1 #ifndef _LINUX_KERNEL_H 2 #define _LINUX_KERNEL_H 3 4 5 #include <stdarg.h> 6 #include <linux/linkage.h> 7 #include <linux/stddef.h> 8 #include <linux/types.h> 9 #include <linux/compiler.h> 10 #include <linux/bitops.h> 11 #include <linux/log2.h> 12 #include <linux/typecheck.h> 13 #include <linux/printk.h> 14 #include <linux/dynamic_debug.h> 15 #include <asm/byteorder.h> 16 #include <uapi/linux/kernel.h> 17 18 #define USHRT_MAX ((u16)(~0U)) 19 #define SHRT_MAX ((s16)(USHRT_MAX>>1)) 20 #define SHRT_MIN ((s16)(-SHRT_MAX - 1)) 21 #define INT_MAX ((int)(~0U>>1)) 22 #define INT_MIN (-INT_MAX - 1) 23 #define UINT_MAX (~0U) 24 #define LONG_MAX ((long)(~0UL>>1)) 25 #define LONG_MIN (-LONG_MAX - 1) 26 #define ULONG_MAX (~0UL) 27 #define LLONG_MAX ((long long)(~0ULL>>1)) 28 #define LLONG_MIN (-LLONG_MAX - 1) 29 #define ULLONG_MAX (~0ULL) 30 #define SIZE_MAX (~(size_t)0) 31 32 #define STACK_MAGIC 0xdeadbeef 33 34 #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 35 36 #define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 37 #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 38 #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 39 #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 40 41 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 42 43 /* 44 * This looks more complex than it should be. But we need to 45 * get the type for the ~ right in round_down (it needs to be 46 * as wide as the result!), and we want to evaluate the macro 47 * arguments just once each. 48 */ 49 #define __round_mask(x, y) ((__typeof__(x))((y)-1)) 50 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 51 #define round_down(x, y) ((x) & ~__round_mask(x, y)) 52 53 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 54 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) 55 #define DIV_ROUND_UP_ULL(ll,d) \ 56 ({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; }) 57 58 #if BITS_PER_LONG == 32 59 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 60 #else 61 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 62 #endif 63 64 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */ 65 #define roundup(x, y) ( \ 66 { \ 67 const typeof(y) __y = y; \ 68 (((x) + (__y - 1)) / __y) * __y; \ 69 } \ 70 ) 71 #define rounddown(x, y) ( \ 72 { \ 73 typeof(x) __x = (x); \ 74 __x - (__x % (y)); \ 75 } \ 76 ) 77 78 /* 79 * Divide positive or negative dividend by positive divisor and round 80 * to closest integer. Result is undefined for negative divisors and 81 * for negative dividends if the divisor variable type is unsigned. 82 */ 83 #define DIV_ROUND_CLOSEST(x, divisor)( \ 84 { \ 85 typeof(x) __x = x; \ 86 typeof(divisor) __d = divisor; \ 87 (((typeof(x))-1) > 0 || \ 88 ((typeof(divisor))-1) > 0 || (__x) > 0) ? \ 89 (((__x) + ((__d) / 2)) / (__d)) : \ 90 (((__x) - ((__d) / 2)) / (__d)); \ 91 } \ 92 ) 93 94 /* 95 * Multiplies an integer by a fraction, while avoiding unnecessary 96 * overflow or loss of precision. 97 */ 98 #define mult_frac(x, numer, denom)( \ 99 { \ 100 typeof(x) quot = (x) / (denom); \ 101 typeof(x) rem = (x) % (denom); \ 102 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 103 } \ 104 ) 105 106 107 #define _RET_IP_ (unsigned long)__builtin_return_address(0) 108 #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 109 110 #ifdef CONFIG_LBDAF 111 # include <asm/div64.h> 112 # define sector_div(a, b) do_div(a, b) 113 #else 114 # define sector_div(n, b)( \ 115 { \ 116 int _res; \ 117 _res = (n) % (b); \ 118 (n) /= (b); \ 119 _res; \ 120 } \ 121 ) 122 #endif 123 124 /** 125 * upper_32_bits - return bits 32-63 of a number 126 * @n: the number we're accessing 127 * 128 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 129 * the "right shift count >= width of type" warning when that quantity is 130 * 32-bits. 131 */ 132 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 133 134 /** 135 * lower_32_bits - return bits 0-31 of a number 136 * @n: the number we're accessing 137 */ 138 #define lower_32_bits(n) ((u32)(n)) 139 140 struct completion; 141 struct pt_regs; 142 struct user; 143 144 #ifdef CONFIG_PREEMPT_VOLUNTARY 145 extern int _cond_resched(void); 146 # define might_resched() _cond_resched() 147 #else 148 # define might_resched() do { } while (0) 149 #endif 150 151 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 152 void __might_sleep(const char *file, int line, int preempt_offset); 153 /** 154 * might_sleep - annotation for functions that can sleep 155 * 156 * this macro will print a stack trace if it is executed in an atomic 157 * context (spinlock, irq-handler, ...). 158 * 159 * This is a useful debugging help to be able to catch problems early and not 160 * be bitten later when the calling function happens to sleep when it is not 161 * supposed to. 162 */ 163 # define might_sleep() \ 164 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 165 #else 166 static inline void __might_sleep(const char *file, int line, 167 int preempt_offset) { } 168 # define might_sleep() do { might_resched(); } while (0) 169 #endif 170 171 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 172 173 /* 174 * abs() handles unsigned and signed longs, ints, shorts and chars. For all 175 * input types abs() returns a signed long. 176 * abs() should not be used for 64-bit types (s64, u64, long long) - use abs64() 177 * for those. 178 */ 179 #define abs(x) ({ \ 180 long ret; \ 181 if (sizeof(x) == sizeof(long)) { \ 182 long __x = (x); \ 183 ret = (__x < 0) ? -__x : __x; \ 184 } else { \ 185 int __x = (x); \ 186 ret = (__x < 0) ? -__x : __x; \ 187 } \ 188 ret; \ 189 }) 190 191 #define abs64(x) ({ \ 192 s64 __x = (x); \ 193 (__x < 0) ? -__x : __x; \ 194 }) 195 196 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 197 void might_fault(void); 198 #else 199 static inline void might_fault(void) { } 200 #endif 201 202 extern struct atomic_notifier_head panic_notifier_list; 203 extern long (*panic_blink)(int state); 204 __printf(1, 2) 205 void panic(const char *fmt, ...) 206 __noreturn __cold; 207 extern void oops_enter(void); 208 extern void oops_exit(void); 209 void print_oops_end_marker(void); 210 extern int oops_may_print(void); 211 void do_exit(long error_code) 212 __noreturn; 213 void complete_and_exit(struct completion *, long) 214 __noreturn; 215 216 /* Internal, do not use. */ 217 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 218 int __must_check _kstrtol(const char *s, unsigned int base, long *res); 219 220 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 221 int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 222 223 /** 224 * kstrtoul - convert a string to an unsigned long 225 * @s: The start of the string. The string must be null-terminated, and may also 226 * include a single newline before its terminating null. The first character 227 * may also be a plus sign, but not a minus sign. 228 * @base: The number base to use. The maximum supported base is 16. If base is 229 * given as 0, then the base of the string is automatically detected with the 230 * conventional semantics - If it begins with 0x the number will be parsed as a 231 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 232 * parsed as an octal number. Otherwise it will be parsed as a decimal. 233 * @res: Where to write the result of the conversion on success. 234 * 235 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 236 * Used as a replacement for the obsolete simple_strtoull. Return code must 237 * be checked. 238 */ 239 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 240 { 241 /* 242 * We want to shortcut function call, but 243 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 244 */ 245 if (sizeof(unsigned long) == sizeof(unsigned long long) && 246 __alignof__(unsigned long) == __alignof__(unsigned long long)) 247 return kstrtoull(s, base, (unsigned long long *)res); 248 else 249 return _kstrtoul(s, base, res); 250 } 251 252 /** 253 * kstrtol - convert a string to a long 254 * @s: The start of the string. The string must be null-terminated, and may also 255 * include a single newline before its terminating null. The first character 256 * may also be a plus sign or a minus sign. 257 * @base: The number base to use. The maximum supported base is 16. If base is 258 * given as 0, then the base of the string is automatically detected with the 259 * conventional semantics - If it begins with 0x the number will be parsed as a 260 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 261 * parsed as an octal number. Otherwise it will be parsed as a decimal. 262 * @res: Where to write the result of the conversion on success. 263 * 264 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 265 * Used as a replacement for the obsolete simple_strtoull. Return code must 266 * be checked. 267 */ 268 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 269 { 270 /* 271 * We want to shortcut function call, but 272 * __builtin_types_compatible_p(long, long long) = 0. 273 */ 274 if (sizeof(long) == sizeof(long long) && 275 __alignof__(long) == __alignof__(long long)) 276 return kstrtoll(s, base, (long long *)res); 277 else 278 return _kstrtol(s, base, res); 279 } 280 281 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 282 int __must_check kstrtoint(const char *s, unsigned int base, int *res); 283 284 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 285 { 286 return kstrtoull(s, base, res); 287 } 288 289 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 290 { 291 return kstrtoll(s, base, res); 292 } 293 294 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 295 { 296 return kstrtouint(s, base, res); 297 } 298 299 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 300 { 301 return kstrtoint(s, base, res); 302 } 303 304 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 305 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 306 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 307 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 308 309 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 310 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 311 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 312 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 313 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 314 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 315 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 316 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 317 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 318 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 319 320 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 321 { 322 return kstrtoull_from_user(s, count, base, res); 323 } 324 325 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 326 { 327 return kstrtoll_from_user(s, count, base, res); 328 } 329 330 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 331 { 332 return kstrtouint_from_user(s, count, base, res); 333 } 334 335 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 336 { 337 return kstrtoint_from_user(s, count, base, res); 338 } 339 340 /* Obsolete, do not use. Use kstrto<foo> instead */ 341 342 extern unsigned long simple_strtoul(const char *,char **,unsigned int); 343 extern long simple_strtol(const char *,char **,unsigned int); 344 extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 345 extern long long simple_strtoll(const char *,char **,unsigned int); 346 #define strict_strtoul kstrtoul 347 #define strict_strtol kstrtol 348 #define strict_strtoull kstrtoull 349 #define strict_strtoll kstrtoll 350 351 extern int num_to_str(char *buf, int size, unsigned long long num); 352 353 /* lib/printf utilities */ 354 355 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 356 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 357 extern __printf(3, 4) 358 int snprintf(char *buf, size_t size, const char *fmt, ...); 359 extern __printf(3, 0) 360 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 361 extern __printf(3, 4) 362 int scnprintf(char *buf, size_t size, const char *fmt, ...); 363 extern __printf(3, 0) 364 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 365 extern __printf(2, 3) 366 char *kasprintf(gfp_t gfp, const char *fmt, ...); 367 extern char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 368 369 extern __scanf(2, 3) 370 int sscanf(const char *, const char *, ...); 371 extern __scanf(2, 0) 372 int vsscanf(const char *, const char *, va_list); 373 374 extern int get_option(char **str, int *pint); 375 extern char *get_options(const char *str, int nints, int *ints); 376 extern unsigned long long memparse(const char *ptr, char **retptr); 377 378 extern int core_kernel_text(unsigned long addr); 379 extern int core_kernel_data(unsigned long addr); 380 extern int __kernel_text_address(unsigned long addr); 381 extern int kernel_text_address(unsigned long addr); 382 extern int func_ptr_is_kernel_text(void *ptr); 383 384 struct pid; 385 extern struct pid *session_of_pgrp(struct pid *pgrp); 386 387 unsigned long int_sqrt(unsigned long); 388 389 extern void bust_spinlocks(int yes); 390 extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 391 extern int panic_timeout; 392 extern int panic_on_oops; 393 extern int panic_on_unrecovered_nmi; 394 extern int panic_on_io_nmi; 395 extern int sysctl_panic_on_stackoverflow; 396 extern const char *print_tainted(void); 397 enum lockdep_ok { 398 LOCKDEP_STILL_OK, 399 LOCKDEP_NOW_UNRELIABLE 400 }; 401 extern void add_taint(unsigned flag, enum lockdep_ok); 402 extern int test_taint(unsigned flag); 403 extern unsigned long get_taint(void); 404 extern int root_mountflags; 405 406 extern bool early_boot_irqs_disabled; 407 408 /* Values used for system_state */ 409 extern enum system_states { 410 SYSTEM_BOOTING, 411 SYSTEM_RUNNING, 412 SYSTEM_HALT, 413 SYSTEM_POWER_OFF, 414 SYSTEM_RESTART, 415 } system_state; 416 417 #define TAINT_PROPRIETARY_MODULE 0 418 #define TAINT_FORCED_MODULE 1 419 #define TAINT_UNSAFE_SMP 2 420 #define TAINT_FORCED_RMMOD 3 421 #define TAINT_MACHINE_CHECK 4 422 #define TAINT_BAD_PAGE 5 423 #define TAINT_USER 6 424 #define TAINT_DIE 7 425 #define TAINT_OVERRIDDEN_ACPI_TABLE 8 426 #define TAINT_WARN 9 427 #define TAINT_CRAP 10 428 #define TAINT_FIRMWARE_WORKAROUND 11 429 #define TAINT_OOT_MODULE 12 430 431 extern const char hex_asc[]; 432 #define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 433 #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 434 435 static inline char *hex_byte_pack(char *buf, u8 byte) 436 { 437 *buf++ = hex_asc_hi(byte); 438 *buf++ = hex_asc_lo(byte); 439 return buf; 440 } 441 442 extern const char hex_asc_upper[]; 443 #define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 444 #define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 445 446 static inline char *hex_byte_pack_upper(char *buf, u8 byte) 447 { 448 *buf++ = hex_asc_upper_hi(byte); 449 *buf++ = hex_asc_upper_lo(byte); 450 return buf; 451 } 452 453 static inline char * __deprecated pack_hex_byte(char *buf, u8 byte) 454 { 455 return hex_byte_pack(buf, byte); 456 } 457 458 extern int hex_to_bin(char ch); 459 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 460 461 int mac_pton(const char *s, u8 *mac); 462 463 /* 464 * General tracing related utility functions - trace_printk(), 465 * tracing_on/tracing_off and tracing_start()/tracing_stop 466 * 467 * Use tracing_on/tracing_off when you want to quickly turn on or off 468 * tracing. It simply enables or disables the recording of the trace events. 469 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 470 * file, which gives a means for the kernel and userspace to interact. 471 * Place a tracing_off() in the kernel where you want tracing to end. 472 * From user space, examine the trace, and then echo 1 > tracing_on 473 * to continue tracing. 474 * 475 * tracing_stop/tracing_start has slightly more overhead. It is used 476 * by things like suspend to ram where disabling the recording of the 477 * trace is not enough, but tracing must actually stop because things 478 * like calling smp_processor_id() may crash the system. 479 * 480 * Most likely, you want to use tracing_on/tracing_off. 481 */ 482 #ifdef CONFIG_RING_BUFFER 483 /* trace_off_permanent stops recording with no way to bring it back */ 484 void tracing_off_permanent(void); 485 #else 486 static inline void tracing_off_permanent(void) { } 487 #endif 488 489 enum ftrace_dump_mode { 490 DUMP_NONE, 491 DUMP_ALL, 492 DUMP_ORIG, 493 }; 494 495 #ifdef CONFIG_TRACING 496 void tracing_on(void); 497 void tracing_off(void); 498 int tracing_is_on(void); 499 void tracing_snapshot(void); 500 void tracing_snapshot_alloc(void); 501 502 extern void tracing_start(void); 503 extern void tracing_stop(void); 504 extern void ftrace_off_permanent(void); 505 506 static inline __printf(1, 2) 507 void ____trace_printk_check_format(const char *fmt, ...) 508 { 509 } 510 #define __trace_printk_check_format(fmt, args...) \ 511 do { \ 512 if (0) \ 513 ____trace_printk_check_format(fmt, ##args); \ 514 } while (0) 515 516 /** 517 * trace_printk - printf formatting in the ftrace buffer 518 * @fmt: the printf format for printing 519 * 520 * Note: __trace_printk is an internal function for trace_printk and 521 * the @ip is passed in via the trace_printk macro. 522 * 523 * This function allows a kernel developer to debug fast path sections 524 * that printk is not appropriate for. By scattering in various 525 * printk like tracing in the code, a developer can quickly see 526 * where problems are occurring. 527 * 528 * This is intended as a debugging tool for the developer only. 529 * Please refrain from leaving trace_printks scattered around in 530 * your code. (Extra memory is used for special buffers that are 531 * allocated when trace_printk() is used) 532 * 533 * A little optization trick is done here. If there's only one 534 * argument, there's no need to scan the string for printf formats. 535 * The trace_puts() will suffice. But how can we take advantage of 536 * using trace_puts() when trace_printk() has only one argument? 537 * By stringifying the args and checking the size we can tell 538 * whether or not there are args. __stringify((__VA_ARGS__)) will 539 * turn into "()\0" with a size of 3 when there are no args, anything 540 * else will be bigger. All we need to do is define a string to this, 541 * and then take its size and compare to 3. If it's bigger, use 542 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 543 * let gcc optimize the rest. 544 */ 545 546 #define trace_printk(fmt, ...) \ 547 do { \ 548 char _______STR[] = __stringify((__VA_ARGS__)); \ 549 if (sizeof(_______STR) > 3) \ 550 do_trace_printk(fmt, ##__VA_ARGS__); \ 551 else \ 552 trace_puts(fmt); \ 553 } while (0) 554 555 #define do_trace_printk(fmt, args...) \ 556 do { \ 557 static const char *trace_printk_fmt \ 558 __attribute__((section("__trace_printk_fmt"))) = \ 559 __builtin_constant_p(fmt) ? fmt : NULL; \ 560 \ 561 __trace_printk_check_format(fmt, ##args); \ 562 \ 563 if (__builtin_constant_p(fmt)) \ 564 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 565 else \ 566 __trace_printk(_THIS_IP_, fmt, ##args); \ 567 } while (0) 568 569 extern __printf(2, 3) 570 int __trace_bprintk(unsigned long ip, const char *fmt, ...); 571 572 extern __printf(2, 3) 573 int __trace_printk(unsigned long ip, const char *fmt, ...); 574 575 /** 576 * trace_puts - write a string into the ftrace buffer 577 * @str: the string to record 578 * 579 * Note: __trace_bputs is an internal function for trace_puts and 580 * the @ip is passed in via the trace_puts macro. 581 * 582 * This is similar to trace_printk() but is made for those really fast 583 * paths that a developer wants the least amount of "Heisenbug" affects, 584 * where the processing of the print format is still too much. 585 * 586 * This function allows a kernel developer to debug fast path sections 587 * that printk is not appropriate for. By scattering in various 588 * printk like tracing in the code, a developer can quickly see 589 * where problems are occurring. 590 * 591 * This is intended as a debugging tool for the developer only. 592 * Please refrain from leaving trace_puts scattered around in 593 * your code. (Extra memory is used for special buffers that are 594 * allocated when trace_puts() is used) 595 * 596 * Returns: 0 if nothing was written, positive # if string was. 597 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 598 */ 599 600 #define trace_puts(str) ({ \ 601 static const char *trace_printk_fmt \ 602 __attribute__((section("__trace_printk_fmt"))) = \ 603 __builtin_constant_p(str) ? str : NULL; \ 604 \ 605 if (__builtin_constant_p(str)) \ 606 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 607 else \ 608 __trace_puts(_THIS_IP_, str, strlen(str)); \ 609 }) 610 extern int __trace_bputs(unsigned long ip, const char *str); 611 extern int __trace_puts(unsigned long ip, const char *str, int size); 612 613 extern void trace_dump_stack(int skip); 614 615 /* 616 * The double __builtin_constant_p is because gcc will give us an error 617 * if we try to allocate the static variable to fmt if it is not a 618 * constant. Even with the outer if statement. 619 */ 620 #define ftrace_vprintk(fmt, vargs) \ 621 do { \ 622 if (__builtin_constant_p(fmt)) { \ 623 static const char *trace_printk_fmt \ 624 __attribute__((section("__trace_printk_fmt"))) = \ 625 __builtin_constant_p(fmt) ? fmt : NULL; \ 626 \ 627 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 628 } else \ 629 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 630 } while (0) 631 632 extern int 633 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 634 635 extern int 636 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 637 638 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 639 #else 640 static inline void tracing_start(void) { } 641 static inline void tracing_stop(void) { } 642 static inline void ftrace_off_permanent(void) { } 643 static inline void trace_dump_stack(int skip) { } 644 645 static inline void tracing_on(void) { } 646 static inline void tracing_off(void) { } 647 static inline int tracing_is_on(void) { return 0; } 648 static inline void tracing_snapshot(void) { } 649 static inline void tracing_snapshot_alloc(void) { } 650 651 static inline __printf(1, 2) 652 int trace_printk(const char *fmt, ...) 653 { 654 return 0; 655 } 656 static inline int 657 ftrace_vprintk(const char *fmt, va_list ap) 658 { 659 return 0; 660 } 661 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 662 #endif /* CONFIG_TRACING */ 663 664 /* 665 * min()/max()/clamp() macros that also do 666 * strict type-checking.. See the 667 * "unnecessary" pointer comparison. 668 */ 669 #define min(x, y) ({ \ 670 typeof(x) _min1 = (x); \ 671 typeof(y) _min2 = (y); \ 672 (void) (&_min1 == &_min2); \ 673 _min1 < _min2 ? _min1 : _min2; }) 674 675 #define max(x, y) ({ \ 676 typeof(x) _max1 = (x); \ 677 typeof(y) _max2 = (y); \ 678 (void) (&_max1 == &_max2); \ 679 _max1 > _max2 ? _max1 : _max2; }) 680 681 #define min3(x, y, z) ({ \ 682 typeof(x) _min1 = (x); \ 683 typeof(y) _min2 = (y); \ 684 typeof(z) _min3 = (z); \ 685 (void) (&_min1 == &_min2); \ 686 (void) (&_min1 == &_min3); \ 687 _min1 < _min2 ? (_min1 < _min3 ? _min1 : _min3) : \ 688 (_min2 < _min3 ? _min2 : _min3); }) 689 690 #define max3(x, y, z) ({ \ 691 typeof(x) _max1 = (x); \ 692 typeof(y) _max2 = (y); \ 693 typeof(z) _max3 = (z); \ 694 (void) (&_max1 == &_max2); \ 695 (void) (&_max1 == &_max3); \ 696 _max1 > _max2 ? (_max1 > _max3 ? _max1 : _max3) : \ 697 (_max2 > _max3 ? _max2 : _max3); }) 698 699 /** 700 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 701 * @x: value1 702 * @y: value2 703 */ 704 #define min_not_zero(x, y) ({ \ 705 typeof(x) __x = (x); \ 706 typeof(y) __y = (y); \ 707 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 708 709 /** 710 * clamp - return a value clamped to a given range with strict typechecking 711 * @val: current value 712 * @min: minimum allowable value 713 * @max: maximum allowable value 714 * 715 * This macro does strict typechecking of min/max to make sure they are of the 716 * same type as val. See the unnecessary pointer comparisons. 717 */ 718 #define clamp(val, min, max) ({ \ 719 typeof(val) __val = (val); \ 720 typeof(min) __min = (min); \ 721 typeof(max) __max = (max); \ 722 (void) (&__val == &__min); \ 723 (void) (&__val == &__max); \ 724 __val = __val < __min ? __min: __val; \ 725 __val > __max ? __max: __val; }) 726 727 /* 728 * ..and if you can't take the strict 729 * types, you can specify one yourself. 730 * 731 * Or not use min/max/clamp at all, of course. 732 */ 733 #define min_t(type, x, y) ({ \ 734 type __min1 = (x); \ 735 type __min2 = (y); \ 736 __min1 < __min2 ? __min1: __min2; }) 737 738 #define max_t(type, x, y) ({ \ 739 type __max1 = (x); \ 740 type __max2 = (y); \ 741 __max1 > __max2 ? __max1: __max2; }) 742 743 /** 744 * clamp_t - return a value clamped to a given range using a given type 745 * @type: the type of variable to use 746 * @val: current value 747 * @min: minimum allowable value 748 * @max: maximum allowable value 749 * 750 * This macro does no typechecking and uses temporary variables of type 751 * 'type' to make all the comparisons. 752 */ 753 #define clamp_t(type, val, min, max) ({ \ 754 type __val = (val); \ 755 type __min = (min); \ 756 type __max = (max); \ 757 __val = __val < __min ? __min: __val; \ 758 __val > __max ? __max: __val; }) 759 760 /** 761 * clamp_val - return a value clamped to a given range using val's type 762 * @val: current value 763 * @min: minimum allowable value 764 * @max: maximum allowable value 765 * 766 * This macro does no typechecking and uses temporary variables of whatever 767 * type the input argument 'val' is. This is useful when val is an unsigned 768 * type and min and max are literals that will otherwise be assigned a signed 769 * integer type. 770 */ 771 #define clamp_val(val, min, max) ({ \ 772 typeof(val) __val = (val); \ 773 typeof(val) __min = (min); \ 774 typeof(val) __max = (max); \ 775 __val = __val < __min ? __min: __val; \ 776 __val > __max ? __max: __val; }) 777 778 779 /* 780 * swap - swap value of @a and @b 781 */ 782 #define swap(a, b) \ 783 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 784 785 /** 786 * container_of - cast a member of a structure out to the containing structure 787 * @ptr: the pointer to the member. 788 * @type: the type of the container struct this is embedded in. 789 * @member: the name of the member within the struct. 790 * 791 */ 792 #define container_of(ptr, type, member) ({ \ 793 const typeof( ((type *)0)->member ) *__mptr = (ptr); \ 794 (type *)( (char *)__mptr - offsetof(type,member) );}) 795 796 /* Trap pasters of __FUNCTION__ at compile-time */ 797 #define __FUNCTION__ (__func__) 798 799 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 800 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 801 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 802 #endif 803 804 #endif 805