xref: /linux-6.15/include/linux/kernel.h (revision 9d64fc08)
1 #ifndef _LINUX_KERNEL_H
2 #define _LINUX_KERNEL_H
3 
4 
5 #include <stdarg.h>
6 #include <linux/linkage.h>
7 #include <linux/stddef.h>
8 #include <linux/types.h>
9 #include <linux/compiler.h>
10 #include <linux/bitops.h>
11 #include <linux/log2.h>
12 #include <linux/typecheck.h>
13 #include <linux/printk.h>
14 #include <linux/build_bug.h>
15 #include <asm/byteorder.h>
16 #include <uapi/linux/kernel.h>
17 
18 #define USHRT_MAX	((u16)(~0U))
19 #define SHRT_MAX	((s16)(USHRT_MAX>>1))
20 #define SHRT_MIN	((s16)(-SHRT_MAX - 1))
21 #define INT_MAX		((int)(~0U>>1))
22 #define INT_MIN		(-INT_MAX - 1)
23 #define UINT_MAX	(~0U)
24 #define LONG_MAX	((long)(~0UL>>1))
25 #define LONG_MIN	(-LONG_MAX - 1)
26 #define ULONG_MAX	(~0UL)
27 #define LLONG_MAX	((long long)(~0ULL>>1))
28 #define LLONG_MIN	(-LLONG_MAX - 1)
29 #define ULLONG_MAX	(~0ULL)
30 #define SIZE_MAX	(~(size_t)0)
31 
32 #define U8_MAX		((u8)~0U)
33 #define S8_MAX		((s8)(U8_MAX>>1))
34 #define S8_MIN		((s8)(-S8_MAX - 1))
35 #define U16_MAX		((u16)~0U)
36 #define S16_MAX		((s16)(U16_MAX>>1))
37 #define S16_MIN		((s16)(-S16_MAX - 1))
38 #define U32_MAX		((u32)~0U)
39 #define S32_MAX		((s32)(U32_MAX>>1))
40 #define S32_MIN		((s32)(-S32_MAX - 1))
41 #define U64_MAX		((u64)~0ULL)
42 #define S64_MAX		((s64)(U64_MAX>>1))
43 #define S64_MIN		((s64)(-S64_MAX - 1))
44 
45 #define STACK_MAGIC	0xdeadbeef
46 
47 /**
48  * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
49  * @x: value to repeat
50  *
51  * NOTE: @x is not checked for > 0xff; larger values produce odd results.
52  */
53 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
54 
55 /* @a is a power of 2 value */
56 #define ALIGN(x, a)		__ALIGN_KERNEL((x), (a))
57 #define ALIGN_DOWN(x, a)	__ALIGN_KERNEL((x) - ((a) - 1), (a))
58 #define __ALIGN_MASK(x, mask)	__ALIGN_KERNEL_MASK((x), (mask))
59 #define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
60 #define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)
61 
62 /* generic data direction definitions */
63 #define READ			0
64 #define WRITE			1
65 
66 /**
67  * ARRAY_SIZE - get the number of elements in array @arr
68  * @arr: array to be sized
69  */
70 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
71 
72 #define u64_to_user_ptr(x) (		\
73 {					\
74 	typecheck(u64, x);		\
75 	(void __user *)(uintptr_t)x;	\
76 }					\
77 )
78 
79 /*
80  * This looks more complex than it should be. But we need to
81  * get the type for the ~ right in round_down (it needs to be
82  * as wide as the result!), and we want to evaluate the macro
83  * arguments just once each.
84  */
85 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
86 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
87 #define round_down(x, y) ((x) & ~__round_mask(x, y))
88 
89 /**
90  * FIELD_SIZEOF - get the size of a struct's field
91  * @t: the target struct
92  * @f: the target struct's field
93  * Return: the size of @f in the struct definition without having a
94  * declared instance of @t.
95  */
96 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
97 
98 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
99 
100 #define DIV_ROUND_DOWN_ULL(ll, d) \
101 	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
102 
103 #define DIV_ROUND_UP_ULL(ll, d)		DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d))
104 
105 #if BITS_PER_LONG == 32
106 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
107 #else
108 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
109 #endif
110 
111 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
112 #define roundup(x, y) (					\
113 {							\
114 	const typeof(y) __y = y;			\
115 	(((x) + (__y - 1)) / __y) * __y;		\
116 }							\
117 )
118 #define rounddown(x, y) (				\
119 {							\
120 	typeof(x) __x = (x);				\
121 	__x - (__x % (y));				\
122 }							\
123 )
124 
125 /*
126  * Divide positive or negative dividend by positive or negative divisor
127  * and round to closest integer. Result is undefined for negative
128  * divisors if the dividend variable type is unsigned and for negative
129  * dividends if the divisor variable type is unsigned.
130  */
131 #define DIV_ROUND_CLOSEST(x, divisor)(			\
132 {							\
133 	typeof(x) __x = x;				\
134 	typeof(divisor) __d = divisor;			\
135 	(((typeof(x))-1) > 0 ||				\
136 	 ((typeof(divisor))-1) > 0 ||			\
137 	 (((__x) > 0) == ((__d) > 0))) ?		\
138 		(((__x) + ((__d) / 2)) / (__d)) :	\
139 		(((__x) - ((__d) / 2)) / (__d));	\
140 }							\
141 )
142 /*
143  * Same as above but for u64 dividends. divisor must be a 32-bit
144  * number.
145  */
146 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
147 {							\
148 	typeof(divisor) __d = divisor;			\
149 	unsigned long long _tmp = (x) + (__d) / 2;	\
150 	do_div(_tmp, __d);				\
151 	_tmp;						\
152 }							\
153 )
154 
155 /*
156  * Multiplies an integer by a fraction, while avoiding unnecessary
157  * overflow or loss of precision.
158  */
159 #define mult_frac(x, numer, denom)(			\
160 {							\
161 	typeof(x) quot = (x) / (denom);			\
162 	typeof(x) rem  = (x) % (denom);			\
163 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
164 }							\
165 )
166 
167 
168 #define _RET_IP_		(unsigned long)__builtin_return_address(0)
169 #define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
170 
171 #ifdef CONFIG_LBDAF
172 # include <asm/div64.h>
173 # define sector_div(a, b) do_div(a, b)
174 #else
175 # define sector_div(n, b)( \
176 { \
177 	int _res; \
178 	_res = (n) % (b); \
179 	(n) /= (b); \
180 	_res; \
181 } \
182 )
183 #endif
184 
185 /**
186  * upper_32_bits - return bits 32-63 of a number
187  * @n: the number we're accessing
188  *
189  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
190  * the "right shift count >= width of type" warning when that quantity is
191  * 32-bits.
192  */
193 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
194 
195 /**
196  * lower_32_bits - return bits 0-31 of a number
197  * @n: the number we're accessing
198  */
199 #define lower_32_bits(n) ((u32)(n))
200 
201 struct completion;
202 struct pt_regs;
203 struct user;
204 
205 #ifdef CONFIG_PREEMPT_VOLUNTARY
206 extern int _cond_resched(void);
207 # define might_resched() _cond_resched()
208 #else
209 # define might_resched() do { } while (0)
210 #endif
211 
212 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
213   void ___might_sleep(const char *file, int line, int preempt_offset);
214   void __might_sleep(const char *file, int line, int preempt_offset);
215 /**
216  * might_sleep - annotation for functions that can sleep
217  *
218  * this macro will print a stack trace if it is executed in an atomic
219  * context (spinlock, irq-handler, ...).
220  *
221  * This is a useful debugging help to be able to catch problems early and not
222  * be bitten later when the calling function happens to sleep when it is not
223  * supposed to.
224  */
225 # define might_sleep() \
226 	do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
227 # define sched_annotate_sleep()	(current->task_state_change = 0)
228 #else
229   static inline void ___might_sleep(const char *file, int line,
230 				   int preempt_offset) { }
231   static inline void __might_sleep(const char *file, int line,
232 				   int preempt_offset) { }
233 # define might_sleep() do { might_resched(); } while (0)
234 # define sched_annotate_sleep() do { } while (0)
235 #endif
236 
237 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
238 
239 /**
240  * abs - return absolute value of an argument
241  * @x: the value.  If it is unsigned type, it is converted to signed type first.
242  *     char is treated as if it was signed (regardless of whether it really is)
243  *     but the macro's return type is preserved as char.
244  *
245  * Return: an absolute value of x.
246  */
247 #define abs(x)	__abs_choose_expr(x, long long,				\
248 		__abs_choose_expr(x, long,				\
249 		__abs_choose_expr(x, int,				\
250 		__abs_choose_expr(x, short,				\
251 		__abs_choose_expr(x, char,				\
252 		__builtin_choose_expr(					\
253 			__builtin_types_compatible_p(typeof(x), char),	\
254 			(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
255 			((void)0)))))))
256 
257 #define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\
258 	__builtin_types_compatible_p(typeof(x),   signed type) ||	\
259 	__builtin_types_compatible_p(typeof(x), unsigned type),		\
260 	({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
261 
262 /**
263  * reciprocal_scale - "scale" a value into range [0, ep_ro)
264  * @val: value
265  * @ep_ro: right open interval endpoint
266  *
267  * Perform a "reciprocal multiplication" in order to "scale" a value into
268  * range [0, @ep_ro), where the upper interval endpoint is right-open.
269  * This is useful, e.g. for accessing a index of an array containing
270  * @ep_ro elements, for example. Think of it as sort of modulus, only that
271  * the result isn't that of modulo. ;) Note that if initial input is a
272  * small value, then result will return 0.
273  *
274  * Return: a result based on @val in interval [0, @ep_ro).
275  */
276 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
277 {
278 	return (u32)(((u64) val * ep_ro) >> 32);
279 }
280 
281 #if defined(CONFIG_MMU) && \
282 	(defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
283 #define might_fault() __might_fault(__FILE__, __LINE__)
284 void __might_fault(const char *file, int line);
285 #else
286 static inline void might_fault(void) { }
287 #endif
288 
289 extern struct atomic_notifier_head panic_notifier_list;
290 extern long (*panic_blink)(int state);
291 __printf(1, 2)
292 void panic(const char *fmt, ...) __noreturn __cold;
293 void nmi_panic(struct pt_regs *regs, const char *msg);
294 extern void oops_enter(void);
295 extern void oops_exit(void);
296 void print_oops_end_marker(void);
297 extern int oops_may_print(void);
298 void do_exit(long error_code) __noreturn;
299 void complete_and_exit(struct completion *, long) __noreturn;
300 
301 #ifdef CONFIG_ARCH_HAS_REFCOUNT
302 void refcount_error_report(struct pt_regs *regs, const char *err);
303 #else
304 static inline void refcount_error_report(struct pt_regs *regs, const char *err)
305 { }
306 #endif
307 
308 /* Internal, do not use. */
309 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
310 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
311 
312 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
313 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
314 
315 /**
316  * kstrtoul - convert a string to an unsigned long
317  * @s: The start of the string. The string must be null-terminated, and may also
318  *  include a single newline before its terminating null. The first character
319  *  may also be a plus sign, but not a minus sign.
320  * @base: The number base to use. The maximum supported base is 16. If base is
321  *  given as 0, then the base of the string is automatically detected with the
322  *  conventional semantics - If it begins with 0x the number will be parsed as a
323  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
324  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
325  * @res: Where to write the result of the conversion on success.
326  *
327  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
328  * Used as a replacement for the obsolete simple_strtoull. Return code must
329  * be checked.
330 */
331 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
332 {
333 	/*
334 	 * We want to shortcut function call, but
335 	 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
336 	 */
337 	if (sizeof(unsigned long) == sizeof(unsigned long long) &&
338 	    __alignof__(unsigned long) == __alignof__(unsigned long long))
339 		return kstrtoull(s, base, (unsigned long long *)res);
340 	else
341 		return _kstrtoul(s, base, res);
342 }
343 
344 /**
345  * kstrtol - convert a string to a long
346  * @s: The start of the string. The string must be null-terminated, and may also
347  *  include a single newline before its terminating null. The first character
348  *  may also be a plus sign or a minus sign.
349  * @base: The number base to use. The maximum supported base is 16. If base is
350  *  given as 0, then the base of the string is automatically detected with the
351  *  conventional semantics - If it begins with 0x the number will be parsed as a
352  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
353  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
354  * @res: Where to write the result of the conversion on success.
355  *
356  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
357  * Used as a replacement for the obsolete simple_strtoull. Return code must
358  * be checked.
359  */
360 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
361 {
362 	/*
363 	 * We want to shortcut function call, but
364 	 * __builtin_types_compatible_p(long, long long) = 0.
365 	 */
366 	if (sizeof(long) == sizeof(long long) &&
367 	    __alignof__(long) == __alignof__(long long))
368 		return kstrtoll(s, base, (long long *)res);
369 	else
370 		return _kstrtol(s, base, res);
371 }
372 
373 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
374 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
375 
376 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
377 {
378 	return kstrtoull(s, base, res);
379 }
380 
381 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
382 {
383 	return kstrtoll(s, base, res);
384 }
385 
386 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
387 {
388 	return kstrtouint(s, base, res);
389 }
390 
391 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
392 {
393 	return kstrtoint(s, base, res);
394 }
395 
396 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
397 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
398 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
399 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
400 int __must_check kstrtobool(const char *s, bool *res);
401 
402 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
403 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
404 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
405 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
406 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
407 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
408 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
409 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
410 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
411 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
412 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
413 
414 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
415 {
416 	return kstrtoull_from_user(s, count, base, res);
417 }
418 
419 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
420 {
421 	return kstrtoll_from_user(s, count, base, res);
422 }
423 
424 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
425 {
426 	return kstrtouint_from_user(s, count, base, res);
427 }
428 
429 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
430 {
431 	return kstrtoint_from_user(s, count, base, res);
432 }
433 
434 /* Obsolete, do not use.  Use kstrto<foo> instead */
435 
436 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
437 extern long simple_strtol(const char *,char **,unsigned int);
438 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
439 extern long long simple_strtoll(const char *,char **,unsigned int);
440 
441 extern int num_to_str(char *buf, int size, unsigned long long num);
442 
443 /* lib/printf utilities */
444 
445 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
446 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
447 extern __printf(3, 4)
448 int snprintf(char *buf, size_t size, const char *fmt, ...);
449 extern __printf(3, 0)
450 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
451 extern __printf(3, 4)
452 int scnprintf(char *buf, size_t size, const char *fmt, ...);
453 extern __printf(3, 0)
454 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
455 extern __printf(2, 3) __malloc
456 char *kasprintf(gfp_t gfp, const char *fmt, ...);
457 extern __printf(2, 0) __malloc
458 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
459 extern __printf(2, 0)
460 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
461 
462 extern __scanf(2, 3)
463 int sscanf(const char *, const char *, ...);
464 extern __scanf(2, 0)
465 int vsscanf(const char *, const char *, va_list);
466 
467 extern int get_option(char **str, int *pint);
468 extern char *get_options(const char *str, int nints, int *ints);
469 extern unsigned long long memparse(const char *ptr, char **retptr);
470 extern bool parse_option_str(const char *str, const char *option);
471 extern char *next_arg(char *args, char **param, char **val);
472 
473 extern int core_kernel_text(unsigned long addr);
474 extern int core_kernel_data(unsigned long addr);
475 extern int __kernel_text_address(unsigned long addr);
476 extern int kernel_text_address(unsigned long addr);
477 extern int func_ptr_is_kernel_text(void *ptr);
478 
479 unsigned long int_sqrt(unsigned long);
480 
481 extern void bust_spinlocks(int yes);
482 extern int oops_in_progress;		/* If set, an oops, panic(), BUG() or die() is in progress */
483 extern int panic_timeout;
484 extern int panic_on_oops;
485 extern int panic_on_unrecovered_nmi;
486 extern int panic_on_io_nmi;
487 extern int panic_on_warn;
488 extern int sysctl_panic_on_rcu_stall;
489 extern int sysctl_panic_on_stackoverflow;
490 
491 extern bool crash_kexec_post_notifiers;
492 
493 /*
494  * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
495  * holds a CPU number which is executing panic() currently. A value of
496  * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
497  */
498 extern atomic_t panic_cpu;
499 #define PANIC_CPU_INVALID	-1
500 
501 /*
502  * Only to be used by arch init code. If the user over-wrote the default
503  * CONFIG_PANIC_TIMEOUT, honor it.
504  */
505 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
506 {
507 	if (panic_timeout == arch_default_timeout)
508 		panic_timeout = timeout;
509 }
510 extern const char *print_tainted(void);
511 enum lockdep_ok {
512 	LOCKDEP_STILL_OK,
513 	LOCKDEP_NOW_UNRELIABLE
514 };
515 extern void add_taint(unsigned flag, enum lockdep_ok);
516 extern int test_taint(unsigned flag);
517 extern unsigned long get_taint(void);
518 extern int root_mountflags;
519 
520 extern bool early_boot_irqs_disabled;
521 
522 /*
523  * Values used for system_state. Ordering of the states must not be changed
524  * as code checks for <, <=, >, >= STATE.
525  */
526 extern enum system_states {
527 	SYSTEM_BOOTING,
528 	SYSTEM_SCHEDULING,
529 	SYSTEM_RUNNING,
530 	SYSTEM_HALT,
531 	SYSTEM_POWER_OFF,
532 	SYSTEM_RESTART,
533 } system_state;
534 
535 #define TAINT_PROPRIETARY_MODULE	0
536 #define TAINT_FORCED_MODULE		1
537 #define TAINT_CPU_OUT_OF_SPEC		2
538 #define TAINT_FORCED_RMMOD		3
539 #define TAINT_MACHINE_CHECK		4
540 #define TAINT_BAD_PAGE			5
541 #define TAINT_USER			6
542 #define TAINT_DIE			7
543 #define TAINT_OVERRIDDEN_ACPI_TABLE	8
544 #define TAINT_WARN			9
545 #define TAINT_CRAP			10
546 #define TAINT_FIRMWARE_WORKAROUND	11
547 #define TAINT_OOT_MODULE		12
548 #define TAINT_UNSIGNED_MODULE		13
549 #define TAINT_SOFTLOCKUP		14
550 #define TAINT_LIVEPATCH			15
551 #define TAINT_FLAGS_COUNT		16
552 
553 struct taint_flag {
554 	char c_true;	/* character printed when tainted */
555 	char c_false;	/* character printed when not tainted */
556 	bool module;	/* also show as a per-module taint flag */
557 };
558 
559 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
560 
561 extern const char hex_asc[];
562 #define hex_asc_lo(x)	hex_asc[((x) & 0x0f)]
563 #define hex_asc_hi(x)	hex_asc[((x) & 0xf0) >> 4]
564 
565 static inline char *hex_byte_pack(char *buf, u8 byte)
566 {
567 	*buf++ = hex_asc_hi(byte);
568 	*buf++ = hex_asc_lo(byte);
569 	return buf;
570 }
571 
572 extern const char hex_asc_upper[];
573 #define hex_asc_upper_lo(x)	hex_asc_upper[((x) & 0x0f)]
574 #define hex_asc_upper_hi(x)	hex_asc_upper[((x) & 0xf0) >> 4]
575 
576 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
577 {
578 	*buf++ = hex_asc_upper_hi(byte);
579 	*buf++ = hex_asc_upper_lo(byte);
580 	return buf;
581 }
582 
583 extern int hex_to_bin(char ch);
584 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
585 extern char *bin2hex(char *dst, const void *src, size_t count);
586 
587 bool mac_pton(const char *s, u8 *mac);
588 
589 /*
590  * General tracing related utility functions - trace_printk(),
591  * tracing_on/tracing_off and tracing_start()/tracing_stop
592  *
593  * Use tracing_on/tracing_off when you want to quickly turn on or off
594  * tracing. It simply enables or disables the recording of the trace events.
595  * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
596  * file, which gives a means for the kernel and userspace to interact.
597  * Place a tracing_off() in the kernel where you want tracing to end.
598  * From user space, examine the trace, and then echo 1 > tracing_on
599  * to continue tracing.
600  *
601  * tracing_stop/tracing_start has slightly more overhead. It is used
602  * by things like suspend to ram where disabling the recording of the
603  * trace is not enough, but tracing must actually stop because things
604  * like calling smp_processor_id() may crash the system.
605  *
606  * Most likely, you want to use tracing_on/tracing_off.
607  */
608 
609 enum ftrace_dump_mode {
610 	DUMP_NONE,
611 	DUMP_ALL,
612 	DUMP_ORIG,
613 };
614 
615 #ifdef CONFIG_TRACING
616 void tracing_on(void);
617 void tracing_off(void);
618 int tracing_is_on(void);
619 void tracing_snapshot(void);
620 void tracing_snapshot_alloc(void);
621 
622 extern void tracing_start(void);
623 extern void tracing_stop(void);
624 
625 static inline __printf(1, 2)
626 void ____trace_printk_check_format(const char *fmt, ...)
627 {
628 }
629 #define __trace_printk_check_format(fmt, args...)			\
630 do {									\
631 	if (0)								\
632 		____trace_printk_check_format(fmt, ##args);		\
633 } while (0)
634 
635 /**
636  * trace_printk - printf formatting in the ftrace buffer
637  * @fmt: the printf format for printing
638  *
639  * Note: __trace_printk is an internal function for trace_printk() and
640  *       the @ip is passed in via the trace_printk() macro.
641  *
642  * This function allows a kernel developer to debug fast path sections
643  * that printk is not appropriate for. By scattering in various
644  * printk like tracing in the code, a developer can quickly see
645  * where problems are occurring.
646  *
647  * This is intended as a debugging tool for the developer only.
648  * Please refrain from leaving trace_printks scattered around in
649  * your code. (Extra memory is used for special buffers that are
650  * allocated when trace_printk() is used.)
651  *
652  * A little optization trick is done here. If there's only one
653  * argument, there's no need to scan the string for printf formats.
654  * The trace_puts() will suffice. But how can we take advantage of
655  * using trace_puts() when trace_printk() has only one argument?
656  * By stringifying the args and checking the size we can tell
657  * whether or not there are args. __stringify((__VA_ARGS__)) will
658  * turn into "()\0" with a size of 3 when there are no args, anything
659  * else will be bigger. All we need to do is define a string to this,
660  * and then take its size and compare to 3. If it's bigger, use
661  * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
662  * let gcc optimize the rest.
663  */
664 
665 #define trace_printk(fmt, ...)				\
666 do {							\
667 	char _______STR[] = __stringify((__VA_ARGS__));	\
668 	if (sizeof(_______STR) > 3)			\
669 		do_trace_printk(fmt, ##__VA_ARGS__);	\
670 	else						\
671 		trace_puts(fmt);			\
672 } while (0)
673 
674 #define do_trace_printk(fmt, args...)					\
675 do {									\
676 	static const char *trace_printk_fmt __used			\
677 		__attribute__((section("__trace_printk_fmt"))) =	\
678 		__builtin_constant_p(fmt) ? fmt : NULL;			\
679 									\
680 	__trace_printk_check_format(fmt, ##args);			\
681 									\
682 	if (__builtin_constant_p(fmt))					\
683 		__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);	\
684 	else								\
685 		__trace_printk(_THIS_IP_, fmt, ##args);			\
686 } while (0)
687 
688 extern __printf(2, 3)
689 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
690 
691 extern __printf(2, 3)
692 int __trace_printk(unsigned long ip, const char *fmt, ...);
693 
694 /**
695  * trace_puts - write a string into the ftrace buffer
696  * @str: the string to record
697  *
698  * Note: __trace_bputs is an internal function for trace_puts and
699  *       the @ip is passed in via the trace_puts macro.
700  *
701  * This is similar to trace_printk() but is made for those really fast
702  * paths that a developer wants the least amount of "Heisenbug" effects,
703  * where the processing of the print format is still too much.
704  *
705  * This function allows a kernel developer to debug fast path sections
706  * that printk is not appropriate for. By scattering in various
707  * printk like tracing in the code, a developer can quickly see
708  * where problems are occurring.
709  *
710  * This is intended as a debugging tool for the developer only.
711  * Please refrain from leaving trace_puts scattered around in
712  * your code. (Extra memory is used for special buffers that are
713  * allocated when trace_puts() is used.)
714  *
715  * Returns: 0 if nothing was written, positive # if string was.
716  *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
717  */
718 
719 #define trace_puts(str) ({						\
720 	static const char *trace_printk_fmt __used			\
721 		__attribute__((section("__trace_printk_fmt"))) =	\
722 		__builtin_constant_p(str) ? str : NULL;			\
723 									\
724 	if (__builtin_constant_p(str))					\
725 		__trace_bputs(_THIS_IP_, trace_printk_fmt);		\
726 	else								\
727 		__trace_puts(_THIS_IP_, str, strlen(str));		\
728 })
729 extern int __trace_bputs(unsigned long ip, const char *str);
730 extern int __trace_puts(unsigned long ip, const char *str, int size);
731 
732 extern void trace_dump_stack(int skip);
733 
734 /*
735  * The double __builtin_constant_p is because gcc will give us an error
736  * if we try to allocate the static variable to fmt if it is not a
737  * constant. Even with the outer if statement.
738  */
739 #define ftrace_vprintk(fmt, vargs)					\
740 do {									\
741 	if (__builtin_constant_p(fmt)) {				\
742 		static const char *trace_printk_fmt __used		\
743 		  __attribute__((section("__trace_printk_fmt"))) =	\
744 			__builtin_constant_p(fmt) ? fmt : NULL;		\
745 									\
746 		__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);	\
747 	} else								\
748 		__ftrace_vprintk(_THIS_IP_, fmt, vargs);		\
749 } while (0)
750 
751 extern __printf(2, 0) int
752 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
753 
754 extern __printf(2, 0) int
755 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
756 
757 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
758 #else
759 static inline void tracing_start(void) { }
760 static inline void tracing_stop(void) { }
761 static inline void trace_dump_stack(int skip) { }
762 
763 static inline void tracing_on(void) { }
764 static inline void tracing_off(void) { }
765 static inline int tracing_is_on(void) { return 0; }
766 static inline void tracing_snapshot(void) { }
767 static inline void tracing_snapshot_alloc(void) { }
768 
769 static inline __printf(1, 2)
770 int trace_printk(const char *fmt, ...)
771 {
772 	return 0;
773 }
774 static __printf(1, 0) inline int
775 ftrace_vprintk(const char *fmt, va_list ap)
776 {
777 	return 0;
778 }
779 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
780 #endif /* CONFIG_TRACING */
781 
782 /*
783  * min()/max()/clamp() macros that also do
784  * strict type-checking.. See the
785  * "unnecessary" pointer comparison.
786  */
787 #define __min(t1, t2, min1, min2, x, y) ({		\
788 	t1 min1 = (x);					\
789 	t2 min2 = (y);					\
790 	(void) (&min1 == &min2);			\
791 	min1 < min2 ? min1 : min2; })
792 
793 /**
794  * min - return minimum of two values of the same or compatible types
795  * @x: first value
796  * @y: second value
797  */
798 #define min(x, y)					\
799 	__min(typeof(x), typeof(y),			\
800 	      __UNIQUE_ID(min1_), __UNIQUE_ID(min2_),	\
801 	      x, y)
802 
803 #define __max(t1, t2, max1, max2, x, y) ({		\
804 	t1 max1 = (x);					\
805 	t2 max2 = (y);					\
806 	(void) (&max1 == &max2);			\
807 	max1 > max2 ? max1 : max2; })
808 
809 /**
810  * max - return maximum of two values of the same or compatible types
811  * @x: first value
812  * @y: second value
813  */
814 #define max(x, y)					\
815 	__max(typeof(x), typeof(y),			\
816 	      __UNIQUE_ID(max1_), __UNIQUE_ID(max2_),	\
817 	      x, y)
818 
819 /**
820  * min3 - return minimum of three values
821  * @x: first value
822  * @y: second value
823  * @z: third value
824  */
825 #define min3(x, y, z) min((typeof(x))min(x, y), z)
826 
827 /**
828  * max3 - return maximum of three values
829  * @x: first value
830  * @y: second value
831  * @z: third value
832  */
833 #define max3(x, y, z) max((typeof(x))max(x, y), z)
834 
835 /**
836  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
837  * @x: value1
838  * @y: value2
839  */
840 #define min_not_zero(x, y) ({			\
841 	typeof(x) __x = (x);			\
842 	typeof(y) __y = (y);			\
843 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
844 
845 /**
846  * clamp - return a value clamped to a given range with strict typechecking
847  * @val: current value
848  * @lo: lowest allowable value
849  * @hi: highest allowable value
850  *
851  * This macro does strict typechecking of @lo/@hi to make sure they are of the
852  * same type as @val.  See the unnecessary pointer comparisons.
853  */
854 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
855 
856 /*
857  * ..and if you can't take the strict
858  * types, you can specify one yourself.
859  *
860  * Or not use min/max/clamp at all, of course.
861  */
862 
863 /**
864  * min_t - return minimum of two values, using the specified type
865  * @type: data type to use
866  * @x: first value
867  * @y: second value
868  */
869 #define min_t(type, x, y)				\
870 	__min(type, type,				\
871 	      __UNIQUE_ID(min1_), __UNIQUE_ID(min2_),	\
872 	      x, y)
873 
874 /**
875  * max_t - return maximum of two values, using the specified type
876  * @type: data type to use
877  * @x: first value
878  * @y: second value
879  */
880 #define max_t(type, x, y)				\
881 	__max(type, type,				\
882 	      __UNIQUE_ID(min1_), __UNIQUE_ID(min2_),	\
883 	      x, y)
884 
885 /**
886  * clamp_t - return a value clamped to a given range using a given type
887  * @type: the type of variable to use
888  * @val: current value
889  * @lo: minimum allowable value
890  * @hi: maximum allowable value
891  *
892  * This macro does no typechecking and uses temporary variables of type
893  * @type to make all the comparisons.
894  */
895 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
896 
897 /**
898  * clamp_val - return a value clamped to a given range using val's type
899  * @val: current value
900  * @lo: minimum allowable value
901  * @hi: maximum allowable value
902  *
903  * This macro does no typechecking and uses temporary variables of whatever
904  * type the input argument @val is.  This is useful when @val is an unsigned
905  * type and @lo and @hi are literals that will otherwise be assigned a signed
906  * integer type.
907  */
908 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
909 
910 
911 /**
912  * swap - swap values of @a and @b
913  * @a: first value
914  * @b: second value
915  */
916 #define swap(a, b) \
917 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
918 
919 /**
920  * container_of - cast a member of a structure out to the containing structure
921  * @ptr:	the pointer to the member.
922  * @type:	the type of the container struct this is embedded in.
923  * @member:	the name of the member within the struct.
924  *
925  */
926 #define container_of(ptr, type, member) ({				\
927 	void *__mptr = (void *)(ptr);					\
928 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
929 			 !__same_type(*(ptr), void),			\
930 			 "pointer type mismatch in container_of()");	\
931 	((type *)(__mptr - offsetof(type, member))); })
932 
933 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
934 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
935 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
936 #endif
937 
938 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
939 #define VERIFY_OCTAL_PERMISSIONS(perms)						\
940 	(BUILD_BUG_ON_ZERO((perms) < 0) +					\
941 	 BUILD_BUG_ON_ZERO((perms) > 0777) +					\
942 	 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */		\
943 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +	\
944 	 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +		\
945 	 /* USER_WRITABLE >= GROUP_WRITABLE */					\
946 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +	\
947 	 /* OTHER_WRITABLE?  Generally considered a bad idea. */		\
948 	 BUILD_BUG_ON_ZERO((perms) & 2) +					\
949 	 (perms))
950 #endif
951