xref: /linux-6.15/include/linux/kernel.h (revision 4e485d06)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_KERNEL_H
3 #define _LINUX_KERNEL_H
4 
5 
6 #include <stdarg.h>
7 #include <linux/linkage.h>
8 #include <linux/stddef.h>
9 #include <linux/types.h>
10 #include <linux/compiler.h>
11 #include <linux/bitops.h>
12 #include <linux/log2.h>
13 #include <linux/typecheck.h>
14 #include <linux/printk.h>
15 #include <linux/build_bug.h>
16 #include <asm/byteorder.h>
17 #include <uapi/linux/kernel.h>
18 
19 #define USHRT_MAX	((u16)(~0U))
20 #define SHRT_MAX	((s16)(USHRT_MAX>>1))
21 #define SHRT_MIN	((s16)(-SHRT_MAX - 1))
22 #define INT_MAX		((int)(~0U>>1))
23 #define INT_MIN		(-INT_MAX - 1)
24 #define UINT_MAX	(~0U)
25 #define LONG_MAX	((long)(~0UL>>1))
26 #define LONG_MIN	(-LONG_MAX - 1)
27 #define ULONG_MAX	(~0UL)
28 #define LLONG_MAX	((long long)(~0ULL>>1))
29 #define LLONG_MIN	(-LLONG_MAX - 1)
30 #define ULLONG_MAX	(~0ULL)
31 #define SIZE_MAX	(~(size_t)0)
32 #define PHYS_ADDR_MAX	(~(phys_addr_t)0)
33 
34 #define U8_MAX		((u8)~0U)
35 #define S8_MAX		((s8)(U8_MAX>>1))
36 #define S8_MIN		((s8)(-S8_MAX - 1))
37 #define U16_MAX		((u16)~0U)
38 #define S16_MAX		((s16)(U16_MAX>>1))
39 #define S16_MIN		((s16)(-S16_MAX - 1))
40 #define U32_MAX		((u32)~0U)
41 #define S32_MAX		((s32)(U32_MAX>>1))
42 #define S32_MIN		((s32)(-S32_MAX - 1))
43 #define U64_MAX		((u64)~0ULL)
44 #define S64_MAX		((s64)(U64_MAX>>1))
45 #define S64_MIN		((s64)(-S64_MAX - 1))
46 
47 #define STACK_MAGIC	0xdeadbeef
48 
49 /**
50  * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
51  * @x: value to repeat
52  *
53  * NOTE: @x is not checked for > 0xff; larger values produce odd results.
54  */
55 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
56 
57 /* @a is a power of 2 value */
58 #define ALIGN(x, a)		__ALIGN_KERNEL((x), (a))
59 #define ALIGN_DOWN(x, a)	__ALIGN_KERNEL((x) - ((a) - 1), (a))
60 #define __ALIGN_MASK(x, mask)	__ALIGN_KERNEL_MASK((x), (mask))
61 #define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
62 #define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)
63 
64 /* generic data direction definitions */
65 #define READ			0
66 #define WRITE			1
67 
68 /**
69  * ARRAY_SIZE - get the number of elements in array @arr
70  * @arr: array to be sized
71  */
72 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
73 
74 #define u64_to_user_ptr(x) (		\
75 {					\
76 	typecheck(u64, x);		\
77 	(void __user *)(uintptr_t)x;	\
78 }					\
79 )
80 
81 /*
82  * This looks more complex than it should be. But we need to
83  * get the type for the ~ right in round_down (it needs to be
84  * as wide as the result!), and we want to evaluate the macro
85  * arguments just once each.
86  */
87 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
88 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
89 #define round_down(x, y) ((x) & ~__round_mask(x, y))
90 
91 /**
92  * FIELD_SIZEOF - get the size of a struct's field
93  * @t: the target struct
94  * @f: the target struct's field
95  * Return: the size of @f in the struct definition without having a
96  * declared instance of @t.
97  */
98 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
99 
100 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
101 
102 #define DIV_ROUND_DOWN_ULL(ll, d) \
103 	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
104 
105 #define DIV_ROUND_UP_ULL(ll, d)		DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d))
106 
107 #if BITS_PER_LONG == 32
108 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
109 #else
110 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
111 #endif
112 
113 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
114 #define roundup(x, y) (					\
115 {							\
116 	const typeof(y) __y = y;			\
117 	(((x) + (__y - 1)) / __y) * __y;		\
118 }							\
119 )
120 #define rounddown(x, y) (				\
121 {							\
122 	typeof(x) __x = (x);				\
123 	__x - (__x % (y));				\
124 }							\
125 )
126 
127 /*
128  * Divide positive or negative dividend by positive or negative divisor
129  * and round to closest integer. Result is undefined for negative
130  * divisors if the dividend variable type is unsigned and for negative
131  * dividends if the divisor variable type is unsigned.
132  */
133 #define DIV_ROUND_CLOSEST(x, divisor)(			\
134 {							\
135 	typeof(x) __x = x;				\
136 	typeof(divisor) __d = divisor;			\
137 	(((typeof(x))-1) > 0 ||				\
138 	 ((typeof(divisor))-1) > 0 ||			\
139 	 (((__x) > 0) == ((__d) > 0))) ?		\
140 		(((__x) + ((__d) / 2)) / (__d)) :	\
141 		(((__x) - ((__d) / 2)) / (__d));	\
142 }							\
143 )
144 /*
145  * Same as above but for u64 dividends. divisor must be a 32-bit
146  * number.
147  */
148 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
149 {							\
150 	typeof(divisor) __d = divisor;			\
151 	unsigned long long _tmp = (x) + (__d) / 2;	\
152 	do_div(_tmp, __d);				\
153 	_tmp;						\
154 }							\
155 )
156 
157 /*
158  * Multiplies an integer by a fraction, while avoiding unnecessary
159  * overflow or loss of precision.
160  */
161 #define mult_frac(x, numer, denom)(			\
162 {							\
163 	typeof(x) quot = (x) / (denom);			\
164 	typeof(x) rem  = (x) % (denom);			\
165 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
166 }							\
167 )
168 
169 
170 #define _RET_IP_		(unsigned long)__builtin_return_address(0)
171 #define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
172 
173 #ifdef CONFIG_LBDAF
174 # include <asm/div64.h>
175 # define sector_div(a, b) do_div(a, b)
176 #else
177 # define sector_div(n, b)( \
178 { \
179 	int _res; \
180 	_res = (n) % (b); \
181 	(n) /= (b); \
182 	_res; \
183 } \
184 )
185 #endif
186 
187 /**
188  * upper_32_bits - return bits 32-63 of a number
189  * @n: the number we're accessing
190  *
191  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
192  * the "right shift count >= width of type" warning when that quantity is
193  * 32-bits.
194  */
195 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
196 
197 /**
198  * lower_32_bits - return bits 0-31 of a number
199  * @n: the number we're accessing
200  */
201 #define lower_32_bits(n) ((u32)(n))
202 
203 struct completion;
204 struct pt_regs;
205 struct user;
206 
207 #ifdef CONFIG_PREEMPT_VOLUNTARY
208 extern int _cond_resched(void);
209 # define might_resched() _cond_resched()
210 #else
211 # define might_resched() do { } while (0)
212 #endif
213 
214 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
215   void ___might_sleep(const char *file, int line, int preempt_offset);
216   void __might_sleep(const char *file, int line, int preempt_offset);
217 /**
218  * might_sleep - annotation for functions that can sleep
219  *
220  * this macro will print a stack trace if it is executed in an atomic
221  * context (spinlock, irq-handler, ...).
222  *
223  * This is a useful debugging help to be able to catch problems early and not
224  * be bitten later when the calling function happens to sleep when it is not
225  * supposed to.
226  */
227 # define might_sleep() \
228 	do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
229 # define sched_annotate_sleep()	(current->task_state_change = 0)
230 #else
231   static inline void ___might_sleep(const char *file, int line,
232 				   int preempt_offset) { }
233   static inline void __might_sleep(const char *file, int line,
234 				   int preempt_offset) { }
235 # define might_sleep() do { might_resched(); } while (0)
236 # define sched_annotate_sleep() do { } while (0)
237 #endif
238 
239 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
240 
241 /**
242  * abs - return absolute value of an argument
243  * @x: the value.  If it is unsigned type, it is converted to signed type first.
244  *     char is treated as if it was signed (regardless of whether it really is)
245  *     but the macro's return type is preserved as char.
246  *
247  * Return: an absolute value of x.
248  */
249 #define abs(x)	__abs_choose_expr(x, long long,				\
250 		__abs_choose_expr(x, long,				\
251 		__abs_choose_expr(x, int,				\
252 		__abs_choose_expr(x, short,				\
253 		__abs_choose_expr(x, char,				\
254 		__builtin_choose_expr(					\
255 			__builtin_types_compatible_p(typeof(x), char),	\
256 			(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
257 			((void)0)))))))
258 
259 #define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\
260 	__builtin_types_compatible_p(typeof(x),   signed type) ||	\
261 	__builtin_types_compatible_p(typeof(x), unsigned type),		\
262 	({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
263 
264 /**
265  * reciprocal_scale - "scale" a value into range [0, ep_ro)
266  * @val: value
267  * @ep_ro: right open interval endpoint
268  *
269  * Perform a "reciprocal multiplication" in order to "scale" a value into
270  * range [0, @ep_ro), where the upper interval endpoint is right-open.
271  * This is useful, e.g. for accessing a index of an array containing
272  * @ep_ro elements, for example. Think of it as sort of modulus, only that
273  * the result isn't that of modulo. ;) Note that if initial input is a
274  * small value, then result will return 0.
275  *
276  * Return: a result based on @val in interval [0, @ep_ro).
277  */
278 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
279 {
280 	return (u32)(((u64) val * ep_ro) >> 32);
281 }
282 
283 #if defined(CONFIG_MMU) && \
284 	(defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
285 #define might_fault() __might_fault(__FILE__, __LINE__)
286 void __might_fault(const char *file, int line);
287 #else
288 static inline void might_fault(void) { }
289 #endif
290 
291 extern struct atomic_notifier_head panic_notifier_list;
292 extern long (*panic_blink)(int state);
293 __printf(1, 2)
294 void panic(const char *fmt, ...) __noreturn __cold;
295 void nmi_panic(struct pt_regs *regs, const char *msg);
296 extern void oops_enter(void);
297 extern void oops_exit(void);
298 void print_oops_end_marker(void);
299 extern int oops_may_print(void);
300 void do_exit(long error_code) __noreturn;
301 void complete_and_exit(struct completion *, long) __noreturn;
302 
303 #ifdef CONFIG_ARCH_HAS_REFCOUNT
304 void refcount_error_report(struct pt_regs *regs, const char *err);
305 #else
306 static inline void refcount_error_report(struct pt_regs *regs, const char *err)
307 { }
308 #endif
309 
310 /* Internal, do not use. */
311 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
312 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
313 
314 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
315 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
316 
317 /**
318  * kstrtoul - convert a string to an unsigned long
319  * @s: The start of the string. The string must be null-terminated, and may also
320  *  include a single newline before its terminating null. The first character
321  *  may also be a plus sign, but not a minus sign.
322  * @base: The number base to use. The maximum supported base is 16. If base is
323  *  given as 0, then the base of the string is automatically detected with the
324  *  conventional semantics - If it begins with 0x the number will be parsed as a
325  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
326  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
327  * @res: Where to write the result of the conversion on success.
328  *
329  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
330  * Used as a replacement for the obsolete simple_strtoull. Return code must
331  * be checked.
332 */
333 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
334 {
335 	/*
336 	 * We want to shortcut function call, but
337 	 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
338 	 */
339 	if (sizeof(unsigned long) == sizeof(unsigned long long) &&
340 	    __alignof__(unsigned long) == __alignof__(unsigned long long))
341 		return kstrtoull(s, base, (unsigned long long *)res);
342 	else
343 		return _kstrtoul(s, base, res);
344 }
345 
346 /**
347  * kstrtol - convert a string to a long
348  * @s: The start of the string. The string must be null-terminated, and may also
349  *  include a single newline before its terminating null. The first character
350  *  may also be a plus sign or a minus sign.
351  * @base: The number base to use. The maximum supported base is 16. If base is
352  *  given as 0, then the base of the string is automatically detected with the
353  *  conventional semantics - If it begins with 0x the number will be parsed as a
354  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
355  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
356  * @res: Where to write the result of the conversion on success.
357  *
358  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
359  * Used as a replacement for the obsolete simple_strtoull. Return code must
360  * be checked.
361  */
362 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
363 {
364 	/*
365 	 * We want to shortcut function call, but
366 	 * __builtin_types_compatible_p(long, long long) = 0.
367 	 */
368 	if (sizeof(long) == sizeof(long long) &&
369 	    __alignof__(long) == __alignof__(long long))
370 		return kstrtoll(s, base, (long long *)res);
371 	else
372 		return _kstrtol(s, base, res);
373 }
374 
375 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
376 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
377 
378 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
379 {
380 	return kstrtoull(s, base, res);
381 }
382 
383 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
384 {
385 	return kstrtoll(s, base, res);
386 }
387 
388 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
389 {
390 	return kstrtouint(s, base, res);
391 }
392 
393 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
394 {
395 	return kstrtoint(s, base, res);
396 }
397 
398 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
399 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
400 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
401 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
402 int __must_check kstrtobool(const char *s, bool *res);
403 
404 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
405 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
406 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
407 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
408 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
409 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
410 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
411 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
412 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
413 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
414 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
415 
416 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
417 {
418 	return kstrtoull_from_user(s, count, base, res);
419 }
420 
421 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
422 {
423 	return kstrtoll_from_user(s, count, base, res);
424 }
425 
426 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
427 {
428 	return kstrtouint_from_user(s, count, base, res);
429 }
430 
431 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
432 {
433 	return kstrtoint_from_user(s, count, base, res);
434 }
435 
436 /* Obsolete, do not use.  Use kstrto<foo> instead */
437 
438 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
439 extern long simple_strtol(const char *,char **,unsigned int);
440 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
441 extern long long simple_strtoll(const char *,char **,unsigned int);
442 
443 extern int num_to_str(char *buf, int size,
444 		      unsigned long long num, unsigned int width);
445 
446 /* lib/printf utilities */
447 
448 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
449 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
450 extern __printf(3, 4)
451 int snprintf(char *buf, size_t size, const char *fmt, ...);
452 extern __printf(3, 0)
453 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
454 extern __printf(3, 4)
455 int scnprintf(char *buf, size_t size, const char *fmt, ...);
456 extern __printf(3, 0)
457 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
458 extern __printf(2, 3) __malloc
459 char *kasprintf(gfp_t gfp, const char *fmt, ...);
460 extern __printf(2, 0) __malloc
461 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
462 extern __printf(2, 0)
463 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
464 
465 extern __scanf(2, 3)
466 int sscanf(const char *, const char *, ...);
467 extern __scanf(2, 0)
468 int vsscanf(const char *, const char *, va_list);
469 
470 extern int get_option(char **str, int *pint);
471 extern char *get_options(const char *str, int nints, int *ints);
472 extern unsigned long long memparse(const char *ptr, char **retptr);
473 extern bool parse_option_str(const char *str, const char *option);
474 extern char *next_arg(char *args, char **param, char **val);
475 
476 extern int core_kernel_text(unsigned long addr);
477 extern int init_kernel_text(unsigned long addr);
478 extern int core_kernel_data(unsigned long addr);
479 extern int __kernel_text_address(unsigned long addr);
480 extern int kernel_text_address(unsigned long addr);
481 extern int func_ptr_is_kernel_text(void *ptr);
482 
483 unsigned long int_sqrt(unsigned long);
484 
485 #if BITS_PER_LONG < 64
486 u32 int_sqrt64(u64 x);
487 #else
488 static inline u32 int_sqrt64(u64 x)
489 {
490 	return (u32)int_sqrt(x);
491 }
492 #endif
493 
494 extern void bust_spinlocks(int yes);
495 extern int oops_in_progress;		/* If set, an oops, panic(), BUG() or die() is in progress */
496 extern int panic_timeout;
497 extern int panic_on_oops;
498 extern int panic_on_unrecovered_nmi;
499 extern int panic_on_io_nmi;
500 extern int panic_on_warn;
501 extern int sysctl_panic_on_rcu_stall;
502 extern int sysctl_panic_on_stackoverflow;
503 
504 extern bool crash_kexec_post_notifiers;
505 
506 /*
507  * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
508  * holds a CPU number which is executing panic() currently. A value of
509  * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
510  */
511 extern atomic_t panic_cpu;
512 #define PANIC_CPU_INVALID	-1
513 
514 /*
515  * Only to be used by arch init code. If the user over-wrote the default
516  * CONFIG_PANIC_TIMEOUT, honor it.
517  */
518 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
519 {
520 	if (panic_timeout == arch_default_timeout)
521 		panic_timeout = timeout;
522 }
523 extern const char *print_tainted(void);
524 enum lockdep_ok {
525 	LOCKDEP_STILL_OK,
526 	LOCKDEP_NOW_UNRELIABLE
527 };
528 extern void add_taint(unsigned flag, enum lockdep_ok);
529 extern int test_taint(unsigned flag);
530 extern unsigned long get_taint(void);
531 extern int root_mountflags;
532 
533 extern bool early_boot_irqs_disabled;
534 
535 /*
536  * Values used for system_state. Ordering of the states must not be changed
537  * as code checks for <, <=, >, >= STATE.
538  */
539 extern enum system_states {
540 	SYSTEM_BOOTING,
541 	SYSTEM_SCHEDULING,
542 	SYSTEM_RUNNING,
543 	SYSTEM_HALT,
544 	SYSTEM_POWER_OFF,
545 	SYSTEM_RESTART,
546 	SYSTEM_SUSPEND,
547 } system_state;
548 
549 /* This cannot be an enum because some may be used in assembly source. */
550 #define TAINT_PROPRIETARY_MODULE	0
551 #define TAINT_FORCED_MODULE		1
552 #define TAINT_CPU_OUT_OF_SPEC		2
553 #define TAINT_FORCED_RMMOD		3
554 #define TAINT_MACHINE_CHECK		4
555 #define TAINT_BAD_PAGE			5
556 #define TAINT_USER			6
557 #define TAINT_DIE			7
558 #define TAINT_OVERRIDDEN_ACPI_TABLE	8
559 #define TAINT_WARN			9
560 #define TAINT_CRAP			10
561 #define TAINT_FIRMWARE_WORKAROUND	11
562 #define TAINT_OOT_MODULE		12
563 #define TAINT_UNSIGNED_MODULE		13
564 #define TAINT_SOFTLOCKUP		14
565 #define TAINT_LIVEPATCH			15
566 #define TAINT_AUX			16
567 #define TAINT_RANDSTRUCT		17
568 #define TAINT_FLAGS_COUNT		18
569 
570 struct taint_flag {
571 	char c_true;	/* character printed when tainted */
572 	char c_false;	/* character printed when not tainted */
573 	bool module;	/* also show as a per-module taint flag */
574 };
575 
576 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
577 
578 extern const char hex_asc[];
579 #define hex_asc_lo(x)	hex_asc[((x) & 0x0f)]
580 #define hex_asc_hi(x)	hex_asc[((x) & 0xf0) >> 4]
581 
582 static inline char *hex_byte_pack(char *buf, u8 byte)
583 {
584 	*buf++ = hex_asc_hi(byte);
585 	*buf++ = hex_asc_lo(byte);
586 	return buf;
587 }
588 
589 extern const char hex_asc_upper[];
590 #define hex_asc_upper_lo(x)	hex_asc_upper[((x) & 0x0f)]
591 #define hex_asc_upper_hi(x)	hex_asc_upper[((x) & 0xf0) >> 4]
592 
593 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
594 {
595 	*buf++ = hex_asc_upper_hi(byte);
596 	*buf++ = hex_asc_upper_lo(byte);
597 	return buf;
598 }
599 
600 extern int hex_to_bin(char ch);
601 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
602 extern char *bin2hex(char *dst, const void *src, size_t count);
603 
604 bool mac_pton(const char *s, u8 *mac);
605 
606 /*
607  * General tracing related utility functions - trace_printk(),
608  * tracing_on/tracing_off and tracing_start()/tracing_stop
609  *
610  * Use tracing_on/tracing_off when you want to quickly turn on or off
611  * tracing. It simply enables or disables the recording of the trace events.
612  * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
613  * file, which gives a means for the kernel and userspace to interact.
614  * Place a tracing_off() in the kernel where you want tracing to end.
615  * From user space, examine the trace, and then echo 1 > tracing_on
616  * to continue tracing.
617  *
618  * tracing_stop/tracing_start has slightly more overhead. It is used
619  * by things like suspend to ram where disabling the recording of the
620  * trace is not enough, but tracing must actually stop because things
621  * like calling smp_processor_id() may crash the system.
622  *
623  * Most likely, you want to use tracing_on/tracing_off.
624  */
625 
626 enum ftrace_dump_mode {
627 	DUMP_NONE,
628 	DUMP_ALL,
629 	DUMP_ORIG,
630 };
631 
632 #ifdef CONFIG_TRACING
633 void tracing_on(void);
634 void tracing_off(void);
635 int tracing_is_on(void);
636 void tracing_snapshot(void);
637 void tracing_snapshot_alloc(void);
638 
639 extern void tracing_start(void);
640 extern void tracing_stop(void);
641 
642 static inline __printf(1, 2)
643 void ____trace_printk_check_format(const char *fmt, ...)
644 {
645 }
646 #define __trace_printk_check_format(fmt, args...)			\
647 do {									\
648 	if (0)								\
649 		____trace_printk_check_format(fmt, ##args);		\
650 } while (0)
651 
652 /**
653  * trace_printk - printf formatting in the ftrace buffer
654  * @fmt: the printf format for printing
655  *
656  * Note: __trace_printk is an internal function for trace_printk() and
657  *       the @ip is passed in via the trace_printk() macro.
658  *
659  * This function allows a kernel developer to debug fast path sections
660  * that printk is not appropriate for. By scattering in various
661  * printk like tracing in the code, a developer can quickly see
662  * where problems are occurring.
663  *
664  * This is intended as a debugging tool for the developer only.
665  * Please refrain from leaving trace_printks scattered around in
666  * your code. (Extra memory is used for special buffers that are
667  * allocated when trace_printk() is used.)
668  *
669  * A little optimization trick is done here. If there's only one
670  * argument, there's no need to scan the string for printf formats.
671  * The trace_puts() will suffice. But how can we take advantage of
672  * using trace_puts() when trace_printk() has only one argument?
673  * By stringifying the args and checking the size we can tell
674  * whether or not there are args. __stringify((__VA_ARGS__)) will
675  * turn into "()\0" with a size of 3 when there are no args, anything
676  * else will be bigger. All we need to do is define a string to this,
677  * and then take its size and compare to 3. If it's bigger, use
678  * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
679  * let gcc optimize the rest.
680  */
681 
682 #define trace_printk(fmt, ...)				\
683 do {							\
684 	char _______STR[] = __stringify((__VA_ARGS__));	\
685 	if (sizeof(_______STR) > 3)			\
686 		do_trace_printk(fmt, ##__VA_ARGS__);	\
687 	else						\
688 		trace_puts(fmt);			\
689 } while (0)
690 
691 #define do_trace_printk(fmt, args...)					\
692 do {									\
693 	static const char *trace_printk_fmt __used			\
694 		__attribute__((section("__trace_printk_fmt"))) =	\
695 		__builtin_constant_p(fmt) ? fmt : NULL;			\
696 									\
697 	__trace_printk_check_format(fmt, ##args);			\
698 									\
699 	if (__builtin_constant_p(fmt))					\
700 		__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);	\
701 	else								\
702 		__trace_printk(_THIS_IP_, fmt, ##args);			\
703 } while (0)
704 
705 extern __printf(2, 3)
706 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
707 
708 extern __printf(2, 3)
709 int __trace_printk(unsigned long ip, const char *fmt, ...);
710 
711 /**
712  * trace_puts - write a string into the ftrace buffer
713  * @str: the string to record
714  *
715  * Note: __trace_bputs is an internal function for trace_puts and
716  *       the @ip is passed in via the trace_puts macro.
717  *
718  * This is similar to trace_printk() but is made for those really fast
719  * paths that a developer wants the least amount of "Heisenbug" effects,
720  * where the processing of the print format is still too much.
721  *
722  * This function allows a kernel developer to debug fast path sections
723  * that printk is not appropriate for. By scattering in various
724  * printk like tracing in the code, a developer can quickly see
725  * where problems are occurring.
726  *
727  * This is intended as a debugging tool for the developer only.
728  * Please refrain from leaving trace_puts scattered around in
729  * your code. (Extra memory is used for special buffers that are
730  * allocated when trace_puts() is used.)
731  *
732  * Returns: 0 if nothing was written, positive # if string was.
733  *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
734  */
735 
736 #define trace_puts(str) ({						\
737 	static const char *trace_printk_fmt __used			\
738 		__attribute__((section("__trace_printk_fmt"))) =	\
739 		__builtin_constant_p(str) ? str : NULL;			\
740 									\
741 	if (__builtin_constant_p(str))					\
742 		__trace_bputs(_THIS_IP_, trace_printk_fmt);		\
743 	else								\
744 		__trace_puts(_THIS_IP_, str, strlen(str));		\
745 })
746 extern int __trace_bputs(unsigned long ip, const char *str);
747 extern int __trace_puts(unsigned long ip, const char *str, int size);
748 
749 extern void trace_dump_stack(int skip);
750 
751 /*
752  * The double __builtin_constant_p is because gcc will give us an error
753  * if we try to allocate the static variable to fmt if it is not a
754  * constant. Even with the outer if statement.
755  */
756 #define ftrace_vprintk(fmt, vargs)					\
757 do {									\
758 	if (__builtin_constant_p(fmt)) {				\
759 		static const char *trace_printk_fmt __used		\
760 		  __attribute__((section("__trace_printk_fmt"))) =	\
761 			__builtin_constant_p(fmt) ? fmt : NULL;		\
762 									\
763 		__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);	\
764 	} else								\
765 		__ftrace_vprintk(_THIS_IP_, fmt, vargs);		\
766 } while (0)
767 
768 extern __printf(2, 0) int
769 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
770 
771 extern __printf(2, 0) int
772 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
773 
774 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
775 #else
776 static inline void tracing_start(void) { }
777 static inline void tracing_stop(void) { }
778 static inline void trace_dump_stack(int skip) { }
779 
780 static inline void tracing_on(void) { }
781 static inline void tracing_off(void) { }
782 static inline int tracing_is_on(void) { return 0; }
783 static inline void tracing_snapshot(void) { }
784 static inline void tracing_snapshot_alloc(void) { }
785 
786 static inline __printf(1, 2)
787 int trace_printk(const char *fmt, ...)
788 {
789 	return 0;
790 }
791 static __printf(1, 0) inline int
792 ftrace_vprintk(const char *fmt, va_list ap)
793 {
794 	return 0;
795 }
796 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
797 #endif /* CONFIG_TRACING */
798 
799 /*
800  * min()/max()/clamp() macros must accomplish three things:
801  *
802  * - avoid multiple evaluations of the arguments (so side-effects like
803  *   "x++" happen only once) when non-constant.
804  * - perform strict type-checking (to generate warnings instead of
805  *   nasty runtime surprises). See the "unnecessary" pointer comparison
806  *   in __typecheck().
807  * - retain result as a constant expressions when called with only
808  *   constant expressions (to avoid tripping VLA warnings in stack
809  *   allocation usage).
810  */
811 #define __typecheck(x, y) \
812 		(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
813 
814 /*
815  * This returns a constant expression while determining if an argument is
816  * a constant expression, most importantly without evaluating the argument.
817  * Glory to Martin Uecker <[email protected]>
818  */
819 #define __is_constexpr(x) \
820 	(sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
821 
822 #define __no_side_effects(x, y) \
823 		(__is_constexpr(x) && __is_constexpr(y))
824 
825 #define __safe_cmp(x, y) \
826 		(__typecheck(x, y) && __no_side_effects(x, y))
827 
828 #define __cmp(x, y, op)	((x) op (y) ? (x) : (y))
829 
830 #define __cmp_once(x, y, unique_x, unique_y, op) ({	\
831 		typeof(x) unique_x = (x);		\
832 		typeof(y) unique_y = (y);		\
833 		__cmp(unique_x, unique_y, op); })
834 
835 #define __careful_cmp(x, y, op) \
836 	__builtin_choose_expr(__safe_cmp(x, y), \
837 		__cmp(x, y, op), \
838 		__cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
839 
840 /**
841  * min - return minimum of two values of the same or compatible types
842  * @x: first value
843  * @y: second value
844  */
845 #define min(x, y)	__careful_cmp(x, y, <)
846 
847 /**
848  * max - return maximum of two values of the same or compatible types
849  * @x: first value
850  * @y: second value
851  */
852 #define max(x, y)	__careful_cmp(x, y, >)
853 
854 /**
855  * min3 - return minimum of three values
856  * @x: first value
857  * @y: second value
858  * @z: third value
859  */
860 #define min3(x, y, z) min((typeof(x))min(x, y), z)
861 
862 /**
863  * max3 - return maximum of three values
864  * @x: first value
865  * @y: second value
866  * @z: third value
867  */
868 #define max3(x, y, z) max((typeof(x))max(x, y), z)
869 
870 /**
871  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
872  * @x: value1
873  * @y: value2
874  */
875 #define min_not_zero(x, y) ({			\
876 	typeof(x) __x = (x);			\
877 	typeof(y) __y = (y);			\
878 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
879 
880 /**
881  * clamp - return a value clamped to a given range with strict typechecking
882  * @val: current value
883  * @lo: lowest allowable value
884  * @hi: highest allowable value
885  *
886  * This macro does strict typechecking of @lo/@hi to make sure they are of the
887  * same type as @val.  See the unnecessary pointer comparisons.
888  */
889 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
890 
891 /*
892  * ..and if you can't take the strict
893  * types, you can specify one yourself.
894  *
895  * Or not use min/max/clamp at all, of course.
896  */
897 
898 /**
899  * min_t - return minimum of two values, using the specified type
900  * @type: data type to use
901  * @x: first value
902  * @y: second value
903  */
904 #define min_t(type, x, y)	__careful_cmp((type)(x), (type)(y), <)
905 
906 /**
907  * max_t - return maximum of two values, using the specified type
908  * @type: data type to use
909  * @x: first value
910  * @y: second value
911  */
912 #define max_t(type, x, y)	__careful_cmp((type)(x), (type)(y), >)
913 
914 /**
915  * clamp_t - return a value clamped to a given range using a given type
916  * @type: the type of variable to use
917  * @val: current value
918  * @lo: minimum allowable value
919  * @hi: maximum allowable value
920  *
921  * This macro does no typechecking and uses temporary variables of type
922  * @type to make all the comparisons.
923  */
924 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
925 
926 /**
927  * clamp_val - return a value clamped to a given range using val's type
928  * @val: current value
929  * @lo: minimum allowable value
930  * @hi: maximum allowable value
931  *
932  * This macro does no typechecking and uses temporary variables of whatever
933  * type the input argument @val is.  This is useful when @val is an unsigned
934  * type and @lo and @hi are literals that will otherwise be assigned a signed
935  * integer type.
936  */
937 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
938 
939 
940 /**
941  * swap - swap values of @a and @b
942  * @a: first value
943  * @b: second value
944  */
945 #define swap(a, b) \
946 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
947 
948 /* This counts to 12. Any more, it will return 13th argument. */
949 #define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
950 #define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
951 
952 #define __CONCAT(a, b) a ## b
953 #define CONCATENATE(a, b) __CONCAT(a, b)
954 
955 /**
956  * container_of - cast a member of a structure out to the containing structure
957  * @ptr:	the pointer to the member.
958  * @type:	the type of the container struct this is embedded in.
959  * @member:	the name of the member within the struct.
960  *
961  */
962 #define container_of(ptr, type, member) ({				\
963 	void *__mptr = (void *)(ptr);					\
964 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
965 			 !__same_type(*(ptr), void),			\
966 			 "pointer type mismatch in container_of()");	\
967 	((type *)(__mptr - offsetof(type, member))); })
968 
969 /**
970  * container_of_safe - cast a member of a structure out to the containing structure
971  * @ptr:	the pointer to the member.
972  * @type:	the type of the container struct this is embedded in.
973  * @member:	the name of the member within the struct.
974  *
975  * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
976  */
977 #define container_of_safe(ptr, type, member) ({				\
978 	void *__mptr = (void *)(ptr);					\
979 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
980 			 !__same_type(*(ptr), void),			\
981 			 "pointer type mismatch in container_of()");	\
982 	IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) :			\
983 		((type *)(__mptr - offsetof(type, member))); })
984 
985 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
986 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
987 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
988 #endif
989 
990 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
991 #define VERIFY_OCTAL_PERMISSIONS(perms)						\
992 	(BUILD_BUG_ON_ZERO((perms) < 0) +					\
993 	 BUILD_BUG_ON_ZERO((perms) > 0777) +					\
994 	 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */		\
995 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +	\
996 	 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +		\
997 	 /* USER_WRITABLE >= GROUP_WRITABLE */					\
998 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +	\
999 	 /* OTHER_WRITABLE?  Generally considered a bad idea. */		\
1000 	 BUILD_BUG_ON_ZERO((perms) & 2) +					\
1001 	 (perms))
1002 #endif
1003