdep. All code in this period must be
415  * non-instrumentable.
416  */
417 static __always_inline void guest_context_enter_irqoff(void)
418 {
419 	/*
420 	 * KVM does not hold any references to rcu protected data when it
421 	 * switches CPU into a guest mode. In fact switching to a guest mode
422 	 * is very similar to exiting to userspace from rcu point of view. In
423 	 * addition CPU may stay in a guest mode for quite a long time (up to
424 	 * one time slice). Lets treat guest mode as quiescent state, just like
425 	 * we do with user-mode execution.
426 	 */
427 	if (!context_tracking_guest_enter()) {
428 		instrumentation_begin();
429 		rcu_virt_note_context_switch();
430 		instrumentation_end();
431 	}
432 }
433 
434 /*
435  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
436  * guest_state_enter_irqoff().
437  */
438 static __always_inline void guest_enter_irqoff(void)
439 {
440 	guest_timing_enter_irqoff();
441 	guest_context_enter_irqoff();
442 }
443 
444 /**
445  * guest_state_enter_irqoff - Fixup state when entering a guest
446  *
447  * Entry to a guest will enable interrupts, but the kernel state is interrupts
448  * disabled when this is invoked. Also tell RCU about it.
449  *
450  * 1) Trace interrupts on state
451  * 2) Invoke context tracking if enabled to adjust RCU state
452  * 3) Tell lockdep that interrupts are enabled
453  *
454  * Invoked from architecture specific code before entering a guest.
455  * Must be called with interrupts disabled and the caller must be
456  * non-instrumentable.
457  * The caller has to invoke guest_timing_enter_irqoff() before this.
458  *
459  * Note: this is analogous to exit_to_user_mode().
460  */
461 static __always_inline void guest_state_enter_irqoff(void)
462 {
463 	instrumentation_begin();
464 	trace_hardirqs_on_prepare();
465 	lockdep_hardirqs_on_prepare();
466 	instrumentation_end();
467 
468 	guest_context_enter_irqoff();
469 	lockdep_hardirqs_on(CALLER_ADDR0);
470 }
471 
472 /*
473  * Exit guest context and exit an RCU extended quiescent state.
474  *
475  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
476  * unsafe to use any code which may directly or indirectly use RCU, tracing
477  * (including IRQ flag tracing), or lockdep. All code in this period must be
478  * non-instrumentable.
479  */
480 static __always_inline void guest_context_exit_irqoff(void)
481 {
482 	/*
483 	 * Guest mode is treated as a quiescent state, see
484 	 * guest_context_enter_irqoff() for more details.
485 	 */
486 	if (!context_tracking_guest_exit()) {
487 		instrumentation_begin();
488 		rcu_virt_note_context_switch();
489 		instrumentation_end();
490 	}
491 }
492 
493 /*
494  * Stop accounting time towards a guest.
495  * Must be called after exiting guest context.
496  */
497 static __always_inline void guest_timing_exit_irqoff(void)
498 {
499 	instrumentation_begin();
500 	/* Flush the guest cputime we spent on the guest */
501 	vtime_account_guest_exit();
502 	instrumentation_end();
503 }
504 
505 /*
506  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
507  * guest_timing_exit_irqoff().
508  */
509 static __always_inline void guest_exit_irqoff(void)
510 {
511 	guest_context_exit_irqoff();
512 	guest_timing_exit_irqoff();
513 }
514 
515 static inline void guest_exit(void)
516 {
517 	unsigned long flags;
518 
519 	local_irq_save(flags);
520 	guest_exit_irqoff();
521 	local_irq_restore(flags);
522 }
523 
524 /**
525  * guest_state_exit_irqoff - Establish state when returning from guest mode
526  *
527  * Entry from a guest disables interrupts, but guest mode is traced as
528  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
529  *
530  * 1) Tell lockdep that interrupts are disabled
531  * 2) Invoke context tracking if enabled to reactivate RCU
532  * 3) Trace interrupts off state
533  *
534  * Invoked from architecture specific code after exiting a guest.
535  * Must be invoked with interrupts disabled and the caller must be
536  * non-instrumentable.
537  * The caller has to invoke guest_timing_exit_irqoff() after this.
538  *
539  * Note: this is analogous to enter_from_user_mode().
540  */
541 static __always_inline void guest_state_exit_irqoff(void)
542 {
543 	lockdep_hardirqs_off(CALLER_ADDR0);
544 	guest_context_exit_irqoff();
545 
546 	instrumentation_begin();
547 	trace_hardirqs_off_finish();
548 	instrumentation_end();
549 }
550 
551 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
552 {
553 	/*
554 	 * The memory barrier ensures a previous write to vcpu->requests cannot
555 	 * be reordered with the read of vcpu->mode.  It pairs with the general
556 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
557 	 */
558 	smp_mb__before_atomic();
559 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
560 }
561 
562 /*
563  * Some of the bitops functions do not support too long bitmaps.
564  * This number must be determined not to exceed such limits.
565  */
566 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
567 
568 /*
569  * Since at idle each memslot belongs to two memslot sets it has to contain
570  * two embedded nodes for each data structure that it forms a part of.
571  *
572  * Two memslot sets (one active and one inactive) are necessary so the VM
573  * continues to run on one memslot set while the other is being modified.
574  *
575  * These two memslot sets normally point to the same set of memslots.
576  * They can, however, be desynchronized when performing a memslot management
577  * operation by replacing the memslot to be modified by its copy.
578  * After the operation is complete, both memslot sets once again point to
579  * the same, common set of memslot data.
580  *
581  * The memslots themselves are independent of each other so they can be
582  * individually added or deleted.
583  */
584 struct kvm_memory_slot {
585 	struct hlist_node id_node[2];
586 	struct interval_tree_node hva_node[2];
587 	struct rb_node gfn_node[2];
588 	gfn_t base_gfn;
589 	unsigned long npages;
590 	unsigned long *dirty_bitmap;
591 	struct kvm_arch_memory_slot arch;
592 	unsigned long userspace_addr;
593 	u32 flags;
594 	short id;
595 	u16 as_id;
596 
597 #ifdef CONFIG_KVM_PRIVATE_MEM
598 	struct {
599 		struct file __rcu *file;
600 		pgoff_t pgoff;
601 	} gmem;
602 #endif
603 };
604 
605 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
606 {
607 	return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
608 }
609 
610 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
611 {
612 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
613 }
614 
615 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
616 {
617 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
618 }
619 
620 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
621 {
622 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
623 
624 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
625 }
626 
627 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
628 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
629 #endif
630 
631 struct kvm_s390_adapter_int {
632 	u64 ind_addr;
633 	u64 summary_addr;
634 	u64 ind_offset;
635 	u32 summary_offset;
636 	u32 adapter_id;
637 };
638 
639 struct kvm_hv_sint {
640 	u32 vcpu;
641 	u32 sint;
642 };
643 
644 struct kvm_xen_evtchn {
645 	u32 port;
646 	u32 vcpu_id;
647 	int vcpu_idx;
648 	u32 priority;
649 };
650 
651 struct kvm_kernel_irq_routing_entry {
652 	u32 gsi;
653 	u32 type;
654 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
655 		   struct kvm *kvm, int irq_source_id, int level,
656 		   bool line_status);
657 	union {
658 		struct {
659 			unsigned irqchip;
660 			unsigned pin;
661 		} irqchip;
662 		struct {
663 			u32 address_lo;
664 			u32 address_hi;
665 			u32 data;
666 			u32 flags;
667 			u32 devid;
668 		} msi;
669 		struct kvm_s390_adapter_int adapter;
670 		struct kvm_hv_sint hv_sint;
671 		struct kvm_xen_evtchn xen_evtchn;
672 	};
673 	struct hlist_node link;
674 };
675 
676 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
677 struct kvm_irq_routing_table {
678 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
679 	u32 nr_rt_entries;
680 	/*
681 	 * Array indexed by gsi. Each entry contains list of irq chips
682 	 * the gsi is connected to.
683 	 */
684 	struct hlist_head map[] __counted_by(nr_rt_entries);
685 };
686 #endif
687 
688 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
689 
690 #ifndef KVM_INTERNAL_MEM_SLOTS
691 #define KVM_INTERNAL_MEM_SLOTS 0
692 #endif
693 
694 #define KVM_MEM_SLOTS_NUM SHRT_MAX
695 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
696 
697 #if KVM_MAX_NR_ADDRESS_SPACES == 1
698 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
699 {
700 	return KVM_MAX_NR_ADDRESS_SPACES;
701 }
702 
703 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
704 {
705 	return 0;
706 }
707 #endif
708 
709 /*
710  * Arch code must define kvm_arch_has_private_mem if support for private memory
711  * is enabled.
712  */
713 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
714 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
715 {
716 	return false;
717 }
718 #endif
719 
720 #ifndef kvm_arch_has_readonly_mem
721 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
722 {
723 	return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
724 }
725 #endif
726 
727 struct kvm_memslots {
728 	u64 generation;
729 	atomic_long_t last_used_slot;
730 	struct rb_root_cached hva_tree;
731 	struct rb_root gfn_tree;
732 	/*
733 	 * The mapping table from slot id to memslot.
734 	 *
735 	 * 7-bit bucket count matches the size of the old id to index array for
736 	 * 512 slots, while giving good performance with this slot count.
737 	 * Higher bucket counts bring only small performance improvements but
738 	 * always result in higher memory usage (even for lower memslot counts).
739 	 */
740 	DECLARE_HASHTABLE(id_hash, 7);
741 	int node_idx;
742 };
743 
744 struct kvm {
745 #ifdef KVM_HAVE_MMU_RWLOCK
746 	rwlock_t mmu_lock;
747 #else
748 	spinlock_t mmu_lock;
749 #endif /* KVM_HAVE_MMU_RWLOCK */
750 
751 	struct mutex slots_lock;
752 
753 	/*
754 	 * Protects the arch-specific fields of struct kvm_memory_slots in
755 	 * use by the VM. To be used under the slots_lock (above) or in a
756 	 * kvm->srcu critical section where acquiring the slots_lock would
757 	 * lead to deadlock with the synchronize_srcu in
758 	 * kvm_swap_active_memslots().
759 	 */
760 	struct mutex slots_arch_lock;
761 	struct mm_struct *mm; /* userspace tied to this vm */
762 	unsigned long nr_memslot_pages;
763 	/* The two memslot sets - active and inactive (per address space) */
764 	struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
765 	/* The current active memslot set for each address space */
766 	struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
767 	struct xarray vcpu_array;
768 	/*
769 	 * Protected by slots_lock, but can be read outside if an
770 	 * incorrect answer is acceptable.
771 	 */
772 	atomic_t nr_memslots_dirty_logging;
773 
774 	/* Used to wait for completion of MMU notifiers.  */
775 	spinlock_t mn_invalidate_lock;
776 	unsigned long mn_active_invalidate_count;
777 	struct rcuwait mn_memslots_update_rcuwait;
778 
779 	/* For management / invalidation of gfn_to_pfn_caches */
780 	spinlock_t gpc_lock;
781 	struct list_head gpc_list;
782 
783 	/*
784 	 * created_vcpus is protected by kvm->lock, and is incremented
785 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
786 	 * incremented after storing the kvm_vcpu pointer in vcpus,
787 	 * and is accessed atomically.
788 	 */
789 	atomic_t online_vcpus;
790 	int max_vcpus;
791 	int created_vcpus;
792 	int last_boosted_vcpu;
793 	struct list_head vm_list;
794 	struct mutex lock;
795 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
796 #ifdef CONFIG_HAVE_KVM_IRQCHIP
797 	struct {
798 		spinlock_t        lock;
799 		struct list_head  items;
800 		/* resampler_list update side is protected by resampler_lock. */
801 		struct list_head  resampler_list;
802 		struct mutex      resampler_lock;
803 	} irqfds;
804 #endif
805 	struct list_head ioeventfds;
806 	struct kvm_vm_stat stat;
807 	struct kvm_arch arch;
808 	refcount_t users_count;
809 #ifdef CONFIG_KVM_MMIO
810 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
811 	spinlock_t ring_lock;
812 	struct list_head coalesced_zones;
813 #endif
814 
815 	struct mutex irq_lock;
816 #ifdef CONFIG_HAVE_KVM_IRQCHIP
817 	/*
818 	 * Update side is protected by irq_lock.
819 	 */
820 	struct kvm_irq_routing_table __rcu *irq_routing;
821 
822 	struct hlist_head irq_ack_notifier_list;
823 #endif
824 
825 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
826 	struct mmu_notifier mmu_notifier;
827 	unsigned long mmu_invalidate_seq;
828 	long mmu_invalidate_in_progress;
829 	gfn_t mmu_invalidate_range_start;
830 	gfn_t mmu_invalidate_range_end;
831 #endif
832 	struct list_head devices;
833 	u64 manual_dirty_log_protect;
834 	struct dentry *debugfs_dentry;
835 	struct kvm_stat_data **debugfs_stat_data;
836 	struct srcu_struct srcu;
837 	struct srcu_struct irq_srcu;
838 	pid_t userspace_pid;
839 	bool override_halt_poll_ns;
840 	unsigned int max_halt_poll_ns;
841 	u32 dirty_ring_size;
842 	bool dirty_ring_with_bitmap;
843 	bool vm_bugged;
844 	bool vm_dead;
845 
846 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
847 	struct notifier_block pm_notifier;
848 #endif
849 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
850 	/* Protected by slots_locks (for writes) and RCU (for reads) */
851 	struct xarray mem_attr_array;
852 #endif
853 	char stats_id[KVM_STATS_NAME_SIZE];
854 };
855 
856 #define kvm_err(fmt, ...) \
857 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
858 #define kvm_info(fmt, ...) \
859 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
860 #define kvm_debug(fmt, ...) \
861 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
862 #define kvm_debug_ratelimited(fmt, ...) \
863 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
864 			     ## __VA_ARGS__)
865 #define kvm_pr_unimpl(fmt, ...) \
866 	pr_err_ratelimited("kvm [%i]: " fmt, \
867 			   task_tgid_nr(current), ## __VA_ARGS__)
868 
869 /* The guest did something we don't support. */
870 #define vcpu_unimpl(vcpu, fmt, ...)					\
871 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
872 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
873 
874 #define vcpu_debug(vcpu, fmt, ...)					\
875 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
876 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
877 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
878 			      ## __VA_ARGS__)
879 #define vcpu_err(vcpu, fmt, ...)					\
880 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
881 
882 static inline void kvm_vm_dead(struct kvm *kvm)
883 {
884 	kvm->vm_dead = true;
885 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
886 }
887 
888 static inline void kvm_vm_bugged(struct kvm *kvm)
889 {
890 	kvm->vm_bugged = true;
891 	kvm_vm_dead(kvm);
892 }
893 
894 
895 #define KVM_BUG(cond, kvm, fmt...)				\
896 ({								\
897 	bool __ret = !!(cond);					\
898 								\
899 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
900 		kvm_vm_bugged(kvm);				\
901 	unlikely(__ret);					\
902 })
903 
904 #define KVM_BUG_ON(cond, kvm)					\
905 ({								\
906 	bool __ret = !!(cond);					\
907 								\
908 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
909 		kvm_vm_bugged(kvm);				\
910 	unlikely(__ret);					\
911 })
912 
913 /*
914  * Note, "data corruption" refers to corruption of host kernel data structures,
915  * not guest data.  Guest data corruption, suspected or confirmed, that is tied
916  * and contained to a single VM should *never* BUG() and potentially panic the
917  * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
918  * is corrupted and that corruption can have a cascading effect to other parts
919  * of the hosts and/or to other VMs.
920  */
921 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)			\
922 ({								\
923 	bool __ret = !!(cond);					\
924 								\
925 	if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))		\
926 		BUG_ON(__ret);					\
927 	else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))	\
928 		kvm_vm_bugged(kvm);				\
929 	unlikely(__ret);					\
930 })
931 
932 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
933 {
934 #ifdef CONFIG_PROVE_RCU
935 	WARN_ONCE(vcpu->srcu_depth++,
936 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
937 #endif
938 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
939 }
940 
941 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
942 {
943 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
944 
945 #ifdef CONFIG_PROVE_RCU
946 	WARN_ONCE(--vcpu->srcu_depth,
947 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
948 #endif
949 }
950 
951 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
952 {
953 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
954 }
955 
956 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
957 {
958 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
959 				      lockdep_is_held(&kvm->slots_lock) ||
960 				      !refcount_read(&kvm->users_count));
961 }
962 
963 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
964 {
965 	int num_vcpus = atomic_read(&kvm->online_vcpus);
966 	i = array_index_nospec(i, num_vcpus);
967 
968 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
969 	smp_rmb();
970 	return xa_load(&kvm->vcpu_array, i);
971 }
972 
973 #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
974 	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
975 			  (atomic_read(&kvm->online_vcpus) - 1))
976 
977 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
978 {
979 	struct kvm_vcpu *vcpu = NULL;
980 	unsigned long i;
981 
982 	if (id < 0)
983 		return NULL;
984 	if (id < KVM_MAX_VCPUS)
985 		vcpu = kvm_get_vcpu(kvm, id);
986 	if (vcpu && vcpu->vcpu_id == id)
987 		return vcpu;
988 	kvm_for_each_vcpu(i, vcpu, kvm)
989 		if (vcpu->vcpu_id == id)
990 			return vcpu;
991 	return NULL;
992 }
993 
994 void kvm_destroy_vcpus(struct kvm *kvm);
995 
996 void vcpu_load(struct kvm_vcpu *vcpu);
997 void vcpu_put(struct kvm_vcpu *vcpu);
998 
999 #ifdef __KVM_HAVE_IOAPIC
1000 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1001 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
1002 #else
1003 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1004 {
1005 }
1006 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
1007 {
1008 }
1009 #endif
1010 
1011 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1012 int kvm_irqfd_init(void);
1013 void kvm_irqfd_exit(void);
1014 #else
1015 static inline int kvm_irqfd_init(void)
1016 {
1017 	return 0;
1018 }
1019 
1020 static inline void kvm_irqfd_exit(void)
1021 {
1022 }
1023 #endif
1024 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1025 void kvm_exit(void);
1026 
1027 void kvm_get_kvm(struct kvm *kvm);
1028 bool kvm_get_kvm_safe(struct kvm *kvm);
1029 void kvm_put_kvm(struct kvm *kvm);
1030 bool file_is_kvm(struct file *file);
1031 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1032 
1033 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1034 {
1035 	as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1036 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1037 			lockdep_is_held(&kvm->slots_lock) ||
1038 			!refcount_read(&kvm->users_count));
1039 }
1040 
1041 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1042 {
1043 	return __kvm_memslots(kvm, 0);
1044 }
1045 
1046 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1047 {
1048 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1049 
1050 	return __kvm_memslots(vcpu->kvm, as_id);
1051 }
1052 
1053 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1054 {
1055 	return RB_EMPTY_ROOT(&slots->gfn_tree);
1056 }
1057 
1058 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1059 
1060 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
1061 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1062 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
1063 		} else
1064 
1065 static inline
1066 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1067 {
1068 	struct kvm_memory_slot *slot;
1069 	int idx = slots->node_idx;
1070 
1071 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1072 		if (slot->id == id)
1073 			return slot;
1074 	}
1075 
1076 	return NULL;
1077 }
1078 
1079 /* Iterator used for walking memslots that overlap a gfn range. */
1080 struct kvm_memslot_iter {
1081 	struct kvm_memslots *slots;
1082 	struct rb_node *node;
1083 	struct kvm_memory_slot *slot;
1084 };
1085 
1086 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1087 {
1088 	iter->node = rb_next(iter->node);
1089 	if (!iter->node)
1090 		return;
1091 
1092 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1093 }
1094 
1095 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1096 					  struct kvm_memslots *slots,
1097 					  gfn_t start)
1098 {
1099 	int idx = slots->node_idx;
1100 	struct rb_node *tmp;
1101 	struct kvm_memory_slot *slot;
1102 
1103 	iter->slots = slots;
1104 
1105 	/*
1106 	 * Find the so called "upper bound" of a key - the first node that has
1107 	 * its key strictly greater than the searched one (the start gfn in our case).
1108 	 */
1109 	iter->node = NULL;
1110 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1111 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1112 		if (start < slot->base_gfn) {
1113 			iter->node = tmp;
1114 			tmp = tmp->rb_left;
1115 		} else {
1116 			tmp = tmp->rb_right;
1117 		}
1118 	}
1119 
1120 	/*
1121 	 * Find the slot with the lowest gfn that can possibly intersect with
1122 	 * the range, so we'll ideally have slot start <= range start
1123 	 */
1124 	if (iter->node) {
1125 		/*
1126 		 * A NULL previous node means that the very first slot
1127 		 * already has a higher start gfn.
1128 		 * In this case slot start > range start.
1129 		 */
1130 		tmp = rb_prev(iter->node);
1131 		if (tmp)
1132 			iter->node = tmp;
1133 	} else {
1134 		/* a NULL node below means no slots */
1135 		iter->node = rb_last(&slots->gfn_tree);
1136 	}
1137 
1138 	if (iter->node) {
1139 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1140 
1141 		/*
1142 		 * It is possible in the slot start < range start case that the
1143 		 * found slot ends before or at range start (slot end <= range start)
1144 		 * and so it does not overlap the requested range.
1145 		 *
1146 		 * In such non-overlapping case the next slot (if it exists) will
1147 		 * already have slot start > range start, otherwise the logic above
1148 		 * would have found it instead of the current slot.
1149 		 */
1150 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1151 			kvm_memslot_iter_next(iter);
1152 	}
1153 }
1154 
1155 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1156 {
1157 	if (!iter->node)
1158 		return false;
1159 
1160 	/*
1161 	 * If this slot starts beyond or at the end of the range so does
1162 	 * every next one
1163 	 */
1164 	return iter->slot->base_gfn < end;
1165 }
1166 
1167 /* Iterate over each memslot at least partially intersecting [start, end) range */
1168 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1169 	for (kvm_memslot_iter_start(iter, slots, start);		\
1170 	     kvm_memslot_iter_is_valid(iter, end);			\
1171 	     kvm_memslot_iter_next(iter))
1172 
1173 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1174 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1175 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1176 
1177 /*
1178  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1179  * - create a new memory slot
1180  * - delete an existing memory slot
1181  * - modify an existing memory slot
1182  *   -- move it in the guest physical memory space
1183  *   -- just change its flags
1184  *
1185  * Since flags can be changed by some of these operations, the following
1186  * differentiation is the best we can do for __kvm_set_memory_region():
1187  */
1188 enum kvm_mr_change {
1189 	KVM_MR_CREATE,
1190 	KVM_MR_DELETE,
1191 	KVM_MR_MOVE,
1192 	KVM_MR_FLAGS_ONLY,
1193 };
1194 
1195 int kvm_set_memory_region(struct kvm *kvm,
1196 			  const struct kvm_userspace_memory_region2 *mem);
1197 int __kvm_set_memory_region(struct kvm *kvm,
1198 			    const struct kvm_userspace_memory_region2 *mem);
1199 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1200 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1201 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1202 				const struct kvm_memory_slot *old,
1203 				struct kvm_memory_slot *new,
1204 				enum kvm_mr_change change);
1205 void kvm_arch_commit_memory_region(struct kvm *kvm,
1206 				struct kvm_memory_slot *old,
1207 				const struct kvm_memory_slot *new,
1208 				enum kvm_mr_change change);
1209 /* flush all memory translations */
1210 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1211 /* flush memory translations pointing to 'slot' */
1212 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1213 				   struct kvm_memory_slot *slot);
1214 
1215 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
1216 		       struct page **pages, int nr_pages);
1217 
1218 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write);
1219 static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1220 {
1221 	return __gfn_to_page(kvm, gfn, true);
1222 }
1223 
1224 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1225 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1226 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1227 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1228 				      bool *writable);
1229 
1230 static inline void kvm_release_page_unused(struct page *page)
1231 {
1232 	if (!page)
1233 		return;
1234 
1235 	put_page(page);
1236 }
1237 
1238 void kvm_release_page_clean(struct page *page);
1239 void kvm_release_page_dirty(struct page *page);
1240 
1241 static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page,
1242 					    bool unused, bool dirty)
1243 {
1244 	lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused);
1245 
1246 	if (!page)
1247 		return;
1248 
1249 	/*
1250 	 * If the page that KVM got from the *primary MMU* is writable, and KVM
1251 	 * installed or reused a SPTE, mark the page/folio dirty.  Note, this
1252 	 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if
1253 	 * the GFN is write-protected.  Folios can't be safely marked dirty
1254 	 * outside of mmu_lock as doing so could race with writeback on the
1255 	 * folio.  As a result, KVM can't mark folios dirty in the fast page
1256 	 * fault handler, and so KVM must (somewhat) speculatively mark the
1257 	 * folio dirty if KVM could locklessly make the SPTE writable.
1258 	 */
1259 	if (unused)
1260 		kvm_release_page_unused(page);
1261 	else if (dirty)
1262 		kvm_release_page_dirty(page);
1263 	else
1264 		kvm_release_page_clean(page);
1265 }
1266 
1267 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
1268 			    unsigned int foll, bool *writable,
1269 			    struct page **refcounted_page);
1270 
1271 static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
1272 					bool write, bool *writable,
1273 					struct page **refcounted_page)
1274 {
1275 	return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn,
1276 				 write ? FOLL_WRITE : 0, writable, refcounted_page);
1277 }
1278 
1279 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1280 			int len);
1281 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1282 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1283 			   void *data, unsigned long len);
1284 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1285 				 void *data, unsigned int offset,
1286 				 unsigned long len);
1287 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1288 			 int offset, int len);
1289 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1290 		    unsigned long len);
1291 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1292 			   void *data, unsigned long len);
1293 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1294 				  void *data, unsigned int offset,
1295 				  unsigned long len);
1296 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1297 			      gpa_t gpa, unsigned long len);
1298 
1299 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1300 ({									\
1301 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1302 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1303 	int __ret = -EFAULT;						\
1304 									\
1305 	if (!kvm_is_error_hva(__addr))					\
1306 		__ret = get_user(v, __uaddr);				\
1307 	__ret;								\
1308 })
1309 
1310 #define kvm_get_guest(kvm, gpa, v)					\
1311 ({									\
1312 	gpa_t __gpa = gpa;						\
1313 	struct kvm *__kvm = kvm;					\
1314 									\
1315 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1316 			offset_in_page(__gpa), v);			\
1317 })
1318 
1319 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1320 ({									\
1321 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1322 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1323 	int __ret = -EFAULT;						\
1324 									\
1325 	if (!kvm_is_error_hva(__addr))					\
1326 		__ret = put_user(v, __uaddr);				\
1327 	if (!__ret)							\
1328 		mark_page_dirty(kvm, gfn);				\
1329 	__ret;								\
1330 })
1331 
1332 #define kvm_put_guest(kvm, gpa, v)					\
1333 ({									\
1334 	gpa_t __gpa = gpa;						\
1335 	struct kvm *__kvm = kvm;					\
1336 									\
1337 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1338 			offset_in_page(__gpa), v);			\
1339 })
1340 
1341 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1342 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1343 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1344 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1345 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1346 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1347 
1348 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map,
1349 		   bool writable);
1350 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map);
1351 
1352 static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa,
1353 			       struct kvm_host_map *map)
1354 {
1355 	return __kvm_vcpu_map(vcpu, gpa, map, true);
1356 }
1357 
1358 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa,
1359 					struct kvm_host_map *map)
1360 {
1361 	return __kvm_vcpu_map(vcpu, gpa, map, false);
1362 }
1363 
1364 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1365 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1366 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1367 			     int len);
1368 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1369 			       unsigned long len);
1370 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1371 			unsigned long len);
1372 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1373 			      int offset, int len);
1374 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1375 			 unsigned long len);
1376 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1377 
1378 /**
1379  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1380  *
1381  * @gpc:	   struct gfn_to_pfn_cache object.
1382  * @kvm:	   pointer to kvm instance.
1383  *
1384  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1385  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1386  * the caller before init).
1387  */
1388 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1389 
1390 /**
1391  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1392  *                    physical address.
1393  *
1394  * @gpc:	   struct gfn_to_pfn_cache object.
1395  * @gpa:	   guest physical address to map.
1396  * @len:	   sanity check; the range being access must fit a single page.
1397  *
1398  * @return:	   0 for success.
1399  *		   -EINVAL for a mapping which would cross a page boundary.
1400  *		   -EFAULT for an untranslatable guest physical address.
1401  *
1402  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1403  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1404  * to ensure that the cache is valid before accessing the target page.
1405  */
1406 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1407 
1408 /**
1409  * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1410  *
1411  * @gpc:          struct gfn_to_pfn_cache object.
1412  * @hva:          userspace virtual address to map.
1413  * @len:          sanity check; the range being access must fit a single page.
1414  *
1415  * @return:       0 for success.
1416  *                -EINVAL for a mapping which would cross a page boundary.
1417  *                -EFAULT for an untranslatable guest physical address.
1418  *
1419  * The semantics of this function are the same as those of kvm_gpc_activate(). It
1420  * merely bypasses a layer of address translation.
1421  */
1422 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1423 
1424 /**
1425  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1426  *
1427  * @gpc:	   struct gfn_to_pfn_cache object.
1428  * @len:	   sanity check; the range being access must fit a single page.
1429  *
1430  * @return:	   %true if the cache is still valid and the address matches.
1431  *		   %false if the cache is not valid.
1432  *
1433  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1434  * while calling this function, and then continue to hold the lock until the
1435  * access is complete.
1436  *
1437  * Callers in IN_GUEST_MODE may do so without locking, although they should
1438  * still hold a read lock on kvm->scru for the memslot checks.
1439  */
1440 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1441 
1442 /**
1443  * kvm_gpc_refresh - update a previously initialized cache.
1444  *
1445  * @gpc:	   struct gfn_to_pfn_cache object.
1446  * @len:	   sanity check; the range being access must fit a single page.
1447  *
1448  * @return:	   0 for success.
1449  *		   -EINVAL for a mapping which would cross a page boundary.
1450  *		   -EFAULT for an untranslatable guest physical address.
1451  *
1452  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1453  * return from this function does not mean the page can be immediately
1454  * accessed because it may have raced with an invalidation. Callers must
1455  * still lock and check the cache status, as this function does not return
1456  * with the lock still held to permit access.
1457  */
1458 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1459 
1460 /**
1461  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1462  *
1463  * @gpc:	   struct gfn_to_pfn_cache object.
1464  *
1465  * This removes a cache from the VM's list to be processed on MMU notifier
1466  * invocation.
1467  */
1468 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1469 
1470 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1471 {
1472 	return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1473 }
1474 
1475 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1476 {
1477 	return gpc->active && kvm_is_error_gpa(gpc->gpa);
1478 }
1479 
1480 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1481 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1482 
1483 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1484 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1485 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1486 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1487 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1488 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1489 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1490 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1491 
1492 void kvm_flush_remote_tlbs(struct kvm *kvm);
1493 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1494 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1495 				   const struct kvm_memory_slot *memslot);
1496 
1497 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1498 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1499 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1500 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1501 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1502 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1503 #endif
1504 
1505 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1506 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1507 void kvm_mmu_invalidate_end(struct kvm *kvm);
1508 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1509 
1510 long kvm_arch_dev_ioctl(struct file *filp,
1511 			unsigned int ioctl, unsigned long arg);
1512 long kvm_arch_vcpu_ioctl(struct file *filp,
1513 			 unsigned int ioctl, unsigned long arg);
1514 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1515 
1516 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1517 
1518 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1519 					struct kvm_memory_slot *slot,
1520 					gfn_t gfn_offset,
1521 					unsigned long mask);
1522 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1523 
1524 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1525 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1526 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1527 		      int *is_dirty, struct kvm_memory_slot **memslot);
1528 #endif
1529 
1530 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1531 			bool line_status);
1532 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1533 			    struct kvm_enable_cap *cap);
1534 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1535 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1536 			      unsigned long arg);
1537 
1538 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1539 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1540 
1541 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1542 				    struct kvm_translation *tr);
1543 
1544 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1545 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1546 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1547 				  struct kvm_sregs *sregs);
1548 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1549 				  struct kvm_sregs *sregs);
1550 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1551 				    struct kvm_mp_state *mp_state);
1552 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1553 				    struct kvm_mp_state *mp_state);
1554 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1555 					struct kvm_guest_debug *dbg);
1556 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1557 
1558 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1559 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1560 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1561 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1562 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1563 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1564 
1565 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1566 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1567 #endif
1568 
1569 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1570 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1571 #else
1572 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1573 #endif
1574 
1575 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1576 /*
1577  * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1578  * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1579  * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1580  * sequence, and at the end of the generic hardware disabling sequence.
1581  */
1582 void kvm_arch_enable_virtualization(void);
1583 void kvm_arch_disable_virtualization(void);
1584 /*
1585  * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1586  * do the actual twiddling of hardware bits.  The hooks are called on all
1587  * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1588  * when that CPU is onlined/offlined (including for Resume/Suspend).
1589  */
1590 int kvm_arch_enable_virtualization_cpu(void);
1591 void kvm_arch_disable_virtualization_cpu(void);
1592 #endif
1593 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1594 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1595 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1596 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1597 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1598 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1599 int kvm_arch_post_init_vm(struct kvm *kvm);
1600 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1601 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1602 
1603 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1604 /*
1605  * All architectures that want to use vzalloc currently also
1606  * need their own kvm_arch_alloc_vm implementation.
1607  */
1608 static inline struct kvm *kvm_arch_alloc_vm(void)
1609 {
1610 	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1611 }
1612 #endif
1613 
1614 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1615 {
1616 	kvfree(kvm);
1617 }
1618 
1619 #ifndef __KVM_HAVE_ARCH_VM_FREE
1620 static inline void kvm_arch_free_vm(struct kvm *kvm)
1621 {
1622 	__kvm_arch_free_vm(kvm);
1623 }
1624 #endif
1625 
1626 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1627 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1628 {
1629 	return -ENOTSUPP;
1630 }
1631 #else
1632 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1633 #endif
1634 
1635 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1636 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1637 						    gfn_t gfn, u64 nr_pages)
1638 {
1639 	return -EOPNOTSUPP;
1640 }
1641 #else
1642 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1643 #endif
1644 
1645 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1646 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1647 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1648 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1649 #else
1650 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1651 {
1652 }
1653 
1654 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1655 {
1656 }
1657 
1658 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1659 {
1660 	return false;
1661 }
1662 #endif
1663 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1664 void kvm_arch_start_assignment(struct kvm *kvm);
1665 void kvm_arch_end_assignment(struct kvm *kvm);
1666 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1667 #else
1668 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1669 {
1670 }
1671 
1672 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1673 {
1674 }
1675 
1676 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1677 {
1678 	return false;
1679 }
1680 #endif
1681 
1682 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1683 {
1684 #ifdef __KVM_HAVE_ARCH_WQP
1685 	return vcpu->arch.waitp;
1686 #else
1687 	return &vcpu->wait;
1688 #endif
1689 }
1690 
1691 /*
1692  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1693  * true if the vCPU was blocking and was awakened, false otherwise.
1694  */
1695 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1696 {
1697 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1698 }
1699 
1700 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1701 {
1702 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1703 }
1704 
1705 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1706 /*
1707  * returns true if the virtual interrupt controller is initialized and
1708  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1709  * controller is dynamically instantiated and this is not always true.
1710  */
1711 bool kvm_arch_intc_initialized(struct kvm *kvm);
1712 #else
1713 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1714 {
1715 	return true;
1716 }
1717 #endif
1718 
1719 #ifdef CONFIG_GUEST_PERF_EVENTS
1720 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1721 
1722 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1723 void kvm_unregister_perf_callbacks(void);
1724 #else
1725 static inline void kvm_register_perf_callbacks(void *ign) {}
1726 static inline void kvm_unregister_perf_callbacks(void) {}
1727 #endif /* CONFIG_GUEST_PERF_EVENTS */
1728 
1729 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1730 void kvm_arch_destroy_vm(struct kvm *kvm);
1731 void kvm_arch_sync_events(struct kvm *kvm);
1732 
1733 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1734 
1735 struct kvm_irq_ack_notifier {
1736 	struct hlist_node link;
1737 	unsigned gsi;
1738 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1739 };
1740 
1741 int kvm_irq_map_gsi(struct kvm *kvm,
1742 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1743 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1744 
1745 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1746 		bool line_status);
1747 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1748 		int irq_source_id, int level, bool line_status);
1749 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1750 			       struct kvm *kvm, int irq_source_id,
1751 			       int level, bool line_status);
1752 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1753 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1754 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1755 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1756 				   struct kvm_irq_ack_notifier *kian);
1757 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1758 				   struct kvm_irq_ack_notifier *kian);
1759 int kvm_request_irq_source_id(struct kvm *kvm);
1760 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1761 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1762 
1763 /*
1764  * Returns a pointer to the memslot if it contains gfn.
1765  * Otherwise returns NULL.
1766  */
1767 static inline struct kvm_memory_slot *
1768 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1769 {
1770 	if (!slot)
1771 		return NULL;
1772 
1773 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1774 		return slot;
1775 	else
1776 		return NULL;
1777 }
1778 
1779 /*
1780  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1781  *
1782  * With "approx" set returns the memslot also when the address falls
1783  * in a hole. In that case one of the memslots bordering the hole is
1784  * returned.
1785  */
1786 static inline struct kvm_memory_slot *
1787 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1788 {
1789 	struct kvm_memory_slot *slot;
1790 	struct rb_node *node;
1791 	int idx = slots->node_idx;
1792 
1793 	slot = NULL;
1794 	for (node = slots->gfn_tree.rb_node; node; ) {
1795 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1796 		if (gfn >= slot->base_gfn) {
1797 			if (gfn < slot->base_gfn + slot->npages)
1798 				return slot;
1799 			node = node->rb_right;
1800 		} else
1801 			node = node->rb_left;
1802 	}
1803 
1804 	return approx ? slot : NULL;
1805 }
1806 
1807 static inline struct kvm_memory_slot *
1808 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1809 {
1810 	struct kvm_memory_slot *slot;
1811 
1812 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1813 	slot = try_get_memslot(slot, gfn);
1814 	if (slot)
1815 		return slot;
1816 
1817 	slot = search_memslots(slots, gfn, approx);
1818 	if (slot) {
1819 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1820 		return slot;
1821 	}
1822 
1823 	return NULL;
1824 }
1825 
1826 /*
1827  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1828  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1829  * because that would bloat other code too much.
1830  */
1831 static inline struct kvm_memory_slot *
1832 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1833 {
1834 	return ____gfn_to_memslot(slots, gfn, false);
1835 }
1836 
1837 static inline unsigned long
1838 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1839 {
1840 	/*
1841 	 * The index was checked originally in search_memslots.  To avoid
1842 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1843 	 * table walks, do not let the processor speculate loads outside
1844 	 * the guest's registered memslots.
1845 	 */
1846 	unsigned long offset = gfn - slot->base_gfn;
1847 	offset = array_index_nospec(offset, slot->npages);
1848 	return slot->userspace_addr + offset * PAGE_SIZE;
1849 }
1850 
1851 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1852 {
1853 	return gfn_to_memslot(kvm, gfn)->id;
1854 }
1855 
1856 static inline gfn_t
1857 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1858 {
1859 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1860 
1861 	return slot->base_gfn + gfn_offset;
1862 }
1863 
1864 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1865 {
1866 	return (gpa_t)gfn << PAGE_SHIFT;
1867 }
1868 
1869 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1870 {
1871 	return (gfn_t)(gpa >> PAGE_SHIFT);
1872 }
1873 
1874 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1875 {
1876 	return (hpa_t)pfn << PAGE_SHIFT;
1877 }
1878 
1879 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1880 {
1881 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1882 
1883 	return !kvm_is_error_hva(hva);
1884 }
1885 
1886 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1887 {
1888 	lockdep_assert_held(&gpc->lock);
1889 
1890 	if (!gpc->memslot)
1891 		return;
1892 
1893 	mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1894 }
1895 
1896 enum kvm_stat_kind {
1897 	KVM_STAT_VM,
1898 	KVM_STAT_VCPU,
1899 };
1900 
1901 struct kvm_stat_data {
1902 	struct kvm *kvm;
1903 	const struct _kvm_stats_desc *desc;
1904 	enum kvm_stat_kind kind;
1905 };
1906 
1907 struct _kvm_stats_desc {
1908 	struct kvm_stats_desc desc;
1909 	char name[KVM_STATS_NAME_SIZE];
1910 };
1911 
1912 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1913 	.flags = type | unit | base |					       \
1914 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1915 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1916 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1917 	.exponent = exp,						       \
1918 	.size = sz,							       \
1919 	.bucket_size = bsz
1920 
1921 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1922 	{								       \
1923 		{							       \
1924 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1925 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1926 		},							       \
1927 		.name = #stat,						       \
1928 	}
1929 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1930 	{								       \
1931 		{							       \
1932 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1933 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1934 		},							       \
1935 		.name = #stat,						       \
1936 	}
1937 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1938 	{								       \
1939 		{							       \
1940 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1941 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1942 		},							       \
1943 		.name = #stat,						       \
1944 	}
1945 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1946 	{								       \
1947 		{							       \
1948 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1949 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1950 		},							       \
1951 		.name = #stat,						       \
1952 	}
1953 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1954 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1955 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1956 
1957 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1958 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1959 		unit, base, exponent, 1, 0)
1960 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1961 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1962 		unit, base, exponent, 1, 0)
1963 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1964 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1965 		unit, base, exponent, 1, 0)
1966 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1967 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1968 		unit, base, exponent, sz, bsz)
1969 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1970 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1971 		unit, base, exponent, sz, 0)
1972 
1973 /* Cumulative counter, read/write */
1974 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1975 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1976 		KVM_STATS_BASE_POW10, 0)
1977 /* Instantaneous counter, read only */
1978 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1979 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1980 		KVM_STATS_BASE_POW10, 0)
1981 /* Peak counter, read/write */
1982 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1983 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1984 		KVM_STATS_BASE_POW10, 0)
1985 
1986 /* Instantaneous boolean value, read only */
1987 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
1988 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1989 		KVM_STATS_BASE_POW10, 0)
1990 /* Peak (sticky) boolean value, read/write */
1991 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
1992 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1993 		KVM_STATS_BASE_POW10, 0)
1994 
1995 /* Cumulative time in nanosecond */
1996 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1997 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1998 		KVM_STATS_BASE_POW10, -9)
1999 /* Linear histogram for time in nanosecond */
2000 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
2001 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2002 		KVM_STATS_BASE_POW10, -9, sz, bsz)
2003 /* Logarithmic histogram for time in nanosecond */
2004 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
2005 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2006 		KVM_STATS_BASE_POW10, -9, sz)
2007 
2008 #define KVM_GENERIC_VM_STATS()						       \
2009 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
2010 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
2011 
2012 #define KVM_GENERIC_VCPU_STATS()					       \
2013 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
2014 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
2015 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
2016 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
2017 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
2018 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
2019 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
2020 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
2021 			HALT_POLL_HIST_COUNT),				       \
2022 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
2023 			HALT_POLL_HIST_COUNT),				       \
2024 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
2025 			HALT_POLL_HIST_COUNT),				       \
2026 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
2027 
2028 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
2029 		       const struct _kvm_stats_desc *desc,
2030 		       void *stats, size_t size_stats,
2031 		       char __user *user_buffer, size_t size, loff_t *offset);
2032 
2033 /**
2034  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
2035  * statistics data.
2036  *
2037  * @data: start address of the stats data
2038  * @size: the number of bucket of the stats data
2039  * @value: the new value used to update the linear histogram's bucket
2040  * @bucket_size: the size (width) of a bucket
2041  */
2042 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
2043 						u64 value, size_t bucket_size)
2044 {
2045 	size_t index = div64_u64(value, bucket_size);
2046 
2047 	index = min(index, size - 1);
2048 	++data[index];
2049 }
2050 
2051 /**
2052  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2053  * statistics data.
2054  *
2055  * @data: start address of the stats data
2056  * @size: the number of bucket of the stats data
2057  * @value: the new value used to update the logarithmic histogram's bucket
2058  */
2059 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2060 {
2061 	size_t index = fls64(value);
2062 
2063 	index = min(index, size - 1);
2064 	++data[index];
2065 }
2066 
2067 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
2068 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2069 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
2070 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2071 
2072 
2073 extern const struct kvm_stats_header kvm_vm_stats_header;
2074 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2075 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2076 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2077 
2078 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
2079 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2080 {
2081 	if (unlikely(kvm->mmu_invalidate_in_progress))
2082 		return 1;
2083 	/*
2084 	 * Ensure the read of mmu_invalidate_in_progress happens before
2085 	 * the read of mmu_invalidate_seq.  This interacts with the
2086 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2087 	 * that the caller either sees the old (non-zero) value of
2088 	 * mmu_invalidate_in_progress or the new (incremented) value of
2089 	 * mmu_invalidate_seq.
2090 	 *
2091 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2092 	 * than under kvm->mmu_lock, for scalability, so can't rely on
2093 	 * kvm->mmu_lock to keep things ordered.
2094 	 */
2095 	smp_rmb();
2096 	if (kvm->mmu_invalidate_seq != mmu_seq)
2097 		return 1;
2098 	return 0;
2099 }
2100 
2101 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2102 					   unsigned long mmu_seq,
2103 					   gfn_t gfn)
2104 {
2105 	lockdep_assert_held(&kvm->mmu_lock);
2106 	/*
2107 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2108 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2109 	 * that might be being invalidated. Note that it may include some false
2110 	 * positives, due to shortcuts when handing concurrent invalidations.
2111 	 */
2112 	if (unlikely(kvm->mmu_invalidate_in_progress)) {
2113 		/*
2114 		 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2115 		 * but before updating the range is a KVM bug.
2116 		 */
2117 		if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2118 				 kvm->mmu_invalidate_range_end == INVALID_GPA))
2119 			return 1;
2120 
2121 		if (gfn >= kvm->mmu_invalidate_range_start &&
2122 		    gfn < kvm->mmu_invalidate_range_end)
2123 			return 1;
2124 	}
2125 
2126 	if (kvm->mmu_invalidate_seq != mmu_seq)
2127 		return 1;
2128 	return 0;
2129 }
2130 
2131 /*
2132  * This lockless version of the range-based retry check *must* be paired with a
2133  * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2134  * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2135  * get false negatives and false positives.
2136  */
2137 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2138 						   unsigned long mmu_seq,
2139 						   gfn_t gfn)
2140 {
2141 	/*
2142 	 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2143 	 * are always read from memory, e.g. so that checking for retry in a
2144 	 * loop won't result in an infinite retry loop.  Don't force loads for
2145 	 * start+end, as the key to avoiding infinite retry loops is observing
2146 	 * the 1=>0 transition of in-progress, i.e. getting false negatives
2147 	 * due to stale start+end values is acceptable.
2148 	 */
2149 	if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2150 	    gfn >= kvm->mmu_invalidate_range_start &&
2151 	    gfn < kvm->mmu_invalidate_range_end)
2152 		return true;
2153 
2154 	return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2155 }
2156 #endif
2157 
2158 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2159 
2160 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2161 
2162 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2163 int kvm_set_irq_routing(struct kvm *kvm,
2164 			const struct kvm_irq_routing_entry *entries,
2165 			unsigned nr,
2166 			unsigned flags);
2167 int kvm_init_irq_routing(struct kvm *kvm);
2168 int kvm_set_routing_entry(struct kvm *kvm,
2169 			  struct kvm_kernel_irq_routing_entry *e,
2170 			  const struct kvm_irq_routing_entry *ue);
2171 void kvm_free_irq_routing(struct kvm *kvm);
2172 
2173 #else
2174 
2175 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2176 
2177 static inline int kvm_init_irq_routing(struct kvm *kvm)
2178 {
2179 	return 0;
2180 }
2181 
2182 #endif
2183 
2184 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2185 
2186 void kvm_eventfd_init(struct kvm *kvm);
2187 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2188 
2189 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2190 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2191 void kvm_irqfd_release(struct kvm *kvm);
2192 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2193 				unsigned int irqchip,
2194 				unsigned int pin);
2195 void kvm_irq_routing_update(struct kvm *);
2196 #else
2197 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2198 {
2199 	return -EINVAL;
2200 }
2201 
2202 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2203 
2204 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2205 					      unsigned int irqchip,
2206 					      unsigned int pin)
2207 {
2208 	return false;
2209 }
2210 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2211 
2212 void kvm_arch_irq_routing_update(struct kvm *kvm);
2213 
2214 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2215 {
2216 	/*
2217 	 * Ensure the rest of the request is published to kvm_check_request's
2218 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2219 	 */
2220 	smp_wmb();
2221 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2222 }
2223 
2224 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2225 {
2226 	/*
2227 	 * Request that don't require vCPU action should never be logged in
2228 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2229 	 * logged indefinitely and prevent the vCPU from entering the guest.
2230 	 */
2231 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2232 		     (req & KVM_REQUEST_NO_ACTION));
2233 
2234 	__kvm_make_request(req, vcpu);
2235 }
2236 
2237 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2238 {
2239 	return READ_ONCE(vcpu->requests);
2240 }
2241 
2242 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2243 {
2244 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2245 }
2246 
2247 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2248 {
2249 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2250 }
2251 
2252 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2253 {
2254 	if (kvm_test_request(req, vcpu)) {
2255 		kvm_clear_request(req, vcpu);
2256 
2257 		/*
2258 		 * Ensure the rest of the request is visible to kvm_check_request's
2259 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2260 		 */
2261 		smp_mb__after_atomic();
2262 		return true;
2263 	} else {
2264 		return false;
2265 	}
2266 }
2267 
2268 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2269 extern bool kvm_rebooting;
2270 #endif
2271 
2272 extern unsigned int halt_poll_ns;
2273 extern unsigned int halt_poll_ns_grow;
2274 extern unsigned int halt_poll_ns_grow_start;
2275 extern unsigned int halt_poll_ns_shrink;
2276 
2277 struct kvm_device {
2278 	const struct kvm_device_ops *ops;
2279 	struct kvm *kvm;
2280 	void *private;
2281 	struct list_head vm_node;
2282 };
2283 
2284 /* create, destroy, and name are mandatory */
2285 struct kvm_device_ops {
2286 	const char *name;
2287 
2288 	/*
2289 	 * create is called holding kvm->lock and any operations not suitable
2290 	 * to do while holding the lock should be deferred to init (see
2291 	 * below).
2292 	 */
2293 	int (*create)(struct kvm_device *dev, u32 type);
2294 
2295 	/*
2296 	 * init is called after create if create is successful and is called
2297 	 * outside of holding kvm->lock.
2298 	 */
2299 	void (*init)(struct kvm_device *dev);
2300 
2301 	/*
2302 	 * Destroy is responsible for freeing dev.
2303 	 *
2304 	 * Destroy may be called before or after destructors are called
2305 	 * on emulated I/O regions, depending on whether a reference is
2306 	 * held by a vcpu or other kvm component that gets destroyed
2307 	 * after the emulated I/O.
2308 	 */
2309 	void (*destroy)(struct kvm_device *dev);
2310 
2311 	/*
2312 	 * Release is an alternative method to free the device. It is
2313 	 * called when the device file descriptor is closed. Once
2314 	 * release is called, the destroy method will not be called
2315 	 * anymore as the device is removed from the device list of
2316 	 * the VM. kvm->lock is held.
2317 	 */
2318 	void (*release)(struct kvm_device *dev);
2319 
2320 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2321 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2322 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2323 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2324 		      unsigned long arg);
2325 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2326 };
2327 
2328 struct kvm_device *kvm_device_from_filp(struct file *filp);
2329 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2330 void kvm_unregister_device_ops(u32 type);
2331 
2332 extern struct kvm_device_ops kvm_mpic_ops;
2333 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2334 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2335 
2336 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2337 
2338 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2339 {
2340 	vcpu->spin_loop.in_spin_loop = val;
2341 }
2342 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2343 {
2344 	vcpu->spin_loop.dy_eligible = val;
2345 }
2346 
2347 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2348 
2349 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2350 {
2351 }
2352 
2353 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2354 {
2355 }
2356 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2357 
2358 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2359 {
2360 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2361 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2362 }
2363 
2364 struct kvm_vcpu *kvm_get_running_vcpu(void);
2365 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2366 
2367 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2368 bool kvm_arch_has_irq_bypass(void);
2369 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2370 			   struct irq_bypass_producer *);
2371 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2372 			   struct irq_bypass_producer *);
2373 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2374 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2375 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2376 				  uint32_t guest_irq, bool set);
2377 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2378 				  struct kvm_kernel_irq_routing_entry *);
2379 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2380 
2381 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2382 /* If we wakeup during the poll time, was it a sucessful poll? */
2383 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2384 {
2385 	return vcpu->valid_wakeup;
2386 }
2387 
2388 #else
2389 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2390 {
2391 	return true;
2392 }
2393 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2394 
2395 #ifdef CONFIG_HAVE_KVM_NO_POLL
2396 /* Callback that tells if we must not poll */
2397 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2398 #else
2399 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2400 {
2401 	return false;
2402 }
2403 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2404 
2405 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2406 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2407 			       unsigned int ioctl, unsigned long arg);
2408 #else
2409 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2410 					     unsigned int ioctl,
2411 					     unsigned long arg)
2412 {
2413 	return -ENOIOCTLCMD;
2414 }
2415 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2416 
2417 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2418 
2419 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2420 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2421 #else
2422 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2423 {
2424 	return 0;
2425 }
2426 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2427 
2428 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2429 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2430 {
2431 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2432 	vcpu->stat.signal_exits++;
2433 }
2434 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2435 
2436 /*
2437  * If more than one page is being (un)accounted, @virt must be the address of
2438  * the first page of a block of pages what were allocated together (i.e
2439  * accounted together).
2440  *
2441  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2442  * is thread-safe.
2443  */
2444 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2445 {
2446 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2447 }
2448 
2449 /*
2450  * This defines how many reserved entries we want to keep before we
2451  * kick the vcpu to the userspace to avoid dirty ring full.  This
2452  * value can be tuned to higher if e.g. PML is enabled on the host.
2453  */
2454 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2455 
2456 /* Max number of entries allowed for each kvm dirty ring */
2457 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2458 
2459 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2460 						 gpa_t gpa, gpa_t size,
2461 						 bool is_write, bool is_exec,
2462 						 bool is_private)
2463 {
2464 	vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2465 	vcpu->run->memory_fault.gpa = gpa;
2466 	vcpu->run->memory_fault.size = size;
2467 
2468 	/* RWX flags are not (yet) defined or communicated to userspace. */
2469 	vcpu->run->memory_fault.flags = 0;
2470 	if (is_private)
2471 		vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2472 }
2473 
2474 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2475 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2476 {
2477 	return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2478 }
2479 
2480 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2481 				     unsigned long mask, unsigned long attrs);
2482 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2483 					struct kvm_gfn_range *range);
2484 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2485 					 struct kvm_gfn_range *range);
2486 
2487 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2488 {
2489 	return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2490 	       kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2491 }
2492 #else
2493 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2494 {
2495 	return false;
2496 }
2497 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2498 
2499 #ifdef CONFIG_KVM_PRIVATE_MEM
2500 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2501 		     gfn_t gfn, kvm_pfn_t *pfn, struct page **page,
2502 		     int *max_order);
2503 #else
2504 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2505 				   struct kvm_memory_slot *slot, gfn_t gfn,
2506 				   kvm_pfn_t *pfn, struct page **page,
2507 				   int *max_order)
2508 {
2509 	KVM_BUG_ON(1, kvm);
2510 	return -EIO;
2511 }
2512 #endif /* CONFIG_KVM_PRIVATE_MEM */
2513 
2514 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2515 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2516 #endif
2517 
2518 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2519 /**
2520  * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2521  *
2522  * @kvm: KVM instance
2523  * @gfn: starting GFN to be populated
2524  * @src: userspace-provided buffer containing data to copy into GFN range
2525  *       (passed to @post_populate, and incremented on each iteration
2526  *       if not NULL)
2527  * @npages: number of pages to copy from userspace-buffer
2528  * @post_populate: callback to issue for each gmem page that backs the GPA
2529  *                 range
2530  * @opaque: opaque data to pass to @post_populate callback
2531  *
2532  * This is primarily intended for cases where a gmem-backed GPA range needs
2533  * to be initialized with userspace-provided data prior to being mapped into
2534  * the guest as a private page. This should be called with the slots->lock
2535  * held so that caller-enforced invariants regarding the expected memory
2536  * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2537  *
2538  * Returns the number of pages that were populated.
2539  */
2540 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2541 				    void __user *src, int order, void *opaque);
2542 
2543 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2544 		       kvm_gmem_populate_cb post_populate, void *opaque);
2545 #endif
2546 
2547 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2548 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2549 #endif
2550 
2551 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2552 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2553 				    struct kvm_pre_fault_memory *range);
2554 #endif
2555 
2556 #endif
2557