1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_KERNEL_H 3 #define _LINUX_KERNEL_H 4 5 6 #include <stdarg.h> 7 #include <linux/linkage.h> 8 #include <linux/stddef.h> 9 #include <linux/types.h> 10 #include <linux/compiler.h> 11 #include <linux/bitops.h> 12 #include <linux/log2.h> 13 #include <linux/typecheck.h> 14 #include <linux/printk.h> 15 #include <linux/build_bug.h> 16 #include <asm/byteorder.h> 17 #include <uapi/linux/kernel.h> 18 19 #define USHRT_MAX ((u16)(~0U)) 20 #define SHRT_MAX ((s16)(USHRT_MAX>>1)) 21 #define SHRT_MIN ((s16)(-SHRT_MAX - 1)) 22 #define INT_MAX ((int)(~0U>>1)) 23 #define INT_MIN (-INT_MAX - 1) 24 #define UINT_MAX (~0U) 25 #define LONG_MAX ((long)(~0UL>>1)) 26 #define LONG_MIN (-LONG_MAX - 1) 27 #define ULONG_MAX (~0UL) 28 #define LLONG_MAX ((long long)(~0ULL>>1)) 29 #define LLONG_MIN (-LLONG_MAX - 1) 30 #define ULLONG_MAX (~0ULL) 31 #define SIZE_MAX (~(size_t)0) 32 #define PHYS_ADDR_MAX (~(phys_addr_t)0) 33 34 #define U8_MAX ((u8)~0U) 35 #define S8_MAX ((s8)(U8_MAX>>1)) 36 #define S8_MIN ((s8)(-S8_MAX - 1)) 37 #define U16_MAX ((u16)~0U) 38 #define S16_MAX ((s16)(U16_MAX>>1)) 39 #define S16_MIN ((s16)(-S16_MAX - 1)) 40 #define U32_MAX ((u32)~0U) 41 #define S32_MAX ((s32)(U32_MAX>>1)) 42 #define S32_MIN ((s32)(-S32_MAX - 1)) 43 #define U64_MAX ((u64)~0ULL) 44 #define S64_MAX ((s64)(U64_MAX>>1)) 45 #define S64_MIN ((s64)(-S64_MAX - 1)) 46 47 #define STACK_MAGIC 0xdeadbeef 48 49 /** 50 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value 51 * @x: value to repeat 52 * 53 * NOTE: @x is not checked for > 0xff; larger values produce odd results. 54 */ 55 #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 56 57 /* @a is a power of 2 value */ 58 #define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 59 #define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a)) 60 #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 61 #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 62 #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 63 64 /* generic data direction definitions */ 65 #define READ 0 66 #define WRITE 1 67 68 /** 69 * ARRAY_SIZE - get the number of elements in array @arr 70 * @arr: array to be sized 71 */ 72 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 73 74 #define u64_to_user_ptr(x) ( \ 75 { \ 76 typecheck(u64, x); \ 77 (void __user *)(uintptr_t)x; \ 78 } \ 79 ) 80 81 /* 82 * This looks more complex than it should be. But we need to 83 * get the type for the ~ right in round_down (it needs to be 84 * as wide as the result!), and we want to evaluate the macro 85 * arguments just once each. 86 */ 87 #define __round_mask(x, y) ((__typeof__(x))((y)-1)) 88 /** 89 * round_up - round up to next specified power of 2 90 * @x: the value to round 91 * @y: multiple to round up to (must be a power of 2) 92 * 93 * Rounds @x up to next multiple of @y (which must be a power of 2). 94 * To perform arbitrary rounding up, use roundup() below. 95 */ 96 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 97 /** 98 * round_down - round down to next specified power of 2 99 * @x: the value to round 100 * @y: multiple to round down to (must be a power of 2) 101 * 102 * Rounds @x down to next multiple of @y (which must be a power of 2). 103 * To perform arbitrary rounding down, use rounddown() below. 104 */ 105 #define round_down(x, y) ((x) & ~__round_mask(x, y)) 106 107 /** 108 * FIELD_SIZEOF - get the size of a struct's field 109 * @t: the target struct 110 * @f: the target struct's field 111 * Return: the size of @f in the struct definition without having a 112 * declared instance of @t. 113 */ 114 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 115 116 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 117 118 #define DIV_ROUND_DOWN_ULL(ll, d) \ 119 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) 120 121 #define DIV_ROUND_UP_ULL(ll, d) DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d)) 122 123 #if BITS_PER_LONG == 32 124 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 125 #else 126 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 127 #endif 128 129 /** 130 * roundup - round up to the next specified multiple 131 * @x: the value to up 132 * @y: multiple to round up to 133 * 134 * Rounds @x up to next multiple of @y. If @y will always be a power 135 * of 2, consider using the faster round_up(). 136 * 137 * The `const' here prevents gcc-3.3 from calling __divdi3 138 */ 139 #define roundup(x, y) ( \ 140 { \ 141 const typeof(y) __y = y; \ 142 (((x) + (__y - 1)) / __y) * __y; \ 143 } \ 144 ) 145 /** 146 * rounddown - round down to next specified multiple 147 * @x: the value to round 148 * @y: multiple to round down to 149 * 150 * Rounds @x down to next multiple of @y. If @y will always be a power 151 * of 2, consider using the faster round_down(). 152 */ 153 #define rounddown(x, y) ( \ 154 { \ 155 typeof(x) __x = (x); \ 156 __x - (__x % (y)); \ 157 } \ 158 ) 159 160 /* 161 * Divide positive or negative dividend by positive or negative divisor 162 * and round to closest integer. Result is undefined for negative 163 * divisors if the dividend variable type is unsigned and for negative 164 * dividends if the divisor variable type is unsigned. 165 */ 166 #define DIV_ROUND_CLOSEST(x, divisor)( \ 167 { \ 168 typeof(x) __x = x; \ 169 typeof(divisor) __d = divisor; \ 170 (((typeof(x))-1) > 0 || \ 171 ((typeof(divisor))-1) > 0 || \ 172 (((__x) > 0) == ((__d) > 0))) ? \ 173 (((__x) + ((__d) / 2)) / (__d)) : \ 174 (((__x) - ((__d) / 2)) / (__d)); \ 175 } \ 176 ) 177 /* 178 * Same as above but for u64 dividends. divisor must be a 32-bit 179 * number. 180 */ 181 #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 182 { \ 183 typeof(divisor) __d = divisor; \ 184 unsigned long long _tmp = (x) + (__d) / 2; \ 185 do_div(_tmp, __d); \ 186 _tmp; \ 187 } \ 188 ) 189 190 /* 191 * Multiplies an integer by a fraction, while avoiding unnecessary 192 * overflow or loss of precision. 193 */ 194 #define mult_frac(x, numer, denom)( \ 195 { \ 196 typeof(x) quot = (x) / (denom); \ 197 typeof(x) rem = (x) % (denom); \ 198 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 199 } \ 200 ) 201 202 203 #define _RET_IP_ (unsigned long)__builtin_return_address(0) 204 #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 205 206 #ifdef CONFIG_LBDAF 207 # include <asm/div64.h> 208 # define sector_div(a, b) do_div(a, b) 209 #else 210 # define sector_div(n, b)( \ 211 { \ 212 int _res; \ 213 _res = (n) % (b); \ 214 (n) /= (b); \ 215 _res; \ 216 } \ 217 ) 218 #endif 219 220 /** 221 * upper_32_bits - return bits 32-63 of a number 222 * @n: the number we're accessing 223 * 224 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 225 * the "right shift count >= width of type" warning when that quantity is 226 * 32-bits. 227 */ 228 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 229 230 /** 231 * lower_32_bits - return bits 0-31 of a number 232 * @n: the number we're accessing 233 */ 234 #define lower_32_bits(n) ((u32)(n)) 235 236 struct completion; 237 struct pt_regs; 238 struct user; 239 240 #ifdef CONFIG_PREEMPT_VOLUNTARY 241 extern int _cond_resched(void); 242 # define might_resched() _cond_resched() 243 #else 244 # define might_resched() do { } while (0) 245 #endif 246 247 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 248 extern void ___might_sleep(const char *file, int line, int preempt_offset); 249 extern void __might_sleep(const char *file, int line, int preempt_offset); 250 extern void __cant_sleep(const char *file, int line, int preempt_offset); 251 252 /** 253 * might_sleep - annotation for functions that can sleep 254 * 255 * this macro will print a stack trace if it is executed in an atomic 256 * context (spinlock, irq-handler, ...). 257 * 258 * This is a useful debugging help to be able to catch problems early and not 259 * be bitten later when the calling function happens to sleep when it is not 260 * supposed to. 261 */ 262 # define might_sleep() \ 263 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 264 /** 265 * cant_sleep - annotation for functions that cannot sleep 266 * 267 * this macro will print a stack trace if it is executed with preemption enabled 268 */ 269 # define cant_sleep() \ 270 do { __cant_sleep(__FILE__, __LINE__, 0); } while (0) 271 # define sched_annotate_sleep() (current->task_state_change = 0) 272 #else 273 static inline void ___might_sleep(const char *file, int line, 274 int preempt_offset) { } 275 static inline void __might_sleep(const char *file, int line, 276 int preempt_offset) { } 277 # define might_sleep() do { might_resched(); } while (0) 278 # define cant_sleep() do { } while (0) 279 # define sched_annotate_sleep() do { } while (0) 280 #endif 281 282 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 283 284 /** 285 * abs - return absolute value of an argument 286 * @x: the value. If it is unsigned type, it is converted to signed type first. 287 * char is treated as if it was signed (regardless of whether it really is) 288 * but the macro's return type is preserved as char. 289 * 290 * Return: an absolute value of x. 291 */ 292 #define abs(x) __abs_choose_expr(x, long long, \ 293 __abs_choose_expr(x, long, \ 294 __abs_choose_expr(x, int, \ 295 __abs_choose_expr(x, short, \ 296 __abs_choose_expr(x, char, \ 297 __builtin_choose_expr( \ 298 __builtin_types_compatible_p(typeof(x), char), \ 299 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 300 ((void)0))))))) 301 302 #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 303 __builtin_types_compatible_p(typeof(x), signed type) || \ 304 __builtin_types_compatible_p(typeof(x), unsigned type), \ 305 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 306 307 /** 308 * reciprocal_scale - "scale" a value into range [0, ep_ro) 309 * @val: value 310 * @ep_ro: right open interval endpoint 311 * 312 * Perform a "reciprocal multiplication" in order to "scale" a value into 313 * range [0, @ep_ro), where the upper interval endpoint is right-open. 314 * This is useful, e.g. for accessing a index of an array containing 315 * @ep_ro elements, for example. Think of it as sort of modulus, only that 316 * the result isn't that of modulo. ;) Note that if initial input is a 317 * small value, then result will return 0. 318 * 319 * Return: a result based on @val in interval [0, @ep_ro). 320 */ 321 static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 322 { 323 return (u32)(((u64) val * ep_ro) >> 32); 324 } 325 326 #if defined(CONFIG_MMU) && \ 327 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 328 #define might_fault() __might_fault(__FILE__, __LINE__) 329 void __might_fault(const char *file, int line); 330 #else 331 static inline void might_fault(void) { } 332 #endif 333 334 extern struct atomic_notifier_head panic_notifier_list; 335 extern long (*panic_blink)(int state); 336 __printf(1, 2) 337 void panic(const char *fmt, ...) __noreturn __cold; 338 void nmi_panic(struct pt_regs *regs, const char *msg); 339 extern void oops_enter(void); 340 extern void oops_exit(void); 341 void print_oops_end_marker(void); 342 extern int oops_may_print(void); 343 void do_exit(long error_code) __noreturn; 344 void complete_and_exit(struct completion *, long) __noreturn; 345 346 #ifdef CONFIG_ARCH_HAS_REFCOUNT 347 void refcount_error_report(struct pt_regs *regs, const char *err); 348 #else 349 static inline void refcount_error_report(struct pt_regs *regs, const char *err) 350 { } 351 #endif 352 353 /* Internal, do not use. */ 354 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 355 int __must_check _kstrtol(const char *s, unsigned int base, long *res); 356 357 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 358 int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 359 360 /** 361 * kstrtoul - convert a string to an unsigned long 362 * @s: The start of the string. The string must be null-terminated, and may also 363 * include a single newline before its terminating null. The first character 364 * may also be a plus sign, but not a minus sign. 365 * @base: The number base to use. The maximum supported base is 16. If base is 366 * given as 0, then the base of the string is automatically detected with the 367 * conventional semantics - If it begins with 0x the number will be parsed as a 368 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 369 * parsed as an octal number. Otherwise it will be parsed as a decimal. 370 * @res: Where to write the result of the conversion on success. 371 * 372 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 373 * Used as a replacement for the obsolete simple_strtoull. Return code must 374 * be checked. 375 */ 376 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 377 { 378 /* 379 * We want to shortcut function call, but 380 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 381 */ 382 if (sizeof(unsigned long) == sizeof(unsigned long long) && 383 __alignof__(unsigned long) == __alignof__(unsigned long long)) 384 return kstrtoull(s, base, (unsigned long long *)res); 385 else 386 return _kstrtoul(s, base, res); 387 } 388 389 /** 390 * kstrtol - convert a string to a long 391 * @s: The start of the string. The string must be null-terminated, and may also 392 * include a single newline before its terminating null. The first character 393 * may also be a plus sign or a minus sign. 394 * @base: The number base to use. The maximum supported base is 16. If base is 395 * given as 0, then the base of the string is automatically detected with the 396 * conventional semantics - If it begins with 0x the number will be parsed as a 397 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 398 * parsed as an octal number. Otherwise it will be parsed as a decimal. 399 * @res: Where to write the result of the conversion on success. 400 * 401 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 402 * Used as a replacement for the obsolete simple_strtoull. Return code must 403 * be checked. 404 */ 405 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 406 { 407 /* 408 * We want to shortcut function call, but 409 * __builtin_types_compatible_p(long, long long) = 0. 410 */ 411 if (sizeof(long) == sizeof(long long) && 412 __alignof__(long) == __alignof__(long long)) 413 return kstrtoll(s, base, (long long *)res); 414 else 415 return _kstrtol(s, base, res); 416 } 417 418 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 419 int __must_check kstrtoint(const char *s, unsigned int base, int *res); 420 421 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 422 { 423 return kstrtoull(s, base, res); 424 } 425 426 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 427 { 428 return kstrtoll(s, base, res); 429 } 430 431 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 432 { 433 return kstrtouint(s, base, res); 434 } 435 436 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 437 { 438 return kstrtoint(s, base, res); 439 } 440 441 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 442 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 443 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 444 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 445 int __must_check kstrtobool(const char *s, bool *res); 446 447 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 448 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 449 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 450 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 451 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 452 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 453 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 454 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 455 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 456 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 457 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); 458 459 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 460 { 461 return kstrtoull_from_user(s, count, base, res); 462 } 463 464 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 465 { 466 return kstrtoll_from_user(s, count, base, res); 467 } 468 469 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 470 { 471 return kstrtouint_from_user(s, count, base, res); 472 } 473 474 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 475 { 476 return kstrtoint_from_user(s, count, base, res); 477 } 478 479 /* Obsolete, do not use. Use kstrto<foo> instead */ 480 481 extern unsigned long simple_strtoul(const char *,char **,unsigned int); 482 extern long simple_strtol(const char *,char **,unsigned int); 483 extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 484 extern long long simple_strtoll(const char *,char **,unsigned int); 485 486 extern int num_to_str(char *buf, int size, 487 unsigned long long num, unsigned int width); 488 489 /* lib/printf utilities */ 490 491 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 492 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 493 extern __printf(3, 4) 494 int snprintf(char *buf, size_t size, const char *fmt, ...); 495 extern __printf(3, 0) 496 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 497 extern __printf(3, 4) 498 int scnprintf(char *buf, size_t size, const char *fmt, ...); 499 extern __printf(3, 0) 500 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 501 extern __printf(2, 3) __malloc 502 char *kasprintf(gfp_t gfp, const char *fmt, ...); 503 extern __printf(2, 0) __malloc 504 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 505 extern __printf(2, 0) 506 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); 507 508 extern __scanf(2, 3) 509 int sscanf(const char *, const char *, ...); 510 extern __scanf(2, 0) 511 int vsscanf(const char *, const char *, va_list); 512 513 extern int get_option(char **str, int *pint); 514 extern char *get_options(const char *str, int nints, int *ints); 515 extern unsigned long long memparse(const char *ptr, char **retptr); 516 extern bool parse_option_str(const char *str, const char *option); 517 extern char *next_arg(char *args, char **param, char **val); 518 519 extern int core_kernel_text(unsigned long addr); 520 extern int init_kernel_text(unsigned long addr); 521 extern int core_kernel_data(unsigned long addr); 522 extern int __kernel_text_address(unsigned long addr); 523 extern int kernel_text_address(unsigned long addr); 524 extern int func_ptr_is_kernel_text(void *ptr); 525 526 unsigned long int_sqrt(unsigned long); 527 528 #if BITS_PER_LONG < 64 529 u32 int_sqrt64(u64 x); 530 #else 531 static inline u32 int_sqrt64(u64 x) 532 { 533 return (u32)int_sqrt(x); 534 } 535 #endif 536 537 extern void bust_spinlocks(int yes); 538 extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 539 extern int panic_timeout; 540 extern unsigned long panic_print; 541 extern int panic_on_oops; 542 extern int panic_on_unrecovered_nmi; 543 extern int panic_on_io_nmi; 544 extern int panic_on_warn; 545 extern int sysctl_panic_on_rcu_stall; 546 extern int sysctl_panic_on_stackoverflow; 547 548 extern bool crash_kexec_post_notifiers; 549 550 /* 551 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It 552 * holds a CPU number which is executing panic() currently. A value of 553 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). 554 */ 555 extern atomic_t panic_cpu; 556 #define PANIC_CPU_INVALID -1 557 558 /* 559 * Only to be used by arch init code. If the user over-wrote the default 560 * CONFIG_PANIC_TIMEOUT, honor it. 561 */ 562 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 563 { 564 if (panic_timeout == arch_default_timeout) 565 panic_timeout = timeout; 566 } 567 extern const char *print_tainted(void); 568 enum lockdep_ok { 569 LOCKDEP_STILL_OK, 570 LOCKDEP_NOW_UNRELIABLE 571 }; 572 extern void add_taint(unsigned flag, enum lockdep_ok); 573 extern int test_taint(unsigned flag); 574 extern unsigned long get_taint(void); 575 extern int root_mountflags; 576 577 extern bool early_boot_irqs_disabled; 578 579 /* 580 * Values used for system_state. Ordering of the states must not be changed 581 * as code checks for <, <=, >, >= STATE. 582 */ 583 extern enum system_states { 584 SYSTEM_BOOTING, 585 SYSTEM_SCHEDULING, 586 SYSTEM_RUNNING, 587 SYSTEM_HALT, 588 SYSTEM_POWER_OFF, 589 SYSTEM_RESTART, 590 SYSTEM_SUSPEND, 591 } system_state; 592 593 /* This cannot be an enum because some may be used in assembly source. */ 594 #define TAINT_PROPRIETARY_MODULE 0 595 #define TAINT_FORCED_MODULE 1 596 #define TAINT_CPU_OUT_OF_SPEC 2 597 #define TAINT_FORCED_RMMOD 3 598 #define TAINT_MACHINE_CHECK 4 599 #define TAINT_BAD_PAGE 5 600 #define TAINT_USER 6 601 #define TAINT_DIE 7 602 #define TAINT_OVERRIDDEN_ACPI_TABLE 8 603 #define TAINT_WARN 9 604 #define TAINT_CRAP 10 605 #define TAINT_FIRMWARE_WORKAROUND 11 606 #define TAINT_OOT_MODULE 12 607 #define TAINT_UNSIGNED_MODULE 13 608 #define TAINT_SOFTLOCKUP 14 609 #define TAINT_LIVEPATCH 15 610 #define TAINT_AUX 16 611 #define TAINT_RANDSTRUCT 17 612 #define TAINT_FLAGS_COUNT 18 613 614 struct taint_flag { 615 char c_true; /* character printed when tainted */ 616 char c_false; /* character printed when not tainted */ 617 bool module; /* also show as a per-module taint flag */ 618 }; 619 620 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; 621 622 extern const char hex_asc[]; 623 #define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 624 #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 625 626 static inline char *hex_byte_pack(char *buf, u8 byte) 627 { 628 *buf++ = hex_asc_hi(byte); 629 *buf++ = hex_asc_lo(byte); 630 return buf; 631 } 632 633 extern const char hex_asc_upper[]; 634 #define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 635 #define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 636 637 static inline char *hex_byte_pack_upper(char *buf, u8 byte) 638 { 639 *buf++ = hex_asc_upper_hi(byte); 640 *buf++ = hex_asc_upper_lo(byte); 641 return buf; 642 } 643 644 extern int hex_to_bin(char ch); 645 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 646 extern char *bin2hex(char *dst, const void *src, size_t count); 647 648 bool mac_pton(const char *s, u8 *mac); 649 650 /* 651 * General tracing related utility functions - trace_printk(), 652 * tracing_on/tracing_off and tracing_start()/tracing_stop 653 * 654 * Use tracing_on/tracing_off when you want to quickly turn on or off 655 * tracing. It simply enables or disables the recording of the trace events. 656 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 657 * file, which gives a means for the kernel and userspace to interact. 658 * Place a tracing_off() in the kernel where you want tracing to end. 659 * From user space, examine the trace, and then echo 1 > tracing_on 660 * to continue tracing. 661 * 662 * tracing_stop/tracing_start has slightly more overhead. It is used 663 * by things like suspend to ram where disabling the recording of the 664 * trace is not enough, but tracing must actually stop because things 665 * like calling smp_processor_id() may crash the system. 666 * 667 * Most likely, you want to use tracing_on/tracing_off. 668 */ 669 670 enum ftrace_dump_mode { 671 DUMP_NONE, 672 DUMP_ALL, 673 DUMP_ORIG, 674 }; 675 676 #ifdef CONFIG_TRACING 677 void tracing_on(void); 678 void tracing_off(void); 679 int tracing_is_on(void); 680 void tracing_snapshot(void); 681 void tracing_snapshot_alloc(void); 682 683 extern void tracing_start(void); 684 extern void tracing_stop(void); 685 686 static inline __printf(1, 2) 687 void ____trace_printk_check_format(const char *fmt, ...) 688 { 689 } 690 #define __trace_printk_check_format(fmt, args...) \ 691 do { \ 692 if (0) \ 693 ____trace_printk_check_format(fmt, ##args); \ 694 } while (0) 695 696 /** 697 * trace_printk - printf formatting in the ftrace buffer 698 * @fmt: the printf format for printing 699 * 700 * Note: __trace_printk is an internal function for trace_printk() and 701 * the @ip is passed in via the trace_printk() macro. 702 * 703 * This function allows a kernel developer to debug fast path sections 704 * that printk is not appropriate for. By scattering in various 705 * printk like tracing in the code, a developer can quickly see 706 * where problems are occurring. 707 * 708 * This is intended as a debugging tool for the developer only. 709 * Please refrain from leaving trace_printks scattered around in 710 * your code. (Extra memory is used for special buffers that are 711 * allocated when trace_printk() is used.) 712 * 713 * A little optimization trick is done here. If there's only one 714 * argument, there's no need to scan the string for printf formats. 715 * The trace_puts() will suffice. But how can we take advantage of 716 * using trace_puts() when trace_printk() has only one argument? 717 * By stringifying the args and checking the size we can tell 718 * whether or not there are args. __stringify((__VA_ARGS__)) will 719 * turn into "()\0" with a size of 3 when there are no args, anything 720 * else will be bigger. All we need to do is define a string to this, 721 * and then take its size and compare to 3. If it's bigger, use 722 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 723 * let gcc optimize the rest. 724 */ 725 726 #define trace_printk(fmt, ...) \ 727 do { \ 728 char _______STR[] = __stringify((__VA_ARGS__)); \ 729 if (sizeof(_______STR) > 3) \ 730 do_trace_printk(fmt, ##__VA_ARGS__); \ 731 else \ 732 trace_puts(fmt); \ 733 } while (0) 734 735 #define do_trace_printk(fmt, args...) \ 736 do { \ 737 static const char *trace_printk_fmt __used \ 738 __attribute__((section("__trace_printk_fmt"))) = \ 739 __builtin_constant_p(fmt) ? fmt : NULL; \ 740 \ 741 __trace_printk_check_format(fmt, ##args); \ 742 \ 743 if (__builtin_constant_p(fmt)) \ 744 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 745 else \ 746 __trace_printk(_THIS_IP_, fmt, ##args); \ 747 } while (0) 748 749 extern __printf(2, 3) 750 int __trace_bprintk(unsigned long ip, const char *fmt, ...); 751 752 extern __printf(2, 3) 753 int __trace_printk(unsigned long ip, const char *fmt, ...); 754 755 /** 756 * trace_puts - write a string into the ftrace buffer 757 * @str: the string to record 758 * 759 * Note: __trace_bputs is an internal function for trace_puts and 760 * the @ip is passed in via the trace_puts macro. 761 * 762 * This is similar to trace_printk() but is made for those really fast 763 * paths that a developer wants the least amount of "Heisenbug" effects, 764 * where the processing of the print format is still too much. 765 * 766 * This function allows a kernel developer to debug fast path sections 767 * that printk is not appropriate for. By scattering in various 768 * printk like tracing in the code, a developer can quickly see 769 * where problems are occurring. 770 * 771 * This is intended as a debugging tool for the developer only. 772 * Please refrain from leaving trace_puts scattered around in 773 * your code. (Extra memory is used for special buffers that are 774 * allocated when trace_puts() is used.) 775 * 776 * Returns: 0 if nothing was written, positive # if string was. 777 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 778 */ 779 780 #define trace_puts(str) ({ \ 781 static const char *trace_printk_fmt __used \ 782 __attribute__((section("__trace_printk_fmt"))) = \ 783 __builtin_constant_p(str) ? str : NULL; \ 784 \ 785 if (__builtin_constant_p(str)) \ 786 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 787 else \ 788 __trace_puts(_THIS_IP_, str, strlen(str)); \ 789 }) 790 extern int __trace_bputs(unsigned long ip, const char *str); 791 extern int __trace_puts(unsigned long ip, const char *str, int size); 792 793 extern void trace_dump_stack(int skip); 794 795 /* 796 * The double __builtin_constant_p is because gcc will give us an error 797 * if we try to allocate the static variable to fmt if it is not a 798 * constant. Even with the outer if statement. 799 */ 800 #define ftrace_vprintk(fmt, vargs) \ 801 do { \ 802 if (__builtin_constant_p(fmt)) { \ 803 static const char *trace_printk_fmt __used \ 804 __attribute__((section("__trace_printk_fmt"))) = \ 805 __builtin_constant_p(fmt) ? fmt : NULL; \ 806 \ 807 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 808 } else \ 809 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 810 } while (0) 811 812 extern __printf(2, 0) int 813 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 814 815 extern __printf(2, 0) int 816 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 817 818 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 819 #else 820 static inline void tracing_start(void) { } 821 static inline void tracing_stop(void) { } 822 static inline void trace_dump_stack(int skip) { } 823 824 static inline void tracing_on(void) { } 825 static inline void tracing_off(void) { } 826 static inline int tracing_is_on(void) { return 0; } 827 static inline void tracing_snapshot(void) { } 828 static inline void tracing_snapshot_alloc(void) { } 829 830 static inline __printf(1, 2) 831 int trace_printk(const char *fmt, ...) 832 { 833 return 0; 834 } 835 static __printf(1, 0) inline int 836 ftrace_vprintk(const char *fmt, va_list ap) 837 { 838 return 0; 839 } 840 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 841 #endif /* CONFIG_TRACING */ 842 843 /* 844 * min()/max()/clamp() macros must accomplish three things: 845 * 846 * - avoid multiple evaluations of the arguments (so side-effects like 847 * "x++" happen only once) when non-constant. 848 * - perform strict type-checking (to generate warnings instead of 849 * nasty runtime surprises). See the "unnecessary" pointer comparison 850 * in __typecheck(). 851 * - retain result as a constant expressions when called with only 852 * constant expressions (to avoid tripping VLA warnings in stack 853 * allocation usage). 854 */ 855 #define __typecheck(x, y) \ 856 (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1))) 857 858 /* 859 * This returns a constant expression while determining if an argument is 860 * a constant expression, most importantly without evaluating the argument. 861 * Glory to Martin Uecker <[email protected]> 862 */ 863 #define __is_constexpr(x) \ 864 (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) 865 866 #define __no_side_effects(x, y) \ 867 (__is_constexpr(x) && __is_constexpr(y)) 868 869 #define __safe_cmp(x, y) \ 870 (__typecheck(x, y) && __no_side_effects(x, y)) 871 872 #define __cmp(x, y, op) ((x) op (y) ? (x) : (y)) 873 874 #define __cmp_once(x, y, unique_x, unique_y, op) ({ \ 875 typeof(x) unique_x = (x); \ 876 typeof(y) unique_y = (y); \ 877 __cmp(unique_x, unique_y, op); }) 878 879 #define __careful_cmp(x, y, op) \ 880 __builtin_choose_expr(__safe_cmp(x, y), \ 881 __cmp(x, y, op), \ 882 __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op)) 883 884 /** 885 * min - return minimum of two values of the same or compatible types 886 * @x: first value 887 * @y: second value 888 */ 889 #define min(x, y) __careful_cmp(x, y, <) 890 891 /** 892 * max - return maximum of two values of the same or compatible types 893 * @x: first value 894 * @y: second value 895 */ 896 #define max(x, y) __careful_cmp(x, y, >) 897 898 /** 899 * min3 - return minimum of three values 900 * @x: first value 901 * @y: second value 902 * @z: third value 903 */ 904 #define min3(x, y, z) min((typeof(x))min(x, y), z) 905 906 /** 907 * max3 - return maximum of three values 908 * @x: first value 909 * @y: second value 910 * @z: third value 911 */ 912 #define max3(x, y, z) max((typeof(x))max(x, y), z) 913 914 /** 915 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 916 * @x: value1 917 * @y: value2 918 */ 919 #define min_not_zero(x, y) ({ \ 920 typeof(x) __x = (x); \ 921 typeof(y) __y = (y); \ 922 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 923 924 /** 925 * clamp - return a value clamped to a given range with strict typechecking 926 * @val: current value 927 * @lo: lowest allowable value 928 * @hi: highest allowable value 929 * 930 * This macro does strict typechecking of @lo/@hi to make sure they are of the 931 * same type as @val. See the unnecessary pointer comparisons. 932 */ 933 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 934 935 /* 936 * ..and if you can't take the strict 937 * types, you can specify one yourself. 938 * 939 * Or not use min/max/clamp at all, of course. 940 */ 941 942 /** 943 * min_t - return minimum of two values, using the specified type 944 * @type: data type to use 945 * @x: first value 946 * @y: second value 947 */ 948 #define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <) 949 950 /** 951 * max_t - return maximum of two values, using the specified type 952 * @type: data type to use 953 * @x: first value 954 * @y: second value 955 */ 956 #define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >) 957 958 /** 959 * clamp_t - return a value clamped to a given range using a given type 960 * @type: the type of variable to use 961 * @val: current value 962 * @lo: minimum allowable value 963 * @hi: maximum allowable value 964 * 965 * This macro does no typechecking and uses temporary variables of type 966 * @type to make all the comparisons. 967 */ 968 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) 969 970 /** 971 * clamp_val - return a value clamped to a given range using val's type 972 * @val: current value 973 * @lo: minimum allowable value 974 * @hi: maximum allowable value 975 * 976 * This macro does no typechecking and uses temporary variables of whatever 977 * type the input argument @val is. This is useful when @val is an unsigned 978 * type and @lo and @hi are literals that will otherwise be assigned a signed 979 * integer type. 980 */ 981 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) 982 983 984 /** 985 * swap - swap values of @a and @b 986 * @a: first value 987 * @b: second value 988 */ 989 #define swap(a, b) \ 990 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 991 992 /* This counts to 12. Any more, it will return 13th argument. */ 993 #define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n 994 #define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 995 996 #define __CONCAT(a, b) a ## b 997 #define CONCATENATE(a, b) __CONCAT(a, b) 998 999 /** 1000 * container_of - cast a member of a structure out to the containing structure 1001 * @ptr: the pointer to the member. 1002 * @type: the type of the container struct this is embedded in. 1003 * @member: the name of the member within the struct. 1004 * 1005 */ 1006 #define container_of(ptr, type, member) ({ \ 1007 void *__mptr = (void *)(ptr); \ 1008 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 1009 !__same_type(*(ptr), void), \ 1010 "pointer type mismatch in container_of()"); \ 1011 ((type *)(__mptr - offsetof(type, member))); }) 1012 1013 /** 1014 * container_of_safe - cast a member of a structure out to the containing structure 1015 * @ptr: the pointer to the member. 1016 * @type: the type of the container struct this is embedded in. 1017 * @member: the name of the member within the struct. 1018 * 1019 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged. 1020 */ 1021 #define container_of_safe(ptr, type, member) ({ \ 1022 void *__mptr = (void *)(ptr); \ 1023 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 1024 !__same_type(*(ptr), void), \ 1025 "pointer type mismatch in container_of()"); \ 1026 IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \ 1027 ((type *)(__mptr - offsetof(type, member))); }) 1028 1029 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 1030 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 1031 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 1032 #endif 1033 1034 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ 1035 #define VERIFY_OCTAL_PERMISSIONS(perms) \ 1036 (BUILD_BUG_ON_ZERO((perms) < 0) + \ 1037 BUILD_BUG_ON_ZERO((perms) > 0777) + \ 1038 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ 1039 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ 1040 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ 1041 /* USER_WRITABLE >= GROUP_WRITABLE */ \ 1042 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ 1043 /* OTHER_WRITABLE? Generally considered a bad idea. */ \ 1044 BUILD_BUG_ON_ZERO((perms) & 2) + \ 1045 (perms)) 1046 #endif 1047