1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_KERNEL_H 3 #define _LINUX_KERNEL_H 4 5 6 #include <stdarg.h> 7 #include <linux/limits.h> 8 #include <linux/linkage.h> 9 #include <linux/stddef.h> 10 #include <linux/types.h> 11 #include <linux/compiler.h> 12 #include <linux/bitops.h> 13 #include <linux/log2.h> 14 #include <linux/typecheck.h> 15 #include <linux/printk.h> 16 #include <linux/build_bug.h> 17 #include <asm/byteorder.h> 18 #include <asm/div64.h> 19 #include <uapi/linux/kernel.h> 20 #include <asm/div64.h> 21 22 #define STACK_MAGIC 0xdeadbeef 23 24 /** 25 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value 26 * @x: value to repeat 27 * 28 * NOTE: @x is not checked for > 0xff; larger values produce odd results. 29 */ 30 #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 31 32 /* @a is a power of 2 value */ 33 #define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 34 #define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a)) 35 #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 36 #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 37 #define PTR_ALIGN_DOWN(p, a) ((typeof(p))ALIGN_DOWN((unsigned long)(p), (a))) 38 #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 39 40 /* generic data direction definitions */ 41 #define READ 0 42 #define WRITE 1 43 44 /** 45 * ARRAY_SIZE - get the number of elements in array @arr 46 * @arr: array to be sized 47 */ 48 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 49 50 #define u64_to_user_ptr(x) ( \ 51 { \ 52 typecheck(u64, (x)); \ 53 (void __user *)(uintptr_t)(x); \ 54 } \ 55 ) 56 57 /* 58 * This looks more complex than it should be. But we need to 59 * get the type for the ~ right in round_down (it needs to be 60 * as wide as the result!), and we want to evaluate the macro 61 * arguments just once each. 62 */ 63 #define __round_mask(x, y) ((__typeof__(x))((y)-1)) 64 /** 65 * round_up - round up to next specified power of 2 66 * @x: the value to round 67 * @y: multiple to round up to (must be a power of 2) 68 * 69 * Rounds @x up to next multiple of @y (which must be a power of 2). 70 * To perform arbitrary rounding up, use roundup() below. 71 */ 72 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 73 /** 74 * round_down - round down to next specified power of 2 75 * @x: the value to round 76 * @y: multiple to round down to (must be a power of 2) 77 * 78 * Rounds @x down to next multiple of @y (which must be a power of 2). 79 * To perform arbitrary rounding down, use rounddown() below. 80 */ 81 #define round_down(x, y) ((x) & ~__round_mask(x, y)) 82 83 #define typeof_member(T, m) typeof(((T*)0)->m) 84 85 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 86 87 #define DIV_ROUND_DOWN_ULL(ll, d) \ 88 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) 89 90 #define DIV_ROUND_UP_ULL(ll, d) \ 91 DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d)) 92 93 #if BITS_PER_LONG == 32 94 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 95 #else 96 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 97 #endif 98 99 /** 100 * roundup - round up to the next specified multiple 101 * @x: the value to up 102 * @y: multiple to round up to 103 * 104 * Rounds @x up to next multiple of @y. If @y will always be a power 105 * of 2, consider using the faster round_up(). 106 */ 107 #define roundup(x, y) ( \ 108 { \ 109 typeof(y) __y = y; \ 110 (((x) + (__y - 1)) / __y) * __y; \ 111 } \ 112 ) 113 /** 114 * rounddown - round down to next specified multiple 115 * @x: the value to round 116 * @y: multiple to round down to 117 * 118 * Rounds @x down to next multiple of @y. If @y will always be a power 119 * of 2, consider using the faster round_down(). 120 */ 121 #define rounddown(x, y) ( \ 122 { \ 123 typeof(x) __x = (x); \ 124 __x - (__x % (y)); \ 125 } \ 126 ) 127 128 /* 129 * Divide positive or negative dividend by positive or negative divisor 130 * and round to closest integer. Result is undefined for negative 131 * divisors if the dividend variable type is unsigned and for negative 132 * dividends if the divisor variable type is unsigned. 133 */ 134 #define DIV_ROUND_CLOSEST(x, divisor)( \ 135 { \ 136 typeof(x) __x = x; \ 137 typeof(divisor) __d = divisor; \ 138 (((typeof(x))-1) > 0 || \ 139 ((typeof(divisor))-1) > 0 || \ 140 (((__x) > 0) == ((__d) > 0))) ? \ 141 (((__x) + ((__d) / 2)) / (__d)) : \ 142 (((__x) - ((__d) / 2)) / (__d)); \ 143 } \ 144 ) 145 /* 146 * Same as above but for u64 dividends. divisor must be a 32-bit 147 * number. 148 */ 149 #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 150 { \ 151 typeof(divisor) __d = divisor; \ 152 unsigned long long _tmp = (x) + (__d) / 2; \ 153 do_div(_tmp, __d); \ 154 _tmp; \ 155 } \ 156 ) 157 158 /* 159 * Multiplies an integer by a fraction, while avoiding unnecessary 160 * overflow or loss of precision. 161 */ 162 #define mult_frac(x, numer, denom)( \ 163 { \ 164 typeof(x) quot = (x) / (denom); \ 165 typeof(x) rem = (x) % (denom); \ 166 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 167 } \ 168 ) 169 170 171 #define _RET_IP_ (unsigned long)__builtin_return_address(0) 172 #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 173 174 #define sector_div(a, b) do_div(a, b) 175 176 /** 177 * upper_32_bits - return bits 32-63 of a number 178 * @n: the number we're accessing 179 * 180 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 181 * the "right shift count >= width of type" warning when that quantity is 182 * 32-bits. 183 */ 184 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 185 186 /** 187 * lower_32_bits - return bits 0-31 of a number 188 * @n: the number we're accessing 189 */ 190 #define lower_32_bits(n) ((u32)(n)) 191 192 struct completion; 193 struct pt_regs; 194 struct user; 195 196 #ifdef CONFIG_PREEMPT_VOLUNTARY 197 extern int _cond_resched(void); 198 # define might_resched() _cond_resched() 199 #else 200 # define might_resched() do { } while (0) 201 #endif 202 203 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 204 extern void ___might_sleep(const char *file, int line, int preempt_offset); 205 extern void __might_sleep(const char *file, int line, int preempt_offset); 206 extern void __cant_sleep(const char *file, int line, int preempt_offset); 207 208 /** 209 * might_sleep - annotation for functions that can sleep 210 * 211 * this macro will print a stack trace if it is executed in an atomic 212 * context (spinlock, irq-handler, ...). Additional sections where blocking is 213 * not allowed can be annotated with non_block_start() and non_block_end() 214 * pairs. 215 * 216 * This is a useful debugging help to be able to catch problems early and not 217 * be bitten later when the calling function happens to sleep when it is not 218 * supposed to. 219 */ 220 # define might_sleep() \ 221 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 222 /** 223 * cant_sleep - annotation for functions that cannot sleep 224 * 225 * this macro will print a stack trace if it is executed with preemption enabled 226 */ 227 # define cant_sleep() \ 228 do { __cant_sleep(__FILE__, __LINE__, 0); } while (0) 229 # define sched_annotate_sleep() (current->task_state_change = 0) 230 /** 231 * non_block_start - annotate the start of section where sleeping is prohibited 232 * 233 * This is on behalf of the oom reaper, specifically when it is calling the mmu 234 * notifiers. The problem is that if the notifier were to block on, for example, 235 * mutex_lock() and if the process which holds that mutex were to perform a 236 * sleeping memory allocation, the oom reaper is now blocked on completion of 237 * that memory allocation. Other blocking calls like wait_event() pose similar 238 * issues. 239 */ 240 # define non_block_start() (current->non_block_count++) 241 /** 242 * non_block_end - annotate the end of section where sleeping is prohibited 243 * 244 * Closes a section opened by non_block_start(). 245 */ 246 # define non_block_end() WARN_ON(current->non_block_count-- == 0) 247 #else 248 static inline void ___might_sleep(const char *file, int line, 249 int preempt_offset) { } 250 static inline void __might_sleep(const char *file, int line, 251 int preempt_offset) { } 252 # define might_sleep() do { might_resched(); } while (0) 253 # define cant_sleep() do { } while (0) 254 # define sched_annotate_sleep() do { } while (0) 255 # define non_block_start() do { } while (0) 256 # define non_block_end() do { } while (0) 257 #endif 258 259 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 260 261 #ifndef CONFIG_PREEMPT_RT 262 # define cant_migrate() cant_sleep() 263 #else 264 /* Placeholder for now */ 265 # define cant_migrate() do { } while (0) 266 #endif 267 268 /** 269 * abs - return absolute value of an argument 270 * @x: the value. If it is unsigned type, it is converted to signed type first. 271 * char is treated as if it was signed (regardless of whether it really is) 272 * but the macro's return type is preserved as char. 273 * 274 * Return: an absolute value of x. 275 */ 276 #define abs(x) __abs_choose_expr(x, long long, \ 277 __abs_choose_expr(x, long, \ 278 __abs_choose_expr(x, int, \ 279 __abs_choose_expr(x, short, \ 280 __abs_choose_expr(x, char, \ 281 __builtin_choose_expr( \ 282 __builtin_types_compatible_p(typeof(x), char), \ 283 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 284 ((void)0))))))) 285 286 #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 287 __builtin_types_compatible_p(typeof(x), signed type) || \ 288 __builtin_types_compatible_p(typeof(x), unsigned type), \ 289 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 290 291 /** 292 * reciprocal_scale - "scale" a value into range [0, ep_ro) 293 * @val: value 294 * @ep_ro: right open interval endpoint 295 * 296 * Perform a "reciprocal multiplication" in order to "scale" a value into 297 * range [0, @ep_ro), where the upper interval endpoint is right-open. 298 * This is useful, e.g. for accessing a index of an array containing 299 * @ep_ro elements, for example. Think of it as sort of modulus, only that 300 * the result isn't that of modulo. ;) Note that if initial input is a 301 * small value, then result will return 0. 302 * 303 * Return: a result based on @val in interval [0, @ep_ro). 304 */ 305 static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 306 { 307 return (u32)(((u64) val * ep_ro) >> 32); 308 } 309 310 #if defined(CONFIG_MMU) && \ 311 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 312 #define might_fault() __might_fault(__FILE__, __LINE__) 313 void __might_fault(const char *file, int line); 314 #else 315 static inline void might_fault(void) { } 316 #endif 317 318 extern struct atomic_notifier_head panic_notifier_list; 319 extern long (*panic_blink)(int state); 320 __printf(1, 2) 321 void panic(const char *fmt, ...) __noreturn __cold; 322 void nmi_panic(struct pt_regs *regs, const char *msg); 323 extern void oops_enter(void); 324 extern void oops_exit(void); 325 void print_oops_end_marker(void); 326 extern int oops_may_print(void); 327 void do_exit(long error_code) __noreturn; 328 void complete_and_exit(struct completion *, long) __noreturn; 329 330 /* Internal, do not use. */ 331 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 332 int __must_check _kstrtol(const char *s, unsigned int base, long *res); 333 334 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 335 int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 336 337 /** 338 * kstrtoul - convert a string to an unsigned long 339 * @s: The start of the string. The string must be null-terminated, and may also 340 * include a single newline before its terminating null. The first character 341 * may also be a plus sign, but not a minus sign. 342 * @base: The number base to use. The maximum supported base is 16. If base is 343 * given as 0, then the base of the string is automatically detected with the 344 * conventional semantics - If it begins with 0x the number will be parsed as a 345 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 346 * parsed as an octal number. Otherwise it will be parsed as a decimal. 347 * @res: Where to write the result of the conversion on success. 348 * 349 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 350 * Used as a replacement for the simple_strtoull. Return code must be checked. 351 */ 352 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 353 { 354 /* 355 * We want to shortcut function call, but 356 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 357 */ 358 if (sizeof(unsigned long) == sizeof(unsigned long long) && 359 __alignof__(unsigned long) == __alignof__(unsigned long long)) 360 return kstrtoull(s, base, (unsigned long long *)res); 361 else 362 return _kstrtoul(s, base, res); 363 } 364 365 /** 366 * kstrtol - convert a string to a long 367 * @s: The start of the string. The string must be null-terminated, and may also 368 * include a single newline before its terminating null. The first character 369 * may also be a plus sign or a minus sign. 370 * @base: The number base to use. The maximum supported base is 16. If base is 371 * given as 0, then the base of the string is automatically detected with the 372 * conventional semantics - If it begins with 0x the number will be parsed as a 373 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 374 * parsed as an octal number. Otherwise it will be parsed as a decimal. 375 * @res: Where to write the result of the conversion on success. 376 * 377 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 378 * Used as a replacement for the simple_strtoull. Return code must be checked. 379 */ 380 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 381 { 382 /* 383 * We want to shortcut function call, but 384 * __builtin_types_compatible_p(long, long long) = 0. 385 */ 386 if (sizeof(long) == sizeof(long long) && 387 __alignof__(long) == __alignof__(long long)) 388 return kstrtoll(s, base, (long long *)res); 389 else 390 return _kstrtol(s, base, res); 391 } 392 393 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 394 int __must_check kstrtoint(const char *s, unsigned int base, int *res); 395 396 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 397 { 398 return kstrtoull(s, base, res); 399 } 400 401 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 402 { 403 return kstrtoll(s, base, res); 404 } 405 406 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 407 { 408 return kstrtouint(s, base, res); 409 } 410 411 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 412 { 413 return kstrtoint(s, base, res); 414 } 415 416 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 417 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 418 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 419 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 420 int __must_check kstrtobool(const char *s, bool *res); 421 422 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 423 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 424 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 425 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 426 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 427 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 428 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 429 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 430 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 431 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 432 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); 433 434 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 435 { 436 return kstrtoull_from_user(s, count, base, res); 437 } 438 439 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 440 { 441 return kstrtoll_from_user(s, count, base, res); 442 } 443 444 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 445 { 446 return kstrtouint_from_user(s, count, base, res); 447 } 448 449 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 450 { 451 return kstrtoint_from_user(s, count, base, res); 452 } 453 454 /* 455 * Use kstrto<foo> instead. 456 * 457 * NOTE: simple_strto<foo> does not check for the range overflow and, 458 * depending on the input, may give interesting results. 459 * 460 * Use these functions if and only if you cannot use kstrto<foo>, because 461 * the conversion ends on the first non-digit character, which may be far 462 * beyond the supported range. It might be useful to parse the strings like 463 * 10x50 or 12:21 without altering original string or temporary buffer in use. 464 * Keep in mind above caveat. 465 */ 466 467 extern unsigned long simple_strtoul(const char *,char **,unsigned int); 468 extern long simple_strtol(const char *,char **,unsigned int); 469 extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 470 extern long long simple_strtoll(const char *,char **,unsigned int); 471 472 extern int num_to_str(char *buf, int size, 473 unsigned long long num, unsigned int width); 474 475 /* lib/printf utilities */ 476 477 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 478 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 479 extern __printf(3, 4) 480 int snprintf(char *buf, size_t size, const char *fmt, ...); 481 extern __printf(3, 0) 482 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 483 extern __printf(3, 4) 484 int scnprintf(char *buf, size_t size, const char *fmt, ...); 485 extern __printf(3, 0) 486 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 487 extern __printf(2, 3) __malloc 488 char *kasprintf(gfp_t gfp, const char *fmt, ...); 489 extern __printf(2, 0) __malloc 490 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 491 extern __printf(2, 0) 492 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); 493 494 extern __scanf(2, 3) 495 int sscanf(const char *, const char *, ...); 496 extern __scanf(2, 0) 497 int vsscanf(const char *, const char *, va_list); 498 499 extern int get_option(char **str, int *pint); 500 extern char *get_options(const char *str, int nints, int *ints); 501 extern unsigned long long memparse(const char *ptr, char **retptr); 502 extern bool parse_option_str(const char *str, const char *option); 503 extern char *next_arg(char *args, char **param, char **val); 504 505 extern int core_kernel_text(unsigned long addr); 506 extern int init_kernel_text(unsigned long addr); 507 extern int core_kernel_data(unsigned long addr); 508 extern int __kernel_text_address(unsigned long addr); 509 extern int kernel_text_address(unsigned long addr); 510 extern int func_ptr_is_kernel_text(void *ptr); 511 512 u64 int_pow(u64 base, unsigned int exp); 513 unsigned long int_sqrt(unsigned long); 514 515 #if BITS_PER_LONG < 64 516 u32 int_sqrt64(u64 x); 517 #else 518 static inline u32 int_sqrt64(u64 x) 519 { 520 return (u32)int_sqrt(x); 521 } 522 #endif 523 524 #ifdef CONFIG_SMP 525 extern unsigned int sysctl_oops_all_cpu_backtrace; 526 #else 527 #define sysctl_oops_all_cpu_backtrace 0 528 #endif /* CONFIG_SMP */ 529 530 extern void bust_spinlocks(int yes); 531 extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 532 extern int panic_timeout; 533 extern unsigned long panic_print; 534 extern int panic_on_oops; 535 extern int panic_on_unrecovered_nmi; 536 extern int panic_on_io_nmi; 537 extern int panic_on_warn; 538 extern unsigned long panic_on_taint; 539 extern bool panic_on_taint_nousertaint; 540 extern int sysctl_panic_on_rcu_stall; 541 extern int sysctl_panic_on_stackoverflow; 542 543 extern bool crash_kexec_post_notifiers; 544 545 /* 546 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It 547 * holds a CPU number which is executing panic() currently. A value of 548 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). 549 */ 550 extern atomic_t panic_cpu; 551 #define PANIC_CPU_INVALID -1 552 553 /* 554 * Only to be used by arch init code. If the user over-wrote the default 555 * CONFIG_PANIC_TIMEOUT, honor it. 556 */ 557 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 558 { 559 if (panic_timeout == arch_default_timeout) 560 panic_timeout = timeout; 561 } 562 extern const char *print_tainted(void); 563 enum lockdep_ok { 564 LOCKDEP_STILL_OK, 565 LOCKDEP_NOW_UNRELIABLE 566 }; 567 extern void add_taint(unsigned flag, enum lockdep_ok); 568 extern int test_taint(unsigned flag); 569 extern unsigned long get_taint(void); 570 extern int root_mountflags; 571 572 extern bool early_boot_irqs_disabled; 573 574 /* 575 * Values used for system_state. Ordering of the states must not be changed 576 * as code checks for <, <=, >, >= STATE. 577 */ 578 extern enum system_states { 579 SYSTEM_BOOTING, 580 SYSTEM_SCHEDULING, 581 SYSTEM_RUNNING, 582 SYSTEM_HALT, 583 SYSTEM_POWER_OFF, 584 SYSTEM_RESTART, 585 SYSTEM_SUSPEND, 586 } system_state; 587 588 /* This cannot be an enum because some may be used in assembly source. */ 589 #define TAINT_PROPRIETARY_MODULE 0 590 #define TAINT_FORCED_MODULE 1 591 #define TAINT_CPU_OUT_OF_SPEC 2 592 #define TAINT_FORCED_RMMOD 3 593 #define TAINT_MACHINE_CHECK 4 594 #define TAINT_BAD_PAGE 5 595 #define TAINT_USER 6 596 #define TAINT_DIE 7 597 #define TAINT_OVERRIDDEN_ACPI_TABLE 8 598 #define TAINT_WARN 9 599 #define TAINT_CRAP 10 600 #define TAINT_FIRMWARE_WORKAROUND 11 601 #define TAINT_OOT_MODULE 12 602 #define TAINT_UNSIGNED_MODULE 13 603 #define TAINT_SOFTLOCKUP 14 604 #define TAINT_LIVEPATCH 15 605 #define TAINT_AUX 16 606 #define TAINT_RANDSTRUCT 17 607 #define TAINT_FLAGS_COUNT 18 608 #define TAINT_FLAGS_MAX ((1UL << TAINT_FLAGS_COUNT) - 1) 609 610 struct taint_flag { 611 char c_true; /* character printed when tainted */ 612 char c_false; /* character printed when not tainted */ 613 bool module; /* also show as a per-module taint flag */ 614 }; 615 616 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; 617 618 extern const char hex_asc[]; 619 #define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 620 #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 621 622 static inline char *hex_byte_pack(char *buf, u8 byte) 623 { 624 *buf++ = hex_asc_hi(byte); 625 *buf++ = hex_asc_lo(byte); 626 return buf; 627 } 628 629 extern const char hex_asc_upper[]; 630 #define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 631 #define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 632 633 static inline char *hex_byte_pack_upper(char *buf, u8 byte) 634 { 635 *buf++ = hex_asc_upper_hi(byte); 636 *buf++ = hex_asc_upper_lo(byte); 637 return buf; 638 } 639 640 extern int hex_to_bin(char ch); 641 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 642 extern char *bin2hex(char *dst, const void *src, size_t count); 643 644 bool mac_pton(const char *s, u8 *mac); 645 646 /* 647 * General tracing related utility functions - trace_printk(), 648 * tracing_on/tracing_off and tracing_start()/tracing_stop 649 * 650 * Use tracing_on/tracing_off when you want to quickly turn on or off 651 * tracing. It simply enables or disables the recording of the trace events. 652 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 653 * file, which gives a means for the kernel and userspace to interact. 654 * Place a tracing_off() in the kernel where you want tracing to end. 655 * From user space, examine the trace, and then echo 1 > tracing_on 656 * to continue tracing. 657 * 658 * tracing_stop/tracing_start has slightly more overhead. It is used 659 * by things like suspend to ram where disabling the recording of the 660 * trace is not enough, but tracing must actually stop because things 661 * like calling smp_processor_id() may crash the system. 662 * 663 * Most likely, you want to use tracing_on/tracing_off. 664 */ 665 666 enum ftrace_dump_mode { 667 DUMP_NONE, 668 DUMP_ALL, 669 DUMP_ORIG, 670 }; 671 672 #ifdef CONFIG_TRACING 673 void tracing_on(void); 674 void tracing_off(void); 675 int tracing_is_on(void); 676 void tracing_snapshot(void); 677 void tracing_snapshot_alloc(void); 678 679 extern void tracing_start(void); 680 extern void tracing_stop(void); 681 682 static inline __printf(1, 2) 683 void ____trace_printk_check_format(const char *fmt, ...) 684 { 685 } 686 #define __trace_printk_check_format(fmt, args...) \ 687 do { \ 688 if (0) \ 689 ____trace_printk_check_format(fmt, ##args); \ 690 } while (0) 691 692 /** 693 * trace_printk - printf formatting in the ftrace buffer 694 * @fmt: the printf format for printing 695 * 696 * Note: __trace_printk is an internal function for trace_printk() and 697 * the @ip is passed in via the trace_printk() macro. 698 * 699 * This function allows a kernel developer to debug fast path sections 700 * that printk is not appropriate for. By scattering in various 701 * printk like tracing in the code, a developer can quickly see 702 * where problems are occurring. 703 * 704 * This is intended as a debugging tool for the developer only. 705 * Please refrain from leaving trace_printks scattered around in 706 * your code. (Extra memory is used for special buffers that are 707 * allocated when trace_printk() is used.) 708 * 709 * A little optimization trick is done here. If there's only one 710 * argument, there's no need to scan the string for printf formats. 711 * The trace_puts() will suffice. But how can we take advantage of 712 * using trace_puts() when trace_printk() has only one argument? 713 * By stringifying the args and checking the size we can tell 714 * whether or not there are args. __stringify((__VA_ARGS__)) will 715 * turn into "()\0" with a size of 3 when there are no args, anything 716 * else will be bigger. All we need to do is define a string to this, 717 * and then take its size and compare to 3. If it's bigger, use 718 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 719 * let gcc optimize the rest. 720 */ 721 722 #define trace_printk(fmt, ...) \ 723 do { \ 724 char _______STR[] = __stringify((__VA_ARGS__)); \ 725 if (sizeof(_______STR) > 3) \ 726 do_trace_printk(fmt, ##__VA_ARGS__); \ 727 else \ 728 trace_puts(fmt); \ 729 } while (0) 730 731 #define do_trace_printk(fmt, args...) \ 732 do { \ 733 static const char *trace_printk_fmt __used \ 734 __attribute__((section("__trace_printk_fmt"))) = \ 735 __builtin_constant_p(fmt) ? fmt : NULL; \ 736 \ 737 __trace_printk_check_format(fmt, ##args); \ 738 \ 739 if (__builtin_constant_p(fmt)) \ 740 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 741 else \ 742 __trace_printk(_THIS_IP_, fmt, ##args); \ 743 } while (0) 744 745 extern __printf(2, 3) 746 int __trace_bprintk(unsigned long ip, const char *fmt, ...); 747 748 extern __printf(2, 3) 749 int __trace_printk(unsigned long ip, const char *fmt, ...); 750 751 /** 752 * trace_puts - write a string into the ftrace buffer 753 * @str: the string to record 754 * 755 * Note: __trace_bputs is an internal function for trace_puts and 756 * the @ip is passed in via the trace_puts macro. 757 * 758 * This is similar to trace_printk() but is made for those really fast 759 * paths that a developer wants the least amount of "Heisenbug" effects, 760 * where the processing of the print format is still too much. 761 * 762 * This function allows a kernel developer to debug fast path sections 763 * that printk is not appropriate for. By scattering in various 764 * printk like tracing in the code, a developer can quickly see 765 * where problems are occurring. 766 * 767 * This is intended as a debugging tool for the developer only. 768 * Please refrain from leaving trace_puts scattered around in 769 * your code. (Extra memory is used for special buffers that are 770 * allocated when trace_puts() is used.) 771 * 772 * Returns: 0 if nothing was written, positive # if string was. 773 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 774 */ 775 776 #define trace_puts(str) ({ \ 777 static const char *trace_printk_fmt __used \ 778 __attribute__((section("__trace_printk_fmt"))) = \ 779 __builtin_constant_p(str) ? str : NULL; \ 780 \ 781 if (__builtin_constant_p(str)) \ 782 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 783 else \ 784 __trace_puts(_THIS_IP_, str, strlen(str)); \ 785 }) 786 extern int __trace_bputs(unsigned long ip, const char *str); 787 extern int __trace_puts(unsigned long ip, const char *str, int size); 788 789 extern void trace_dump_stack(int skip); 790 791 /* 792 * The double __builtin_constant_p is because gcc will give us an error 793 * if we try to allocate the static variable to fmt if it is not a 794 * constant. Even with the outer if statement. 795 */ 796 #define ftrace_vprintk(fmt, vargs) \ 797 do { \ 798 if (__builtin_constant_p(fmt)) { \ 799 static const char *trace_printk_fmt __used \ 800 __attribute__((section("__trace_printk_fmt"))) = \ 801 __builtin_constant_p(fmt) ? fmt : NULL; \ 802 \ 803 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 804 } else \ 805 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 806 } while (0) 807 808 extern __printf(2, 0) int 809 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 810 811 extern __printf(2, 0) int 812 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 813 814 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 815 #else 816 static inline void tracing_start(void) { } 817 static inline void tracing_stop(void) { } 818 static inline void trace_dump_stack(int skip) { } 819 820 static inline void tracing_on(void) { } 821 static inline void tracing_off(void) { } 822 static inline int tracing_is_on(void) { return 0; } 823 static inline void tracing_snapshot(void) { } 824 static inline void tracing_snapshot_alloc(void) { } 825 826 static inline __printf(1, 2) 827 int trace_printk(const char *fmt, ...) 828 { 829 return 0; 830 } 831 static __printf(1, 0) inline int 832 ftrace_vprintk(const char *fmt, va_list ap) 833 { 834 return 0; 835 } 836 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 837 #endif /* CONFIG_TRACING */ 838 839 /* 840 * min()/max()/clamp() macros must accomplish three things: 841 * 842 * - avoid multiple evaluations of the arguments (so side-effects like 843 * "x++" happen only once) when non-constant. 844 * - perform strict type-checking (to generate warnings instead of 845 * nasty runtime surprises). See the "unnecessary" pointer comparison 846 * in __typecheck(). 847 * - retain result as a constant expressions when called with only 848 * constant expressions (to avoid tripping VLA warnings in stack 849 * allocation usage). 850 */ 851 #define __typecheck(x, y) \ 852 (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1))) 853 854 /* 855 * This returns a constant expression while determining if an argument is 856 * a constant expression, most importantly without evaluating the argument. 857 * Glory to Martin Uecker <[email protected]> 858 */ 859 #define __is_constexpr(x) \ 860 (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) 861 862 #define __no_side_effects(x, y) \ 863 (__is_constexpr(x) && __is_constexpr(y)) 864 865 #define __safe_cmp(x, y) \ 866 (__typecheck(x, y) && __no_side_effects(x, y)) 867 868 #define __cmp(x, y, op) ((x) op (y) ? (x) : (y)) 869 870 #define __cmp_once(x, y, unique_x, unique_y, op) ({ \ 871 typeof(x) unique_x = (x); \ 872 typeof(y) unique_y = (y); \ 873 __cmp(unique_x, unique_y, op); }) 874 875 #define __careful_cmp(x, y, op) \ 876 __builtin_choose_expr(__safe_cmp(x, y), \ 877 __cmp(x, y, op), \ 878 __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op)) 879 880 /** 881 * min - return minimum of two values of the same or compatible types 882 * @x: first value 883 * @y: second value 884 */ 885 #define min(x, y) __careful_cmp(x, y, <) 886 887 /** 888 * max - return maximum of two values of the same or compatible types 889 * @x: first value 890 * @y: second value 891 */ 892 #define max(x, y) __careful_cmp(x, y, >) 893 894 /** 895 * min3 - return minimum of three values 896 * @x: first value 897 * @y: second value 898 * @z: third value 899 */ 900 #define min3(x, y, z) min((typeof(x))min(x, y), z) 901 902 /** 903 * max3 - return maximum of three values 904 * @x: first value 905 * @y: second value 906 * @z: third value 907 */ 908 #define max3(x, y, z) max((typeof(x))max(x, y), z) 909 910 /** 911 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 912 * @x: value1 913 * @y: value2 914 */ 915 #define min_not_zero(x, y) ({ \ 916 typeof(x) __x = (x); \ 917 typeof(y) __y = (y); \ 918 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 919 920 /** 921 * clamp - return a value clamped to a given range with strict typechecking 922 * @val: current value 923 * @lo: lowest allowable value 924 * @hi: highest allowable value 925 * 926 * This macro does strict typechecking of @lo/@hi to make sure they are of the 927 * same type as @val. See the unnecessary pointer comparisons. 928 */ 929 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 930 931 /* 932 * ..and if you can't take the strict 933 * types, you can specify one yourself. 934 * 935 * Or not use min/max/clamp at all, of course. 936 */ 937 938 /** 939 * min_t - return minimum of two values, using the specified type 940 * @type: data type to use 941 * @x: first value 942 * @y: second value 943 */ 944 #define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <) 945 946 /** 947 * max_t - return maximum of two values, using the specified type 948 * @type: data type to use 949 * @x: first value 950 * @y: second value 951 */ 952 #define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >) 953 954 /** 955 * clamp_t - return a value clamped to a given range using a given type 956 * @type: the type of variable to use 957 * @val: current value 958 * @lo: minimum allowable value 959 * @hi: maximum allowable value 960 * 961 * This macro does no typechecking and uses temporary variables of type 962 * @type to make all the comparisons. 963 */ 964 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) 965 966 /** 967 * clamp_val - return a value clamped to a given range using val's type 968 * @val: current value 969 * @lo: minimum allowable value 970 * @hi: maximum allowable value 971 * 972 * This macro does no typechecking and uses temporary variables of whatever 973 * type the input argument @val is. This is useful when @val is an unsigned 974 * type and @lo and @hi are literals that will otherwise be assigned a signed 975 * integer type. 976 */ 977 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) 978 979 980 /** 981 * swap - swap values of @a and @b 982 * @a: first value 983 * @b: second value 984 */ 985 #define swap(a, b) \ 986 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 987 988 /* This counts to 12. Any more, it will return 13th argument. */ 989 #define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n 990 #define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 991 992 #define __CONCAT(a, b) a ## b 993 #define CONCATENATE(a, b) __CONCAT(a, b) 994 995 /** 996 * container_of - cast a member of a structure out to the containing structure 997 * @ptr: the pointer to the member. 998 * @type: the type of the container struct this is embedded in. 999 * @member: the name of the member within the struct. 1000 * 1001 */ 1002 #define container_of(ptr, type, member) ({ \ 1003 void *__mptr = (void *)(ptr); \ 1004 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 1005 !__same_type(*(ptr), void), \ 1006 "pointer type mismatch in container_of()"); \ 1007 ((type *)(__mptr - offsetof(type, member))); }) 1008 1009 /** 1010 * container_of_safe - cast a member of a structure out to the containing structure 1011 * @ptr: the pointer to the member. 1012 * @type: the type of the container struct this is embedded in. 1013 * @member: the name of the member within the struct. 1014 * 1015 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged. 1016 */ 1017 #define container_of_safe(ptr, type, member) ({ \ 1018 void *__mptr = (void *)(ptr); \ 1019 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 1020 !__same_type(*(ptr), void), \ 1021 "pointer type mismatch in container_of()"); \ 1022 IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \ 1023 ((type *)(__mptr - offsetof(type, member))); }) 1024 1025 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 1026 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 1027 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 1028 #endif 1029 1030 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ 1031 #define VERIFY_OCTAL_PERMISSIONS(perms) \ 1032 (BUILD_BUG_ON_ZERO((perms) < 0) + \ 1033 BUILD_BUG_ON_ZERO((perms) > 0777) + \ 1034 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ 1035 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ 1036 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ 1037 /* USER_WRITABLE >= GROUP_WRITABLE */ \ 1038 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ 1039 /* OTHER_WRITABLE? Generally considered a bad idea. */ \ 1040 BUILD_BUG_ON_ZERO((perms) & 2) + \ 1041 (perms)) 1042 #endif 1043