xref: /linux-6.15/include/linux/kernel.h (revision 7af6fbdd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_KERNEL_H
3 #define _LINUX_KERNEL_H
4 
5 
6 #include <stdarg.h>
7 #include <linux/limits.h>
8 #include <linux/linkage.h>
9 #include <linux/stddef.h>
10 #include <linux/types.h>
11 #include <linux/compiler.h>
12 #include <linux/bitops.h>
13 #include <linux/log2.h>
14 #include <linux/typecheck.h>
15 #include <linux/printk.h>
16 #include <linux/build_bug.h>
17 #include <asm/byteorder.h>
18 #include <asm/div64.h>
19 #include <uapi/linux/kernel.h>
20 
21 #define STACK_MAGIC	0xdeadbeef
22 
23 /**
24  * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
25  * @x: value to repeat
26  *
27  * NOTE: @x is not checked for > 0xff; larger values produce odd results.
28  */
29 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
30 
31 /* @a is a power of 2 value */
32 #define ALIGN(x, a)		__ALIGN_KERNEL((x), (a))
33 #define ALIGN_DOWN(x, a)	__ALIGN_KERNEL((x) - ((a) - 1), (a))
34 #define __ALIGN_MASK(x, mask)	__ALIGN_KERNEL_MASK((x), (mask))
35 #define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
36 #define PTR_ALIGN_DOWN(p, a)	((typeof(p))ALIGN_DOWN((unsigned long)(p), (a)))
37 #define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)
38 
39 /* generic data direction definitions */
40 #define READ			0
41 #define WRITE			1
42 
43 /**
44  * ARRAY_SIZE - get the number of elements in array @arr
45  * @arr: array to be sized
46  */
47 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
48 
49 #define u64_to_user_ptr(x) (		\
50 {					\
51 	typecheck(u64, (x));		\
52 	(void __user *)(uintptr_t)(x);	\
53 }					\
54 )
55 
56 /*
57  * This looks more complex than it should be. But we need to
58  * get the type for the ~ right in round_down (it needs to be
59  * as wide as the result!), and we want to evaluate the macro
60  * arguments just once each.
61  */
62 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
63 /**
64  * round_up - round up to next specified power of 2
65  * @x: the value to round
66  * @y: multiple to round up to (must be a power of 2)
67  *
68  * Rounds @x up to next multiple of @y (which must be a power of 2).
69  * To perform arbitrary rounding up, use roundup() below.
70  */
71 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
72 /**
73  * round_down - round down to next specified power of 2
74  * @x: the value to round
75  * @y: multiple to round down to (must be a power of 2)
76  *
77  * Rounds @x down to next multiple of @y (which must be a power of 2).
78  * To perform arbitrary rounding down, use rounddown() below.
79  */
80 #define round_down(x, y) ((x) & ~__round_mask(x, y))
81 
82 #define typeof_member(T, m)	typeof(((T*)0)->m)
83 
84 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
85 
86 #define DIV_ROUND_DOWN_ULL(ll, d) \
87 	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
88 
89 #define DIV_ROUND_UP_ULL(ll, d) \
90 	DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
91 
92 #if BITS_PER_LONG == 32
93 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
94 #else
95 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
96 #endif
97 
98 /**
99  * roundup - round up to the next specified multiple
100  * @x: the value to up
101  * @y: multiple to round up to
102  *
103  * Rounds @x up to next multiple of @y. If @y will always be a power
104  * of 2, consider using the faster round_up().
105  */
106 #define roundup(x, y) (					\
107 {							\
108 	typeof(y) __y = y;				\
109 	(((x) + (__y - 1)) / __y) * __y;		\
110 }							\
111 )
112 /**
113  * rounddown - round down to next specified multiple
114  * @x: the value to round
115  * @y: multiple to round down to
116  *
117  * Rounds @x down to next multiple of @y. If @y will always be a power
118  * of 2, consider using the faster round_down().
119  */
120 #define rounddown(x, y) (				\
121 {							\
122 	typeof(x) __x = (x);				\
123 	__x - (__x % (y));				\
124 }							\
125 )
126 
127 /*
128  * Divide positive or negative dividend by positive or negative divisor
129  * and round to closest integer. Result is undefined for negative
130  * divisors if the dividend variable type is unsigned and for negative
131  * dividends if the divisor variable type is unsigned.
132  */
133 #define DIV_ROUND_CLOSEST(x, divisor)(			\
134 {							\
135 	typeof(x) __x = x;				\
136 	typeof(divisor) __d = divisor;			\
137 	(((typeof(x))-1) > 0 ||				\
138 	 ((typeof(divisor))-1) > 0 ||			\
139 	 (((__x) > 0) == ((__d) > 0))) ?		\
140 		(((__x) + ((__d) / 2)) / (__d)) :	\
141 		(((__x) - ((__d) / 2)) / (__d));	\
142 }							\
143 )
144 /*
145  * Same as above but for u64 dividends. divisor must be a 32-bit
146  * number.
147  */
148 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
149 {							\
150 	typeof(divisor) __d = divisor;			\
151 	unsigned long long _tmp = (x) + (__d) / 2;	\
152 	do_div(_tmp, __d);				\
153 	_tmp;						\
154 }							\
155 )
156 
157 /*
158  * Multiplies an integer by a fraction, while avoiding unnecessary
159  * overflow or loss of precision.
160  */
161 #define mult_frac(x, numer, denom)(			\
162 {							\
163 	typeof(x) quot = (x) / (denom);			\
164 	typeof(x) rem  = (x) % (denom);			\
165 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
166 }							\
167 )
168 
169 
170 #define _RET_IP_		(unsigned long)__builtin_return_address(0)
171 #define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
172 
173 #define sector_div(a, b) do_div(a, b)
174 
175 /**
176  * upper_32_bits - return bits 32-63 of a number
177  * @n: the number we're accessing
178  *
179  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
180  * the "right shift count >= width of type" warning when that quantity is
181  * 32-bits.
182  */
183 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
184 
185 /**
186  * lower_32_bits - return bits 0-31 of a number
187  * @n: the number we're accessing
188  */
189 #define lower_32_bits(n) ((u32)((n) & 0xffffffff))
190 
191 struct completion;
192 struct pt_regs;
193 struct user;
194 
195 #ifdef CONFIG_PREEMPT_VOLUNTARY
196 extern int _cond_resched(void);
197 # define might_resched() _cond_resched()
198 #else
199 # define might_resched() do { } while (0)
200 #endif
201 
202 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
203 extern void ___might_sleep(const char *file, int line, int preempt_offset);
204 extern void __might_sleep(const char *file, int line, int preempt_offset);
205 extern void __cant_sleep(const char *file, int line, int preempt_offset);
206 
207 /**
208  * might_sleep - annotation for functions that can sleep
209  *
210  * this macro will print a stack trace if it is executed in an atomic
211  * context (spinlock, irq-handler, ...). Additional sections where blocking is
212  * not allowed can be annotated with non_block_start() and non_block_end()
213  * pairs.
214  *
215  * This is a useful debugging help to be able to catch problems early and not
216  * be bitten later when the calling function happens to sleep when it is not
217  * supposed to.
218  */
219 # define might_sleep() \
220 	do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
221 /**
222  * cant_sleep - annotation for functions that cannot sleep
223  *
224  * this macro will print a stack trace if it is executed with preemption enabled
225  */
226 # define cant_sleep() \
227 	do { __cant_sleep(__FILE__, __LINE__, 0); } while (0)
228 # define sched_annotate_sleep()	(current->task_state_change = 0)
229 /**
230  * non_block_start - annotate the start of section where sleeping is prohibited
231  *
232  * This is on behalf of the oom reaper, specifically when it is calling the mmu
233  * notifiers. The problem is that if the notifier were to block on, for example,
234  * mutex_lock() and if the process which holds that mutex were to perform a
235  * sleeping memory allocation, the oom reaper is now blocked on completion of
236  * that memory allocation. Other blocking calls like wait_event() pose similar
237  * issues.
238  */
239 # define non_block_start() (current->non_block_count++)
240 /**
241  * non_block_end - annotate the end of section where sleeping is prohibited
242  *
243  * Closes a section opened by non_block_start().
244  */
245 # define non_block_end() WARN_ON(current->non_block_count-- == 0)
246 #else
247   static inline void ___might_sleep(const char *file, int line,
248 				   int preempt_offset) { }
249   static inline void __might_sleep(const char *file, int line,
250 				   int preempt_offset) { }
251 # define might_sleep() do { might_resched(); } while (0)
252 # define cant_sleep() do { } while (0)
253 # define sched_annotate_sleep() do { } while (0)
254 # define non_block_start() do { } while (0)
255 # define non_block_end() do { } while (0)
256 #endif
257 
258 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
259 
260 #ifndef CONFIG_PREEMPT_RT
261 # define cant_migrate()		cant_sleep()
262 #else
263   /* Placeholder for now */
264 # define cant_migrate()		do { } while (0)
265 #endif
266 
267 /**
268  * abs - return absolute value of an argument
269  * @x: the value.  If it is unsigned type, it is converted to signed type first.
270  *     char is treated as if it was signed (regardless of whether it really is)
271  *     but the macro's return type is preserved as char.
272  *
273  * Return: an absolute value of x.
274  */
275 #define abs(x)	__abs_choose_expr(x, long long,				\
276 		__abs_choose_expr(x, long,				\
277 		__abs_choose_expr(x, int,				\
278 		__abs_choose_expr(x, short,				\
279 		__abs_choose_expr(x, char,				\
280 		__builtin_choose_expr(					\
281 			__builtin_types_compatible_p(typeof(x), char),	\
282 			(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
283 			((void)0)))))))
284 
285 #define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\
286 	__builtin_types_compatible_p(typeof(x),   signed type) ||	\
287 	__builtin_types_compatible_p(typeof(x), unsigned type),		\
288 	({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
289 
290 /**
291  * reciprocal_scale - "scale" a value into range [0, ep_ro)
292  * @val: value
293  * @ep_ro: right open interval endpoint
294  *
295  * Perform a "reciprocal multiplication" in order to "scale" a value into
296  * range [0, @ep_ro), where the upper interval endpoint is right-open.
297  * This is useful, e.g. for accessing a index of an array containing
298  * @ep_ro elements, for example. Think of it as sort of modulus, only that
299  * the result isn't that of modulo. ;) Note that if initial input is a
300  * small value, then result will return 0.
301  *
302  * Return: a result based on @val in interval [0, @ep_ro).
303  */
304 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
305 {
306 	return (u32)(((u64) val * ep_ro) >> 32);
307 }
308 
309 #if defined(CONFIG_MMU) && \
310 	(defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
311 #define might_fault() __might_fault(__FILE__, __LINE__)
312 void __might_fault(const char *file, int line);
313 #else
314 static inline void might_fault(void) { }
315 #endif
316 
317 extern struct atomic_notifier_head panic_notifier_list;
318 extern long (*panic_blink)(int state);
319 __printf(1, 2)
320 void panic(const char *fmt, ...) __noreturn __cold;
321 void nmi_panic(struct pt_regs *regs, const char *msg);
322 extern void oops_enter(void);
323 extern void oops_exit(void);
324 extern bool oops_may_print(void);
325 void do_exit(long error_code) __noreturn;
326 void complete_and_exit(struct completion *, long) __noreturn;
327 
328 /* Internal, do not use. */
329 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
330 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
331 
332 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
333 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
334 
335 /**
336  * kstrtoul - convert a string to an unsigned long
337  * @s: The start of the string. The string must be null-terminated, and may also
338  *  include a single newline before its terminating null. The first character
339  *  may also be a plus sign, but not a minus sign.
340  * @base: The number base to use. The maximum supported base is 16. If base is
341  *  given as 0, then the base of the string is automatically detected with the
342  *  conventional semantics - If it begins with 0x the number will be parsed as a
343  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
344  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
345  * @res: Where to write the result of the conversion on success.
346  *
347  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
348  * Preferred over simple_strtoul(). Return code must be checked.
349 */
350 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
351 {
352 	/*
353 	 * We want to shortcut function call, but
354 	 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
355 	 */
356 	if (sizeof(unsigned long) == sizeof(unsigned long long) &&
357 	    __alignof__(unsigned long) == __alignof__(unsigned long long))
358 		return kstrtoull(s, base, (unsigned long long *)res);
359 	else
360 		return _kstrtoul(s, base, res);
361 }
362 
363 /**
364  * kstrtol - convert a string to a long
365  * @s: The start of the string. The string must be null-terminated, and may also
366  *  include a single newline before its terminating null. The first character
367  *  may also be a plus sign or a minus sign.
368  * @base: The number base to use. The maximum supported base is 16. If base is
369  *  given as 0, then the base of the string is automatically detected with the
370  *  conventional semantics - If it begins with 0x the number will be parsed as a
371  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
372  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
373  * @res: Where to write the result of the conversion on success.
374  *
375  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
376  * Preferred over simple_strtol(). Return code must be checked.
377  */
378 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
379 {
380 	/*
381 	 * We want to shortcut function call, but
382 	 * __builtin_types_compatible_p(long, long long) = 0.
383 	 */
384 	if (sizeof(long) == sizeof(long long) &&
385 	    __alignof__(long) == __alignof__(long long))
386 		return kstrtoll(s, base, (long long *)res);
387 	else
388 		return _kstrtol(s, base, res);
389 }
390 
391 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
392 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
393 
394 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
395 {
396 	return kstrtoull(s, base, res);
397 }
398 
399 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
400 {
401 	return kstrtoll(s, base, res);
402 }
403 
404 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
405 {
406 	return kstrtouint(s, base, res);
407 }
408 
409 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
410 {
411 	return kstrtoint(s, base, res);
412 }
413 
414 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
415 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
416 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
417 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
418 int __must_check kstrtobool(const char *s, bool *res);
419 
420 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
421 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
422 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
423 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
424 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
425 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
426 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
427 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
428 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
429 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
430 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
431 
432 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
433 {
434 	return kstrtoull_from_user(s, count, base, res);
435 }
436 
437 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
438 {
439 	return kstrtoll_from_user(s, count, base, res);
440 }
441 
442 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
443 {
444 	return kstrtouint_from_user(s, count, base, res);
445 }
446 
447 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
448 {
449 	return kstrtoint_from_user(s, count, base, res);
450 }
451 
452 /*
453  * Use kstrto<foo> instead.
454  *
455  * NOTE: simple_strto<foo> does not check for the range overflow and,
456  *	 depending on the input, may give interesting results.
457  *
458  * Use these functions if and only if you cannot use kstrto<foo>, because
459  * the conversion ends on the first non-digit character, which may be far
460  * beyond the supported range. It might be useful to parse the strings like
461  * 10x50 or 12:21 without altering original string or temporary buffer in use.
462  * Keep in mind above caveat.
463  */
464 
465 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
466 extern long simple_strtol(const char *,char **,unsigned int);
467 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
468 extern long long simple_strtoll(const char *,char **,unsigned int);
469 
470 extern int num_to_str(char *buf, int size,
471 		      unsigned long long num, unsigned int width);
472 
473 /* lib/printf utilities */
474 
475 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
476 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
477 extern __printf(3, 4)
478 int snprintf(char *buf, size_t size, const char *fmt, ...);
479 extern __printf(3, 0)
480 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
481 extern __printf(3, 4)
482 int scnprintf(char *buf, size_t size, const char *fmt, ...);
483 extern __printf(3, 0)
484 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
485 extern __printf(2, 3) __malloc
486 char *kasprintf(gfp_t gfp, const char *fmt, ...);
487 extern __printf(2, 0) __malloc
488 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
489 extern __printf(2, 0)
490 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
491 
492 extern __scanf(2, 3)
493 int sscanf(const char *, const char *, ...);
494 extern __scanf(2, 0)
495 int vsscanf(const char *, const char *, va_list);
496 
497 extern int get_option(char **str, int *pint);
498 extern char *get_options(const char *str, int nints, int *ints);
499 extern unsigned long long memparse(const char *ptr, char **retptr);
500 extern bool parse_option_str(const char *str, const char *option);
501 extern char *next_arg(char *args, char **param, char **val);
502 
503 extern int core_kernel_text(unsigned long addr);
504 extern int init_kernel_text(unsigned long addr);
505 extern int core_kernel_data(unsigned long addr);
506 extern int __kernel_text_address(unsigned long addr);
507 extern int kernel_text_address(unsigned long addr);
508 extern int func_ptr_is_kernel_text(void *ptr);
509 
510 u64 int_pow(u64 base, unsigned int exp);
511 unsigned long int_sqrt(unsigned long);
512 
513 #if BITS_PER_LONG < 64
514 u32 int_sqrt64(u64 x);
515 #else
516 static inline u32 int_sqrt64(u64 x)
517 {
518 	return (u32)int_sqrt(x);
519 }
520 #endif
521 
522 #ifdef CONFIG_SMP
523 extern unsigned int sysctl_oops_all_cpu_backtrace;
524 #else
525 #define sysctl_oops_all_cpu_backtrace 0
526 #endif /* CONFIG_SMP */
527 
528 extern void bust_spinlocks(int yes);
529 extern int panic_timeout;
530 extern unsigned long panic_print;
531 extern int panic_on_oops;
532 extern int panic_on_unrecovered_nmi;
533 extern int panic_on_io_nmi;
534 extern int panic_on_warn;
535 extern unsigned long panic_on_taint;
536 extern bool panic_on_taint_nousertaint;
537 extern int sysctl_panic_on_rcu_stall;
538 extern int sysctl_panic_on_stackoverflow;
539 
540 extern bool crash_kexec_post_notifiers;
541 
542 /*
543  * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
544  * holds a CPU number which is executing panic() currently. A value of
545  * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
546  */
547 extern atomic_t panic_cpu;
548 #define PANIC_CPU_INVALID	-1
549 
550 /*
551  * Only to be used by arch init code. If the user over-wrote the default
552  * CONFIG_PANIC_TIMEOUT, honor it.
553  */
554 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
555 {
556 	if (panic_timeout == arch_default_timeout)
557 		panic_timeout = timeout;
558 }
559 extern const char *print_tainted(void);
560 enum lockdep_ok {
561 	LOCKDEP_STILL_OK,
562 	LOCKDEP_NOW_UNRELIABLE
563 };
564 extern void add_taint(unsigned flag, enum lockdep_ok);
565 extern int test_taint(unsigned flag);
566 extern unsigned long get_taint(void);
567 extern int root_mountflags;
568 
569 extern bool early_boot_irqs_disabled;
570 
571 /*
572  * Values used for system_state. Ordering of the states must not be changed
573  * as code checks for <, <=, >, >= STATE.
574  */
575 extern enum system_states {
576 	SYSTEM_BOOTING,
577 	SYSTEM_SCHEDULING,
578 	SYSTEM_RUNNING,
579 	SYSTEM_HALT,
580 	SYSTEM_POWER_OFF,
581 	SYSTEM_RESTART,
582 	SYSTEM_SUSPEND,
583 } system_state;
584 
585 /* This cannot be an enum because some may be used in assembly source. */
586 #define TAINT_PROPRIETARY_MODULE	0
587 #define TAINT_FORCED_MODULE		1
588 #define TAINT_CPU_OUT_OF_SPEC		2
589 #define TAINT_FORCED_RMMOD		3
590 #define TAINT_MACHINE_CHECK		4
591 #define TAINT_BAD_PAGE			5
592 #define TAINT_USER			6
593 #define TAINT_DIE			7
594 #define TAINT_OVERRIDDEN_ACPI_TABLE	8
595 #define TAINT_WARN			9
596 #define TAINT_CRAP			10
597 #define TAINT_FIRMWARE_WORKAROUND	11
598 #define TAINT_OOT_MODULE		12
599 #define TAINT_UNSIGNED_MODULE		13
600 #define TAINT_SOFTLOCKUP		14
601 #define TAINT_LIVEPATCH			15
602 #define TAINT_AUX			16
603 #define TAINT_RANDSTRUCT		17
604 #define TAINT_FLAGS_COUNT		18
605 #define TAINT_FLAGS_MAX			((1UL << TAINT_FLAGS_COUNT) - 1)
606 
607 struct taint_flag {
608 	char c_true;	/* character printed when tainted */
609 	char c_false;	/* character printed when not tainted */
610 	bool module;	/* also show as a per-module taint flag */
611 };
612 
613 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
614 
615 extern const char hex_asc[];
616 #define hex_asc_lo(x)	hex_asc[((x) & 0x0f)]
617 #define hex_asc_hi(x)	hex_asc[((x) & 0xf0) >> 4]
618 
619 static inline char *hex_byte_pack(char *buf, u8 byte)
620 {
621 	*buf++ = hex_asc_hi(byte);
622 	*buf++ = hex_asc_lo(byte);
623 	return buf;
624 }
625 
626 extern const char hex_asc_upper[];
627 #define hex_asc_upper_lo(x)	hex_asc_upper[((x) & 0x0f)]
628 #define hex_asc_upper_hi(x)	hex_asc_upper[((x) & 0xf0) >> 4]
629 
630 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
631 {
632 	*buf++ = hex_asc_upper_hi(byte);
633 	*buf++ = hex_asc_upper_lo(byte);
634 	return buf;
635 }
636 
637 extern int hex_to_bin(char ch);
638 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
639 extern char *bin2hex(char *dst, const void *src, size_t count);
640 
641 bool mac_pton(const char *s, u8 *mac);
642 
643 /*
644  * General tracing related utility functions - trace_printk(),
645  * tracing_on/tracing_off and tracing_start()/tracing_stop
646  *
647  * Use tracing_on/tracing_off when you want to quickly turn on or off
648  * tracing. It simply enables or disables the recording of the trace events.
649  * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
650  * file, which gives a means for the kernel and userspace to interact.
651  * Place a tracing_off() in the kernel where you want tracing to end.
652  * From user space, examine the trace, and then echo 1 > tracing_on
653  * to continue tracing.
654  *
655  * tracing_stop/tracing_start has slightly more overhead. It is used
656  * by things like suspend to ram where disabling the recording of the
657  * trace is not enough, but tracing must actually stop because things
658  * like calling smp_processor_id() may crash the system.
659  *
660  * Most likely, you want to use tracing_on/tracing_off.
661  */
662 
663 enum ftrace_dump_mode {
664 	DUMP_NONE,
665 	DUMP_ALL,
666 	DUMP_ORIG,
667 };
668 
669 #ifdef CONFIG_TRACING
670 void tracing_on(void);
671 void tracing_off(void);
672 int tracing_is_on(void);
673 void tracing_snapshot(void);
674 void tracing_snapshot_alloc(void);
675 
676 extern void tracing_start(void);
677 extern void tracing_stop(void);
678 
679 static inline __printf(1, 2)
680 void ____trace_printk_check_format(const char *fmt, ...)
681 {
682 }
683 #define __trace_printk_check_format(fmt, args...)			\
684 do {									\
685 	if (0)								\
686 		____trace_printk_check_format(fmt, ##args);		\
687 } while (0)
688 
689 /**
690  * trace_printk - printf formatting in the ftrace buffer
691  * @fmt: the printf format for printing
692  *
693  * Note: __trace_printk is an internal function for trace_printk() and
694  *       the @ip is passed in via the trace_printk() macro.
695  *
696  * This function allows a kernel developer to debug fast path sections
697  * that printk is not appropriate for. By scattering in various
698  * printk like tracing in the code, a developer can quickly see
699  * where problems are occurring.
700  *
701  * This is intended as a debugging tool for the developer only.
702  * Please refrain from leaving trace_printks scattered around in
703  * your code. (Extra memory is used for special buffers that are
704  * allocated when trace_printk() is used.)
705  *
706  * A little optimization trick is done here. If there's only one
707  * argument, there's no need to scan the string for printf formats.
708  * The trace_puts() will suffice. But how can we take advantage of
709  * using trace_puts() when trace_printk() has only one argument?
710  * By stringifying the args and checking the size we can tell
711  * whether or not there are args. __stringify((__VA_ARGS__)) will
712  * turn into "()\0" with a size of 3 when there are no args, anything
713  * else will be bigger. All we need to do is define a string to this,
714  * and then take its size and compare to 3. If it's bigger, use
715  * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
716  * let gcc optimize the rest.
717  */
718 
719 #define trace_printk(fmt, ...)				\
720 do {							\
721 	char _______STR[] = __stringify((__VA_ARGS__));	\
722 	if (sizeof(_______STR) > 3)			\
723 		do_trace_printk(fmt, ##__VA_ARGS__);	\
724 	else						\
725 		trace_puts(fmt);			\
726 } while (0)
727 
728 #define do_trace_printk(fmt, args...)					\
729 do {									\
730 	static const char *trace_printk_fmt __used			\
731 		__attribute__((section("__trace_printk_fmt"))) =	\
732 		__builtin_constant_p(fmt) ? fmt : NULL;			\
733 									\
734 	__trace_printk_check_format(fmt, ##args);			\
735 									\
736 	if (__builtin_constant_p(fmt))					\
737 		__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);	\
738 	else								\
739 		__trace_printk(_THIS_IP_, fmt, ##args);			\
740 } while (0)
741 
742 extern __printf(2, 3)
743 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
744 
745 extern __printf(2, 3)
746 int __trace_printk(unsigned long ip, const char *fmt, ...);
747 
748 /**
749  * trace_puts - write a string into the ftrace buffer
750  * @str: the string to record
751  *
752  * Note: __trace_bputs is an internal function for trace_puts and
753  *       the @ip is passed in via the trace_puts macro.
754  *
755  * This is similar to trace_printk() but is made for those really fast
756  * paths that a developer wants the least amount of "Heisenbug" effects,
757  * where the processing of the print format is still too much.
758  *
759  * This function allows a kernel developer to debug fast path sections
760  * that printk is not appropriate for. By scattering in various
761  * printk like tracing in the code, a developer can quickly see
762  * where problems are occurring.
763  *
764  * This is intended as a debugging tool for the developer only.
765  * Please refrain from leaving trace_puts scattered around in
766  * your code. (Extra memory is used for special buffers that are
767  * allocated when trace_puts() is used.)
768  *
769  * Returns: 0 if nothing was written, positive # if string was.
770  *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
771  */
772 
773 #define trace_puts(str) ({						\
774 	static const char *trace_printk_fmt __used			\
775 		__attribute__((section("__trace_printk_fmt"))) =	\
776 		__builtin_constant_p(str) ? str : NULL;			\
777 									\
778 	if (__builtin_constant_p(str))					\
779 		__trace_bputs(_THIS_IP_, trace_printk_fmt);		\
780 	else								\
781 		__trace_puts(_THIS_IP_, str, strlen(str));		\
782 })
783 extern int __trace_bputs(unsigned long ip, const char *str);
784 extern int __trace_puts(unsigned long ip, const char *str, int size);
785 
786 extern void trace_dump_stack(int skip);
787 
788 /*
789  * The double __builtin_constant_p is because gcc will give us an error
790  * if we try to allocate the static variable to fmt if it is not a
791  * constant. Even with the outer if statement.
792  */
793 #define ftrace_vprintk(fmt, vargs)					\
794 do {									\
795 	if (__builtin_constant_p(fmt)) {				\
796 		static const char *trace_printk_fmt __used		\
797 		  __attribute__((section("__trace_printk_fmt"))) =	\
798 			__builtin_constant_p(fmt) ? fmt : NULL;		\
799 									\
800 		__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);	\
801 	} else								\
802 		__ftrace_vprintk(_THIS_IP_, fmt, vargs);		\
803 } while (0)
804 
805 extern __printf(2, 0) int
806 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
807 
808 extern __printf(2, 0) int
809 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
810 
811 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
812 #else
813 static inline void tracing_start(void) { }
814 static inline void tracing_stop(void) { }
815 static inline void trace_dump_stack(int skip) { }
816 
817 static inline void tracing_on(void) { }
818 static inline void tracing_off(void) { }
819 static inline int tracing_is_on(void) { return 0; }
820 static inline void tracing_snapshot(void) { }
821 static inline void tracing_snapshot_alloc(void) { }
822 
823 static inline __printf(1, 2)
824 int trace_printk(const char *fmt, ...)
825 {
826 	return 0;
827 }
828 static __printf(1, 0) inline int
829 ftrace_vprintk(const char *fmt, va_list ap)
830 {
831 	return 0;
832 }
833 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
834 #endif /* CONFIG_TRACING */
835 
836 /*
837  * min()/max()/clamp() macros must accomplish three things:
838  *
839  * - avoid multiple evaluations of the arguments (so side-effects like
840  *   "x++" happen only once) when non-constant.
841  * - perform strict type-checking (to generate warnings instead of
842  *   nasty runtime surprises). See the "unnecessary" pointer comparison
843  *   in __typecheck().
844  * - retain result as a constant expressions when called with only
845  *   constant expressions (to avoid tripping VLA warnings in stack
846  *   allocation usage).
847  */
848 #define __typecheck(x, y) \
849 		(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
850 
851 /*
852  * This returns a constant expression while determining if an argument is
853  * a constant expression, most importantly without evaluating the argument.
854  * Glory to Martin Uecker <[email protected]>
855  */
856 #define __is_constexpr(x) \
857 	(sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
858 
859 #define __no_side_effects(x, y) \
860 		(__is_constexpr(x) && __is_constexpr(y))
861 
862 #define __safe_cmp(x, y) \
863 		(__typecheck(x, y) && __no_side_effects(x, y))
864 
865 #define __cmp(x, y, op)	((x) op (y) ? (x) : (y))
866 
867 #define __cmp_once(x, y, unique_x, unique_y, op) ({	\
868 		typeof(x) unique_x = (x);		\
869 		typeof(y) unique_y = (y);		\
870 		__cmp(unique_x, unique_y, op); })
871 
872 #define __careful_cmp(x, y, op) \
873 	__builtin_choose_expr(__safe_cmp(x, y), \
874 		__cmp(x, y, op), \
875 		__cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
876 
877 /**
878  * min - return minimum of two values of the same or compatible types
879  * @x: first value
880  * @y: second value
881  */
882 #define min(x, y)	__careful_cmp(x, y, <)
883 
884 /**
885  * max - return maximum of two values of the same or compatible types
886  * @x: first value
887  * @y: second value
888  */
889 #define max(x, y)	__careful_cmp(x, y, >)
890 
891 /**
892  * min3 - return minimum of three values
893  * @x: first value
894  * @y: second value
895  * @z: third value
896  */
897 #define min3(x, y, z) min((typeof(x))min(x, y), z)
898 
899 /**
900  * max3 - return maximum of three values
901  * @x: first value
902  * @y: second value
903  * @z: third value
904  */
905 #define max3(x, y, z) max((typeof(x))max(x, y), z)
906 
907 /**
908  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
909  * @x: value1
910  * @y: value2
911  */
912 #define min_not_zero(x, y) ({			\
913 	typeof(x) __x = (x);			\
914 	typeof(y) __y = (y);			\
915 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
916 
917 /**
918  * clamp - return a value clamped to a given range with strict typechecking
919  * @val: current value
920  * @lo: lowest allowable value
921  * @hi: highest allowable value
922  *
923  * This macro does strict typechecking of @lo/@hi to make sure they are of the
924  * same type as @val.  See the unnecessary pointer comparisons.
925  */
926 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
927 
928 /*
929  * ..and if you can't take the strict
930  * types, you can specify one yourself.
931  *
932  * Or not use min/max/clamp at all, of course.
933  */
934 
935 /**
936  * min_t - return minimum of two values, using the specified type
937  * @type: data type to use
938  * @x: first value
939  * @y: second value
940  */
941 #define min_t(type, x, y)	__careful_cmp((type)(x), (type)(y), <)
942 
943 /**
944  * max_t - return maximum of two values, using the specified type
945  * @type: data type to use
946  * @x: first value
947  * @y: second value
948  */
949 #define max_t(type, x, y)	__careful_cmp((type)(x), (type)(y), >)
950 
951 /**
952  * clamp_t - return a value clamped to a given range using a given type
953  * @type: the type of variable to use
954  * @val: current value
955  * @lo: minimum allowable value
956  * @hi: maximum allowable value
957  *
958  * This macro does no typechecking and uses temporary variables of type
959  * @type to make all the comparisons.
960  */
961 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
962 
963 /**
964  * clamp_val - return a value clamped to a given range using val's type
965  * @val: current value
966  * @lo: minimum allowable value
967  * @hi: maximum allowable value
968  *
969  * This macro does no typechecking and uses temporary variables of whatever
970  * type the input argument @val is.  This is useful when @val is an unsigned
971  * type and @lo and @hi are literals that will otherwise be assigned a signed
972  * integer type.
973  */
974 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
975 
976 
977 /**
978  * swap - swap values of @a and @b
979  * @a: first value
980  * @b: second value
981  */
982 #define swap(a, b) \
983 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
984 
985 /* This counts to 12. Any more, it will return 13th argument. */
986 #define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
987 #define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
988 
989 #define __CONCAT(a, b) a ## b
990 #define CONCATENATE(a, b) __CONCAT(a, b)
991 
992 /**
993  * container_of - cast a member of a structure out to the containing structure
994  * @ptr:	the pointer to the member.
995  * @type:	the type of the container struct this is embedded in.
996  * @member:	the name of the member within the struct.
997  *
998  */
999 #define container_of(ptr, type, member) ({				\
1000 	void *__mptr = (void *)(ptr);					\
1001 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
1002 			 !__same_type(*(ptr), void),			\
1003 			 "pointer type mismatch in container_of()");	\
1004 	((type *)(__mptr - offsetof(type, member))); })
1005 
1006 /**
1007  * container_of_safe - cast a member of a structure out to the containing structure
1008  * @ptr:	the pointer to the member.
1009  * @type:	the type of the container struct this is embedded in.
1010  * @member:	the name of the member within the struct.
1011  *
1012  * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
1013  */
1014 #define container_of_safe(ptr, type, member) ({				\
1015 	void *__mptr = (void *)(ptr);					\
1016 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
1017 			 !__same_type(*(ptr), void),			\
1018 			 "pointer type mismatch in container_of()");	\
1019 	IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) :			\
1020 		((type *)(__mptr - offsetof(type, member))); })
1021 
1022 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
1023 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
1024 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
1025 #endif
1026 
1027 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
1028 #define VERIFY_OCTAL_PERMISSIONS(perms)						\
1029 	(BUILD_BUG_ON_ZERO((perms) < 0) +					\
1030 	 BUILD_BUG_ON_ZERO((perms) > 0777) +					\
1031 	 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */		\
1032 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +	\
1033 	 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +		\
1034 	 /* USER_WRITABLE >= GROUP_WRITABLE */					\
1035 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +	\
1036 	 /* OTHER_WRITABLE?  Generally considered a bad idea. */		\
1037 	 BUILD_BUG_ON_ZERO((perms) & 2) +					\
1038 	 (perms))
1039 #endif
1040