1 #ifndef _LINUX_KERNEL_H 2 #define _LINUX_KERNEL_H 3 4 5 #include <stdarg.h> 6 #include <linux/linkage.h> 7 #include <linux/stddef.h> 8 #include <linux/types.h> 9 #include <linux/compiler.h> 10 #include <linux/bitops.h> 11 #include <linux/log2.h> 12 #include <linux/typecheck.h> 13 #include <linux/printk.h> 14 #include <linux/dynamic_debug.h> 15 #include <asm/byteorder.h> 16 #include <uapi/linux/kernel.h> 17 18 #define USHRT_MAX ((u16)(~0U)) 19 #define SHRT_MAX ((s16)(USHRT_MAX>>1)) 20 #define SHRT_MIN ((s16)(-SHRT_MAX - 1)) 21 #define INT_MAX ((int)(~0U>>1)) 22 #define INT_MIN (-INT_MAX - 1) 23 #define UINT_MAX (~0U) 24 #define LONG_MAX ((long)(~0UL>>1)) 25 #define LONG_MIN (-LONG_MAX - 1) 26 #define ULONG_MAX (~0UL) 27 #define LLONG_MAX ((long long)(~0ULL>>1)) 28 #define LLONG_MIN (-LLONG_MAX - 1) 29 #define ULLONG_MAX (~0ULL) 30 #define SIZE_MAX (~(size_t)0) 31 32 #define U8_MAX ((u8)~0U) 33 #define S8_MAX ((s8)(U8_MAX>>1)) 34 #define S8_MIN ((s8)(-S8_MAX - 1)) 35 #define U16_MAX ((u16)~0U) 36 #define S16_MAX ((s16)(U16_MAX>>1)) 37 #define S16_MIN ((s16)(-S16_MAX - 1)) 38 #define U32_MAX ((u32)~0U) 39 #define S32_MAX ((s32)(U32_MAX>>1)) 40 #define S32_MIN ((s32)(-S32_MAX - 1)) 41 #define U64_MAX ((u64)~0ULL) 42 #define S64_MAX ((s64)(U64_MAX>>1)) 43 #define S64_MIN ((s64)(-S64_MAX - 1)) 44 45 #define STACK_MAGIC 0xdeadbeef 46 47 #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 48 49 #define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 50 #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 51 #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 52 #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 53 54 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 55 56 /* 57 * This looks more complex than it should be. But we need to 58 * get the type for the ~ right in round_down (it needs to be 59 * as wide as the result!), and we want to evaluate the macro 60 * arguments just once each. 61 */ 62 #define __round_mask(x, y) ((__typeof__(x))((y)-1)) 63 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 64 #define round_down(x, y) ((x) & ~__round_mask(x, y)) 65 66 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 67 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) 68 #define DIV_ROUND_UP_ULL(ll,d) \ 69 ({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; }) 70 71 #if BITS_PER_LONG == 32 72 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 73 #else 74 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 75 #endif 76 77 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */ 78 #define roundup(x, y) ( \ 79 { \ 80 const typeof(y) __y = y; \ 81 (((x) + (__y - 1)) / __y) * __y; \ 82 } \ 83 ) 84 #define rounddown(x, y) ( \ 85 { \ 86 typeof(x) __x = (x); \ 87 __x - (__x % (y)); \ 88 } \ 89 ) 90 91 /* 92 * Divide positive or negative dividend by positive divisor and round 93 * to closest integer. Result is undefined for negative divisors and 94 * for negative dividends if the divisor variable type is unsigned. 95 */ 96 #define DIV_ROUND_CLOSEST(x, divisor)( \ 97 { \ 98 typeof(x) __x = x; \ 99 typeof(divisor) __d = divisor; \ 100 (((typeof(x))-1) > 0 || \ 101 ((typeof(divisor))-1) > 0 || (__x) > 0) ? \ 102 (((__x) + ((__d) / 2)) / (__d)) : \ 103 (((__x) - ((__d) / 2)) / (__d)); \ 104 } \ 105 ) 106 107 /* 108 * Multiplies an integer by a fraction, while avoiding unnecessary 109 * overflow or loss of precision. 110 */ 111 #define mult_frac(x, numer, denom)( \ 112 { \ 113 typeof(x) quot = (x) / (denom); \ 114 typeof(x) rem = (x) % (denom); \ 115 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 116 } \ 117 ) 118 119 120 #define _RET_IP_ (unsigned long)__builtin_return_address(0) 121 #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 122 123 #ifdef CONFIG_LBDAF 124 # include <asm/div64.h> 125 # define sector_div(a, b) do_div(a, b) 126 #else 127 # define sector_div(n, b)( \ 128 { \ 129 int _res; \ 130 _res = (n) % (b); \ 131 (n) /= (b); \ 132 _res; \ 133 } \ 134 ) 135 #endif 136 137 /** 138 * upper_32_bits - return bits 32-63 of a number 139 * @n: the number we're accessing 140 * 141 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 142 * the "right shift count >= width of type" warning when that quantity is 143 * 32-bits. 144 */ 145 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 146 147 /** 148 * lower_32_bits - return bits 0-31 of a number 149 * @n: the number we're accessing 150 */ 151 #define lower_32_bits(n) ((u32)(n)) 152 153 struct completion; 154 struct pt_regs; 155 struct user; 156 157 #ifdef CONFIG_PREEMPT_VOLUNTARY 158 extern int _cond_resched(void); 159 # define might_resched() _cond_resched() 160 #else 161 # define might_resched() do { } while (0) 162 #endif 163 164 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 165 void __might_sleep(const char *file, int line, int preempt_offset); 166 /** 167 * might_sleep - annotation for functions that can sleep 168 * 169 * this macro will print a stack trace if it is executed in an atomic 170 * context (spinlock, irq-handler, ...). 171 * 172 * This is a useful debugging help to be able to catch problems early and not 173 * be bitten later when the calling function happens to sleep when it is not 174 * supposed to. 175 */ 176 # define might_sleep() \ 177 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 178 #else 179 static inline void __might_sleep(const char *file, int line, 180 int preempt_offset) { } 181 # define might_sleep() do { might_resched(); } while (0) 182 #endif 183 184 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 185 186 /* 187 * abs() handles unsigned and signed longs, ints, shorts and chars. For all 188 * input types abs() returns a signed long. 189 * abs() should not be used for 64-bit types (s64, u64, long long) - use abs64() 190 * for those. 191 */ 192 #define abs(x) ({ \ 193 long ret; \ 194 if (sizeof(x) == sizeof(long)) { \ 195 long __x = (x); \ 196 ret = (__x < 0) ? -__x : __x; \ 197 } else { \ 198 int __x = (x); \ 199 ret = (__x < 0) ? -__x : __x; \ 200 } \ 201 ret; \ 202 }) 203 204 #define abs64(x) ({ \ 205 s64 __x = (x); \ 206 (__x < 0) ? -__x : __x; \ 207 }) 208 209 /** 210 * reciprocal_scale - "scale" a value into range [0, ep_ro) 211 * @val: value 212 * @ep_ro: right open interval endpoint 213 * 214 * Perform a "reciprocal multiplication" in order to "scale" a value into 215 * range [0, ep_ro), where the upper interval endpoint is right-open. 216 * This is useful, e.g. for accessing a index of an array containing 217 * ep_ro elements, for example. Think of it as sort of modulus, only that 218 * the result isn't that of modulo. ;) Note that if initial input is a 219 * small value, then result will return 0. 220 * 221 * Return: a result based on val in interval [0, ep_ro). 222 */ 223 static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 224 { 225 return (u32)(((u64) val * ep_ro) >> 32); 226 } 227 228 #if defined(CONFIG_MMU) && \ 229 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 230 void might_fault(void); 231 #else 232 static inline void might_fault(void) { } 233 #endif 234 235 extern struct atomic_notifier_head panic_notifier_list; 236 extern long (*panic_blink)(int state); 237 __printf(1, 2) 238 void panic(const char *fmt, ...) 239 __noreturn __cold; 240 extern void oops_enter(void); 241 extern void oops_exit(void); 242 void print_oops_end_marker(void); 243 extern int oops_may_print(void); 244 void do_exit(long error_code) 245 __noreturn; 246 void complete_and_exit(struct completion *, long) 247 __noreturn; 248 249 /* Internal, do not use. */ 250 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 251 int __must_check _kstrtol(const char *s, unsigned int base, long *res); 252 253 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 254 int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 255 256 /** 257 * kstrtoul - convert a string to an unsigned long 258 * @s: The start of the string. The string must be null-terminated, and may also 259 * include a single newline before its terminating null. The first character 260 * may also be a plus sign, but not a minus sign. 261 * @base: The number base to use. The maximum supported base is 16. If base is 262 * given as 0, then the base of the string is automatically detected with the 263 * conventional semantics - If it begins with 0x the number will be parsed as a 264 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 265 * parsed as an octal number. Otherwise it will be parsed as a decimal. 266 * @res: Where to write the result of the conversion on success. 267 * 268 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 269 * Used as a replacement for the obsolete simple_strtoull. Return code must 270 * be checked. 271 */ 272 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 273 { 274 /* 275 * We want to shortcut function call, but 276 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 277 */ 278 if (sizeof(unsigned long) == sizeof(unsigned long long) && 279 __alignof__(unsigned long) == __alignof__(unsigned long long)) 280 return kstrtoull(s, base, (unsigned long long *)res); 281 else 282 return _kstrtoul(s, base, res); 283 } 284 285 /** 286 * kstrtol - convert a string to a long 287 * @s: The start of the string. The string must be null-terminated, and may also 288 * include a single newline before its terminating null. The first character 289 * may also be a plus sign or a minus sign. 290 * @base: The number base to use. The maximum supported base is 16. If base is 291 * given as 0, then the base of the string is automatically detected with the 292 * conventional semantics - If it begins with 0x the number will be parsed as a 293 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 294 * parsed as an octal number. Otherwise it will be parsed as a decimal. 295 * @res: Where to write the result of the conversion on success. 296 * 297 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 298 * Used as a replacement for the obsolete simple_strtoull. Return code must 299 * be checked. 300 */ 301 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 302 { 303 /* 304 * We want to shortcut function call, but 305 * __builtin_types_compatible_p(long, long long) = 0. 306 */ 307 if (sizeof(long) == sizeof(long long) && 308 __alignof__(long) == __alignof__(long long)) 309 return kstrtoll(s, base, (long long *)res); 310 else 311 return _kstrtol(s, base, res); 312 } 313 314 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 315 int __must_check kstrtoint(const char *s, unsigned int base, int *res); 316 317 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 318 { 319 return kstrtoull(s, base, res); 320 } 321 322 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 323 { 324 return kstrtoll(s, base, res); 325 } 326 327 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 328 { 329 return kstrtouint(s, base, res); 330 } 331 332 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 333 { 334 return kstrtoint(s, base, res); 335 } 336 337 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 338 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 339 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 340 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 341 342 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 343 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 344 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 345 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 346 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 347 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 348 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 349 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 350 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 351 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 352 353 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 354 { 355 return kstrtoull_from_user(s, count, base, res); 356 } 357 358 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 359 { 360 return kstrtoll_from_user(s, count, base, res); 361 } 362 363 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 364 { 365 return kstrtouint_from_user(s, count, base, res); 366 } 367 368 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 369 { 370 return kstrtoint_from_user(s, count, base, res); 371 } 372 373 /* Obsolete, do not use. Use kstrto<foo> instead */ 374 375 extern unsigned long simple_strtoul(const char *,char **,unsigned int); 376 extern long simple_strtol(const char *,char **,unsigned int); 377 extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 378 extern long long simple_strtoll(const char *,char **,unsigned int); 379 #define strict_strtoul kstrtoul 380 #define strict_strtol kstrtol 381 #define strict_strtoull kstrtoull 382 #define strict_strtoll kstrtoll 383 384 extern int num_to_str(char *buf, int size, unsigned long long num); 385 386 /* lib/printf utilities */ 387 388 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 389 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 390 extern __printf(3, 4) 391 int snprintf(char *buf, size_t size, const char *fmt, ...); 392 extern __printf(3, 0) 393 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 394 extern __printf(3, 4) 395 int scnprintf(char *buf, size_t size, const char *fmt, ...); 396 extern __printf(3, 0) 397 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 398 extern __printf(2, 3) 399 char *kasprintf(gfp_t gfp, const char *fmt, ...); 400 extern char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 401 402 extern __scanf(2, 3) 403 int sscanf(const char *, const char *, ...); 404 extern __scanf(2, 0) 405 int vsscanf(const char *, const char *, va_list); 406 407 extern int get_option(char **str, int *pint); 408 extern char *get_options(const char *str, int nints, int *ints); 409 extern unsigned long long memparse(const char *ptr, char **retptr); 410 411 extern int core_kernel_text(unsigned long addr); 412 extern int core_kernel_data(unsigned long addr); 413 extern int __kernel_text_address(unsigned long addr); 414 extern int kernel_text_address(unsigned long addr); 415 extern int func_ptr_is_kernel_text(void *ptr); 416 417 struct pid; 418 extern struct pid *session_of_pgrp(struct pid *pgrp); 419 420 unsigned long int_sqrt(unsigned long); 421 422 extern void bust_spinlocks(int yes); 423 extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 424 extern int panic_timeout; 425 extern int panic_on_oops; 426 extern int panic_on_unrecovered_nmi; 427 extern int panic_on_io_nmi; 428 extern int sysctl_panic_on_stackoverflow; 429 /* 430 * Only to be used by arch init code. If the user over-wrote the default 431 * CONFIG_PANIC_TIMEOUT, honor it. 432 */ 433 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 434 { 435 if (panic_timeout == arch_default_timeout) 436 panic_timeout = timeout; 437 } 438 extern const char *print_tainted(void); 439 enum lockdep_ok { 440 LOCKDEP_STILL_OK, 441 LOCKDEP_NOW_UNRELIABLE 442 }; 443 extern void add_taint(unsigned flag, enum lockdep_ok); 444 extern int test_taint(unsigned flag); 445 extern unsigned long get_taint(void); 446 extern int root_mountflags; 447 448 extern bool early_boot_irqs_disabled; 449 450 /* Values used for system_state */ 451 extern enum system_states { 452 SYSTEM_BOOTING, 453 SYSTEM_RUNNING, 454 SYSTEM_HALT, 455 SYSTEM_POWER_OFF, 456 SYSTEM_RESTART, 457 } system_state; 458 459 #define TAINT_PROPRIETARY_MODULE 0 460 #define TAINT_FORCED_MODULE 1 461 #define TAINT_UNSAFE_SMP 2 462 #define TAINT_FORCED_RMMOD 3 463 #define TAINT_MACHINE_CHECK 4 464 #define TAINT_BAD_PAGE 5 465 #define TAINT_USER 6 466 #define TAINT_DIE 7 467 #define TAINT_OVERRIDDEN_ACPI_TABLE 8 468 #define TAINT_WARN 9 469 #define TAINT_CRAP 10 470 #define TAINT_FIRMWARE_WORKAROUND 11 471 #define TAINT_OOT_MODULE 12 472 473 extern const char hex_asc[]; 474 #define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 475 #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 476 477 static inline char *hex_byte_pack(char *buf, u8 byte) 478 { 479 *buf++ = hex_asc_hi(byte); 480 *buf++ = hex_asc_lo(byte); 481 return buf; 482 } 483 484 extern const char hex_asc_upper[]; 485 #define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 486 #define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 487 488 static inline char *hex_byte_pack_upper(char *buf, u8 byte) 489 { 490 *buf++ = hex_asc_upper_hi(byte); 491 *buf++ = hex_asc_upper_lo(byte); 492 return buf; 493 } 494 495 static inline char * __deprecated pack_hex_byte(char *buf, u8 byte) 496 { 497 return hex_byte_pack(buf, byte); 498 } 499 500 extern int hex_to_bin(char ch); 501 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 502 503 int mac_pton(const char *s, u8 *mac); 504 505 /* 506 * General tracing related utility functions - trace_printk(), 507 * tracing_on/tracing_off and tracing_start()/tracing_stop 508 * 509 * Use tracing_on/tracing_off when you want to quickly turn on or off 510 * tracing. It simply enables or disables the recording of the trace events. 511 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 512 * file, which gives a means for the kernel and userspace to interact. 513 * Place a tracing_off() in the kernel where you want tracing to end. 514 * From user space, examine the trace, and then echo 1 > tracing_on 515 * to continue tracing. 516 * 517 * tracing_stop/tracing_start has slightly more overhead. It is used 518 * by things like suspend to ram where disabling the recording of the 519 * trace is not enough, but tracing must actually stop because things 520 * like calling smp_processor_id() may crash the system. 521 * 522 * Most likely, you want to use tracing_on/tracing_off. 523 */ 524 #ifdef CONFIG_RING_BUFFER 525 /* trace_off_permanent stops recording with no way to bring it back */ 526 void tracing_off_permanent(void); 527 #else 528 static inline void tracing_off_permanent(void) { } 529 #endif 530 531 enum ftrace_dump_mode { 532 DUMP_NONE, 533 DUMP_ALL, 534 DUMP_ORIG, 535 }; 536 537 #ifdef CONFIG_TRACING 538 void tracing_on(void); 539 void tracing_off(void); 540 int tracing_is_on(void); 541 void tracing_snapshot(void); 542 void tracing_snapshot_alloc(void); 543 544 extern void tracing_start(void); 545 extern void tracing_stop(void); 546 547 static inline __printf(1, 2) 548 void ____trace_printk_check_format(const char *fmt, ...) 549 { 550 } 551 #define __trace_printk_check_format(fmt, args...) \ 552 do { \ 553 if (0) \ 554 ____trace_printk_check_format(fmt, ##args); \ 555 } while (0) 556 557 /** 558 * trace_printk - printf formatting in the ftrace buffer 559 * @fmt: the printf format for printing 560 * 561 * Note: __trace_printk is an internal function for trace_printk and 562 * the @ip is passed in via the trace_printk macro. 563 * 564 * This function allows a kernel developer to debug fast path sections 565 * that printk is not appropriate for. By scattering in various 566 * printk like tracing in the code, a developer can quickly see 567 * where problems are occurring. 568 * 569 * This is intended as a debugging tool for the developer only. 570 * Please refrain from leaving trace_printks scattered around in 571 * your code. (Extra memory is used for special buffers that are 572 * allocated when trace_printk() is used) 573 * 574 * A little optization trick is done here. If there's only one 575 * argument, there's no need to scan the string for printf formats. 576 * The trace_puts() will suffice. But how can we take advantage of 577 * using trace_puts() when trace_printk() has only one argument? 578 * By stringifying the args and checking the size we can tell 579 * whether or not there are args. __stringify((__VA_ARGS__)) will 580 * turn into "()\0" with a size of 3 when there are no args, anything 581 * else will be bigger. All we need to do is define a string to this, 582 * and then take its size and compare to 3. If it's bigger, use 583 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 584 * let gcc optimize the rest. 585 */ 586 587 #define trace_printk(fmt, ...) \ 588 do { \ 589 char _______STR[] = __stringify((__VA_ARGS__)); \ 590 if (sizeof(_______STR) > 3) \ 591 do_trace_printk(fmt, ##__VA_ARGS__); \ 592 else \ 593 trace_puts(fmt); \ 594 } while (0) 595 596 #define do_trace_printk(fmt, args...) \ 597 do { \ 598 static const char *trace_printk_fmt \ 599 __attribute__((section("__trace_printk_fmt"))) = \ 600 __builtin_constant_p(fmt) ? fmt : NULL; \ 601 \ 602 __trace_printk_check_format(fmt, ##args); \ 603 \ 604 if (__builtin_constant_p(fmt)) \ 605 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 606 else \ 607 __trace_printk(_THIS_IP_, fmt, ##args); \ 608 } while (0) 609 610 extern __printf(2, 3) 611 int __trace_bprintk(unsigned long ip, const char *fmt, ...); 612 613 extern __printf(2, 3) 614 int __trace_printk(unsigned long ip, const char *fmt, ...); 615 616 /** 617 * trace_puts - write a string into the ftrace buffer 618 * @str: the string to record 619 * 620 * Note: __trace_bputs is an internal function for trace_puts and 621 * the @ip is passed in via the trace_puts macro. 622 * 623 * This is similar to trace_printk() but is made for those really fast 624 * paths that a developer wants the least amount of "Heisenbug" affects, 625 * where the processing of the print format is still too much. 626 * 627 * This function allows a kernel developer to debug fast path sections 628 * that printk is not appropriate for. By scattering in various 629 * printk like tracing in the code, a developer can quickly see 630 * where problems are occurring. 631 * 632 * This is intended as a debugging tool for the developer only. 633 * Please refrain from leaving trace_puts scattered around in 634 * your code. (Extra memory is used for special buffers that are 635 * allocated when trace_puts() is used) 636 * 637 * Returns: 0 if nothing was written, positive # if string was. 638 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 639 */ 640 641 #define trace_puts(str) ({ \ 642 static const char *trace_printk_fmt \ 643 __attribute__((section("__trace_printk_fmt"))) = \ 644 __builtin_constant_p(str) ? str : NULL; \ 645 \ 646 if (__builtin_constant_p(str)) \ 647 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 648 else \ 649 __trace_puts(_THIS_IP_, str, strlen(str)); \ 650 }) 651 extern int __trace_bputs(unsigned long ip, const char *str); 652 extern int __trace_puts(unsigned long ip, const char *str, int size); 653 654 extern void trace_dump_stack(int skip); 655 656 /* 657 * The double __builtin_constant_p is because gcc will give us an error 658 * if we try to allocate the static variable to fmt if it is not a 659 * constant. Even with the outer if statement. 660 */ 661 #define ftrace_vprintk(fmt, vargs) \ 662 do { \ 663 if (__builtin_constant_p(fmt)) { \ 664 static const char *trace_printk_fmt \ 665 __attribute__((section("__trace_printk_fmt"))) = \ 666 __builtin_constant_p(fmt) ? fmt : NULL; \ 667 \ 668 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 669 } else \ 670 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 671 } while (0) 672 673 extern int 674 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 675 676 extern int 677 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 678 679 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 680 #else 681 static inline void tracing_start(void) { } 682 static inline void tracing_stop(void) { } 683 static inline void trace_dump_stack(int skip) { } 684 685 static inline void tracing_on(void) { } 686 static inline void tracing_off(void) { } 687 static inline int tracing_is_on(void) { return 0; } 688 static inline void tracing_snapshot(void) { } 689 static inline void tracing_snapshot_alloc(void) { } 690 691 static inline __printf(1, 2) 692 int trace_printk(const char *fmt, ...) 693 { 694 return 0; 695 } 696 static inline int 697 ftrace_vprintk(const char *fmt, va_list ap) 698 { 699 return 0; 700 } 701 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 702 #endif /* CONFIG_TRACING */ 703 704 /* 705 * min()/max()/clamp() macros that also do 706 * strict type-checking.. See the 707 * "unnecessary" pointer comparison. 708 */ 709 #define min(x, y) ({ \ 710 typeof(x) _min1 = (x); \ 711 typeof(y) _min2 = (y); \ 712 (void) (&_min1 == &_min2); \ 713 _min1 < _min2 ? _min1 : _min2; }) 714 715 #define max(x, y) ({ \ 716 typeof(x) _max1 = (x); \ 717 typeof(y) _max2 = (y); \ 718 (void) (&_max1 == &_max2); \ 719 _max1 > _max2 ? _max1 : _max2; }) 720 721 #define min3(x, y, z) ({ \ 722 typeof(x) _min1 = (x); \ 723 typeof(y) _min2 = (y); \ 724 typeof(z) _min3 = (z); \ 725 (void) (&_min1 == &_min2); \ 726 (void) (&_min1 == &_min3); \ 727 _min1 < _min2 ? (_min1 < _min3 ? _min1 : _min3) : \ 728 (_min2 < _min3 ? _min2 : _min3); }) 729 730 #define max3(x, y, z) ({ \ 731 typeof(x) _max1 = (x); \ 732 typeof(y) _max2 = (y); \ 733 typeof(z) _max3 = (z); \ 734 (void) (&_max1 == &_max2); \ 735 (void) (&_max1 == &_max3); \ 736 _max1 > _max2 ? (_max1 > _max3 ? _max1 : _max3) : \ 737 (_max2 > _max3 ? _max2 : _max3); }) 738 739 /** 740 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 741 * @x: value1 742 * @y: value2 743 */ 744 #define min_not_zero(x, y) ({ \ 745 typeof(x) __x = (x); \ 746 typeof(y) __y = (y); \ 747 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 748 749 /** 750 * clamp - return a value clamped to a given range with strict typechecking 751 * @val: current value 752 * @min: minimum allowable value 753 * @max: maximum allowable value 754 * 755 * This macro does strict typechecking of min/max to make sure they are of the 756 * same type as val. See the unnecessary pointer comparisons. 757 */ 758 #define clamp(val, min, max) ({ \ 759 typeof(val) __val = (val); \ 760 typeof(min) __min = (min); \ 761 typeof(max) __max = (max); \ 762 (void) (&__val == &__min); \ 763 (void) (&__val == &__max); \ 764 __val = __val < __min ? __min: __val; \ 765 __val > __max ? __max: __val; }) 766 767 /* 768 * ..and if you can't take the strict 769 * types, you can specify one yourself. 770 * 771 * Or not use min/max/clamp at all, of course. 772 */ 773 #define min_t(type, x, y) ({ \ 774 type __min1 = (x); \ 775 type __min2 = (y); \ 776 __min1 < __min2 ? __min1: __min2; }) 777 778 #define max_t(type, x, y) ({ \ 779 type __max1 = (x); \ 780 type __max2 = (y); \ 781 __max1 > __max2 ? __max1: __max2; }) 782 783 /** 784 * clamp_t - return a value clamped to a given range using a given type 785 * @type: the type of variable to use 786 * @val: current value 787 * @min: minimum allowable value 788 * @max: maximum allowable value 789 * 790 * This macro does no typechecking and uses temporary variables of type 791 * 'type' to make all the comparisons. 792 */ 793 #define clamp_t(type, val, min, max) ({ \ 794 type __val = (val); \ 795 type __min = (min); \ 796 type __max = (max); \ 797 __val = __val < __min ? __min: __val; \ 798 __val > __max ? __max: __val; }) 799 800 /** 801 * clamp_val - return a value clamped to a given range using val's type 802 * @val: current value 803 * @min: minimum allowable value 804 * @max: maximum allowable value 805 * 806 * This macro does no typechecking and uses temporary variables of whatever 807 * type the input argument 'val' is. This is useful when val is an unsigned 808 * type and min and max are literals that will otherwise be assigned a signed 809 * integer type. 810 */ 811 #define clamp_val(val, min, max) ({ \ 812 typeof(val) __val = (val); \ 813 typeof(val) __min = (min); \ 814 typeof(val) __max = (max); \ 815 __val = __val < __min ? __min: __val; \ 816 __val > __max ? __max: __val; }) 817 818 819 /* 820 * swap - swap value of @a and @b 821 */ 822 #define swap(a, b) \ 823 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 824 825 /** 826 * container_of - cast a member of a structure out to the containing structure 827 * @ptr: the pointer to the member. 828 * @type: the type of the container struct this is embedded in. 829 * @member: the name of the member within the struct. 830 * 831 */ 832 #define container_of(ptr, type, member) ({ \ 833 const typeof( ((type *)0)->member ) *__mptr = (ptr); \ 834 (type *)( (char *)__mptr - offsetof(type,member) );}) 835 836 /* Trap pasters of __FUNCTION__ at compile-time */ 837 #define __FUNCTION__ (__func__) 838 839 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 840 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 841 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 842 #endif 843 844 #endif 845