xref: /linux-6.15/include/linux/kernel.h (revision 617e7481)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_KERNEL_H
3 #define _LINUX_KERNEL_H
4 
5 
6 #include <stdarg.h>
7 #include <linux/limits.h>
8 #include <linux/linkage.h>
9 #include <linux/stddef.h>
10 #include <linux/types.h>
11 #include <linux/compiler.h>
12 #include <linux/bitops.h>
13 #include <linux/log2.h>
14 #include <linux/typecheck.h>
15 #include <linux/printk.h>
16 #include <linux/build_bug.h>
17 #include <asm/byteorder.h>
18 #include <asm/div64.h>
19 #include <uapi/linux/kernel.h>
20 #include <asm/div64.h>
21 
22 #define STACK_MAGIC	0xdeadbeef
23 
24 /**
25  * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
26  * @x: value to repeat
27  *
28  * NOTE: @x is not checked for > 0xff; larger values produce odd results.
29  */
30 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
31 
32 /* @a is a power of 2 value */
33 #define ALIGN(x, a)		__ALIGN_KERNEL((x), (a))
34 #define ALIGN_DOWN(x, a)	__ALIGN_KERNEL((x) - ((a) - 1), (a))
35 #define __ALIGN_MASK(x, mask)	__ALIGN_KERNEL_MASK((x), (mask))
36 #define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
37 #define PTR_ALIGN_DOWN(p, a)	((typeof(p))ALIGN_DOWN((unsigned long)(p), (a)))
38 #define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)
39 
40 /* generic data direction definitions */
41 #define READ			0
42 #define WRITE			1
43 
44 /**
45  * ARRAY_SIZE - get the number of elements in array @arr
46  * @arr: array to be sized
47  */
48 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
49 
50 #define u64_to_user_ptr(x) (		\
51 {					\
52 	typecheck(u64, (x));		\
53 	(void __user *)(uintptr_t)(x);	\
54 }					\
55 )
56 
57 /*
58  * This looks more complex than it should be. But we need to
59  * get the type for the ~ right in round_down (it needs to be
60  * as wide as the result!), and we want to evaluate the macro
61  * arguments just once each.
62  */
63 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
64 /**
65  * round_up - round up to next specified power of 2
66  * @x: the value to round
67  * @y: multiple to round up to (must be a power of 2)
68  *
69  * Rounds @x up to next multiple of @y (which must be a power of 2).
70  * To perform arbitrary rounding up, use roundup() below.
71  */
72 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
73 /**
74  * round_down - round down to next specified power of 2
75  * @x: the value to round
76  * @y: multiple to round down to (must be a power of 2)
77  *
78  * Rounds @x down to next multiple of @y (which must be a power of 2).
79  * To perform arbitrary rounding down, use rounddown() below.
80  */
81 #define round_down(x, y) ((x) & ~__round_mask(x, y))
82 
83 #define typeof_member(T, m)	typeof(((T*)0)->m)
84 
85 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
86 
87 #define DIV_ROUND_DOWN_ULL(ll, d) \
88 	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
89 
90 #define DIV_ROUND_UP_ULL(ll, d) \
91 	DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
92 
93 #if BITS_PER_LONG == 32
94 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
95 #else
96 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
97 #endif
98 
99 /**
100  * roundup - round up to the next specified multiple
101  * @x: the value to up
102  * @y: multiple to round up to
103  *
104  * Rounds @x up to next multiple of @y. If @y will always be a power
105  * of 2, consider using the faster round_up().
106  */
107 #define roundup(x, y) (					\
108 {							\
109 	typeof(y) __y = y;				\
110 	(((x) + (__y - 1)) / __y) * __y;		\
111 }							\
112 )
113 /**
114  * rounddown - round down to next specified multiple
115  * @x: the value to round
116  * @y: multiple to round down to
117  *
118  * Rounds @x down to next multiple of @y. If @y will always be a power
119  * of 2, consider using the faster round_down().
120  */
121 #define rounddown(x, y) (				\
122 {							\
123 	typeof(x) __x = (x);				\
124 	__x - (__x % (y));				\
125 }							\
126 )
127 
128 /*
129  * Divide positive or negative dividend by positive or negative divisor
130  * and round to closest integer. Result is undefined for negative
131  * divisors if the dividend variable type is unsigned and for negative
132  * dividends if the divisor variable type is unsigned.
133  */
134 #define DIV_ROUND_CLOSEST(x, divisor)(			\
135 {							\
136 	typeof(x) __x = x;				\
137 	typeof(divisor) __d = divisor;			\
138 	(((typeof(x))-1) > 0 ||				\
139 	 ((typeof(divisor))-1) > 0 ||			\
140 	 (((__x) > 0) == ((__d) > 0))) ?		\
141 		(((__x) + ((__d) / 2)) / (__d)) :	\
142 		(((__x) - ((__d) / 2)) / (__d));	\
143 }							\
144 )
145 /*
146  * Same as above but for u64 dividends. divisor must be a 32-bit
147  * number.
148  */
149 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
150 {							\
151 	typeof(divisor) __d = divisor;			\
152 	unsigned long long _tmp = (x) + (__d) / 2;	\
153 	do_div(_tmp, __d);				\
154 	_tmp;						\
155 }							\
156 )
157 
158 /*
159  * Multiplies an integer by a fraction, while avoiding unnecessary
160  * overflow or loss of precision.
161  */
162 #define mult_frac(x, numer, denom)(			\
163 {							\
164 	typeof(x) quot = (x) / (denom);			\
165 	typeof(x) rem  = (x) % (denom);			\
166 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
167 }							\
168 )
169 
170 
171 #define _RET_IP_		(unsigned long)__builtin_return_address(0)
172 #define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
173 
174 #define sector_div(a, b) do_div(a, b)
175 
176 /**
177  * upper_32_bits - return bits 32-63 of a number
178  * @n: the number we're accessing
179  *
180  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
181  * the "right shift count >= width of type" warning when that quantity is
182  * 32-bits.
183  */
184 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
185 
186 /**
187  * lower_32_bits - return bits 0-31 of a number
188  * @n: the number we're accessing
189  */
190 #define lower_32_bits(n) ((u32)(n))
191 
192 struct completion;
193 struct pt_regs;
194 struct user;
195 
196 #ifdef CONFIG_PREEMPT_VOLUNTARY
197 extern int _cond_resched(void);
198 # define might_resched() _cond_resched()
199 #else
200 # define might_resched() do { } while (0)
201 #endif
202 
203 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
204 extern void ___might_sleep(const char *file, int line, int preempt_offset);
205 extern void __might_sleep(const char *file, int line, int preempt_offset);
206 extern void __cant_sleep(const char *file, int line, int preempt_offset);
207 
208 /**
209  * might_sleep - annotation for functions that can sleep
210  *
211  * this macro will print a stack trace if it is executed in an atomic
212  * context (spinlock, irq-handler, ...). Additional sections where blocking is
213  * not allowed can be annotated with non_block_start() and non_block_end()
214  * pairs.
215  *
216  * This is a useful debugging help to be able to catch problems early and not
217  * be bitten later when the calling function happens to sleep when it is not
218  * supposed to.
219  */
220 # define might_sleep() \
221 	do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
222 /**
223  * cant_sleep - annotation for functions that cannot sleep
224  *
225  * this macro will print a stack trace if it is executed with preemption enabled
226  */
227 # define cant_sleep() \
228 	do { __cant_sleep(__FILE__, __LINE__, 0); } while (0)
229 # define sched_annotate_sleep()	(current->task_state_change = 0)
230 /**
231  * non_block_start - annotate the start of section where sleeping is prohibited
232  *
233  * This is on behalf of the oom reaper, specifically when it is calling the mmu
234  * notifiers. The problem is that if the notifier were to block on, for example,
235  * mutex_lock() and if the process which holds that mutex were to perform a
236  * sleeping memory allocation, the oom reaper is now blocked on completion of
237  * that memory allocation. Other blocking calls like wait_event() pose similar
238  * issues.
239  */
240 # define non_block_start() (current->non_block_count++)
241 /**
242  * non_block_end - annotate the end of section where sleeping is prohibited
243  *
244  * Closes a section opened by non_block_start().
245  */
246 # define non_block_end() WARN_ON(current->non_block_count-- == 0)
247 #else
248   static inline void ___might_sleep(const char *file, int line,
249 				   int preempt_offset) { }
250   static inline void __might_sleep(const char *file, int line,
251 				   int preempt_offset) { }
252 # define might_sleep() do { might_resched(); } while (0)
253 # define cant_sleep() do { } while (0)
254 # define sched_annotate_sleep() do { } while (0)
255 # define non_block_start() do { } while (0)
256 # define non_block_end() do { } while (0)
257 #endif
258 
259 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
260 
261 #ifndef CONFIG_PREEMPT_RT
262 # define cant_migrate()		cant_sleep()
263 #else
264   /* Placeholder for now */
265 # define cant_migrate()		do { } while (0)
266 #endif
267 
268 /**
269  * abs - return absolute value of an argument
270  * @x: the value.  If it is unsigned type, it is converted to signed type first.
271  *     char is treated as if it was signed (regardless of whether it really is)
272  *     but the macro's return type is preserved as char.
273  *
274  * Return: an absolute value of x.
275  */
276 #define abs(x)	__abs_choose_expr(x, long long,				\
277 		__abs_choose_expr(x, long,				\
278 		__abs_choose_expr(x, int,				\
279 		__abs_choose_expr(x, short,				\
280 		__abs_choose_expr(x, char,				\
281 		__builtin_choose_expr(					\
282 			__builtin_types_compatible_p(typeof(x), char),	\
283 			(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
284 			((void)0)))))))
285 
286 #define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\
287 	__builtin_types_compatible_p(typeof(x),   signed type) ||	\
288 	__builtin_types_compatible_p(typeof(x), unsigned type),		\
289 	({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
290 
291 /**
292  * reciprocal_scale - "scale" a value into range [0, ep_ro)
293  * @val: value
294  * @ep_ro: right open interval endpoint
295  *
296  * Perform a "reciprocal multiplication" in order to "scale" a value into
297  * range [0, @ep_ro), where the upper interval endpoint is right-open.
298  * This is useful, e.g. for accessing a index of an array containing
299  * @ep_ro elements, for example. Think of it as sort of modulus, only that
300  * the result isn't that of modulo. ;) Note that if initial input is a
301  * small value, then result will return 0.
302  *
303  * Return: a result based on @val in interval [0, @ep_ro).
304  */
305 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
306 {
307 	return (u32)(((u64) val * ep_ro) >> 32);
308 }
309 
310 #if defined(CONFIG_MMU) && \
311 	(defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
312 #define might_fault() __might_fault(__FILE__, __LINE__)
313 void __might_fault(const char *file, int line);
314 #else
315 static inline void might_fault(void) { }
316 #endif
317 
318 extern struct atomic_notifier_head panic_notifier_list;
319 extern long (*panic_blink)(int state);
320 __printf(1, 2)
321 void panic(const char *fmt, ...) __noreturn __cold;
322 void nmi_panic(struct pt_regs *regs, const char *msg);
323 extern void oops_enter(void);
324 extern void oops_exit(void);
325 void print_oops_end_marker(void);
326 extern int oops_may_print(void);
327 void do_exit(long error_code) __noreturn;
328 void complete_and_exit(struct completion *, long) __noreturn;
329 
330 /* Internal, do not use. */
331 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
332 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
333 
334 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
335 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
336 
337 /**
338  * kstrtoul - convert a string to an unsigned long
339  * @s: The start of the string. The string must be null-terminated, and may also
340  *  include a single newline before its terminating null. The first character
341  *  may also be a plus sign, but not a minus sign.
342  * @base: The number base to use. The maximum supported base is 16. If base is
343  *  given as 0, then the base of the string is automatically detected with the
344  *  conventional semantics - If it begins with 0x the number will be parsed as a
345  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
346  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
347  * @res: Where to write the result of the conversion on success.
348  *
349  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
350  * Used as a replacement for the simple_strtoull. Return code must be checked.
351 */
352 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
353 {
354 	/*
355 	 * We want to shortcut function call, but
356 	 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
357 	 */
358 	if (sizeof(unsigned long) == sizeof(unsigned long long) &&
359 	    __alignof__(unsigned long) == __alignof__(unsigned long long))
360 		return kstrtoull(s, base, (unsigned long long *)res);
361 	else
362 		return _kstrtoul(s, base, res);
363 }
364 
365 /**
366  * kstrtol - convert a string to a long
367  * @s: The start of the string. The string must be null-terminated, and may also
368  *  include a single newline before its terminating null. The first character
369  *  may also be a plus sign or a minus sign.
370  * @base: The number base to use. The maximum supported base is 16. If base is
371  *  given as 0, then the base of the string is automatically detected with the
372  *  conventional semantics - If it begins with 0x the number will be parsed as a
373  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
374  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
375  * @res: Where to write the result of the conversion on success.
376  *
377  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
378  * Used as a replacement for the simple_strtoull. Return code must be checked.
379  */
380 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
381 {
382 	/*
383 	 * We want to shortcut function call, but
384 	 * __builtin_types_compatible_p(long, long long) = 0.
385 	 */
386 	if (sizeof(long) == sizeof(long long) &&
387 	    __alignof__(long) == __alignof__(long long))
388 		return kstrtoll(s, base, (long long *)res);
389 	else
390 		return _kstrtol(s, base, res);
391 }
392 
393 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
394 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
395 
396 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
397 {
398 	return kstrtoull(s, base, res);
399 }
400 
401 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
402 {
403 	return kstrtoll(s, base, res);
404 }
405 
406 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
407 {
408 	return kstrtouint(s, base, res);
409 }
410 
411 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
412 {
413 	return kstrtoint(s, base, res);
414 }
415 
416 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
417 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
418 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
419 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
420 int __must_check kstrtobool(const char *s, bool *res);
421 
422 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
423 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
424 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
425 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
426 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
427 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
428 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
429 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
430 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
431 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
432 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
433 
434 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
435 {
436 	return kstrtoull_from_user(s, count, base, res);
437 }
438 
439 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
440 {
441 	return kstrtoll_from_user(s, count, base, res);
442 }
443 
444 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
445 {
446 	return kstrtouint_from_user(s, count, base, res);
447 }
448 
449 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
450 {
451 	return kstrtoint_from_user(s, count, base, res);
452 }
453 
454 /*
455  * Use kstrto<foo> instead.
456  *
457  * NOTE: simple_strto<foo> does not check for the range overflow and,
458  *	 depending on the input, may give interesting results.
459  *
460  * Use these functions if and only if you cannot use kstrto<foo>, because
461  * the conversion ends on the first non-digit character, which may be far
462  * beyond the supported range. It might be useful to parse the strings like
463  * 10x50 or 12:21 without altering original string or temporary buffer in use.
464  * Keep in mind above caveat.
465  */
466 
467 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
468 extern long simple_strtol(const char *,char **,unsigned int);
469 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
470 extern long long simple_strtoll(const char *,char **,unsigned int);
471 
472 extern int num_to_str(char *buf, int size,
473 		      unsigned long long num, unsigned int width);
474 
475 /* lib/printf utilities */
476 
477 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
478 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
479 extern __printf(3, 4)
480 int snprintf(char *buf, size_t size, const char *fmt, ...);
481 extern __printf(3, 0)
482 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
483 extern __printf(3, 4)
484 int scnprintf(char *buf, size_t size, const char *fmt, ...);
485 extern __printf(3, 0)
486 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
487 extern __printf(2, 3) __malloc
488 char *kasprintf(gfp_t gfp, const char *fmt, ...);
489 extern __printf(2, 0) __malloc
490 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
491 extern __printf(2, 0)
492 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
493 
494 extern __scanf(2, 3)
495 int sscanf(const char *, const char *, ...);
496 extern __scanf(2, 0)
497 int vsscanf(const char *, const char *, va_list);
498 
499 extern int get_option(char **str, int *pint);
500 extern char *get_options(const char *str, int nints, int *ints);
501 extern unsigned long long memparse(const char *ptr, char **retptr);
502 extern bool parse_option_str(const char *str, const char *option);
503 extern char *next_arg(char *args, char **param, char **val);
504 
505 extern int core_kernel_text(unsigned long addr);
506 extern int init_kernel_text(unsigned long addr);
507 extern int core_kernel_data(unsigned long addr);
508 extern int __kernel_text_address(unsigned long addr);
509 extern int kernel_text_address(unsigned long addr);
510 extern int func_ptr_is_kernel_text(void *ptr);
511 
512 u64 int_pow(u64 base, unsigned int exp);
513 unsigned long int_sqrt(unsigned long);
514 
515 #if BITS_PER_LONG < 64
516 u32 int_sqrt64(u64 x);
517 #else
518 static inline u32 int_sqrt64(u64 x)
519 {
520 	return (u32)int_sqrt(x);
521 }
522 #endif
523 
524 #ifdef CONFIG_SMP
525 extern unsigned int sysctl_oops_all_cpu_backtrace;
526 #else
527 #define sysctl_oops_all_cpu_backtrace 0
528 #endif /* CONFIG_SMP */
529 
530 extern void bust_spinlocks(int yes);
531 extern int oops_in_progress;		/* If set, an oops, panic(), BUG() or die() is in progress */
532 extern int panic_timeout;
533 extern unsigned long panic_print;
534 extern int panic_on_oops;
535 extern int panic_on_unrecovered_nmi;
536 extern int panic_on_io_nmi;
537 extern int panic_on_warn;
538 extern unsigned long panic_on_taint;
539 extern bool panic_on_taint_nousertaint;
540 extern int sysctl_panic_on_rcu_stall;
541 extern int sysctl_panic_on_stackoverflow;
542 
543 extern bool crash_kexec_post_notifiers;
544 
545 /*
546  * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
547  * holds a CPU number which is executing panic() currently. A value of
548  * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
549  */
550 extern atomic_t panic_cpu;
551 #define PANIC_CPU_INVALID	-1
552 
553 /*
554  * Only to be used by arch init code. If the user over-wrote the default
555  * CONFIG_PANIC_TIMEOUT, honor it.
556  */
557 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
558 {
559 	if (panic_timeout == arch_default_timeout)
560 		panic_timeout = timeout;
561 }
562 extern const char *print_tainted(void);
563 enum lockdep_ok {
564 	LOCKDEP_STILL_OK,
565 	LOCKDEP_NOW_UNRELIABLE
566 };
567 extern void add_taint(unsigned flag, enum lockdep_ok);
568 extern int test_taint(unsigned flag);
569 extern unsigned long get_taint(void);
570 extern int root_mountflags;
571 
572 extern bool early_boot_irqs_disabled;
573 
574 /*
575  * Values used for system_state. Ordering of the states must not be changed
576  * as code checks for <, <=, >, >= STATE.
577  */
578 extern enum system_states {
579 	SYSTEM_BOOTING,
580 	SYSTEM_SCHEDULING,
581 	SYSTEM_RUNNING,
582 	SYSTEM_HALT,
583 	SYSTEM_POWER_OFF,
584 	SYSTEM_RESTART,
585 	SYSTEM_SUSPEND,
586 } system_state;
587 
588 /* This cannot be an enum because some may be used in assembly source. */
589 #define TAINT_PROPRIETARY_MODULE	0
590 #define TAINT_FORCED_MODULE		1
591 #define TAINT_CPU_OUT_OF_SPEC		2
592 #define TAINT_FORCED_RMMOD		3
593 #define TAINT_MACHINE_CHECK		4
594 #define TAINT_BAD_PAGE			5
595 #define TAINT_USER			6
596 #define TAINT_DIE			7
597 #define TAINT_OVERRIDDEN_ACPI_TABLE	8
598 #define TAINT_WARN			9
599 #define TAINT_CRAP			10
600 #define TAINT_FIRMWARE_WORKAROUND	11
601 #define TAINT_OOT_MODULE		12
602 #define TAINT_UNSIGNED_MODULE		13
603 #define TAINT_SOFTLOCKUP		14
604 #define TAINT_LIVEPATCH			15
605 #define TAINT_AUX			16
606 #define TAINT_RANDSTRUCT		17
607 #define TAINT_FLAGS_COUNT		18
608 #define TAINT_FLAGS_MAX			((1UL << TAINT_FLAGS_COUNT) - 1)
609 
610 struct taint_flag {
611 	char c_true;	/* character printed when tainted */
612 	char c_false;	/* character printed when not tainted */
613 	bool module;	/* also show as a per-module taint flag */
614 };
615 
616 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
617 
618 extern const char hex_asc[];
619 #define hex_asc_lo(x)	hex_asc[((x) & 0x0f)]
620 #define hex_asc_hi(x)	hex_asc[((x) & 0xf0) >> 4]
621 
622 static inline char *hex_byte_pack(char *buf, u8 byte)
623 {
624 	*buf++ = hex_asc_hi(byte);
625 	*buf++ = hex_asc_lo(byte);
626 	return buf;
627 }
628 
629 extern const char hex_asc_upper[];
630 #define hex_asc_upper_lo(x)	hex_asc_upper[((x) & 0x0f)]
631 #define hex_asc_upper_hi(x)	hex_asc_upper[((x) & 0xf0) >> 4]
632 
633 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
634 {
635 	*buf++ = hex_asc_upper_hi(byte);
636 	*buf++ = hex_asc_upper_lo(byte);
637 	return buf;
638 }
639 
640 extern int hex_to_bin(char ch);
641 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
642 extern char *bin2hex(char *dst, const void *src, size_t count);
643 
644 bool mac_pton(const char *s, u8 *mac);
645 
646 /*
647  * General tracing related utility functions - trace_printk(),
648  * tracing_on/tracing_off and tracing_start()/tracing_stop
649  *
650  * Use tracing_on/tracing_off when you want to quickly turn on or off
651  * tracing. It simply enables or disables the recording of the trace events.
652  * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
653  * file, which gives a means for the kernel and userspace to interact.
654  * Place a tracing_off() in the kernel where you want tracing to end.
655  * From user space, examine the trace, and then echo 1 > tracing_on
656  * to continue tracing.
657  *
658  * tracing_stop/tracing_start has slightly more overhead. It is used
659  * by things like suspend to ram where disabling the recording of the
660  * trace is not enough, but tracing must actually stop because things
661  * like calling smp_processor_id() may crash the system.
662  *
663  * Most likely, you want to use tracing_on/tracing_off.
664  */
665 
666 enum ftrace_dump_mode {
667 	DUMP_NONE,
668 	DUMP_ALL,
669 	DUMP_ORIG,
670 };
671 
672 #ifdef CONFIG_TRACING
673 void tracing_on(void);
674 void tracing_off(void);
675 int tracing_is_on(void);
676 void tracing_snapshot(void);
677 void tracing_snapshot_alloc(void);
678 
679 extern void tracing_start(void);
680 extern void tracing_stop(void);
681 
682 static inline __printf(1, 2)
683 void ____trace_printk_check_format(const char *fmt, ...)
684 {
685 }
686 #define __trace_printk_check_format(fmt, args...)			\
687 do {									\
688 	if (0)								\
689 		____trace_printk_check_format(fmt, ##args);		\
690 } while (0)
691 
692 /**
693  * trace_printk - printf formatting in the ftrace buffer
694  * @fmt: the printf format for printing
695  *
696  * Note: __trace_printk is an internal function for trace_printk() and
697  *       the @ip is passed in via the trace_printk() macro.
698  *
699  * This function allows a kernel developer to debug fast path sections
700  * that printk is not appropriate for. By scattering in various
701  * printk like tracing in the code, a developer can quickly see
702  * where problems are occurring.
703  *
704  * This is intended as a debugging tool for the developer only.
705  * Please refrain from leaving trace_printks scattered around in
706  * your code. (Extra memory is used for special buffers that are
707  * allocated when trace_printk() is used.)
708  *
709  * A little optimization trick is done here. If there's only one
710  * argument, there's no need to scan the string for printf formats.
711  * The trace_puts() will suffice. But how can we take advantage of
712  * using trace_puts() when trace_printk() has only one argument?
713  * By stringifying the args and checking the size we can tell
714  * whether or not there are args. __stringify((__VA_ARGS__)) will
715  * turn into "()\0" with a size of 3 when there are no args, anything
716  * else will be bigger. All we need to do is define a string to this,
717  * and then take its size and compare to 3. If it's bigger, use
718  * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
719  * let gcc optimize the rest.
720  */
721 
722 #define trace_printk(fmt, ...)				\
723 do {							\
724 	char _______STR[] = __stringify((__VA_ARGS__));	\
725 	if (sizeof(_______STR) > 3)			\
726 		do_trace_printk(fmt, ##__VA_ARGS__);	\
727 	else						\
728 		trace_puts(fmt);			\
729 } while (0)
730 
731 #define do_trace_printk(fmt, args...)					\
732 do {									\
733 	static const char *trace_printk_fmt __used			\
734 		__attribute__((section("__trace_printk_fmt"))) =	\
735 		__builtin_constant_p(fmt) ? fmt : NULL;			\
736 									\
737 	__trace_printk_check_format(fmt, ##args);			\
738 									\
739 	if (__builtin_constant_p(fmt))					\
740 		__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);	\
741 	else								\
742 		__trace_printk(_THIS_IP_, fmt, ##args);			\
743 } while (0)
744 
745 extern __printf(2, 3)
746 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
747 
748 extern __printf(2, 3)
749 int __trace_printk(unsigned long ip, const char *fmt, ...);
750 
751 /**
752  * trace_puts - write a string into the ftrace buffer
753  * @str: the string to record
754  *
755  * Note: __trace_bputs is an internal function for trace_puts and
756  *       the @ip is passed in via the trace_puts macro.
757  *
758  * This is similar to trace_printk() but is made for those really fast
759  * paths that a developer wants the least amount of "Heisenbug" effects,
760  * where the processing of the print format is still too much.
761  *
762  * This function allows a kernel developer to debug fast path sections
763  * that printk is not appropriate for. By scattering in various
764  * printk like tracing in the code, a developer can quickly see
765  * where problems are occurring.
766  *
767  * This is intended as a debugging tool for the developer only.
768  * Please refrain from leaving trace_puts scattered around in
769  * your code. (Extra memory is used for special buffers that are
770  * allocated when trace_puts() is used.)
771  *
772  * Returns: 0 if nothing was written, positive # if string was.
773  *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
774  */
775 
776 #define trace_puts(str) ({						\
777 	static const char *trace_printk_fmt __used			\
778 		__attribute__((section("__trace_printk_fmt"))) =	\
779 		__builtin_constant_p(str) ? str : NULL;			\
780 									\
781 	if (__builtin_constant_p(str))					\
782 		__trace_bputs(_THIS_IP_, trace_printk_fmt);		\
783 	else								\
784 		__trace_puts(_THIS_IP_, str, strlen(str));		\
785 })
786 extern int __trace_bputs(unsigned long ip, const char *str);
787 extern int __trace_puts(unsigned long ip, const char *str, int size);
788 
789 extern void trace_dump_stack(int skip);
790 
791 /*
792  * The double __builtin_constant_p is because gcc will give us an error
793  * if we try to allocate the static variable to fmt if it is not a
794  * constant. Even with the outer if statement.
795  */
796 #define ftrace_vprintk(fmt, vargs)					\
797 do {									\
798 	if (__builtin_constant_p(fmt)) {				\
799 		static const char *trace_printk_fmt __used		\
800 		  __attribute__((section("__trace_printk_fmt"))) =	\
801 			__builtin_constant_p(fmt) ? fmt : NULL;		\
802 									\
803 		__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);	\
804 	} else								\
805 		__ftrace_vprintk(_THIS_IP_, fmt, vargs);		\
806 } while (0)
807 
808 extern __printf(2, 0) int
809 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
810 
811 extern __printf(2, 0) int
812 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
813 
814 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
815 #else
816 static inline void tracing_start(void) { }
817 static inline void tracing_stop(void) { }
818 static inline void trace_dump_stack(int skip) { }
819 
820 static inline void tracing_on(void) { }
821 static inline void tracing_off(void) { }
822 static inline int tracing_is_on(void) { return 0; }
823 static inline void tracing_snapshot(void) { }
824 static inline void tracing_snapshot_alloc(void) { }
825 
826 static inline __printf(1, 2)
827 int trace_printk(const char *fmt, ...)
828 {
829 	return 0;
830 }
831 static __printf(1, 0) inline int
832 ftrace_vprintk(const char *fmt, va_list ap)
833 {
834 	return 0;
835 }
836 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
837 #endif /* CONFIG_TRACING */
838 
839 /*
840  * min()/max()/clamp() macros must accomplish three things:
841  *
842  * - avoid multiple evaluations of the arguments (so side-effects like
843  *   "x++" happen only once) when non-constant.
844  * - perform strict type-checking (to generate warnings instead of
845  *   nasty runtime surprises). See the "unnecessary" pointer comparison
846  *   in __typecheck().
847  * - retain result as a constant expressions when called with only
848  *   constant expressions (to avoid tripping VLA warnings in stack
849  *   allocation usage).
850  */
851 #define __typecheck(x, y) \
852 		(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
853 
854 /*
855  * This returns a constant expression while determining if an argument is
856  * a constant expression, most importantly without evaluating the argument.
857  * Glory to Martin Uecker <[email protected]>
858  */
859 #define __is_constexpr(x) \
860 	(sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
861 
862 #define __no_side_effects(x, y) \
863 		(__is_constexpr(x) && __is_constexpr(y))
864 
865 #define __safe_cmp(x, y) \
866 		(__typecheck(x, y) && __no_side_effects(x, y))
867 
868 #define __cmp(x, y, op)	((x) op (y) ? (x) : (y))
869 
870 #define __cmp_once(x, y, unique_x, unique_y, op) ({	\
871 		typeof(x) unique_x = (x);		\
872 		typeof(y) unique_y = (y);		\
873 		__cmp(unique_x, unique_y, op); })
874 
875 #define __careful_cmp(x, y, op) \
876 	__builtin_choose_expr(__safe_cmp(x, y), \
877 		__cmp(x, y, op), \
878 		__cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
879 
880 /**
881  * min - return minimum of two values of the same or compatible types
882  * @x: first value
883  * @y: second value
884  */
885 #define min(x, y)	__careful_cmp(x, y, <)
886 
887 /**
888  * max - return maximum of two values of the same or compatible types
889  * @x: first value
890  * @y: second value
891  */
892 #define max(x, y)	__careful_cmp(x, y, >)
893 
894 /**
895  * min3 - return minimum of three values
896  * @x: first value
897  * @y: second value
898  * @z: third value
899  */
900 #define min3(x, y, z) min((typeof(x))min(x, y), z)
901 
902 /**
903  * max3 - return maximum of three values
904  * @x: first value
905  * @y: second value
906  * @z: third value
907  */
908 #define max3(x, y, z) max((typeof(x))max(x, y), z)
909 
910 /**
911  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
912  * @x: value1
913  * @y: value2
914  */
915 #define min_not_zero(x, y) ({			\
916 	typeof(x) __x = (x);			\
917 	typeof(y) __y = (y);			\
918 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
919 
920 /**
921  * clamp - return a value clamped to a given range with strict typechecking
922  * @val: current value
923  * @lo: lowest allowable value
924  * @hi: highest allowable value
925  *
926  * This macro does strict typechecking of @lo/@hi to make sure they are of the
927  * same type as @val.  See the unnecessary pointer comparisons.
928  */
929 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
930 
931 /*
932  * ..and if you can't take the strict
933  * types, you can specify one yourself.
934  *
935  * Or not use min/max/clamp at all, of course.
936  */
937 
938 /**
939  * min_t - return minimum of two values, using the specified type
940  * @type: data type to use
941  * @x: first value
942  * @y: second value
943  */
944 #define min_t(type, x, y)	__careful_cmp((type)(x), (type)(y), <)
945 
946 /**
947  * max_t - return maximum of two values, using the specified type
948  * @type: data type to use
949  * @x: first value
950  * @y: second value
951  */
952 #define max_t(type, x, y)	__careful_cmp((type)(x), (type)(y), >)
953 
954 /**
955  * clamp_t - return a value clamped to a given range using a given type
956  * @type: the type of variable to use
957  * @val: current value
958  * @lo: minimum allowable value
959  * @hi: maximum allowable value
960  *
961  * This macro does no typechecking and uses temporary variables of type
962  * @type to make all the comparisons.
963  */
964 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
965 
966 /**
967  * clamp_val - return a value clamped to a given range using val's type
968  * @val: current value
969  * @lo: minimum allowable value
970  * @hi: maximum allowable value
971  *
972  * This macro does no typechecking and uses temporary variables of whatever
973  * type the input argument @val is.  This is useful when @val is an unsigned
974  * type and @lo and @hi are literals that will otherwise be assigned a signed
975  * integer type.
976  */
977 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
978 
979 
980 /**
981  * swap - swap values of @a and @b
982  * @a: first value
983  * @b: second value
984  */
985 #define swap(a, b) \
986 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
987 
988 /* This counts to 12. Any more, it will return 13th argument. */
989 #define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
990 #define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
991 
992 #define __CONCAT(a, b) a ## b
993 #define CONCATENATE(a, b) __CONCAT(a, b)
994 
995 /**
996  * container_of - cast a member of a structure out to the containing structure
997  * @ptr:	the pointer to the member.
998  * @type:	the type of the container struct this is embedded in.
999  * @member:	the name of the member within the struct.
1000  *
1001  */
1002 #define container_of(ptr, type, member) ({				\
1003 	void *__mptr = (void *)(ptr);					\
1004 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
1005 			 !__same_type(*(ptr), void),			\
1006 			 "pointer type mismatch in container_of()");	\
1007 	((type *)(__mptr - offsetof(type, member))); })
1008 
1009 /**
1010  * container_of_safe - cast a member of a structure out to the containing structure
1011  * @ptr:	the pointer to the member.
1012  * @type:	the type of the container struct this is embedded in.
1013  * @member:	the name of the member within the struct.
1014  *
1015  * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
1016  */
1017 #define container_of_safe(ptr, type, member) ({				\
1018 	void *__mptr = (void *)(ptr);					\
1019 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
1020 			 !__same_type(*(ptr), void),			\
1021 			 "pointer type mismatch in container_of()");	\
1022 	IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) :			\
1023 		((type *)(__mptr - offsetof(type, member))); })
1024 
1025 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
1026 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
1027 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
1028 #endif
1029 
1030 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
1031 #define VERIFY_OCTAL_PERMISSIONS(perms)						\
1032 	(BUILD_BUG_ON_ZERO((perms) < 0) +					\
1033 	 BUILD_BUG_ON_ZERO((perms) > 0777) +					\
1034 	 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */		\
1035 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +	\
1036 	 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +		\
1037 	 /* USER_WRITABLE >= GROUP_WRITABLE */					\
1038 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +	\
1039 	 /* OTHER_WRITABLE?  Generally considered a bad idea. */		\
1040 	 BUILD_BUG_ON_ZERO((perms) & 2) +					\
1041 	 (perms))
1042 #endif
1043