1 #ifndef _LINUX_KERNEL_H 2 #define _LINUX_KERNEL_H 3 4 5 #include <stdarg.h> 6 #include <linux/linkage.h> 7 #include <linux/stddef.h> 8 #include <linux/types.h> 9 #include <linux/compiler.h> 10 #include <linux/bitops.h> 11 #include <linux/log2.h> 12 #include <linux/typecheck.h> 13 #include <linux/printk.h> 14 #include <asm/byteorder.h> 15 #include <uapi/linux/kernel.h> 16 17 #define USHRT_MAX ((u16)(~0U)) 18 #define SHRT_MAX ((s16)(USHRT_MAX>>1)) 19 #define SHRT_MIN ((s16)(-SHRT_MAX - 1)) 20 #define INT_MAX ((int)(~0U>>1)) 21 #define INT_MIN (-INT_MAX - 1) 22 #define UINT_MAX (~0U) 23 #define LONG_MAX ((long)(~0UL>>1)) 24 #define LONG_MIN (-LONG_MAX - 1) 25 #define ULONG_MAX (~0UL) 26 #define LLONG_MAX ((long long)(~0ULL>>1)) 27 #define LLONG_MIN (-LLONG_MAX - 1) 28 #define ULLONG_MAX (~0ULL) 29 #define SIZE_MAX (~(size_t)0) 30 31 #define U8_MAX ((u8)~0U) 32 #define S8_MAX ((s8)(U8_MAX>>1)) 33 #define S8_MIN ((s8)(-S8_MAX - 1)) 34 #define U16_MAX ((u16)~0U) 35 #define S16_MAX ((s16)(U16_MAX>>1)) 36 #define S16_MIN ((s16)(-S16_MAX - 1)) 37 #define U32_MAX ((u32)~0U) 38 #define S32_MAX ((s32)(U32_MAX>>1)) 39 #define S32_MIN ((s32)(-S32_MAX - 1)) 40 #define U64_MAX ((u64)~0ULL) 41 #define S64_MAX ((s64)(U64_MAX>>1)) 42 #define S64_MIN ((s64)(-S64_MAX - 1)) 43 44 #define STACK_MAGIC 0xdeadbeef 45 46 #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 47 48 /* @a is a power of 2 value */ 49 #define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 50 #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 51 #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 52 #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 53 54 /* generic data direction definitions */ 55 #define READ 0 56 #define WRITE 1 57 58 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 59 60 #define u64_to_user_ptr(x) ( \ 61 { \ 62 typecheck(u64, x); \ 63 (void __user *)(uintptr_t)x; \ 64 } \ 65 ) 66 67 /* 68 * This looks more complex than it should be. But we need to 69 * get the type for the ~ right in round_down (it needs to be 70 * as wide as the result!), and we want to evaluate the macro 71 * arguments just once each. 72 */ 73 #define __round_mask(x, y) ((__typeof__(x))((y)-1)) 74 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 75 #define round_down(x, y) ((x) & ~__round_mask(x, y)) 76 77 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 78 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 79 #define DIV_ROUND_UP_ULL(ll,d) \ 80 ({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; }) 81 82 #if BITS_PER_LONG == 32 83 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 84 #else 85 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 86 #endif 87 88 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */ 89 #define roundup(x, y) ( \ 90 { \ 91 const typeof(y) __y = y; \ 92 (((x) + (__y - 1)) / __y) * __y; \ 93 } \ 94 ) 95 #define rounddown(x, y) ( \ 96 { \ 97 typeof(x) __x = (x); \ 98 __x - (__x % (y)); \ 99 } \ 100 ) 101 102 /* 103 * Divide positive or negative dividend by positive divisor and round 104 * to closest integer. Result is undefined for negative divisors and 105 * for negative dividends if the divisor variable type is unsigned. 106 */ 107 #define DIV_ROUND_CLOSEST(x, divisor)( \ 108 { \ 109 typeof(x) __x = x; \ 110 typeof(divisor) __d = divisor; \ 111 (((typeof(x))-1) > 0 || \ 112 ((typeof(divisor))-1) > 0 || (__x) > 0) ? \ 113 (((__x) + ((__d) / 2)) / (__d)) : \ 114 (((__x) - ((__d) / 2)) / (__d)); \ 115 } \ 116 ) 117 /* 118 * Same as above but for u64 dividends. divisor must be a 32-bit 119 * number. 120 */ 121 #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 122 { \ 123 typeof(divisor) __d = divisor; \ 124 unsigned long long _tmp = (x) + (__d) / 2; \ 125 do_div(_tmp, __d); \ 126 _tmp; \ 127 } \ 128 ) 129 130 /* 131 * Multiplies an integer by a fraction, while avoiding unnecessary 132 * overflow or loss of precision. 133 */ 134 #define mult_frac(x, numer, denom)( \ 135 { \ 136 typeof(x) quot = (x) / (denom); \ 137 typeof(x) rem = (x) % (denom); \ 138 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 139 } \ 140 ) 141 142 143 #define _RET_IP_ (unsigned long)__builtin_return_address(0) 144 #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 145 146 #ifdef CONFIG_LBDAF 147 # include <asm/div64.h> 148 # define sector_div(a, b) do_div(a, b) 149 #else 150 # define sector_div(n, b)( \ 151 { \ 152 int _res; \ 153 _res = (n) % (b); \ 154 (n) /= (b); \ 155 _res; \ 156 } \ 157 ) 158 #endif 159 160 /** 161 * upper_32_bits - return bits 32-63 of a number 162 * @n: the number we're accessing 163 * 164 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 165 * the "right shift count >= width of type" warning when that quantity is 166 * 32-bits. 167 */ 168 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 169 170 /** 171 * lower_32_bits - return bits 0-31 of a number 172 * @n: the number we're accessing 173 */ 174 #define lower_32_bits(n) ((u32)(n)) 175 176 struct completion; 177 struct pt_regs; 178 struct user; 179 180 #ifdef CONFIG_PREEMPT_VOLUNTARY 181 extern int _cond_resched(void); 182 # define might_resched() _cond_resched() 183 #else 184 # define might_resched() do { } while (0) 185 #endif 186 187 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 188 void ___might_sleep(const char *file, int line, int preempt_offset); 189 void __might_sleep(const char *file, int line, int preempt_offset); 190 /** 191 * might_sleep - annotation for functions that can sleep 192 * 193 * this macro will print a stack trace if it is executed in an atomic 194 * context (spinlock, irq-handler, ...). 195 * 196 * This is a useful debugging help to be able to catch problems early and not 197 * be bitten later when the calling function happens to sleep when it is not 198 * supposed to. 199 */ 200 # define might_sleep() \ 201 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 202 # define sched_annotate_sleep() (current->task_state_change = 0) 203 #else 204 static inline void ___might_sleep(const char *file, int line, 205 int preempt_offset) { } 206 static inline void __might_sleep(const char *file, int line, 207 int preempt_offset) { } 208 # define might_sleep() do { might_resched(); } while (0) 209 # define sched_annotate_sleep() do { } while (0) 210 #endif 211 212 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 213 214 /** 215 * abs - return absolute value of an argument 216 * @x: the value. If it is unsigned type, it is converted to signed type first. 217 * char is treated as if it was signed (regardless of whether it really is) 218 * but the macro's return type is preserved as char. 219 * 220 * Return: an absolute value of x. 221 */ 222 #define abs(x) __abs_choose_expr(x, long long, \ 223 __abs_choose_expr(x, long, \ 224 __abs_choose_expr(x, int, \ 225 __abs_choose_expr(x, short, \ 226 __abs_choose_expr(x, char, \ 227 __builtin_choose_expr( \ 228 __builtin_types_compatible_p(typeof(x), char), \ 229 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 230 ((void)0))))))) 231 232 #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 233 __builtin_types_compatible_p(typeof(x), signed type) || \ 234 __builtin_types_compatible_p(typeof(x), unsigned type), \ 235 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 236 237 /** 238 * reciprocal_scale - "scale" a value into range [0, ep_ro) 239 * @val: value 240 * @ep_ro: right open interval endpoint 241 * 242 * Perform a "reciprocal multiplication" in order to "scale" a value into 243 * range [0, ep_ro), where the upper interval endpoint is right-open. 244 * This is useful, e.g. for accessing a index of an array containing 245 * ep_ro elements, for example. Think of it as sort of modulus, only that 246 * the result isn't that of modulo. ;) Note that if initial input is a 247 * small value, then result will return 0. 248 * 249 * Return: a result based on val in interval [0, ep_ro). 250 */ 251 static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 252 { 253 return (u32)(((u64) val * ep_ro) >> 32); 254 } 255 256 #if defined(CONFIG_MMU) && \ 257 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 258 #define might_fault() __might_fault(__FILE__, __LINE__) 259 void __might_fault(const char *file, int line); 260 #else 261 static inline void might_fault(void) { } 262 #endif 263 264 extern struct atomic_notifier_head panic_notifier_list; 265 extern long (*panic_blink)(int state); 266 __printf(1, 2) 267 void panic(const char *fmt, ...) __noreturn __cold; 268 void nmi_panic(struct pt_regs *regs, const char *msg); 269 extern void oops_enter(void); 270 extern void oops_exit(void); 271 void print_oops_end_marker(void); 272 extern int oops_may_print(void); 273 void do_exit(long error_code) __noreturn; 274 void complete_and_exit(struct completion *, long) __noreturn; 275 276 /* Internal, do not use. */ 277 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 278 int __must_check _kstrtol(const char *s, unsigned int base, long *res); 279 280 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 281 int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 282 283 /** 284 * kstrtoul - convert a string to an unsigned long 285 * @s: The start of the string. The string must be null-terminated, and may also 286 * include a single newline before its terminating null. The first character 287 * may also be a plus sign, but not a minus sign. 288 * @base: The number base to use. The maximum supported base is 16. If base is 289 * given as 0, then the base of the string is automatically detected with the 290 * conventional semantics - If it begins with 0x the number will be parsed as a 291 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 292 * parsed as an octal number. Otherwise it will be parsed as a decimal. 293 * @res: Where to write the result of the conversion on success. 294 * 295 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 296 * Used as a replacement for the obsolete simple_strtoull. Return code must 297 * be checked. 298 */ 299 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 300 { 301 /* 302 * We want to shortcut function call, but 303 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 304 */ 305 if (sizeof(unsigned long) == sizeof(unsigned long long) && 306 __alignof__(unsigned long) == __alignof__(unsigned long long)) 307 return kstrtoull(s, base, (unsigned long long *)res); 308 else 309 return _kstrtoul(s, base, res); 310 } 311 312 /** 313 * kstrtol - convert a string to a long 314 * @s: The start of the string. The string must be null-terminated, and may also 315 * include a single newline before its terminating null. The first character 316 * may also be a plus sign or a minus sign. 317 * @base: The number base to use. The maximum supported base is 16. If base is 318 * given as 0, then the base of the string is automatically detected with the 319 * conventional semantics - If it begins with 0x the number will be parsed as a 320 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 321 * parsed as an octal number. Otherwise it will be parsed as a decimal. 322 * @res: Where to write the result of the conversion on success. 323 * 324 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 325 * Used as a replacement for the obsolete simple_strtoull. Return code must 326 * be checked. 327 */ 328 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 329 { 330 /* 331 * We want to shortcut function call, but 332 * __builtin_types_compatible_p(long, long long) = 0. 333 */ 334 if (sizeof(long) == sizeof(long long) && 335 __alignof__(long) == __alignof__(long long)) 336 return kstrtoll(s, base, (long long *)res); 337 else 338 return _kstrtol(s, base, res); 339 } 340 341 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 342 int __must_check kstrtoint(const char *s, unsigned int base, int *res); 343 344 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 345 { 346 return kstrtoull(s, base, res); 347 } 348 349 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 350 { 351 return kstrtoll(s, base, res); 352 } 353 354 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 355 { 356 return kstrtouint(s, base, res); 357 } 358 359 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 360 { 361 return kstrtoint(s, base, res); 362 } 363 364 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 365 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 366 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 367 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 368 int __must_check kstrtobool(const char *s, bool *res); 369 370 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 371 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 372 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 373 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 374 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 375 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 376 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 377 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 378 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 379 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 380 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); 381 382 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 383 { 384 return kstrtoull_from_user(s, count, base, res); 385 } 386 387 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 388 { 389 return kstrtoll_from_user(s, count, base, res); 390 } 391 392 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 393 { 394 return kstrtouint_from_user(s, count, base, res); 395 } 396 397 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 398 { 399 return kstrtoint_from_user(s, count, base, res); 400 } 401 402 /* Obsolete, do not use. Use kstrto<foo> instead */ 403 404 extern unsigned long simple_strtoul(const char *,char **,unsigned int); 405 extern long simple_strtol(const char *,char **,unsigned int); 406 extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 407 extern long long simple_strtoll(const char *,char **,unsigned int); 408 409 extern int num_to_str(char *buf, int size, unsigned long long num); 410 411 /* lib/printf utilities */ 412 413 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 414 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 415 extern __printf(3, 4) 416 int snprintf(char *buf, size_t size, const char *fmt, ...); 417 extern __printf(3, 0) 418 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 419 extern __printf(3, 4) 420 int scnprintf(char *buf, size_t size, const char *fmt, ...); 421 extern __printf(3, 0) 422 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 423 extern __printf(2, 3) __malloc 424 char *kasprintf(gfp_t gfp, const char *fmt, ...); 425 extern __printf(2, 0) __malloc 426 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 427 extern __printf(2, 0) 428 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); 429 430 extern __scanf(2, 3) 431 int sscanf(const char *, const char *, ...); 432 extern __scanf(2, 0) 433 int vsscanf(const char *, const char *, va_list); 434 435 extern int get_option(char **str, int *pint); 436 extern char *get_options(const char *str, int nints, int *ints); 437 extern unsigned long long memparse(const char *ptr, char **retptr); 438 extern bool parse_option_str(const char *str, const char *option); 439 440 extern int core_kernel_text(unsigned long addr); 441 extern int core_kernel_data(unsigned long addr); 442 extern int __kernel_text_address(unsigned long addr); 443 extern int kernel_text_address(unsigned long addr); 444 extern int func_ptr_is_kernel_text(void *ptr); 445 446 unsigned long int_sqrt(unsigned long); 447 448 extern void bust_spinlocks(int yes); 449 extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 450 extern int panic_timeout; 451 extern int panic_on_oops; 452 extern int panic_on_unrecovered_nmi; 453 extern int panic_on_io_nmi; 454 extern int panic_on_warn; 455 extern int sysctl_panic_on_rcu_stall; 456 extern int sysctl_panic_on_stackoverflow; 457 458 extern bool crash_kexec_post_notifiers; 459 460 /* 461 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It 462 * holds a CPU number which is executing panic() currently. A value of 463 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). 464 */ 465 extern atomic_t panic_cpu; 466 #define PANIC_CPU_INVALID -1 467 468 /* 469 * Only to be used by arch init code. If the user over-wrote the default 470 * CONFIG_PANIC_TIMEOUT, honor it. 471 */ 472 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 473 { 474 if (panic_timeout == arch_default_timeout) 475 panic_timeout = timeout; 476 } 477 extern const char *print_tainted(void); 478 enum lockdep_ok { 479 LOCKDEP_STILL_OK, 480 LOCKDEP_NOW_UNRELIABLE 481 }; 482 extern void add_taint(unsigned flag, enum lockdep_ok); 483 extern int test_taint(unsigned flag); 484 extern unsigned long get_taint(void); 485 extern int root_mountflags; 486 487 extern bool early_boot_irqs_disabled; 488 489 /* Values used for system_state */ 490 extern enum system_states { 491 SYSTEM_BOOTING, 492 SYSTEM_RUNNING, 493 SYSTEM_HALT, 494 SYSTEM_POWER_OFF, 495 SYSTEM_RESTART, 496 } system_state; 497 498 #define TAINT_PROPRIETARY_MODULE 0 499 #define TAINT_FORCED_MODULE 1 500 #define TAINT_CPU_OUT_OF_SPEC 2 501 #define TAINT_FORCED_RMMOD 3 502 #define TAINT_MACHINE_CHECK 4 503 #define TAINT_BAD_PAGE 5 504 #define TAINT_USER 6 505 #define TAINT_DIE 7 506 #define TAINT_OVERRIDDEN_ACPI_TABLE 8 507 #define TAINT_WARN 9 508 #define TAINT_CRAP 10 509 #define TAINT_FIRMWARE_WORKAROUND 11 510 #define TAINT_OOT_MODULE 12 511 #define TAINT_UNSIGNED_MODULE 13 512 #define TAINT_SOFTLOCKUP 14 513 #define TAINT_LIVEPATCH 15 514 515 extern const char hex_asc[]; 516 #define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 517 #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 518 519 static inline char *hex_byte_pack(char *buf, u8 byte) 520 { 521 *buf++ = hex_asc_hi(byte); 522 *buf++ = hex_asc_lo(byte); 523 return buf; 524 } 525 526 extern const char hex_asc_upper[]; 527 #define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 528 #define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 529 530 static inline char *hex_byte_pack_upper(char *buf, u8 byte) 531 { 532 *buf++ = hex_asc_upper_hi(byte); 533 *buf++ = hex_asc_upper_lo(byte); 534 return buf; 535 } 536 537 extern int hex_to_bin(char ch); 538 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 539 extern char *bin2hex(char *dst, const void *src, size_t count); 540 541 bool mac_pton(const char *s, u8 *mac); 542 543 /* 544 * General tracing related utility functions - trace_printk(), 545 * tracing_on/tracing_off and tracing_start()/tracing_stop 546 * 547 * Use tracing_on/tracing_off when you want to quickly turn on or off 548 * tracing. It simply enables or disables the recording of the trace events. 549 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 550 * file, which gives a means for the kernel and userspace to interact. 551 * Place a tracing_off() in the kernel where you want tracing to end. 552 * From user space, examine the trace, and then echo 1 > tracing_on 553 * to continue tracing. 554 * 555 * tracing_stop/tracing_start has slightly more overhead. It is used 556 * by things like suspend to ram where disabling the recording of the 557 * trace is not enough, but tracing must actually stop because things 558 * like calling smp_processor_id() may crash the system. 559 * 560 * Most likely, you want to use tracing_on/tracing_off. 561 */ 562 563 enum ftrace_dump_mode { 564 DUMP_NONE, 565 DUMP_ALL, 566 DUMP_ORIG, 567 }; 568 569 #ifdef CONFIG_TRACING 570 void tracing_on(void); 571 void tracing_off(void); 572 int tracing_is_on(void); 573 void tracing_snapshot(void); 574 void tracing_snapshot_alloc(void); 575 576 extern void tracing_start(void); 577 extern void tracing_stop(void); 578 579 static inline __printf(1, 2) 580 void ____trace_printk_check_format(const char *fmt, ...) 581 { 582 } 583 #define __trace_printk_check_format(fmt, args...) \ 584 do { \ 585 if (0) \ 586 ____trace_printk_check_format(fmt, ##args); \ 587 } while (0) 588 589 /** 590 * trace_printk - printf formatting in the ftrace buffer 591 * @fmt: the printf format for printing 592 * 593 * Note: __trace_printk is an internal function for trace_printk and 594 * the @ip is passed in via the trace_printk macro. 595 * 596 * This function allows a kernel developer to debug fast path sections 597 * that printk is not appropriate for. By scattering in various 598 * printk like tracing in the code, a developer can quickly see 599 * where problems are occurring. 600 * 601 * This is intended as a debugging tool for the developer only. 602 * Please refrain from leaving trace_printks scattered around in 603 * your code. (Extra memory is used for special buffers that are 604 * allocated when trace_printk() is used) 605 * 606 * A little optization trick is done here. If there's only one 607 * argument, there's no need to scan the string for printf formats. 608 * The trace_puts() will suffice. But how can we take advantage of 609 * using trace_puts() when trace_printk() has only one argument? 610 * By stringifying the args and checking the size we can tell 611 * whether or not there are args. __stringify((__VA_ARGS__)) will 612 * turn into "()\0" with a size of 3 when there are no args, anything 613 * else will be bigger. All we need to do is define a string to this, 614 * and then take its size and compare to 3. If it's bigger, use 615 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 616 * let gcc optimize the rest. 617 */ 618 619 #define trace_printk(fmt, ...) \ 620 do { \ 621 char _______STR[] = __stringify((__VA_ARGS__)); \ 622 if (sizeof(_______STR) > 3) \ 623 do_trace_printk(fmt, ##__VA_ARGS__); \ 624 else \ 625 trace_puts(fmt); \ 626 } while (0) 627 628 #define do_trace_printk(fmt, args...) \ 629 do { \ 630 static const char *trace_printk_fmt __used \ 631 __attribute__((section("__trace_printk_fmt"))) = \ 632 __builtin_constant_p(fmt) ? fmt : NULL; \ 633 \ 634 __trace_printk_check_format(fmt, ##args); \ 635 \ 636 if (__builtin_constant_p(fmt)) \ 637 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 638 else \ 639 __trace_printk(_THIS_IP_, fmt, ##args); \ 640 } while (0) 641 642 extern __printf(2, 3) 643 int __trace_bprintk(unsigned long ip, const char *fmt, ...); 644 645 extern __printf(2, 3) 646 int __trace_printk(unsigned long ip, const char *fmt, ...); 647 648 /** 649 * trace_puts - write a string into the ftrace buffer 650 * @str: the string to record 651 * 652 * Note: __trace_bputs is an internal function for trace_puts and 653 * the @ip is passed in via the trace_puts macro. 654 * 655 * This is similar to trace_printk() but is made for those really fast 656 * paths that a developer wants the least amount of "Heisenbug" affects, 657 * where the processing of the print format is still too much. 658 * 659 * This function allows a kernel developer to debug fast path sections 660 * that printk is not appropriate for. By scattering in various 661 * printk like tracing in the code, a developer can quickly see 662 * where problems are occurring. 663 * 664 * This is intended as a debugging tool for the developer only. 665 * Please refrain from leaving trace_puts scattered around in 666 * your code. (Extra memory is used for special buffers that are 667 * allocated when trace_puts() is used) 668 * 669 * Returns: 0 if nothing was written, positive # if string was. 670 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 671 */ 672 673 #define trace_puts(str) ({ \ 674 static const char *trace_printk_fmt __used \ 675 __attribute__((section("__trace_printk_fmt"))) = \ 676 __builtin_constant_p(str) ? str : NULL; \ 677 \ 678 if (__builtin_constant_p(str)) \ 679 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 680 else \ 681 __trace_puts(_THIS_IP_, str, strlen(str)); \ 682 }) 683 extern int __trace_bputs(unsigned long ip, const char *str); 684 extern int __trace_puts(unsigned long ip, const char *str, int size); 685 686 extern void trace_dump_stack(int skip); 687 688 /* 689 * The double __builtin_constant_p is because gcc will give us an error 690 * if we try to allocate the static variable to fmt if it is not a 691 * constant. Even with the outer if statement. 692 */ 693 #define ftrace_vprintk(fmt, vargs) \ 694 do { \ 695 if (__builtin_constant_p(fmt)) { \ 696 static const char *trace_printk_fmt __used \ 697 __attribute__((section("__trace_printk_fmt"))) = \ 698 __builtin_constant_p(fmt) ? fmt : NULL; \ 699 \ 700 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 701 } else \ 702 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 703 } while (0) 704 705 extern __printf(2, 0) int 706 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 707 708 extern __printf(2, 0) int 709 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 710 711 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 712 #else 713 static inline void tracing_start(void) { } 714 static inline void tracing_stop(void) { } 715 static inline void trace_dump_stack(int skip) { } 716 717 static inline void tracing_on(void) { } 718 static inline void tracing_off(void) { } 719 static inline int tracing_is_on(void) { return 0; } 720 static inline void tracing_snapshot(void) { } 721 static inline void tracing_snapshot_alloc(void) { } 722 723 static inline __printf(1, 2) 724 int trace_printk(const char *fmt, ...) 725 { 726 return 0; 727 } 728 static __printf(1, 0) inline int 729 ftrace_vprintk(const char *fmt, va_list ap) 730 { 731 return 0; 732 } 733 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 734 #endif /* CONFIG_TRACING */ 735 736 /* 737 * min()/max()/clamp() macros that also do 738 * strict type-checking.. See the 739 * "unnecessary" pointer comparison. 740 */ 741 #define __min(t1, t2, min1, min2, x, y) ({ \ 742 t1 min1 = (x); \ 743 t2 min2 = (y); \ 744 (void) (&min1 == &min2); \ 745 min1 < min2 ? min1 : min2; }) 746 #define min(x, y) \ 747 __min(typeof(x), typeof(y), \ 748 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ 749 x, y) 750 751 #define __max(t1, t2, max1, max2, x, y) ({ \ 752 t1 max1 = (x); \ 753 t2 max2 = (y); \ 754 (void) (&max1 == &max2); \ 755 max1 > max2 ? max1 : max2; }) 756 #define max(x, y) \ 757 __max(typeof(x), typeof(y), \ 758 __UNIQUE_ID(max1_), __UNIQUE_ID(max2_), \ 759 x, y) 760 761 #define min3(x, y, z) min((typeof(x))min(x, y), z) 762 #define max3(x, y, z) max((typeof(x))max(x, y), z) 763 764 /** 765 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 766 * @x: value1 767 * @y: value2 768 */ 769 #define min_not_zero(x, y) ({ \ 770 typeof(x) __x = (x); \ 771 typeof(y) __y = (y); \ 772 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 773 774 /** 775 * clamp - return a value clamped to a given range with strict typechecking 776 * @val: current value 777 * @lo: lowest allowable value 778 * @hi: highest allowable value 779 * 780 * This macro does strict typechecking of lo/hi to make sure they are of the 781 * same type as val. See the unnecessary pointer comparisons. 782 */ 783 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 784 785 /* 786 * ..and if you can't take the strict 787 * types, you can specify one yourself. 788 * 789 * Or not use min/max/clamp at all, of course. 790 */ 791 #define min_t(type, x, y) \ 792 __min(type, type, \ 793 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ 794 x, y) 795 796 #define max_t(type, x, y) \ 797 __max(type, type, \ 798 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ 799 x, y) 800 801 /** 802 * clamp_t - return a value clamped to a given range using a given type 803 * @type: the type of variable to use 804 * @val: current value 805 * @lo: minimum allowable value 806 * @hi: maximum allowable value 807 * 808 * This macro does no typechecking and uses temporary variables of type 809 * 'type' to make all the comparisons. 810 */ 811 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) 812 813 /** 814 * clamp_val - return a value clamped to a given range using val's type 815 * @val: current value 816 * @lo: minimum allowable value 817 * @hi: maximum allowable value 818 * 819 * This macro does no typechecking and uses temporary variables of whatever 820 * type the input argument 'val' is. This is useful when val is an unsigned 821 * type and min and max are literals that will otherwise be assigned a signed 822 * integer type. 823 */ 824 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) 825 826 827 /* 828 * swap - swap value of @a and @b 829 */ 830 #define swap(a, b) \ 831 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 832 833 /** 834 * container_of - cast a member of a structure out to the containing structure 835 * @ptr: the pointer to the member. 836 * @type: the type of the container struct this is embedded in. 837 * @member: the name of the member within the struct. 838 * 839 */ 840 #define container_of(ptr, type, member) ({ \ 841 const typeof( ((type *)0)->member ) *__mptr = (ptr); \ 842 (type *)( (char *)__mptr - offsetof(type,member) );}) 843 844 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 845 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 846 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 847 #endif 848 849 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ 850 #define VERIFY_OCTAL_PERMISSIONS(perms) \ 851 (BUILD_BUG_ON_ZERO((perms) < 0) + \ 852 BUILD_BUG_ON_ZERO((perms) > 0777) + \ 853 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ 854 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ 855 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ 856 /* USER_WRITABLE >= GROUP_WRITABLE */ \ 857 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ 858 /* OTHER_WRITABLE? Generally considered a bad idea. */ \ 859 BUILD_BUG_ON_ZERO((perms) & 2) + \ 860 (perms)) 861 #endif 862