1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 #ifndef __KVM_HOST_H 3 #define __KVM_HOST_H 4 5 6 #include <linux/types.h> 7 #include <linux/hardirq.h> 8 #include <linux/list.h> 9 #include <linux/mutex.h> 10 #include <linux/spinlock.h> 11 #include <linux/signal.h> 12 #include <linux/sched.h> 13 #include <linux/sched/stat.h> 14 #include <linux/bug.h> 15 #include <linux/minmax.h> 16 #include <linux/mm.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/preempt.h> 19 #include <linux/msi.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/rcupdate.h> 23 #include <linux/ratelimit.h> 24 #include <linux/err.h> 25 #include <linux/irqflags.h> 26 #include <linux/context_tracking.h> 27 #include <linux/irqbypass.h> 28 #include <linux/rcuwait.h> 29 #include <linux/refcount.h> 30 #include <linux/nospec.h> 31 #include <linux/notifier.h> 32 #include <linux/ftrace.h> 33 #include <linux/hashtable.h> 34 #include <linux/instrumentation.h> 35 #include <linux/interval_tree.h> 36 #include <linux/rbtree.h> 37 #include <linux/xarray.h> 38 #include <asm/signal.h> 39 40 #include <linux/kvm.h> 41 #include <linux/kvm_para.h> 42 43 #include <linux/kvm_types.h> 44 45 #include <asm/kvm_host.h> 46 #include <linux/kvm_dirty_ring.h> 47 48 #ifndef KVM_MAX_VCPU_IDS 49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS 50 #endif 51 52 /* 53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally 54 * used in kvm, other bits are visible for userspace which are defined in 55 * include/linux/kvm_h. 56 */ 57 #define KVM_MEMSLOT_INVALID (1UL << 16) 58 59 /* 60 * Bit 63 of the memslot generation number is an "update in-progress flag", 61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots(). 62 * This flag effectively creates a unique generation number that is used to 63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 64 * i.e. may (or may not) have come from the previous memslots generation. 65 * 66 * This is necessary because the actual memslots update is not atomic with 67 * respect to the generation number update. Updating the generation number 68 * first would allow a vCPU to cache a spte from the old memslots using the 69 * new generation number, and updating the generation number after switching 70 * to the new memslots would allow cache hits using the old generation number 71 * to reference the defunct memslots. 72 * 73 * This mechanism is used to prevent getting hits in KVM's caches while a 74 * memslot update is in-progress, and to prevent cache hits *after* updating 75 * the actual generation number against accesses that were inserted into the 76 * cache *before* the memslots were updated. 77 */ 78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 79 80 /* Two fragments for cross MMIO pages. */ 81 #define KVM_MAX_MMIO_FRAGMENTS 2 82 83 #ifndef KVM_MAX_NR_ADDRESS_SPACES 84 #define KVM_MAX_NR_ADDRESS_SPACES 1 85 #endif 86 87 /* 88 * For the normal pfn, the highest 12 bits should be zero, 89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 90 * mask bit 63 to indicate the noslot pfn. 91 */ 92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52) 93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 94 #define KVM_PFN_NOSLOT (0x1ULL << 63) 95 96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3) 100 #define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4) 101 102 /* 103 * error pfns indicate that the gfn is in slot but faild to 104 * translate it to pfn on host. 105 */ 106 static inline bool is_error_pfn(kvm_pfn_t pfn) 107 { 108 return !!(pfn & KVM_PFN_ERR_MASK); 109 } 110 111 /* 112 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted 113 * by a pending signal. Note, the signal may or may not be fatal. 114 */ 115 static inline bool is_sigpending_pfn(kvm_pfn_t pfn) 116 { 117 return pfn == KVM_PFN_ERR_SIGPENDING; 118 } 119 120 /* 121 * error_noslot pfns indicate that the gfn can not be 122 * translated to pfn - it is not in slot or failed to 123 * translate it to pfn. 124 */ 125 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 126 { 127 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 128 } 129 130 /* noslot pfn indicates that the gfn is not in slot. */ 131 static inline bool is_noslot_pfn(kvm_pfn_t pfn) 132 { 133 return pfn == KVM_PFN_NOSLOT; 134 } 135 136 /* 137 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 138 * provide own defines and kvm_is_error_hva 139 */ 140 #ifndef KVM_HVA_ERR_BAD 141 142 #define KVM_HVA_ERR_BAD (PAGE_OFFSET) 143 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 144 145 static inline bool kvm_is_error_hva(unsigned long addr) 146 { 147 return addr >= PAGE_OFFSET; 148 } 149 150 #endif 151 152 static inline bool kvm_is_error_gpa(gpa_t gpa) 153 { 154 return gpa == INVALID_GPA; 155 } 156 157 #define KVM_REQUEST_MASK GENMASK(7,0) 158 #define KVM_REQUEST_NO_WAKEUP BIT(8) 159 #define KVM_REQUEST_WAIT BIT(9) 160 #define KVM_REQUEST_NO_ACTION BIT(10) 161 /* 162 * Architecture-independent vcpu->requests bit members 163 * Bits 3-7 are reserved for more arch-independent bits. 164 */ 165 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 166 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 167 #define KVM_REQ_UNBLOCK 2 168 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3 169 #define KVM_REQUEST_ARCH_BASE 8 170 171 /* 172 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to 173 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick" 174 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing 175 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous 176 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no 177 * guarantee the vCPU received an IPI and has actually exited guest mode. 178 */ 179 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 180 181 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 182 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 183 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 184 }) 185 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 186 187 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 188 unsigned long *vcpu_bitmap); 189 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 190 191 #define KVM_USERSPACE_IRQ_SOURCE_ID 0 192 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 193 194 extern struct mutex kvm_lock; 195 extern struct list_head vm_list; 196 197 struct kvm_io_range { 198 gpa_t addr; 199 int len; 200 struct kvm_io_device *dev; 201 }; 202 203 #define NR_IOBUS_DEVS 1000 204 205 struct kvm_io_bus { 206 int dev_count; 207 int ioeventfd_count; 208 struct kvm_io_range range[]; 209 }; 210 211 enum kvm_bus { 212 KVM_MMIO_BUS, 213 KVM_PIO_BUS, 214 KVM_VIRTIO_CCW_NOTIFY_BUS, 215 KVM_FAST_MMIO_BUS, 216 KVM_IOCSR_BUS, 217 KVM_NR_BUSES 218 }; 219 220 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 221 int len, const void *val); 222 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 223 gpa_t addr, int len, const void *val, long cookie); 224 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 225 int len, void *val); 226 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 227 int len, struct kvm_io_device *dev); 228 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 229 struct kvm_io_device *dev); 230 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 231 gpa_t addr); 232 233 #ifdef CONFIG_KVM_ASYNC_PF 234 struct kvm_async_pf { 235 struct work_struct work; 236 struct list_head link; 237 struct list_head queue; 238 struct kvm_vcpu *vcpu; 239 gpa_t cr2_or_gpa; 240 unsigned long addr; 241 struct kvm_arch_async_pf arch; 242 bool wakeup_all; 243 bool notpresent_injected; 244 }; 245 246 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 247 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 248 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 249 unsigned long hva, struct kvm_arch_async_pf *arch); 250 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 251 #endif 252 253 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 254 union kvm_mmu_notifier_arg { 255 unsigned long attributes; 256 }; 257 258 struct kvm_gfn_range { 259 struct kvm_memory_slot *slot; 260 gfn_t start; 261 gfn_t end; 262 union kvm_mmu_notifier_arg arg; 263 bool may_block; 264 }; 265 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 266 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 267 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 268 #endif 269 270 enum { 271 OUTSIDE_GUEST_MODE, 272 IN_GUEST_MODE, 273 EXITING_GUEST_MODE, 274 READING_SHADOW_PAGE_TABLES, 275 }; 276 277 struct kvm_host_map { 278 /* 279 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 280 * a 'struct page' for it. When using mem= kernel parameter some memory 281 * can be used as guest memory but they are not managed by host 282 * kernel). 283 */ 284 struct page *pinned_page; 285 struct page *page; 286 void *hva; 287 kvm_pfn_t pfn; 288 kvm_pfn_t gfn; 289 bool writable; 290 }; 291 292 /* 293 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 294 * directly to check for that. 295 */ 296 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 297 { 298 return !!map->hva; 299 } 300 301 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 302 { 303 return single_task_running() && !need_resched() && ktime_before(cur, stop); 304 } 305 306 /* 307 * Sometimes a large or cross-page mmio needs to be broken up into separate 308 * exits for userspace servicing. 309 */ 310 struct kvm_mmio_fragment { 311 gpa_t gpa; 312 void *data; 313 unsigned len; 314 }; 315 316 struct kvm_vcpu { 317 struct kvm *kvm; 318 #ifdef CONFIG_PREEMPT_NOTIFIERS 319 struct preempt_notifier preempt_notifier; 320 #endif 321 int cpu; 322 int vcpu_id; /* id given by userspace at creation */ 323 int vcpu_idx; /* index into kvm->vcpu_array */ 324 int ____srcu_idx; /* Don't use this directly. You've been warned. */ 325 #ifdef CONFIG_PROVE_RCU 326 int srcu_depth; 327 #endif 328 int mode; 329 u64 requests; 330 unsigned long guest_debug; 331 332 struct mutex mutex; 333 struct kvm_run *run; 334 335 #ifndef __KVM_HAVE_ARCH_WQP 336 struct rcuwait wait; 337 #endif 338 struct pid *pid; 339 rwlock_t pid_lock; 340 int sigset_active; 341 sigset_t sigset; 342 unsigned int halt_poll_ns; 343 bool valid_wakeup; 344 345 #ifdef CONFIG_HAS_IOMEM 346 int mmio_needed; 347 int mmio_read_completed; 348 int mmio_is_write; 349 int mmio_cur_fragment; 350 int mmio_nr_fragments; 351 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 352 #endif 353 354 #ifdef CONFIG_KVM_ASYNC_PF 355 struct { 356 u32 queued; 357 struct list_head queue; 358 struct list_head done; 359 spinlock_t lock; 360 } async_pf; 361 #endif 362 363 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 364 /* 365 * Cpu relax intercept or pause loop exit optimization 366 * in_spin_loop: set when a vcpu does a pause loop exit 367 * or cpu relax intercepted. 368 * dy_eligible: indicates whether vcpu is eligible for directed yield. 369 */ 370 struct { 371 bool in_spin_loop; 372 bool dy_eligible; 373 } spin_loop; 374 #endif 375 bool wants_to_run; 376 bool preempted; 377 bool ready; 378 bool scheduled_out; 379 struct kvm_vcpu_arch arch; 380 struct kvm_vcpu_stat stat; 381 char stats_id[KVM_STATS_NAME_SIZE]; 382 struct kvm_dirty_ring dirty_ring; 383 384 /* 385 * The most recently used memslot by this vCPU and the slots generation 386 * for which it is valid. 387 * No wraparound protection is needed since generations won't overflow in 388 * thousands of years, even assuming 1M memslot operations per second. 389 */ 390 struct kvm_memory_slot *last_used_slot; 391 u64 last_used_slot_gen; 392 }; 393 394 /* 395 * Start accounting time towards a guest. 396 * Must be called before entering guest context. 397 */ 398 static __always_inline void guest_timing_enter_irqoff(void) 399 { 400 /* 401 * This is running in ioctl context so its safe to assume that it's the 402 * stime pending cputime to flush. 403 */ 404 instrumentation_begin(); 405 vtime_account_guest_enter(); 406 instrumentation_end(); 407 } 408 409 /* 410 * Enter guest context and enter an RCU extended quiescent state. 411 * 412 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 413 * unsafe to use any code which may directly or indirectly use RCU, tracing 414 * (including IRQ flag tracing), or lockdep. All code in this period must be 415 * non-instrumentable. 416 */ 417 static __always_inline void guest_context_enter_irqoff(void) 418 { 419 /* 420 * KVM does not hold any references to rcu protected data when it 421 * switches CPU into a guest mode. In fact switching to a guest mode 422 * is very similar to exiting to userspace from rcu point of view. In 423 * addition CPU may stay in a guest mode for quite a long time (up to 424 * one time slice). Lets treat guest mode as quiescent state, just like 425 * we do with user-mode execution. 426 */ 427 if (!context_tracking_guest_enter()) { 428 instrumentation_begin(); 429 rcu_virt_note_context_switch(); 430 instrumentation_end(); 431 } 432 } 433 434 /* 435 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and 436 * guest_state_enter_irqoff(). 437 */ 438 static __always_inline void guest_enter_irqoff(void) 439 { 440 guest_timing_enter_irqoff(); 441 guest_context_enter_irqoff(); 442 } 443 444 /** 445 * guest_state_enter_irqoff - Fixup state when entering a guest 446 * 447 * Entry to a guest will enable interrupts, but the kernel state is interrupts 448 * disabled when this is invoked. Also tell RCU about it. 449 * 450 * 1) Trace interrupts on state 451 * 2) Invoke context tracking if enabled to adjust RCU state 452 * 3) Tell lockdep that interrupts are enabled 453 * 454 * Invoked from architecture specific code before entering a guest. 455 * Must be called with interrupts disabled and the caller must be 456 * non-instrumentable. 457 * The caller has to invoke guest_timing_enter_irqoff() before this. 458 * 459 * Note: this is analogous to exit_to_user_mode(). 460 */ 461 static __always_inline void guest_state_enter_irqoff(void) 462 { 463 instrumentation_begin(); 464 trace_hardirqs_on_prepare(); 465 lockdep_hardirqs_on_prepare(); 466 instrumentation_end(); 467 468 guest_context_enter_irqoff(); 469 lockdep_hardirqs_on(CALLER_ADDR0); 470 } 471 472 /* 473 * Exit guest context and exit an RCU extended quiescent state. 474 * 475 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is 476 * unsafe to use any code which may directly or indirectly use RCU, tracing 477 * (including IRQ flag tracing), or lockdep. All code in this period must be 478 * non-instrumentable. 479 */ 480 static __always_inline void guest_context_exit_irqoff(void) 481 { 482 /* 483 * Guest mode is treated as a quiescent state, see 484 * guest_context_enter_irqoff() for more details. 485 */ 486 if (!context_tracking_guest_exit()) { 487 instrumentation_begin(); 488 rcu_virt_note_context_switch(); 489 instrumentation_end(); 490 } 491 } 492 493 /* 494 * Stop accounting time towards a guest. 495 * Must be called after exiting guest context. 496 */ 497 static __always_inline void guest_timing_exit_irqoff(void) 498 { 499 instrumentation_begin(); 500 /* Flush the guest cputime we spent on the guest */ 501 vtime_account_guest_exit(); 502 instrumentation_end(); 503 } 504 505 /* 506 * Deprecated. Architectures should move to guest_state_exit_irqoff() and 507 * guest_timing_exit_irqoff(). 508 */ 509 static __always_inline void guest_exit_irqoff(void) 510 { 511 guest_context_exit_irqoff(); 512 guest_timing_exit_irqoff(); 513 } 514 515 static inline void guest_exit(void) 516 { 517 unsigned long flags; 518 519 local_irq_save(flags); 520 guest_exit_irqoff(); 521 local_irq_restore(flags); 522 } 523 524 /** 525 * guest_state_exit_irqoff - Establish state when returning from guest mode 526 * 527 * Entry from a guest disables interrupts, but guest mode is traced as 528 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle. 529 * 530 * 1) Tell lockdep that interrupts are disabled 531 * 2) Invoke context tracking if enabled to reactivate RCU 532 * 3) Trace interrupts off state 533 * 534 * Invoked from architecture specific code after exiting a guest. 535 * Must be invoked with interrupts disabled and the caller must be 536 * non-instrumentable. 537 * The caller has to invoke guest_timing_exit_irqoff() after this. 538 * 539 * Note: this is analogous to enter_from_user_mode(). 540 */ 541 static __always_inline void guest_state_exit_irqoff(void) 542 { 543 lockdep_hardirqs_off(CALLER_ADDR0); 544 guest_context_exit_irqoff(); 545 546 instrumentation_begin(); 547 trace_hardirqs_off_finish(); 548 instrumentation_end(); 549 } 550 551 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 552 { 553 /* 554 * The memory barrier ensures a previous write to vcpu->requests cannot 555 * be reordered with the read of vcpu->mode. It pairs with the general 556 * memory barrier following the write of vcpu->mode in VCPU RUN. 557 */ 558 smp_mb__before_atomic(); 559 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 560 } 561 562 /* 563 * Some of the bitops functions do not support too long bitmaps. 564 * This number must be determined not to exceed such limits. 565 */ 566 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 567 568 /* 569 * Since at idle each memslot belongs to two memslot sets it has to contain 570 * two embedded nodes for each data structure that it forms a part of. 571 * 572 * Two memslot sets (one active and one inactive) are necessary so the VM 573 * continues to run on one memslot set while the other is being modified. 574 * 575 * These two memslot sets normally point to the same set of memslots. 576 * They can, however, be desynchronized when performing a memslot management 577 * operation by replacing the memslot to be modified by its copy. 578 * After the operation is complete, both memslot sets once again point to 579 * the same, common set of memslot data. 580 * 581 * The memslots themselves are independent of each other so they can be 582 * individually added or deleted. 583 */ 584 struct kvm_memory_slot { 585 struct hlist_node id_node[2]; 586 struct interval_tree_node hva_node[2]; 587 struct rb_node gfn_node[2]; 588 gfn_t base_gfn; 589 unsigned long npages; 590 unsigned long *dirty_bitmap; 591 struct kvm_arch_memory_slot arch; 592 unsigned long userspace_addr; 593 u32 flags; 594 short id; 595 u16 as_id; 596 597 #ifdef CONFIG_KVM_PRIVATE_MEM 598 struct { 599 struct file __rcu *file; 600 pgoff_t pgoff; 601 } gmem; 602 #endif 603 }; 604 605 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot) 606 { 607 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD); 608 } 609 610 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot) 611 { 612 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 613 } 614 615 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 616 { 617 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 618 } 619 620 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 621 { 622 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 623 624 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 625 } 626 627 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS 628 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 629 #endif 630 631 struct kvm_s390_adapter_int { 632 u64 ind_addr; 633 u64 summary_addr; 634 u64 ind_offset; 635 u32 summary_offset; 636 u32 adapter_id; 637 }; 638 639 struct kvm_hv_sint { 640 u32 vcpu; 641 u32 sint; 642 }; 643 644 struct kvm_xen_evtchn { 645 u32 port; 646 u32 vcpu_id; 647 int vcpu_idx; 648 u32 priority; 649 }; 650 651 struct kvm_kernel_irq_routing_entry { 652 u32 gsi; 653 u32 type; 654 int (*set)(struct kvm_kernel_irq_routing_entry *e, 655 struct kvm *kvm, int irq_source_id, int level, 656 bool line_status); 657 union { 658 struct { 659 unsigned irqchip; 660 unsigned pin; 661 } irqchip; 662 struct { 663 u32 address_lo; 664 u32 address_hi; 665 u32 data; 666 u32 flags; 667 u32 devid; 668 } msi; 669 struct kvm_s390_adapter_int adapter; 670 struct kvm_hv_sint hv_sint; 671 struct kvm_xen_evtchn xen_evtchn; 672 }; 673 struct hlist_node link; 674 }; 675 676 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 677 struct kvm_irq_routing_table { 678 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 679 u32 nr_rt_entries; 680 /* 681 * Array indexed by gsi. Each entry contains list of irq chips 682 * the gsi is connected to. 683 */ 684 struct hlist_head map[] __counted_by(nr_rt_entries); 685 }; 686 #endif 687 688 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm); 689 690 #ifndef KVM_INTERNAL_MEM_SLOTS 691 #define KVM_INTERNAL_MEM_SLOTS 0 692 #endif 693 694 #define KVM_MEM_SLOTS_NUM SHRT_MAX 695 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS) 696 697 #if KVM_MAX_NR_ADDRESS_SPACES == 1 698 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm) 699 { 700 return KVM_MAX_NR_ADDRESS_SPACES; 701 } 702 703 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 704 { 705 return 0; 706 } 707 #endif 708 709 /* 710 * Arch code must define kvm_arch_has_private_mem if support for private memory 711 * is enabled. 712 */ 713 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) 714 static inline bool kvm_arch_has_private_mem(struct kvm *kvm) 715 { 716 return false; 717 } 718 #endif 719 720 #ifndef kvm_arch_has_readonly_mem 721 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm) 722 { 723 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM); 724 } 725 #endif 726 727 struct kvm_memslots { 728 u64 generation; 729 atomic_long_t last_used_slot; 730 struct rb_root_cached hva_tree; 731 struct rb_root gfn_tree; 732 /* 733 * The mapping table from slot id to memslot. 734 * 735 * 7-bit bucket count matches the size of the old id to index array for 736 * 512 slots, while giving good performance with this slot count. 737 * Higher bucket counts bring only small performance improvements but 738 * always result in higher memory usage (even for lower memslot counts). 739 */ 740 DECLARE_HASHTABLE(id_hash, 7); 741 int node_idx; 742 }; 743 744 struct kvm { 745 #ifdef KVM_HAVE_MMU_RWLOCK 746 rwlock_t mmu_lock; 747 #else 748 spinlock_t mmu_lock; 749 #endif /* KVM_HAVE_MMU_RWLOCK */ 750 751 struct mutex slots_lock; 752 753 /* 754 * Protects the arch-specific fields of struct kvm_memory_slots in 755 * use by the VM. To be used under the slots_lock (above) or in a 756 * kvm->srcu critical section where acquiring the slots_lock would 757 * lead to deadlock with the synchronize_srcu in 758 * kvm_swap_active_memslots(). 759 */ 760 struct mutex slots_arch_lock; 761 struct mm_struct *mm; /* userspace tied to this vm */ 762 unsigned long nr_memslot_pages; 763 /* The two memslot sets - active and inactive (per address space) */ 764 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2]; 765 /* The current active memslot set for each address space */ 766 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES]; 767 struct xarray vcpu_array; 768 /* 769 * Protected by slots_lock, but can be read outside if an 770 * incorrect answer is acceptable. 771 */ 772 atomic_t nr_memslots_dirty_logging; 773 774 /* Used to wait for completion of MMU notifiers. */ 775 spinlock_t mn_invalidate_lock; 776 unsigned long mn_active_invalidate_count; 777 struct rcuwait mn_memslots_update_rcuwait; 778 779 /* For management / invalidation of gfn_to_pfn_caches */ 780 spinlock_t gpc_lock; 781 struct list_head gpc_list; 782 783 /* 784 * created_vcpus is protected by kvm->lock, and is incremented 785 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 786 * incremented after storing the kvm_vcpu pointer in vcpus, 787 * and is accessed atomically. 788 */ 789 atomic_t online_vcpus; 790 int max_vcpus; 791 int created_vcpus; 792 int last_boosted_vcpu; 793 struct list_head vm_list; 794 struct mutex lock; 795 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 796 #ifdef CONFIG_HAVE_KVM_IRQCHIP 797 struct { 798 spinlock_t lock; 799 struct list_head items; 800 /* resampler_list update side is protected by resampler_lock. */ 801 struct list_head resampler_list; 802 struct mutex resampler_lock; 803 } irqfds; 804 #endif 805 struct list_head ioeventfds; 806 struct kvm_vm_stat stat; 807 struct kvm_arch arch; 808 refcount_t users_count; 809 #ifdef CONFIG_KVM_MMIO 810 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 811 spinlock_t ring_lock; 812 struct list_head coalesced_zones; 813 #endif 814 815 struct mutex irq_lock; 816 #ifdef CONFIG_HAVE_KVM_IRQCHIP 817 /* 818 * Update side is protected by irq_lock. 819 */ 820 struct kvm_irq_routing_table __rcu *irq_routing; 821 822 struct hlist_head irq_ack_notifier_list; 823 #endif 824 825 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 826 struct mmu_notifier mmu_notifier; 827 unsigned long mmu_invalidate_seq; 828 long mmu_invalidate_in_progress; 829 gfn_t mmu_invalidate_range_start; 830 gfn_t mmu_invalidate_range_end; 831 #endif 832 struct list_head devices; 833 u64 manual_dirty_log_protect; 834 struct dentry *debugfs_dentry; 835 struct kvm_stat_data **debugfs_stat_data; 836 struct srcu_struct srcu; 837 struct srcu_struct irq_srcu; 838 pid_t userspace_pid; 839 bool override_halt_poll_ns; 840 unsigned int max_halt_poll_ns; 841 u32 dirty_ring_size; 842 bool dirty_ring_with_bitmap; 843 bool vm_bugged; 844 bool vm_dead; 845 846 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 847 struct notifier_block pm_notifier; 848 #endif 849 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 850 /* Protected by slots_locks (for writes) and RCU (for reads) */ 851 struct xarray mem_attr_array; 852 #endif 853 char stats_id[KVM_STATS_NAME_SIZE]; 854 }; 855 856 #define kvm_err(fmt, ...) \ 857 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 858 #define kvm_info(fmt, ...) \ 859 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 860 #define kvm_debug(fmt, ...) \ 861 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 862 #define kvm_debug_ratelimited(fmt, ...) \ 863 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 864 ## __VA_ARGS__) 865 #define kvm_pr_unimpl(fmt, ...) \ 866 pr_err_ratelimited("kvm [%i]: " fmt, \ 867 task_tgid_nr(current), ## __VA_ARGS__) 868 869 /* The guest did something we don't support. */ 870 #define vcpu_unimpl(vcpu, fmt, ...) \ 871 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 872 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 873 874 #define vcpu_debug(vcpu, fmt, ...) \ 875 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 876 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 877 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 878 ## __VA_ARGS__) 879 #define vcpu_err(vcpu, fmt, ...) \ 880 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 881 882 static inline void kvm_vm_dead(struct kvm *kvm) 883 { 884 kvm->vm_dead = true; 885 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD); 886 } 887 888 static inline void kvm_vm_bugged(struct kvm *kvm) 889 { 890 kvm->vm_bugged = true; 891 kvm_vm_dead(kvm); 892 } 893 894 895 #define KVM_BUG(cond, kvm, fmt...) \ 896 ({ \ 897 bool __ret = !!(cond); \ 898 \ 899 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 900 kvm_vm_bugged(kvm); \ 901 unlikely(__ret); \ 902 }) 903 904 #define KVM_BUG_ON(cond, kvm) \ 905 ({ \ 906 bool __ret = !!(cond); \ 907 \ 908 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 909 kvm_vm_bugged(kvm); \ 910 unlikely(__ret); \ 911 }) 912 913 /* 914 * Note, "data corruption" refers to corruption of host kernel data structures, 915 * not guest data. Guest data corruption, suspected or confirmed, that is tied 916 * and contained to a single VM should *never* BUG() and potentially panic the 917 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure 918 * is corrupted and that corruption can have a cascading effect to other parts 919 * of the hosts and/or to other VMs. 920 */ 921 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \ 922 ({ \ 923 bool __ret = !!(cond); \ 924 \ 925 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \ 926 BUG_ON(__ret); \ 927 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 928 kvm_vm_bugged(kvm); \ 929 unlikely(__ret); \ 930 }) 931 932 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu) 933 { 934 #ifdef CONFIG_PROVE_RCU 935 WARN_ONCE(vcpu->srcu_depth++, 936 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1); 937 #endif 938 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 939 } 940 941 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu) 942 { 943 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx); 944 945 #ifdef CONFIG_PROVE_RCU 946 WARN_ONCE(--vcpu->srcu_depth, 947 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth); 948 #endif 949 } 950 951 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 952 { 953 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 954 } 955 956 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 957 { 958 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 959 lockdep_is_held(&kvm->slots_lock) || 960 !refcount_read(&kvm->users_count)); 961 } 962 963 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 964 { 965 int num_vcpus = atomic_read(&kvm->online_vcpus); 966 i = array_index_nospec(i, num_vcpus); 967 968 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 969 smp_rmb(); 970 return xa_load(&kvm->vcpu_array, i); 971 } 972 973 #define kvm_for_each_vcpu(idx, vcpup, kvm) \ 974 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \ 975 (atomic_read(&kvm->online_vcpus) - 1)) 976 977 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 978 { 979 struct kvm_vcpu *vcpu = NULL; 980 unsigned long i; 981 982 if (id < 0) 983 return NULL; 984 if (id < KVM_MAX_VCPUS) 985 vcpu = kvm_get_vcpu(kvm, id); 986 if (vcpu && vcpu->vcpu_id == id) 987 return vcpu; 988 kvm_for_each_vcpu(i, vcpu, kvm) 989 if (vcpu->vcpu_id == id) 990 return vcpu; 991 return NULL; 992 } 993 994 void kvm_destroy_vcpus(struct kvm *kvm); 995 996 void vcpu_load(struct kvm_vcpu *vcpu); 997 void vcpu_put(struct kvm_vcpu *vcpu); 998 999 #ifdef __KVM_HAVE_IOAPIC 1000 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 1001 void kvm_arch_post_irq_routing_update(struct kvm *kvm); 1002 #else 1003 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 1004 { 1005 } 1006 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 1007 { 1008 } 1009 #endif 1010 1011 #ifdef CONFIG_HAVE_KVM_IRQCHIP 1012 int kvm_irqfd_init(void); 1013 void kvm_irqfd_exit(void); 1014 #else 1015 static inline int kvm_irqfd_init(void) 1016 { 1017 return 0; 1018 } 1019 1020 static inline void kvm_irqfd_exit(void) 1021 { 1022 } 1023 #endif 1024 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module); 1025 void kvm_exit(void); 1026 1027 void kvm_get_kvm(struct kvm *kvm); 1028 bool kvm_get_kvm_safe(struct kvm *kvm); 1029 void kvm_put_kvm(struct kvm *kvm); 1030 bool file_is_kvm(struct file *file); 1031 void kvm_put_kvm_no_destroy(struct kvm *kvm); 1032 1033 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 1034 { 1035 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES); 1036 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 1037 lockdep_is_held(&kvm->slots_lock) || 1038 !refcount_read(&kvm->users_count)); 1039 } 1040 1041 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 1042 { 1043 return __kvm_memslots(kvm, 0); 1044 } 1045 1046 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 1047 { 1048 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 1049 1050 return __kvm_memslots(vcpu->kvm, as_id); 1051 } 1052 1053 static inline bool kvm_memslots_empty(struct kvm_memslots *slots) 1054 { 1055 return RB_EMPTY_ROOT(&slots->gfn_tree); 1056 } 1057 1058 bool kvm_are_all_memslots_empty(struct kvm *kvm); 1059 1060 #define kvm_for_each_memslot(memslot, bkt, slots) \ 1061 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \ 1062 if (WARN_ON_ONCE(!memslot->npages)) { \ 1063 } else 1064 1065 static inline 1066 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 1067 { 1068 struct kvm_memory_slot *slot; 1069 int idx = slots->node_idx; 1070 1071 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) { 1072 if (slot->id == id) 1073 return slot; 1074 } 1075 1076 return NULL; 1077 } 1078 1079 /* Iterator used for walking memslots that overlap a gfn range. */ 1080 struct kvm_memslot_iter { 1081 struct kvm_memslots *slots; 1082 struct rb_node *node; 1083 struct kvm_memory_slot *slot; 1084 }; 1085 1086 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter) 1087 { 1088 iter->node = rb_next(iter->node); 1089 if (!iter->node) 1090 return; 1091 1092 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]); 1093 } 1094 1095 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter, 1096 struct kvm_memslots *slots, 1097 gfn_t start) 1098 { 1099 int idx = slots->node_idx; 1100 struct rb_node *tmp; 1101 struct kvm_memory_slot *slot; 1102 1103 iter->slots = slots; 1104 1105 /* 1106 * Find the so called "upper bound" of a key - the first node that has 1107 * its key strictly greater than the searched one (the start gfn in our case). 1108 */ 1109 iter->node = NULL; 1110 for (tmp = slots->gfn_tree.rb_node; tmp; ) { 1111 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]); 1112 if (start < slot->base_gfn) { 1113 iter->node = tmp; 1114 tmp = tmp->rb_left; 1115 } else { 1116 tmp = tmp->rb_right; 1117 } 1118 } 1119 1120 /* 1121 * Find the slot with the lowest gfn that can possibly intersect with 1122 * the range, so we'll ideally have slot start <= range start 1123 */ 1124 if (iter->node) { 1125 /* 1126 * A NULL previous node means that the very first slot 1127 * already has a higher start gfn. 1128 * In this case slot start > range start. 1129 */ 1130 tmp = rb_prev(iter->node); 1131 if (tmp) 1132 iter->node = tmp; 1133 } else { 1134 /* a NULL node below means no slots */ 1135 iter->node = rb_last(&slots->gfn_tree); 1136 } 1137 1138 if (iter->node) { 1139 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]); 1140 1141 /* 1142 * It is possible in the slot start < range start case that the 1143 * found slot ends before or at range start (slot end <= range start) 1144 * and so it does not overlap the requested range. 1145 * 1146 * In such non-overlapping case the next slot (if it exists) will 1147 * already have slot start > range start, otherwise the logic above 1148 * would have found it instead of the current slot. 1149 */ 1150 if (iter->slot->base_gfn + iter->slot->npages <= start) 1151 kvm_memslot_iter_next(iter); 1152 } 1153 } 1154 1155 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end) 1156 { 1157 if (!iter->node) 1158 return false; 1159 1160 /* 1161 * If this slot starts beyond or at the end of the range so does 1162 * every next one 1163 */ 1164 return iter->slot->base_gfn < end; 1165 } 1166 1167 /* Iterate over each memslot at least partially intersecting [start, end) range */ 1168 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \ 1169 for (kvm_memslot_iter_start(iter, slots, start); \ 1170 kvm_memslot_iter_is_valid(iter, end); \ 1171 kvm_memslot_iter_next(iter)) 1172 1173 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 1174 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 1175 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 1176 1177 /* 1178 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 1179 * - create a new memory slot 1180 * - delete an existing memory slot 1181 * - modify an existing memory slot 1182 * -- move it in the guest physical memory space 1183 * -- just change its flags 1184 * 1185 * Since flags can be changed by some of these operations, the following 1186 * differentiation is the best we can do for __kvm_set_memory_region(): 1187 */ 1188 enum kvm_mr_change { 1189 KVM_MR_CREATE, 1190 KVM_MR_DELETE, 1191 KVM_MR_MOVE, 1192 KVM_MR_FLAGS_ONLY, 1193 }; 1194 1195 int kvm_set_memory_region(struct kvm *kvm, 1196 const struct kvm_userspace_memory_region2 *mem); 1197 int __kvm_set_memory_region(struct kvm *kvm, 1198 const struct kvm_userspace_memory_region2 *mem); 1199 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 1200 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 1201 int kvm_arch_prepare_memory_region(struct kvm *kvm, 1202 const struct kvm_memory_slot *old, 1203 struct kvm_memory_slot *new, 1204 enum kvm_mr_change change); 1205 void kvm_arch_commit_memory_region(struct kvm *kvm, 1206 struct kvm_memory_slot *old, 1207 const struct kvm_memory_slot *new, 1208 enum kvm_mr_change change); 1209 /* flush all memory translations */ 1210 void kvm_arch_flush_shadow_all(struct kvm *kvm); 1211 /* flush memory translations pointing to 'slot' */ 1212 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 1213 struct kvm_memory_slot *slot); 1214 1215 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, 1216 struct page **pages, int nr_pages); 1217 1218 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write); 1219 static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1220 { 1221 return __gfn_to_page(kvm, gfn, true); 1222 } 1223 1224 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 1225 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 1226 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 1227 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 1228 bool *writable); 1229 1230 static inline void kvm_release_page_unused(struct page *page) 1231 { 1232 if (!page) 1233 return; 1234 1235 put_page(page); 1236 } 1237 1238 void kvm_release_page_clean(struct page *page); 1239 void kvm_release_page_dirty(struct page *page); 1240 1241 static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page, 1242 bool unused, bool dirty) 1243 { 1244 lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused); 1245 1246 if (!page) 1247 return; 1248 1249 /* 1250 * If the page that KVM got from the *primary MMU* is writable, and KVM 1251 * installed or reused a SPTE, mark the page/folio dirty. Note, this 1252 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if 1253 * the GFN is write-protected. Folios can't be safely marked dirty 1254 * outside of mmu_lock as doing so could race with writeback on the 1255 * folio. As a result, KVM can't mark folios dirty in the fast page 1256 * fault handler, and so KVM must (somewhat) speculatively mark the 1257 * folio dirty if KVM could locklessly make the SPTE writable. 1258 */ 1259 if (unused) 1260 kvm_release_page_unused(page); 1261 else if (dirty) 1262 kvm_release_page_dirty(page); 1263 else 1264 kvm_release_page_clean(page); 1265 } 1266 1267 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, 1268 unsigned int foll, bool *writable, 1269 struct page **refcounted_page); 1270 1271 static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 1272 bool write, bool *writable, 1273 struct page **refcounted_page) 1274 { 1275 return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, 1276 write ? FOLL_WRITE : 0, writable, refcounted_page); 1277 } 1278 1279 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1280 int len); 1281 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 1282 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1283 void *data, unsigned long len); 1284 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1285 void *data, unsigned int offset, 1286 unsigned long len); 1287 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1288 int offset, int len); 1289 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1290 unsigned long len); 1291 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1292 void *data, unsigned long len); 1293 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1294 void *data, unsigned int offset, 1295 unsigned long len); 1296 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1297 gpa_t gpa, unsigned long len); 1298 1299 #define __kvm_get_guest(kvm, gfn, offset, v) \ 1300 ({ \ 1301 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1302 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1303 int __ret = -EFAULT; \ 1304 \ 1305 if (!kvm_is_error_hva(__addr)) \ 1306 __ret = get_user(v, __uaddr); \ 1307 __ret; \ 1308 }) 1309 1310 #define kvm_get_guest(kvm, gpa, v) \ 1311 ({ \ 1312 gpa_t __gpa = gpa; \ 1313 struct kvm *__kvm = kvm; \ 1314 \ 1315 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1316 offset_in_page(__gpa), v); \ 1317 }) 1318 1319 #define __kvm_put_guest(kvm, gfn, offset, v) \ 1320 ({ \ 1321 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 1322 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 1323 int __ret = -EFAULT; \ 1324 \ 1325 if (!kvm_is_error_hva(__addr)) \ 1326 __ret = put_user(v, __uaddr); \ 1327 if (!__ret) \ 1328 mark_page_dirty(kvm, gfn); \ 1329 __ret; \ 1330 }) 1331 1332 #define kvm_put_guest(kvm, gpa, v) \ 1333 ({ \ 1334 gpa_t __gpa = gpa; \ 1335 struct kvm *__kvm = kvm; \ 1336 \ 1337 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 1338 offset_in_page(__gpa), v); \ 1339 }) 1340 1341 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 1342 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 1343 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 1344 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 1345 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn); 1346 void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 1347 1348 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map, 1349 bool writable); 1350 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map); 1351 1352 static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, 1353 struct kvm_host_map *map) 1354 { 1355 return __kvm_vcpu_map(vcpu, gpa, map, true); 1356 } 1357 1358 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa, 1359 struct kvm_host_map *map) 1360 { 1361 return __kvm_vcpu_map(vcpu, gpa, map, false); 1362 } 1363 1364 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 1365 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 1366 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 1367 int len); 1368 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1369 unsigned long len); 1370 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 1371 unsigned long len); 1372 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 1373 int offset, int len); 1374 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1375 unsigned long len); 1376 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 1377 1378 /** 1379 * kvm_gpc_init - initialize gfn_to_pfn_cache. 1380 * 1381 * @gpc: struct gfn_to_pfn_cache object. 1382 * @kvm: pointer to kvm instance. 1383 * 1384 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the 1385 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by 1386 * the caller before init). 1387 */ 1388 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm); 1389 1390 /** 1391 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest 1392 * physical address. 1393 * 1394 * @gpc: struct gfn_to_pfn_cache object. 1395 * @gpa: guest physical address to map. 1396 * @len: sanity check; the range being access must fit a single page. 1397 * 1398 * @return: 0 for success. 1399 * -EINVAL for a mapping which would cross a page boundary. 1400 * -EFAULT for an untranslatable guest physical address. 1401 * 1402 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for 1403 * invalidations to be processed. Callers are required to use kvm_gpc_check() 1404 * to ensure that the cache is valid before accessing the target page. 1405 */ 1406 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len); 1407 1408 /** 1409 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA. 1410 * 1411 * @gpc: struct gfn_to_pfn_cache object. 1412 * @hva: userspace virtual address to map. 1413 * @len: sanity check; the range being access must fit a single page. 1414 * 1415 * @return: 0 for success. 1416 * -EINVAL for a mapping which would cross a page boundary. 1417 * -EFAULT for an untranslatable guest physical address. 1418 * 1419 * The semantics of this function are the same as those of kvm_gpc_activate(). It 1420 * merely bypasses a layer of address translation. 1421 */ 1422 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len); 1423 1424 /** 1425 * kvm_gpc_check - check validity of a gfn_to_pfn_cache. 1426 * 1427 * @gpc: struct gfn_to_pfn_cache object. 1428 * @len: sanity check; the range being access must fit a single page. 1429 * 1430 * @return: %true if the cache is still valid and the address matches. 1431 * %false if the cache is not valid. 1432 * 1433 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock 1434 * while calling this function, and then continue to hold the lock until the 1435 * access is complete. 1436 * 1437 * Callers in IN_GUEST_MODE may do so without locking, although they should 1438 * still hold a read lock on kvm->scru for the memslot checks. 1439 */ 1440 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len); 1441 1442 /** 1443 * kvm_gpc_refresh - update a previously initialized cache. 1444 * 1445 * @gpc: struct gfn_to_pfn_cache object. 1446 * @len: sanity check; the range being access must fit a single page. 1447 * 1448 * @return: 0 for success. 1449 * -EINVAL for a mapping which would cross a page boundary. 1450 * -EFAULT for an untranslatable guest physical address. 1451 * 1452 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful 1453 * return from this function does not mean the page can be immediately 1454 * accessed because it may have raced with an invalidation. Callers must 1455 * still lock and check the cache status, as this function does not return 1456 * with the lock still held to permit access. 1457 */ 1458 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len); 1459 1460 /** 1461 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache. 1462 * 1463 * @gpc: struct gfn_to_pfn_cache object. 1464 * 1465 * This removes a cache from the VM's list to be processed on MMU notifier 1466 * invocation. 1467 */ 1468 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc); 1469 1470 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc) 1471 { 1472 return gpc->active && !kvm_is_error_gpa(gpc->gpa); 1473 } 1474 1475 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc) 1476 { 1477 return gpc->active && kvm_is_error_gpa(gpc->gpa); 1478 } 1479 1480 void kvm_sigset_activate(struct kvm_vcpu *vcpu); 1481 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 1482 1483 void kvm_vcpu_halt(struct kvm_vcpu *vcpu); 1484 bool kvm_vcpu_block(struct kvm_vcpu *vcpu); 1485 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 1486 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 1487 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 1488 void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 1489 int kvm_vcpu_yield_to(struct kvm_vcpu *target); 1490 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode); 1491 1492 void kvm_flush_remote_tlbs(struct kvm *kvm); 1493 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1494 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, 1495 const struct kvm_memory_slot *memslot); 1496 1497 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 1498 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 1499 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min); 1500 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 1501 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 1502 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 1503 #endif 1504 1505 void kvm_mmu_invalidate_begin(struct kvm *kvm); 1506 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end); 1507 void kvm_mmu_invalidate_end(struct kvm *kvm); 1508 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 1509 1510 long kvm_arch_dev_ioctl(struct file *filp, 1511 unsigned int ioctl, unsigned long arg); 1512 long kvm_arch_vcpu_ioctl(struct file *filp, 1513 unsigned int ioctl, unsigned long arg); 1514 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 1515 1516 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 1517 1518 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1519 struct kvm_memory_slot *slot, 1520 gfn_t gfn_offset, 1521 unsigned long mask); 1522 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1523 1524 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1525 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1526 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1527 int *is_dirty, struct kvm_memory_slot **memslot); 1528 #endif 1529 1530 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1531 bool line_status); 1532 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1533 struct kvm_enable_cap *cap); 1534 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg); 1535 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 1536 unsigned long arg); 1537 1538 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1539 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1540 1541 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1542 struct kvm_translation *tr); 1543 1544 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1545 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1546 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1547 struct kvm_sregs *sregs); 1548 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1549 struct kvm_sregs *sregs); 1550 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1551 struct kvm_mp_state *mp_state); 1552 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1553 struct kvm_mp_state *mp_state); 1554 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1555 struct kvm_guest_debug *dbg); 1556 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1557 1558 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1559 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1560 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1561 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1562 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1563 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1564 1565 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1566 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1567 #endif 1568 1569 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1570 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1571 #else 1572 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {} 1573 #endif 1574 1575 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 1576 /* 1577 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under 1578 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of 1579 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling 1580 * sequence, and at the end of the generic hardware disabling sequence. 1581 */ 1582 void kvm_arch_enable_virtualization(void); 1583 void kvm_arch_disable_virtualization(void); 1584 /* 1585 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to 1586 * do the actual twiddling of hardware bits. The hooks are called on all 1587 * online CPUs when KVM enables/disabled virtualization, and on a single CPU 1588 * when that CPU is onlined/offlined (including for Resume/Suspend). 1589 */ 1590 int kvm_arch_enable_virtualization_cpu(void); 1591 void kvm_arch_disable_virtualization_cpu(void); 1592 #endif 1593 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1594 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1595 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1596 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1597 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1598 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu); 1599 int kvm_arch_post_init_vm(struct kvm *kvm); 1600 void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1601 void kvm_arch_create_vm_debugfs(struct kvm *kvm); 1602 1603 #ifndef __KVM_HAVE_ARCH_VM_ALLOC 1604 /* 1605 * All architectures that want to use vzalloc currently also 1606 * need their own kvm_arch_alloc_vm implementation. 1607 */ 1608 static inline struct kvm *kvm_arch_alloc_vm(void) 1609 { 1610 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT); 1611 } 1612 #endif 1613 1614 static inline void __kvm_arch_free_vm(struct kvm *kvm) 1615 { 1616 kvfree(kvm); 1617 } 1618 1619 #ifndef __KVM_HAVE_ARCH_VM_FREE 1620 static inline void kvm_arch_free_vm(struct kvm *kvm) 1621 { 1622 __kvm_arch_free_vm(kvm); 1623 } 1624 #endif 1625 1626 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS 1627 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm) 1628 { 1629 return -ENOTSUPP; 1630 } 1631 #else 1632 int kvm_arch_flush_remote_tlbs(struct kvm *kvm); 1633 #endif 1634 1635 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE 1636 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, 1637 gfn_t gfn, u64 nr_pages) 1638 { 1639 return -EOPNOTSUPP; 1640 } 1641 #else 1642 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages); 1643 #endif 1644 1645 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1646 void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1647 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1648 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1649 #else 1650 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1651 { 1652 } 1653 1654 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1655 { 1656 } 1657 1658 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1659 { 1660 return false; 1661 } 1662 #endif 1663 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1664 void kvm_arch_start_assignment(struct kvm *kvm); 1665 void kvm_arch_end_assignment(struct kvm *kvm); 1666 bool kvm_arch_has_assigned_device(struct kvm *kvm); 1667 #else 1668 static inline void kvm_arch_start_assignment(struct kvm *kvm) 1669 { 1670 } 1671 1672 static inline void kvm_arch_end_assignment(struct kvm *kvm) 1673 { 1674 } 1675 1676 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1677 { 1678 return false; 1679 } 1680 #endif 1681 1682 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1683 { 1684 #ifdef __KVM_HAVE_ARCH_WQP 1685 return vcpu->arch.waitp; 1686 #else 1687 return &vcpu->wait; 1688 #endif 1689 } 1690 1691 /* 1692 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns 1693 * true if the vCPU was blocking and was awakened, false otherwise. 1694 */ 1695 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 1696 { 1697 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 1698 } 1699 1700 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu) 1701 { 1702 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu)); 1703 } 1704 1705 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1706 /* 1707 * returns true if the virtual interrupt controller is initialized and 1708 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1709 * controller is dynamically instantiated and this is not always true. 1710 */ 1711 bool kvm_arch_intc_initialized(struct kvm *kvm); 1712 #else 1713 static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1714 { 1715 return true; 1716 } 1717 #endif 1718 1719 #ifdef CONFIG_GUEST_PERF_EVENTS 1720 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu); 1721 1722 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)); 1723 void kvm_unregister_perf_callbacks(void); 1724 #else 1725 static inline void kvm_register_perf_callbacks(void *ign) {} 1726 static inline void kvm_unregister_perf_callbacks(void) {} 1727 #endif /* CONFIG_GUEST_PERF_EVENTS */ 1728 1729 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1730 void kvm_arch_destroy_vm(struct kvm *kvm); 1731 void kvm_arch_sync_events(struct kvm *kvm); 1732 1733 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1734 1735 struct kvm_irq_ack_notifier { 1736 struct hlist_node link; 1737 unsigned gsi; 1738 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1739 }; 1740 1741 int kvm_irq_map_gsi(struct kvm *kvm, 1742 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1743 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1744 1745 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1746 bool line_status); 1747 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1748 int irq_source_id, int level, bool line_status); 1749 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1750 struct kvm *kvm, int irq_source_id, 1751 int level, bool line_status); 1752 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1753 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1754 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1755 void kvm_register_irq_ack_notifier(struct kvm *kvm, 1756 struct kvm_irq_ack_notifier *kian); 1757 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1758 struct kvm_irq_ack_notifier *kian); 1759 int kvm_request_irq_source_id(struct kvm *kvm); 1760 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1761 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1762 1763 /* 1764 * Returns a pointer to the memslot if it contains gfn. 1765 * Otherwise returns NULL. 1766 */ 1767 static inline struct kvm_memory_slot * 1768 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1769 { 1770 if (!slot) 1771 return NULL; 1772 1773 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1774 return slot; 1775 else 1776 return NULL; 1777 } 1778 1779 /* 1780 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL. 1781 * 1782 * With "approx" set returns the memslot also when the address falls 1783 * in a hole. In that case one of the memslots bordering the hole is 1784 * returned. 1785 */ 1786 static inline struct kvm_memory_slot * 1787 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1788 { 1789 struct kvm_memory_slot *slot; 1790 struct rb_node *node; 1791 int idx = slots->node_idx; 1792 1793 slot = NULL; 1794 for (node = slots->gfn_tree.rb_node; node; ) { 1795 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]); 1796 if (gfn >= slot->base_gfn) { 1797 if (gfn < slot->base_gfn + slot->npages) 1798 return slot; 1799 node = node->rb_right; 1800 } else 1801 node = node->rb_left; 1802 } 1803 1804 return approx ? slot : NULL; 1805 } 1806 1807 static inline struct kvm_memory_slot * 1808 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx) 1809 { 1810 struct kvm_memory_slot *slot; 1811 1812 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot); 1813 slot = try_get_memslot(slot, gfn); 1814 if (slot) 1815 return slot; 1816 1817 slot = search_memslots(slots, gfn, approx); 1818 if (slot) { 1819 atomic_long_set(&slots->last_used_slot, (unsigned long)slot); 1820 return slot; 1821 } 1822 1823 return NULL; 1824 } 1825 1826 /* 1827 * __gfn_to_memslot() and its descendants are here to allow arch code to inline 1828 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline 1829 * because that would bloat other code too much. 1830 */ 1831 static inline struct kvm_memory_slot * 1832 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1833 { 1834 return ____gfn_to_memslot(slots, gfn, false); 1835 } 1836 1837 static inline unsigned long 1838 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1839 { 1840 /* 1841 * The index was checked originally in search_memslots. To avoid 1842 * that a malicious guest builds a Spectre gadget out of e.g. page 1843 * table walks, do not let the processor speculate loads outside 1844 * the guest's registered memslots. 1845 */ 1846 unsigned long offset = gfn - slot->base_gfn; 1847 offset = array_index_nospec(offset, slot->npages); 1848 return slot->userspace_addr + offset * PAGE_SIZE; 1849 } 1850 1851 static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1852 { 1853 return gfn_to_memslot(kvm, gfn)->id; 1854 } 1855 1856 static inline gfn_t 1857 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1858 { 1859 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1860 1861 return slot->base_gfn + gfn_offset; 1862 } 1863 1864 static inline gpa_t gfn_to_gpa(gfn_t gfn) 1865 { 1866 return (gpa_t)gfn << PAGE_SHIFT; 1867 } 1868 1869 static inline gfn_t gpa_to_gfn(gpa_t gpa) 1870 { 1871 return (gfn_t)(gpa >> PAGE_SHIFT); 1872 } 1873 1874 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1875 { 1876 return (hpa_t)pfn << PAGE_SHIFT; 1877 } 1878 1879 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa) 1880 { 1881 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1882 1883 return !kvm_is_error_hva(hva); 1884 } 1885 1886 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc) 1887 { 1888 lockdep_assert_held(&gpc->lock); 1889 1890 if (!gpc->memslot) 1891 return; 1892 1893 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa)); 1894 } 1895 1896 enum kvm_stat_kind { 1897 KVM_STAT_VM, 1898 KVM_STAT_VCPU, 1899 }; 1900 1901 struct kvm_stat_data { 1902 struct kvm *kvm; 1903 const struct _kvm_stats_desc *desc; 1904 enum kvm_stat_kind kind; 1905 }; 1906 1907 struct _kvm_stats_desc { 1908 struct kvm_stats_desc desc; 1909 char name[KVM_STATS_NAME_SIZE]; 1910 }; 1911 1912 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1913 .flags = type | unit | base | \ 1914 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1915 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1916 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1917 .exponent = exp, \ 1918 .size = sz, \ 1919 .bucket_size = bsz 1920 1921 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1922 { \ 1923 { \ 1924 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1925 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1926 }, \ 1927 .name = #stat, \ 1928 } 1929 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1930 { \ 1931 { \ 1932 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1933 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1934 }, \ 1935 .name = #stat, \ 1936 } 1937 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1938 { \ 1939 { \ 1940 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1941 .offset = offsetof(struct kvm_vm_stat, stat) \ 1942 }, \ 1943 .name = #stat, \ 1944 } 1945 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1946 { \ 1947 { \ 1948 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1949 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1950 }, \ 1951 .name = #stat, \ 1952 } 1953 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1954 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1955 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1956 1957 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1958 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1959 unit, base, exponent, 1, 0) 1960 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1961 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1962 unit, base, exponent, 1, 0) 1963 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1964 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1965 unit, base, exponent, 1, 0) 1966 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1967 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1968 unit, base, exponent, sz, bsz) 1969 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1970 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1971 unit, base, exponent, sz, 0) 1972 1973 /* Cumulative counter, read/write */ 1974 #define STATS_DESC_COUNTER(SCOPE, name) \ 1975 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1976 KVM_STATS_BASE_POW10, 0) 1977 /* Instantaneous counter, read only */ 1978 #define STATS_DESC_ICOUNTER(SCOPE, name) \ 1979 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1980 KVM_STATS_BASE_POW10, 0) 1981 /* Peak counter, read/write */ 1982 #define STATS_DESC_PCOUNTER(SCOPE, name) \ 1983 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1984 KVM_STATS_BASE_POW10, 0) 1985 1986 /* Instantaneous boolean value, read only */ 1987 #define STATS_DESC_IBOOLEAN(SCOPE, name) \ 1988 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1989 KVM_STATS_BASE_POW10, 0) 1990 /* Peak (sticky) boolean value, read/write */ 1991 #define STATS_DESC_PBOOLEAN(SCOPE, name) \ 1992 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \ 1993 KVM_STATS_BASE_POW10, 0) 1994 1995 /* Cumulative time in nanosecond */ 1996 #define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1997 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1998 KVM_STATS_BASE_POW10, -9) 1999 /* Linear histogram for time in nanosecond */ 2000 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 2001 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2002 KVM_STATS_BASE_POW10, -9, sz, bsz) 2003 /* Logarithmic histogram for time in nanosecond */ 2004 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 2005 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 2006 KVM_STATS_BASE_POW10, -9, sz) 2007 2008 #define KVM_GENERIC_VM_STATS() \ 2009 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 2010 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 2011 2012 #define KVM_GENERIC_VCPU_STATS() \ 2013 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 2014 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 2015 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 2016 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 2017 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 2018 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 2019 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 2020 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 2021 HALT_POLL_HIST_COUNT), \ 2022 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 2023 HALT_POLL_HIST_COUNT), \ 2024 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 2025 HALT_POLL_HIST_COUNT), \ 2026 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking) 2027 2028 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 2029 const struct _kvm_stats_desc *desc, 2030 void *stats, size_t size_stats, 2031 char __user *user_buffer, size_t size, loff_t *offset); 2032 2033 /** 2034 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 2035 * statistics data. 2036 * 2037 * @data: start address of the stats data 2038 * @size: the number of bucket of the stats data 2039 * @value: the new value used to update the linear histogram's bucket 2040 * @bucket_size: the size (width) of a bucket 2041 */ 2042 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 2043 u64 value, size_t bucket_size) 2044 { 2045 size_t index = div64_u64(value, bucket_size); 2046 2047 index = min(index, size - 1); 2048 ++data[index]; 2049 } 2050 2051 /** 2052 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 2053 * statistics data. 2054 * 2055 * @data: start address of the stats data 2056 * @size: the number of bucket of the stats data 2057 * @value: the new value used to update the logarithmic histogram's bucket 2058 */ 2059 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 2060 { 2061 size_t index = fls64(value); 2062 2063 index = min(index, size - 1); 2064 ++data[index]; 2065 } 2066 2067 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 2068 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 2069 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 2070 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 2071 2072 2073 extern const struct kvm_stats_header kvm_vm_stats_header; 2074 extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 2075 extern const struct kvm_stats_header kvm_vcpu_stats_header; 2076 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 2077 2078 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER 2079 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq) 2080 { 2081 if (unlikely(kvm->mmu_invalidate_in_progress)) 2082 return 1; 2083 /* 2084 * Ensure the read of mmu_invalidate_in_progress happens before 2085 * the read of mmu_invalidate_seq. This interacts with the 2086 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure 2087 * that the caller either sees the old (non-zero) value of 2088 * mmu_invalidate_in_progress or the new (incremented) value of 2089 * mmu_invalidate_seq. 2090 * 2091 * PowerPC Book3s HV KVM calls this under a per-page lock rather 2092 * than under kvm->mmu_lock, for scalability, so can't rely on 2093 * kvm->mmu_lock to keep things ordered. 2094 */ 2095 smp_rmb(); 2096 if (kvm->mmu_invalidate_seq != mmu_seq) 2097 return 1; 2098 return 0; 2099 } 2100 2101 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm, 2102 unsigned long mmu_seq, 2103 gfn_t gfn) 2104 { 2105 lockdep_assert_held(&kvm->mmu_lock); 2106 /* 2107 * If mmu_invalidate_in_progress is non-zero, then the range maintained 2108 * by kvm_mmu_notifier_invalidate_range_start contains all addresses 2109 * that might be being invalidated. Note that it may include some false 2110 * positives, due to shortcuts when handing concurrent invalidations. 2111 */ 2112 if (unlikely(kvm->mmu_invalidate_in_progress)) { 2113 /* 2114 * Dropping mmu_lock after bumping mmu_invalidate_in_progress 2115 * but before updating the range is a KVM bug. 2116 */ 2117 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA || 2118 kvm->mmu_invalidate_range_end == INVALID_GPA)) 2119 return 1; 2120 2121 if (gfn >= kvm->mmu_invalidate_range_start && 2122 gfn < kvm->mmu_invalidate_range_end) 2123 return 1; 2124 } 2125 2126 if (kvm->mmu_invalidate_seq != mmu_seq) 2127 return 1; 2128 return 0; 2129 } 2130 2131 /* 2132 * This lockless version of the range-based retry check *must* be paired with a 2133 * call to the locked version after acquiring mmu_lock, i.e. this is safe to 2134 * use only as a pre-check to avoid contending mmu_lock. This version *will* 2135 * get false negatives and false positives. 2136 */ 2137 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm, 2138 unsigned long mmu_seq, 2139 gfn_t gfn) 2140 { 2141 /* 2142 * Use READ_ONCE() to ensure the in-progress flag and sequence counter 2143 * are always read from memory, e.g. so that checking for retry in a 2144 * loop won't result in an infinite retry loop. Don't force loads for 2145 * start+end, as the key to avoiding infinite retry loops is observing 2146 * the 1=>0 transition of in-progress, i.e. getting false negatives 2147 * due to stale start+end values is acceptable. 2148 */ 2149 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) && 2150 gfn >= kvm->mmu_invalidate_range_start && 2151 gfn < kvm->mmu_invalidate_range_end) 2152 return true; 2153 2154 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq; 2155 } 2156 #endif 2157 2158 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2159 2160 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 2161 2162 bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 2163 int kvm_set_irq_routing(struct kvm *kvm, 2164 const struct kvm_irq_routing_entry *entries, 2165 unsigned nr, 2166 unsigned flags); 2167 int kvm_init_irq_routing(struct kvm *kvm); 2168 int kvm_set_routing_entry(struct kvm *kvm, 2169 struct kvm_kernel_irq_routing_entry *e, 2170 const struct kvm_irq_routing_entry *ue); 2171 void kvm_free_irq_routing(struct kvm *kvm); 2172 2173 #else 2174 2175 static inline void kvm_free_irq_routing(struct kvm *kvm) {} 2176 2177 static inline int kvm_init_irq_routing(struct kvm *kvm) 2178 { 2179 return 0; 2180 } 2181 2182 #endif 2183 2184 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 2185 2186 void kvm_eventfd_init(struct kvm *kvm); 2187 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 2188 2189 #ifdef CONFIG_HAVE_KVM_IRQCHIP 2190 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 2191 void kvm_irqfd_release(struct kvm *kvm); 2192 bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2193 unsigned int irqchip, 2194 unsigned int pin); 2195 void kvm_irq_routing_update(struct kvm *); 2196 #else 2197 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 2198 { 2199 return -EINVAL; 2200 } 2201 2202 static inline void kvm_irqfd_release(struct kvm *kvm) {} 2203 2204 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm, 2205 unsigned int irqchip, 2206 unsigned int pin) 2207 { 2208 return false; 2209 } 2210 #endif /* CONFIG_HAVE_KVM_IRQCHIP */ 2211 2212 void kvm_arch_irq_routing_update(struct kvm *kvm); 2213 2214 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu) 2215 { 2216 /* 2217 * Ensure the rest of the request is published to kvm_check_request's 2218 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 2219 */ 2220 smp_wmb(); 2221 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2222 } 2223 2224 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 2225 { 2226 /* 2227 * Request that don't require vCPU action should never be logged in 2228 * vcpu->requests. The vCPU won't clear the request, so it will stay 2229 * logged indefinitely and prevent the vCPU from entering the guest. 2230 */ 2231 BUILD_BUG_ON(!__builtin_constant_p(req) || 2232 (req & KVM_REQUEST_NO_ACTION)); 2233 2234 __kvm_make_request(req, vcpu); 2235 } 2236 2237 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 2238 { 2239 return READ_ONCE(vcpu->requests); 2240 } 2241 2242 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 2243 { 2244 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2245 } 2246 2247 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 2248 { 2249 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 2250 } 2251 2252 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 2253 { 2254 if (kvm_test_request(req, vcpu)) { 2255 kvm_clear_request(req, vcpu); 2256 2257 /* 2258 * Ensure the rest of the request is visible to kvm_check_request's 2259 * caller. Paired with the smp_wmb in kvm_make_request. 2260 */ 2261 smp_mb__after_atomic(); 2262 return true; 2263 } else { 2264 return false; 2265 } 2266 } 2267 2268 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 2269 extern bool kvm_rebooting; 2270 #endif 2271 2272 extern unsigned int halt_poll_ns; 2273 extern unsigned int halt_poll_ns_grow; 2274 extern unsigned int halt_poll_ns_grow_start; 2275 extern unsigned int halt_poll_ns_shrink; 2276 2277 struct kvm_device { 2278 const struct kvm_device_ops *ops; 2279 struct kvm *kvm; 2280 void *private; 2281 struct list_head vm_node; 2282 }; 2283 2284 /* create, destroy, and name are mandatory */ 2285 struct kvm_device_ops { 2286 const char *name; 2287 2288 /* 2289 * create is called holding kvm->lock and any operations not suitable 2290 * to do while holding the lock should be deferred to init (see 2291 * below). 2292 */ 2293 int (*create)(struct kvm_device *dev, u32 type); 2294 2295 /* 2296 * init is called after create if create is successful and is called 2297 * outside of holding kvm->lock. 2298 */ 2299 void (*init)(struct kvm_device *dev); 2300 2301 /* 2302 * Destroy is responsible for freeing dev. 2303 * 2304 * Destroy may be called before or after destructors are called 2305 * on emulated I/O regions, depending on whether a reference is 2306 * held by a vcpu or other kvm component that gets destroyed 2307 * after the emulated I/O. 2308 */ 2309 void (*destroy)(struct kvm_device *dev); 2310 2311 /* 2312 * Release is an alternative method to free the device. It is 2313 * called when the device file descriptor is closed. Once 2314 * release is called, the destroy method will not be called 2315 * anymore as the device is removed from the device list of 2316 * the VM. kvm->lock is held. 2317 */ 2318 void (*release)(struct kvm_device *dev); 2319 2320 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2321 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2322 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 2323 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 2324 unsigned long arg); 2325 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 2326 }; 2327 2328 struct kvm_device *kvm_device_from_filp(struct file *filp); 2329 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 2330 void kvm_unregister_device_ops(u32 type); 2331 2332 extern struct kvm_device_ops kvm_mpic_ops; 2333 extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 2334 extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 2335 2336 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2337 2338 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2339 { 2340 vcpu->spin_loop.in_spin_loop = val; 2341 } 2342 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2343 { 2344 vcpu->spin_loop.dy_eligible = val; 2345 } 2346 2347 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2348 2349 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 2350 { 2351 } 2352 2353 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 2354 { 2355 } 2356 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 2357 2358 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 2359 { 2360 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 2361 !(memslot->flags & KVM_MEMSLOT_INVALID)); 2362 } 2363 2364 struct kvm_vcpu *kvm_get_running_vcpu(void); 2365 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 2366 2367 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 2368 bool kvm_arch_has_irq_bypass(void); 2369 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 2370 struct irq_bypass_producer *); 2371 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 2372 struct irq_bypass_producer *); 2373 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 2374 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 2375 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 2376 uint32_t guest_irq, bool set); 2377 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *, 2378 struct kvm_kernel_irq_routing_entry *); 2379 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 2380 2381 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 2382 /* If we wakeup during the poll time, was it a sucessful poll? */ 2383 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2384 { 2385 return vcpu->valid_wakeup; 2386 } 2387 2388 #else 2389 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 2390 { 2391 return true; 2392 } 2393 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 2394 2395 #ifdef CONFIG_HAVE_KVM_NO_POLL 2396 /* Callback that tells if we must not poll */ 2397 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 2398 #else 2399 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 2400 { 2401 return false; 2402 } 2403 #endif /* CONFIG_HAVE_KVM_NO_POLL */ 2404 2405 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 2406 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2407 unsigned int ioctl, unsigned long arg); 2408 #else 2409 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 2410 unsigned int ioctl, 2411 unsigned long arg) 2412 { 2413 return -ENOIOCTLCMD; 2414 } 2415 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 2416 2417 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm); 2418 2419 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 2420 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 2421 #else 2422 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 2423 { 2424 return 0; 2425 } 2426 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 2427 2428 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 2429 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 2430 { 2431 vcpu->run->exit_reason = KVM_EXIT_INTR; 2432 vcpu->stat.signal_exits++; 2433 } 2434 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 2435 2436 /* 2437 * If more than one page is being (un)accounted, @virt must be the address of 2438 * the first page of a block of pages what were allocated together (i.e 2439 * accounted together). 2440 * 2441 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state() 2442 * is thread-safe. 2443 */ 2444 static inline void kvm_account_pgtable_pages(void *virt, int nr) 2445 { 2446 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr); 2447 } 2448 2449 /* 2450 * This defines how many reserved entries we want to keep before we 2451 * kick the vcpu to the userspace to avoid dirty ring full. This 2452 * value can be tuned to higher if e.g. PML is enabled on the host. 2453 */ 2454 #define KVM_DIRTY_RING_RSVD_ENTRIES 64 2455 2456 /* Max number of entries allowed for each kvm dirty ring */ 2457 #define KVM_DIRTY_RING_MAX_ENTRIES 65536 2458 2459 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu, 2460 gpa_t gpa, gpa_t size, 2461 bool is_write, bool is_exec, 2462 bool is_private) 2463 { 2464 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT; 2465 vcpu->run->memory_fault.gpa = gpa; 2466 vcpu->run->memory_fault.size = size; 2467 2468 /* RWX flags are not (yet) defined or communicated to userspace. */ 2469 vcpu->run->memory_fault.flags = 0; 2470 if (is_private) 2471 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE; 2472 } 2473 2474 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 2475 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn) 2476 { 2477 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn)); 2478 } 2479 2480 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, 2481 unsigned long mask, unsigned long attrs); 2482 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm, 2483 struct kvm_gfn_range *range); 2484 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm, 2485 struct kvm_gfn_range *range); 2486 2487 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2488 { 2489 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) && 2490 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE; 2491 } 2492 #else 2493 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn) 2494 { 2495 return false; 2496 } 2497 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ 2498 2499 #ifdef CONFIG_KVM_PRIVATE_MEM 2500 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot, 2501 gfn_t gfn, kvm_pfn_t *pfn, struct page **page, 2502 int *max_order); 2503 #else 2504 static inline int kvm_gmem_get_pfn(struct kvm *kvm, 2505 struct kvm_memory_slot *slot, gfn_t gfn, 2506 kvm_pfn_t *pfn, struct page **page, 2507 int *max_order) 2508 { 2509 KVM_BUG_ON(1, kvm); 2510 return -EIO; 2511 } 2512 #endif /* CONFIG_KVM_PRIVATE_MEM */ 2513 2514 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 2515 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order); 2516 #endif 2517 2518 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM 2519 /** 2520 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data 2521 * 2522 * @kvm: KVM instance 2523 * @gfn: starting GFN to be populated 2524 * @src: userspace-provided buffer containing data to copy into GFN range 2525 * (passed to @post_populate, and incremented on each iteration 2526 * if not NULL) 2527 * @npages: number of pages to copy from userspace-buffer 2528 * @post_populate: callback to issue for each gmem page that backs the GPA 2529 * range 2530 * @opaque: opaque data to pass to @post_populate callback 2531 * 2532 * This is primarily intended for cases where a gmem-backed GPA range needs 2533 * to be initialized with userspace-provided data prior to being mapped into 2534 * the guest as a private page. This should be called with the slots->lock 2535 * held so that caller-enforced invariants regarding the expected memory 2536 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES. 2537 * 2538 * Returns the number of pages that were populated. 2539 */ 2540 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2541 void __user *src, int order, void *opaque); 2542 2543 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages, 2544 kvm_gmem_populate_cb post_populate, void *opaque); 2545 #endif 2546 2547 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 2548 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); 2549 #endif 2550 2551 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY 2552 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, 2553 struct kvm_pre_fault_memory *range); 2554 #endif 2555 2556 #endif 2557