xref: /linux-6.15/include/linux/kernel.h (revision e19b7cee)
1 #ifndef _LINUX_KERNEL_H
2 #define _LINUX_KERNEL_H
3 
4 
5 #include <stdarg.h>
6 #include <linux/linkage.h>
7 #include <linux/stddef.h>
8 #include <linux/types.h>
9 #include <linux/compiler.h>
10 #include <linux/bitops.h>
11 #include <linux/log2.h>
12 #include <linux/typecheck.h>
13 #include <linux/printk.h>
14 #include <asm/byteorder.h>
15 #include <uapi/linux/kernel.h>
16 
17 #define USHRT_MAX	((u16)(~0U))
18 #define SHRT_MAX	((s16)(USHRT_MAX>>1))
19 #define SHRT_MIN	((s16)(-SHRT_MAX - 1))
20 #define INT_MAX		((int)(~0U>>1))
21 #define INT_MIN		(-INT_MAX - 1)
22 #define UINT_MAX	(~0U)
23 #define LONG_MAX	((long)(~0UL>>1))
24 #define LONG_MIN	(-LONG_MAX - 1)
25 #define ULONG_MAX	(~0UL)
26 #define LLONG_MAX	((long long)(~0ULL>>1))
27 #define LLONG_MIN	(-LLONG_MAX - 1)
28 #define ULLONG_MAX	(~0ULL)
29 #define SIZE_MAX	(~(size_t)0)
30 
31 #define U8_MAX		((u8)~0U)
32 #define S8_MAX		((s8)(U8_MAX>>1))
33 #define S8_MIN		((s8)(-S8_MAX - 1))
34 #define U16_MAX		((u16)~0U)
35 #define S16_MAX		((s16)(U16_MAX>>1))
36 #define S16_MIN		((s16)(-S16_MAX - 1))
37 #define U32_MAX		((u32)~0U)
38 #define S32_MAX		((s32)(U32_MAX>>1))
39 #define S32_MIN		((s32)(-S32_MAX - 1))
40 #define U64_MAX		((u64)~0ULL)
41 #define S64_MAX		((s64)(U64_MAX>>1))
42 #define S64_MIN		((s64)(-S64_MAX - 1))
43 
44 #define STACK_MAGIC	0xdeadbeef
45 
46 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
47 
48 #define ALIGN(x, a)		__ALIGN_KERNEL((x), (a))
49 #define __ALIGN_MASK(x, mask)	__ALIGN_KERNEL_MASK((x), (mask))
50 #define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
51 #define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)
52 
53 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
54 
55 #define u64_to_user_ptr(x) (		\
56 {					\
57 	typecheck(u64, x);		\
58 	(void __user *)(uintptr_t)x;	\
59 }					\
60 )
61 
62 /*
63  * This looks more complex than it should be. But we need to
64  * get the type for the ~ right in round_down (it needs to be
65  * as wide as the result!), and we want to evaluate the macro
66  * arguments just once each.
67  */
68 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
69 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
70 #define round_down(x, y) ((x) & ~__round_mask(x, y))
71 
72 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
73 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
74 #define DIV_ROUND_UP_ULL(ll,d) \
75 	({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; })
76 
77 #if BITS_PER_LONG == 32
78 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
79 #else
80 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
81 #endif
82 
83 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
84 #define roundup(x, y) (					\
85 {							\
86 	const typeof(y) __y = y;			\
87 	(((x) + (__y - 1)) / __y) * __y;		\
88 }							\
89 )
90 #define rounddown(x, y) (				\
91 {							\
92 	typeof(x) __x = (x);				\
93 	__x - (__x % (y));				\
94 }							\
95 )
96 
97 /*
98  * Divide positive or negative dividend by positive divisor and round
99  * to closest integer. Result is undefined for negative divisors and
100  * for negative dividends if the divisor variable type is unsigned.
101  */
102 #define DIV_ROUND_CLOSEST(x, divisor)(			\
103 {							\
104 	typeof(x) __x = x;				\
105 	typeof(divisor) __d = divisor;			\
106 	(((typeof(x))-1) > 0 ||				\
107 	 ((typeof(divisor))-1) > 0 || (__x) > 0) ?	\
108 		(((__x) + ((__d) / 2)) / (__d)) :	\
109 		(((__x) - ((__d) / 2)) / (__d));	\
110 }							\
111 )
112 /*
113  * Same as above but for u64 dividends. divisor must be a 32-bit
114  * number.
115  */
116 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
117 {							\
118 	typeof(divisor) __d = divisor;			\
119 	unsigned long long _tmp = (x) + (__d) / 2;	\
120 	do_div(_tmp, __d);				\
121 	_tmp;						\
122 }							\
123 )
124 
125 /*
126  * Multiplies an integer by a fraction, while avoiding unnecessary
127  * overflow or loss of precision.
128  */
129 #define mult_frac(x, numer, denom)(			\
130 {							\
131 	typeof(x) quot = (x) / (denom);			\
132 	typeof(x) rem  = (x) % (denom);			\
133 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
134 }							\
135 )
136 
137 
138 #define _RET_IP_		(unsigned long)__builtin_return_address(0)
139 #define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
140 
141 #ifdef CONFIG_LBDAF
142 # include <asm/div64.h>
143 # define sector_div(a, b) do_div(a, b)
144 #else
145 # define sector_div(n, b)( \
146 { \
147 	int _res; \
148 	_res = (n) % (b); \
149 	(n) /= (b); \
150 	_res; \
151 } \
152 )
153 #endif
154 
155 /**
156  * upper_32_bits - return bits 32-63 of a number
157  * @n: the number we're accessing
158  *
159  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
160  * the "right shift count >= width of type" warning when that quantity is
161  * 32-bits.
162  */
163 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
164 
165 /**
166  * lower_32_bits - return bits 0-31 of a number
167  * @n: the number we're accessing
168  */
169 #define lower_32_bits(n) ((u32)(n))
170 
171 struct completion;
172 struct pt_regs;
173 struct user;
174 
175 #ifdef CONFIG_PREEMPT_VOLUNTARY
176 extern int _cond_resched(void);
177 # define might_resched() _cond_resched()
178 #else
179 # define might_resched() do { } while (0)
180 #endif
181 
182 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
183   void ___might_sleep(const char *file, int line, int preempt_offset);
184   void __might_sleep(const char *file, int line, int preempt_offset);
185 /**
186  * might_sleep - annotation for functions that can sleep
187  *
188  * this macro will print a stack trace if it is executed in an atomic
189  * context (spinlock, irq-handler, ...).
190  *
191  * This is a useful debugging help to be able to catch problems early and not
192  * be bitten later when the calling function happens to sleep when it is not
193  * supposed to.
194  */
195 # define might_sleep() \
196 	do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
197 # define sched_annotate_sleep()	(current->task_state_change = 0)
198 #else
199   static inline void ___might_sleep(const char *file, int line,
200 				   int preempt_offset) { }
201   static inline void __might_sleep(const char *file, int line,
202 				   int preempt_offset) { }
203 # define might_sleep() do { might_resched(); } while (0)
204 # define sched_annotate_sleep() do { } while (0)
205 #endif
206 
207 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
208 
209 /**
210  * abs - return absolute value of an argument
211  * @x: the value.  If it is unsigned type, it is converted to signed type first.
212  *     char is treated as if it was signed (regardless of whether it really is)
213  *     but the macro's return type is preserved as char.
214  *
215  * Return: an absolute value of x.
216  */
217 #define abs(x)	__abs_choose_expr(x, long long,				\
218 		__abs_choose_expr(x, long,				\
219 		__abs_choose_expr(x, int,				\
220 		__abs_choose_expr(x, short,				\
221 		__abs_choose_expr(x, char,				\
222 		__builtin_choose_expr(					\
223 			__builtin_types_compatible_p(typeof(x), char),	\
224 			(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
225 			((void)0)))))))
226 
227 #define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\
228 	__builtin_types_compatible_p(typeof(x),   signed type) ||	\
229 	__builtin_types_compatible_p(typeof(x), unsigned type),		\
230 	({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
231 
232 /**
233  * reciprocal_scale - "scale" a value into range [0, ep_ro)
234  * @val: value
235  * @ep_ro: right open interval endpoint
236  *
237  * Perform a "reciprocal multiplication" in order to "scale" a value into
238  * range [0, ep_ro), where the upper interval endpoint is right-open.
239  * This is useful, e.g. for accessing a index of an array containing
240  * ep_ro elements, for example. Think of it as sort of modulus, only that
241  * the result isn't that of modulo. ;) Note that if initial input is a
242  * small value, then result will return 0.
243  *
244  * Return: a result based on val in interval [0, ep_ro).
245  */
246 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
247 {
248 	return (u32)(((u64) val * ep_ro) >> 32);
249 }
250 
251 #if defined(CONFIG_MMU) && \
252 	(defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
253 #define might_fault() __might_fault(__FILE__, __LINE__)
254 void __might_fault(const char *file, int line);
255 #else
256 static inline void might_fault(void) { }
257 #endif
258 
259 extern struct atomic_notifier_head panic_notifier_list;
260 extern long (*panic_blink)(int state);
261 __printf(1, 2)
262 void panic(const char *fmt, ...) __noreturn __cold;
263 void nmi_panic(struct pt_regs *regs, const char *msg);
264 extern void oops_enter(void);
265 extern void oops_exit(void);
266 void print_oops_end_marker(void);
267 extern int oops_may_print(void);
268 void do_exit(long error_code) __noreturn;
269 void complete_and_exit(struct completion *, long) __noreturn;
270 
271 /* Internal, do not use. */
272 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
273 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
274 
275 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
276 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
277 
278 /**
279  * kstrtoul - convert a string to an unsigned long
280  * @s: The start of the string. The string must be null-terminated, and may also
281  *  include a single newline before its terminating null. The first character
282  *  may also be a plus sign, but not a minus sign.
283  * @base: The number base to use. The maximum supported base is 16. If base is
284  *  given as 0, then the base of the string is automatically detected with the
285  *  conventional semantics - If it begins with 0x the number will be parsed as a
286  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
287  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
288  * @res: Where to write the result of the conversion on success.
289  *
290  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
291  * Used as a replacement for the obsolete simple_strtoull. Return code must
292  * be checked.
293 */
294 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
295 {
296 	/*
297 	 * We want to shortcut function call, but
298 	 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
299 	 */
300 	if (sizeof(unsigned long) == sizeof(unsigned long long) &&
301 	    __alignof__(unsigned long) == __alignof__(unsigned long long))
302 		return kstrtoull(s, base, (unsigned long long *)res);
303 	else
304 		return _kstrtoul(s, base, res);
305 }
306 
307 /**
308  * kstrtol - convert a string to a long
309  * @s: The start of the string. The string must be null-terminated, and may also
310  *  include a single newline before its terminating null. The first character
311  *  may also be a plus sign or a minus sign.
312  * @base: The number base to use. The maximum supported base is 16. If base is
313  *  given as 0, then the base of the string is automatically detected with the
314  *  conventional semantics - If it begins with 0x the number will be parsed as a
315  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
316  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
317  * @res: Where to write the result of the conversion on success.
318  *
319  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
320  * Used as a replacement for the obsolete simple_strtoull. Return code must
321  * be checked.
322  */
323 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
324 {
325 	/*
326 	 * We want to shortcut function call, but
327 	 * __builtin_types_compatible_p(long, long long) = 0.
328 	 */
329 	if (sizeof(long) == sizeof(long long) &&
330 	    __alignof__(long) == __alignof__(long long))
331 		return kstrtoll(s, base, (long long *)res);
332 	else
333 		return _kstrtol(s, base, res);
334 }
335 
336 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
337 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
338 
339 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
340 {
341 	return kstrtoull(s, base, res);
342 }
343 
344 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
345 {
346 	return kstrtoll(s, base, res);
347 }
348 
349 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
350 {
351 	return kstrtouint(s, base, res);
352 }
353 
354 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
355 {
356 	return kstrtoint(s, base, res);
357 }
358 
359 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
360 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
361 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
362 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
363 int __must_check kstrtobool(const char *s, bool *res);
364 
365 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
366 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
367 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
368 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
369 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
370 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
371 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
372 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
373 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
374 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
375 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
376 
377 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
378 {
379 	return kstrtoull_from_user(s, count, base, res);
380 }
381 
382 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
383 {
384 	return kstrtoll_from_user(s, count, base, res);
385 }
386 
387 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
388 {
389 	return kstrtouint_from_user(s, count, base, res);
390 }
391 
392 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
393 {
394 	return kstrtoint_from_user(s, count, base, res);
395 }
396 
397 /* Obsolete, do not use.  Use kstrto<foo> instead */
398 
399 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
400 extern long simple_strtol(const char *,char **,unsigned int);
401 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
402 extern long long simple_strtoll(const char *,char **,unsigned int);
403 
404 extern int num_to_str(char *buf, int size, unsigned long long num);
405 
406 /* lib/printf utilities */
407 
408 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
409 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
410 extern __printf(3, 4)
411 int snprintf(char *buf, size_t size, const char *fmt, ...);
412 extern __printf(3, 0)
413 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
414 extern __printf(3, 4)
415 int scnprintf(char *buf, size_t size, const char *fmt, ...);
416 extern __printf(3, 0)
417 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
418 extern __printf(2, 3) __malloc
419 char *kasprintf(gfp_t gfp, const char *fmt, ...);
420 extern __printf(2, 0) __malloc
421 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
422 extern __printf(2, 0)
423 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
424 
425 extern __scanf(2, 3)
426 int sscanf(const char *, const char *, ...);
427 extern __scanf(2, 0)
428 int vsscanf(const char *, const char *, va_list);
429 
430 extern int get_option(char **str, int *pint);
431 extern char *get_options(const char *str, int nints, int *ints);
432 extern unsigned long long memparse(const char *ptr, char **retptr);
433 extern bool parse_option_str(const char *str, const char *option);
434 
435 extern int core_kernel_text(unsigned long addr);
436 extern int core_kernel_data(unsigned long addr);
437 extern int __kernel_text_address(unsigned long addr);
438 extern int kernel_text_address(unsigned long addr);
439 extern int func_ptr_is_kernel_text(void *ptr);
440 
441 unsigned long int_sqrt(unsigned long);
442 
443 extern void bust_spinlocks(int yes);
444 extern int oops_in_progress;		/* If set, an oops, panic(), BUG() or die() is in progress */
445 extern int panic_timeout;
446 extern int panic_on_oops;
447 extern int panic_on_unrecovered_nmi;
448 extern int panic_on_io_nmi;
449 extern int panic_on_warn;
450 extern int sysctl_panic_on_rcu_stall;
451 extern int sysctl_panic_on_stackoverflow;
452 
453 extern bool crash_kexec_post_notifiers;
454 
455 /*
456  * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
457  * holds a CPU number which is executing panic() currently. A value of
458  * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
459  */
460 extern atomic_t panic_cpu;
461 #define PANIC_CPU_INVALID	-1
462 
463 /*
464  * Only to be used by arch init code. If the user over-wrote the default
465  * CONFIG_PANIC_TIMEOUT, honor it.
466  */
467 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
468 {
469 	if (panic_timeout == arch_default_timeout)
470 		panic_timeout = timeout;
471 }
472 extern const char *print_tainted(void);
473 enum lockdep_ok {
474 	LOCKDEP_STILL_OK,
475 	LOCKDEP_NOW_UNRELIABLE
476 };
477 extern void add_taint(unsigned flag, enum lockdep_ok);
478 extern int test_taint(unsigned flag);
479 extern unsigned long get_taint(void);
480 extern int root_mountflags;
481 
482 extern bool early_boot_irqs_disabled;
483 
484 /* Values used for system_state */
485 extern enum system_states {
486 	SYSTEM_BOOTING,
487 	SYSTEM_RUNNING,
488 	SYSTEM_HALT,
489 	SYSTEM_POWER_OFF,
490 	SYSTEM_RESTART,
491 } system_state;
492 
493 #define TAINT_PROPRIETARY_MODULE	0
494 #define TAINT_FORCED_MODULE		1
495 #define TAINT_CPU_OUT_OF_SPEC		2
496 #define TAINT_FORCED_RMMOD		3
497 #define TAINT_MACHINE_CHECK		4
498 #define TAINT_BAD_PAGE			5
499 #define TAINT_USER			6
500 #define TAINT_DIE			7
501 #define TAINT_OVERRIDDEN_ACPI_TABLE	8
502 #define TAINT_WARN			9
503 #define TAINT_CRAP			10
504 #define TAINT_FIRMWARE_WORKAROUND	11
505 #define TAINT_OOT_MODULE		12
506 #define TAINT_UNSIGNED_MODULE		13
507 #define TAINT_SOFTLOCKUP		14
508 #define TAINT_LIVEPATCH			15
509 
510 extern const char hex_asc[];
511 #define hex_asc_lo(x)	hex_asc[((x) & 0x0f)]
512 #define hex_asc_hi(x)	hex_asc[((x) & 0xf0) >> 4]
513 
514 static inline char *hex_byte_pack(char *buf, u8 byte)
515 {
516 	*buf++ = hex_asc_hi(byte);
517 	*buf++ = hex_asc_lo(byte);
518 	return buf;
519 }
520 
521 extern const char hex_asc_upper[];
522 #define hex_asc_upper_lo(x)	hex_asc_upper[((x) & 0x0f)]
523 #define hex_asc_upper_hi(x)	hex_asc_upper[((x) & 0xf0) >> 4]
524 
525 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
526 {
527 	*buf++ = hex_asc_upper_hi(byte);
528 	*buf++ = hex_asc_upper_lo(byte);
529 	return buf;
530 }
531 
532 extern int hex_to_bin(char ch);
533 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
534 extern char *bin2hex(char *dst, const void *src, size_t count);
535 
536 bool mac_pton(const char *s, u8 *mac);
537 
538 /*
539  * General tracing related utility functions - trace_printk(),
540  * tracing_on/tracing_off and tracing_start()/tracing_stop
541  *
542  * Use tracing_on/tracing_off when you want to quickly turn on or off
543  * tracing. It simply enables or disables the recording of the trace events.
544  * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
545  * file, which gives a means for the kernel and userspace to interact.
546  * Place a tracing_off() in the kernel where you want tracing to end.
547  * From user space, examine the trace, and then echo 1 > tracing_on
548  * to continue tracing.
549  *
550  * tracing_stop/tracing_start has slightly more overhead. It is used
551  * by things like suspend to ram where disabling the recording of the
552  * trace is not enough, but tracing must actually stop because things
553  * like calling smp_processor_id() may crash the system.
554  *
555  * Most likely, you want to use tracing_on/tracing_off.
556  */
557 
558 enum ftrace_dump_mode {
559 	DUMP_NONE,
560 	DUMP_ALL,
561 	DUMP_ORIG,
562 };
563 
564 #ifdef CONFIG_TRACING
565 void tracing_on(void);
566 void tracing_off(void);
567 int tracing_is_on(void);
568 void tracing_snapshot(void);
569 void tracing_snapshot_alloc(void);
570 
571 extern void tracing_start(void);
572 extern void tracing_stop(void);
573 
574 static inline __printf(1, 2)
575 void ____trace_printk_check_format(const char *fmt, ...)
576 {
577 }
578 #define __trace_printk_check_format(fmt, args...)			\
579 do {									\
580 	if (0)								\
581 		____trace_printk_check_format(fmt, ##args);		\
582 } while (0)
583 
584 /**
585  * trace_printk - printf formatting in the ftrace buffer
586  * @fmt: the printf format for printing
587  *
588  * Note: __trace_printk is an internal function for trace_printk and
589  *       the @ip is passed in via the trace_printk macro.
590  *
591  * This function allows a kernel developer to debug fast path sections
592  * that printk is not appropriate for. By scattering in various
593  * printk like tracing in the code, a developer can quickly see
594  * where problems are occurring.
595  *
596  * This is intended as a debugging tool for the developer only.
597  * Please refrain from leaving trace_printks scattered around in
598  * your code. (Extra memory is used for special buffers that are
599  * allocated when trace_printk() is used)
600  *
601  * A little optization trick is done here. If there's only one
602  * argument, there's no need to scan the string for printf formats.
603  * The trace_puts() will suffice. But how can we take advantage of
604  * using trace_puts() when trace_printk() has only one argument?
605  * By stringifying the args and checking the size we can tell
606  * whether or not there are args. __stringify((__VA_ARGS__)) will
607  * turn into "()\0" with a size of 3 when there are no args, anything
608  * else will be bigger. All we need to do is define a string to this,
609  * and then take its size and compare to 3. If it's bigger, use
610  * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
611  * let gcc optimize the rest.
612  */
613 
614 #define trace_printk(fmt, ...)				\
615 do {							\
616 	char _______STR[] = __stringify((__VA_ARGS__));	\
617 	if (sizeof(_______STR) > 3)			\
618 		do_trace_printk(fmt, ##__VA_ARGS__);	\
619 	else						\
620 		trace_puts(fmt);			\
621 } while (0)
622 
623 #define do_trace_printk(fmt, args...)					\
624 do {									\
625 	static const char *trace_printk_fmt __used			\
626 		__attribute__((section("__trace_printk_fmt"))) =	\
627 		__builtin_constant_p(fmt) ? fmt : NULL;			\
628 									\
629 	__trace_printk_check_format(fmt, ##args);			\
630 									\
631 	if (__builtin_constant_p(fmt))					\
632 		__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);	\
633 	else								\
634 		__trace_printk(_THIS_IP_, fmt, ##args);			\
635 } while (0)
636 
637 extern __printf(2, 3)
638 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
639 
640 extern __printf(2, 3)
641 int __trace_printk(unsigned long ip, const char *fmt, ...);
642 
643 /**
644  * trace_puts - write a string into the ftrace buffer
645  * @str: the string to record
646  *
647  * Note: __trace_bputs is an internal function for trace_puts and
648  *       the @ip is passed in via the trace_puts macro.
649  *
650  * This is similar to trace_printk() but is made for those really fast
651  * paths that a developer wants the least amount of "Heisenbug" affects,
652  * where the processing of the print format is still too much.
653  *
654  * This function allows a kernel developer to debug fast path sections
655  * that printk is not appropriate for. By scattering in various
656  * printk like tracing in the code, a developer can quickly see
657  * where problems are occurring.
658  *
659  * This is intended as a debugging tool for the developer only.
660  * Please refrain from leaving trace_puts scattered around in
661  * your code. (Extra memory is used for special buffers that are
662  * allocated when trace_puts() is used)
663  *
664  * Returns: 0 if nothing was written, positive # if string was.
665  *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
666  */
667 
668 #define trace_puts(str) ({						\
669 	static const char *trace_printk_fmt __used			\
670 		__attribute__((section("__trace_printk_fmt"))) =	\
671 		__builtin_constant_p(str) ? str : NULL;			\
672 									\
673 	if (__builtin_constant_p(str))					\
674 		__trace_bputs(_THIS_IP_, trace_printk_fmt);		\
675 	else								\
676 		__trace_puts(_THIS_IP_, str, strlen(str));		\
677 })
678 extern int __trace_bputs(unsigned long ip, const char *str);
679 extern int __trace_puts(unsigned long ip, const char *str, int size);
680 
681 extern void trace_dump_stack(int skip);
682 
683 /*
684  * The double __builtin_constant_p is because gcc will give us an error
685  * if we try to allocate the static variable to fmt if it is not a
686  * constant. Even with the outer if statement.
687  */
688 #define ftrace_vprintk(fmt, vargs)					\
689 do {									\
690 	if (__builtin_constant_p(fmt)) {				\
691 		static const char *trace_printk_fmt __used		\
692 		  __attribute__((section("__trace_printk_fmt"))) =	\
693 			__builtin_constant_p(fmt) ? fmt : NULL;		\
694 									\
695 		__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);	\
696 	} else								\
697 		__ftrace_vprintk(_THIS_IP_, fmt, vargs);		\
698 } while (0)
699 
700 extern __printf(2, 0) int
701 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
702 
703 extern __printf(2, 0) int
704 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
705 
706 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
707 #else
708 static inline void tracing_start(void) { }
709 static inline void tracing_stop(void) { }
710 static inline void trace_dump_stack(int skip) { }
711 
712 static inline void tracing_on(void) { }
713 static inline void tracing_off(void) { }
714 static inline int tracing_is_on(void) { return 0; }
715 static inline void tracing_snapshot(void) { }
716 static inline void tracing_snapshot_alloc(void) { }
717 
718 static inline __printf(1, 2)
719 int trace_printk(const char *fmt, ...)
720 {
721 	return 0;
722 }
723 static __printf(1, 0) inline int
724 ftrace_vprintk(const char *fmt, va_list ap)
725 {
726 	return 0;
727 }
728 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
729 #endif /* CONFIG_TRACING */
730 
731 /*
732  * min()/max()/clamp() macros that also do
733  * strict type-checking.. See the
734  * "unnecessary" pointer comparison.
735  */
736 #define __min(t1, t2, min1, min2, x, y) ({		\
737 	t1 min1 = (x);					\
738 	t2 min2 = (y);					\
739 	(void) (&min1 == &min2);			\
740 	min1 < min2 ? min1 : min2; })
741 #define min(x, y)					\
742 	__min(typeof(x), typeof(y),			\
743 	      __UNIQUE_ID(min1_), __UNIQUE_ID(min2_),	\
744 	      x, y)
745 
746 #define __max(t1, t2, max1, max2, x, y) ({		\
747 	t1 max1 = (x);					\
748 	t2 max2 = (y);					\
749 	(void) (&max1 == &max2);			\
750 	max1 > max2 ? max1 : max2; })
751 #define max(x, y)					\
752 	__max(typeof(x), typeof(y),			\
753 	      __UNIQUE_ID(max1_), __UNIQUE_ID(max2_),	\
754 	      x, y)
755 
756 #define min3(x, y, z) min((typeof(x))min(x, y), z)
757 #define max3(x, y, z) max((typeof(x))max(x, y), z)
758 
759 /**
760  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
761  * @x: value1
762  * @y: value2
763  */
764 #define min_not_zero(x, y) ({			\
765 	typeof(x) __x = (x);			\
766 	typeof(y) __y = (y);			\
767 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
768 
769 /**
770  * clamp - return a value clamped to a given range with strict typechecking
771  * @val: current value
772  * @lo: lowest allowable value
773  * @hi: highest allowable value
774  *
775  * This macro does strict typechecking of lo/hi to make sure they are of the
776  * same type as val.  See the unnecessary pointer comparisons.
777  */
778 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
779 
780 /*
781  * ..and if you can't take the strict
782  * types, you can specify one yourself.
783  *
784  * Or not use min/max/clamp at all, of course.
785  */
786 #define min_t(type, x, y)				\
787 	__min(type, type,				\
788 	      __UNIQUE_ID(min1_), __UNIQUE_ID(min2_),	\
789 	      x, y)
790 
791 #define max_t(type, x, y)				\
792 	__max(type, type,				\
793 	      __UNIQUE_ID(min1_), __UNIQUE_ID(min2_),	\
794 	      x, y)
795 
796 /**
797  * clamp_t - return a value clamped to a given range using a given type
798  * @type: the type of variable to use
799  * @val: current value
800  * @lo: minimum allowable value
801  * @hi: maximum allowable value
802  *
803  * This macro does no typechecking and uses temporary variables of type
804  * 'type' to make all the comparisons.
805  */
806 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
807 
808 /**
809  * clamp_val - return a value clamped to a given range using val's type
810  * @val: current value
811  * @lo: minimum allowable value
812  * @hi: maximum allowable value
813  *
814  * This macro does no typechecking and uses temporary variables of whatever
815  * type the input argument 'val' is.  This is useful when val is an unsigned
816  * type and min and max are literals that will otherwise be assigned a signed
817  * integer type.
818  */
819 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
820 
821 
822 /*
823  * swap - swap value of @a and @b
824  */
825 #define swap(a, b) \
826 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
827 
828 /**
829  * container_of - cast a member of a structure out to the containing structure
830  * @ptr:	the pointer to the member.
831  * @type:	the type of the container struct this is embedded in.
832  * @member:	the name of the member within the struct.
833  *
834  */
835 #define container_of(ptr, type, member) ({			\
836 	const typeof( ((type *)0)->member ) *__mptr = (ptr);	\
837 	(type *)( (char *)__mptr - offsetof(type,member) );})
838 
839 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
840 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
841 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
842 #endif
843 
844 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
845 #define VERIFY_OCTAL_PERMISSIONS(perms)						\
846 	(BUILD_BUG_ON_ZERO((perms) < 0) +					\
847 	 BUILD_BUG_ON_ZERO((perms) > 0777) +					\
848 	 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */		\
849 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +	\
850 	 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +		\
851 	 /* USER_WRITABLE >= GROUP_WRITABLE */					\
852 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +	\
853 	 /* OTHER_WRITABLE?  Generally considered a bad idea. */		\
854 	 BUILD_BUG_ON_ZERO((perms) & 2) +					\
855 	 (perms))
856 #endif
857