1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_KERNEL_H 3 #define _LINUX_KERNEL_H 4 5 6 #include <stdarg.h> 7 #include <linux/linkage.h> 8 #include <linux/stddef.h> 9 #include <linux/types.h> 10 #include <linux/compiler.h> 11 #include <linux/bitops.h> 12 #include <linux/log2.h> 13 #include <linux/typecheck.h> 14 #include <linux/printk.h> 15 #include <linux/build_bug.h> 16 #include <asm/byteorder.h> 17 #include <uapi/linux/kernel.h> 18 19 #define USHRT_MAX ((u16)(~0U)) 20 #define SHRT_MAX ((s16)(USHRT_MAX>>1)) 21 #define SHRT_MIN ((s16)(-SHRT_MAX - 1)) 22 #define INT_MAX ((int)(~0U>>1)) 23 #define INT_MIN (-INT_MAX - 1) 24 #define UINT_MAX (~0U) 25 #define LONG_MAX ((long)(~0UL>>1)) 26 #define LONG_MIN (-LONG_MAX - 1) 27 #define ULONG_MAX (~0UL) 28 #define LLONG_MAX ((long long)(~0ULL>>1)) 29 #define LLONG_MIN (-LLONG_MAX - 1) 30 #define ULLONG_MAX (~0ULL) 31 #define SIZE_MAX (~(size_t)0) 32 #define PHYS_ADDR_MAX (~(phys_addr_t)0) 33 34 #define U8_MAX ((u8)~0U) 35 #define S8_MAX ((s8)(U8_MAX>>1)) 36 #define S8_MIN ((s8)(-S8_MAX - 1)) 37 #define U16_MAX ((u16)~0U) 38 #define S16_MAX ((s16)(U16_MAX>>1)) 39 #define S16_MIN ((s16)(-S16_MAX - 1)) 40 #define U32_MAX ((u32)~0U) 41 #define S32_MAX ((s32)(U32_MAX>>1)) 42 #define S32_MIN ((s32)(-S32_MAX - 1)) 43 #define U64_MAX ((u64)~0ULL) 44 #define S64_MAX ((s64)(U64_MAX>>1)) 45 #define S64_MIN ((s64)(-S64_MAX - 1)) 46 47 #define STACK_MAGIC 0xdeadbeef 48 49 /** 50 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value 51 * @x: value to repeat 52 * 53 * NOTE: @x is not checked for > 0xff; larger values produce odd results. 54 */ 55 #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 56 57 /* @a is a power of 2 value */ 58 #define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 59 #define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a)) 60 #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 61 #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 62 #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 63 64 /* generic data direction definitions */ 65 #define READ 0 66 #define WRITE 1 67 68 /** 69 * ARRAY_SIZE - get the number of elements in array @arr 70 * @arr: array to be sized 71 */ 72 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 73 74 #define u64_to_user_ptr(x) ( \ 75 { \ 76 typecheck(u64, x); \ 77 (void __user *)(uintptr_t)x; \ 78 } \ 79 ) 80 81 /* 82 * This looks more complex than it should be. But we need to 83 * get the type for the ~ right in round_down (it needs to be 84 * as wide as the result!), and we want to evaluate the macro 85 * arguments just once each. 86 */ 87 #define __round_mask(x, y) ((__typeof__(x))((y)-1)) 88 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 89 #define round_down(x, y) ((x) & ~__round_mask(x, y)) 90 91 /** 92 * FIELD_SIZEOF - get the size of a struct's field 93 * @t: the target struct 94 * @f: the target struct's field 95 * Return: the size of @f in the struct definition without having a 96 * declared instance of @t. 97 */ 98 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 99 100 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 101 102 #define DIV_ROUND_DOWN_ULL(ll, d) \ 103 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) 104 105 #define DIV_ROUND_UP_ULL(ll, d) DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d)) 106 107 #if BITS_PER_LONG == 32 108 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 109 #else 110 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 111 #endif 112 113 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */ 114 #define roundup(x, y) ( \ 115 { \ 116 const typeof(y) __y = y; \ 117 (((x) + (__y - 1)) / __y) * __y; \ 118 } \ 119 ) 120 #define rounddown(x, y) ( \ 121 { \ 122 typeof(x) __x = (x); \ 123 __x - (__x % (y)); \ 124 } \ 125 ) 126 127 /* 128 * Divide positive or negative dividend by positive or negative divisor 129 * and round to closest integer. Result is undefined for negative 130 * divisors if the dividend variable type is unsigned and for negative 131 * dividends if the divisor variable type is unsigned. 132 */ 133 #define DIV_ROUND_CLOSEST(x, divisor)( \ 134 { \ 135 typeof(x) __x = x; \ 136 typeof(divisor) __d = divisor; \ 137 (((typeof(x))-1) > 0 || \ 138 ((typeof(divisor))-1) > 0 || \ 139 (((__x) > 0) == ((__d) > 0))) ? \ 140 (((__x) + ((__d) / 2)) / (__d)) : \ 141 (((__x) - ((__d) / 2)) / (__d)); \ 142 } \ 143 ) 144 /* 145 * Same as above but for u64 dividends. divisor must be a 32-bit 146 * number. 147 */ 148 #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 149 { \ 150 typeof(divisor) __d = divisor; \ 151 unsigned long long _tmp = (x) + (__d) / 2; \ 152 do_div(_tmp, __d); \ 153 _tmp; \ 154 } \ 155 ) 156 157 /* 158 * Multiplies an integer by a fraction, while avoiding unnecessary 159 * overflow or loss of precision. 160 */ 161 #define mult_frac(x, numer, denom)( \ 162 { \ 163 typeof(x) quot = (x) / (denom); \ 164 typeof(x) rem = (x) % (denom); \ 165 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 166 } \ 167 ) 168 169 170 #define _RET_IP_ (unsigned long)__builtin_return_address(0) 171 #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 172 173 #ifdef CONFIG_LBDAF 174 # include <asm/div64.h> 175 # define sector_div(a, b) do_div(a, b) 176 #else 177 # define sector_div(n, b)( \ 178 { \ 179 int _res; \ 180 _res = (n) % (b); \ 181 (n) /= (b); \ 182 _res; \ 183 } \ 184 ) 185 #endif 186 187 /** 188 * upper_32_bits - return bits 32-63 of a number 189 * @n: the number we're accessing 190 * 191 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 192 * the "right shift count >= width of type" warning when that quantity is 193 * 32-bits. 194 */ 195 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 196 197 /** 198 * lower_32_bits - return bits 0-31 of a number 199 * @n: the number we're accessing 200 */ 201 #define lower_32_bits(n) ((u32)(n)) 202 203 struct completion; 204 struct pt_regs; 205 struct user; 206 207 #ifdef CONFIG_PREEMPT_VOLUNTARY 208 extern int _cond_resched(void); 209 # define might_resched() _cond_resched() 210 #else 211 # define might_resched() do { } while (0) 212 #endif 213 214 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 215 void ___might_sleep(const char *file, int line, int preempt_offset); 216 void __might_sleep(const char *file, int line, int preempt_offset); 217 /** 218 * might_sleep - annotation for functions that can sleep 219 * 220 * this macro will print a stack trace if it is executed in an atomic 221 * context (spinlock, irq-handler, ...). 222 * 223 * This is a useful debugging help to be able to catch problems early and not 224 * be bitten later when the calling function happens to sleep when it is not 225 * supposed to. 226 */ 227 # define might_sleep() \ 228 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 229 # define sched_annotate_sleep() (current->task_state_change = 0) 230 #else 231 static inline void ___might_sleep(const char *file, int line, 232 int preempt_offset) { } 233 static inline void __might_sleep(const char *file, int line, 234 int preempt_offset) { } 235 # define might_sleep() do { might_resched(); } while (0) 236 # define sched_annotate_sleep() do { } while (0) 237 #endif 238 239 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 240 241 /** 242 * abs - return absolute value of an argument 243 * @x: the value. If it is unsigned type, it is converted to signed type first. 244 * char is treated as if it was signed (regardless of whether it really is) 245 * but the macro's return type is preserved as char. 246 * 247 * Return: an absolute value of x. 248 */ 249 #define abs(x) __abs_choose_expr(x, long long, \ 250 __abs_choose_expr(x, long, \ 251 __abs_choose_expr(x, int, \ 252 __abs_choose_expr(x, short, \ 253 __abs_choose_expr(x, char, \ 254 __builtin_choose_expr( \ 255 __builtin_types_compatible_p(typeof(x), char), \ 256 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 257 ((void)0))))))) 258 259 #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 260 __builtin_types_compatible_p(typeof(x), signed type) || \ 261 __builtin_types_compatible_p(typeof(x), unsigned type), \ 262 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 263 264 /** 265 * reciprocal_scale - "scale" a value into range [0, ep_ro) 266 * @val: value 267 * @ep_ro: right open interval endpoint 268 * 269 * Perform a "reciprocal multiplication" in order to "scale" a value into 270 * range [0, @ep_ro), where the upper interval endpoint is right-open. 271 * This is useful, e.g. for accessing a index of an array containing 272 * @ep_ro elements, for example. Think of it as sort of modulus, only that 273 * the result isn't that of modulo. ;) Note that if initial input is a 274 * small value, then result will return 0. 275 * 276 * Return: a result based on @val in interval [0, @ep_ro). 277 */ 278 static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 279 { 280 return (u32)(((u64) val * ep_ro) >> 32); 281 } 282 283 #if defined(CONFIG_MMU) && \ 284 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 285 #define might_fault() __might_fault(__FILE__, __LINE__) 286 void __might_fault(const char *file, int line); 287 #else 288 static inline void might_fault(void) { } 289 #endif 290 291 extern struct atomic_notifier_head panic_notifier_list; 292 extern long (*panic_blink)(int state); 293 __printf(1, 2) 294 void panic(const char *fmt, ...) __noreturn __cold; 295 void nmi_panic(struct pt_regs *regs, const char *msg); 296 extern void oops_enter(void); 297 extern void oops_exit(void); 298 void print_oops_end_marker(void); 299 extern int oops_may_print(void); 300 void do_exit(long error_code) __noreturn; 301 void complete_and_exit(struct completion *, long) __noreturn; 302 303 #ifdef CONFIG_ARCH_HAS_REFCOUNT 304 void refcount_error_report(struct pt_regs *regs, const char *err); 305 #else 306 static inline void refcount_error_report(struct pt_regs *regs, const char *err) 307 { } 308 #endif 309 310 /* Internal, do not use. */ 311 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 312 int __must_check _kstrtol(const char *s, unsigned int base, long *res); 313 314 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 315 int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 316 317 /** 318 * kstrtoul - convert a string to an unsigned long 319 * @s: The start of the string. The string must be null-terminated, and may also 320 * include a single newline before its terminating null. The first character 321 * may also be a plus sign, but not a minus sign. 322 * @base: The number base to use. The maximum supported base is 16. If base is 323 * given as 0, then the base of the string is automatically detected with the 324 * conventional semantics - If it begins with 0x the number will be parsed as a 325 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 326 * parsed as an octal number. Otherwise it will be parsed as a decimal. 327 * @res: Where to write the result of the conversion on success. 328 * 329 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 330 * Used as a replacement for the obsolete simple_strtoull. Return code must 331 * be checked. 332 */ 333 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 334 { 335 /* 336 * We want to shortcut function call, but 337 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 338 */ 339 if (sizeof(unsigned long) == sizeof(unsigned long long) && 340 __alignof__(unsigned long) == __alignof__(unsigned long long)) 341 return kstrtoull(s, base, (unsigned long long *)res); 342 else 343 return _kstrtoul(s, base, res); 344 } 345 346 /** 347 * kstrtol - convert a string to a long 348 * @s: The start of the string. The string must be null-terminated, and may also 349 * include a single newline before its terminating null. The first character 350 * may also be a plus sign or a minus sign. 351 * @base: The number base to use. The maximum supported base is 16. If base is 352 * given as 0, then the base of the string is automatically detected with the 353 * conventional semantics - If it begins with 0x the number will be parsed as a 354 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 355 * parsed as an octal number. Otherwise it will be parsed as a decimal. 356 * @res: Where to write the result of the conversion on success. 357 * 358 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 359 * Used as a replacement for the obsolete simple_strtoull. Return code must 360 * be checked. 361 */ 362 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 363 { 364 /* 365 * We want to shortcut function call, but 366 * __builtin_types_compatible_p(long, long long) = 0. 367 */ 368 if (sizeof(long) == sizeof(long long) && 369 __alignof__(long) == __alignof__(long long)) 370 return kstrtoll(s, base, (long long *)res); 371 else 372 return _kstrtol(s, base, res); 373 } 374 375 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 376 int __must_check kstrtoint(const char *s, unsigned int base, int *res); 377 378 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 379 { 380 return kstrtoull(s, base, res); 381 } 382 383 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 384 { 385 return kstrtoll(s, base, res); 386 } 387 388 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 389 { 390 return kstrtouint(s, base, res); 391 } 392 393 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 394 { 395 return kstrtoint(s, base, res); 396 } 397 398 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 399 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 400 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 401 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 402 int __must_check kstrtobool(const char *s, bool *res); 403 404 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 405 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 406 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 407 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 408 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 409 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 410 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 411 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 412 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 413 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 414 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); 415 416 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 417 { 418 return kstrtoull_from_user(s, count, base, res); 419 } 420 421 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 422 { 423 return kstrtoll_from_user(s, count, base, res); 424 } 425 426 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 427 { 428 return kstrtouint_from_user(s, count, base, res); 429 } 430 431 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 432 { 433 return kstrtoint_from_user(s, count, base, res); 434 } 435 436 /* Obsolete, do not use. Use kstrto<foo> instead */ 437 438 extern unsigned long simple_strtoul(const char *,char **,unsigned int); 439 extern long simple_strtol(const char *,char **,unsigned int); 440 extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 441 extern long long simple_strtoll(const char *,char **,unsigned int); 442 443 extern int num_to_str(char *buf, int size, 444 unsigned long long num, unsigned int width); 445 446 /* lib/printf utilities */ 447 448 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 449 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 450 extern __printf(3, 4) 451 int snprintf(char *buf, size_t size, const char *fmt, ...); 452 extern __printf(3, 0) 453 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 454 extern __printf(3, 4) 455 int scnprintf(char *buf, size_t size, const char *fmt, ...); 456 extern __printf(3, 0) 457 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 458 extern __printf(2, 3) __malloc 459 char *kasprintf(gfp_t gfp, const char *fmt, ...); 460 extern __printf(2, 0) __malloc 461 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 462 extern __printf(2, 0) 463 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); 464 465 extern __scanf(2, 3) 466 int sscanf(const char *, const char *, ...); 467 extern __scanf(2, 0) 468 int vsscanf(const char *, const char *, va_list); 469 470 extern int get_option(char **str, int *pint); 471 extern char *get_options(const char *str, int nints, int *ints); 472 extern unsigned long long memparse(const char *ptr, char **retptr); 473 extern bool parse_option_str(const char *str, const char *option); 474 extern char *next_arg(char *args, char **param, char **val); 475 476 extern int core_kernel_text(unsigned long addr); 477 extern int init_kernel_text(unsigned long addr); 478 extern int core_kernel_data(unsigned long addr); 479 extern int __kernel_text_address(unsigned long addr); 480 extern int kernel_text_address(unsigned long addr); 481 extern int func_ptr_is_kernel_text(void *ptr); 482 483 unsigned long int_sqrt(unsigned long); 484 485 #if BITS_PER_LONG < 64 486 u32 int_sqrt64(u64 x); 487 #else 488 static inline u32 int_sqrt64(u64 x) 489 { 490 return (u32)int_sqrt(x); 491 } 492 #endif 493 494 extern void bust_spinlocks(int yes); 495 extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 496 extern int panic_timeout; 497 extern int panic_on_oops; 498 extern int panic_on_unrecovered_nmi; 499 extern int panic_on_io_nmi; 500 extern int panic_on_warn; 501 extern int sysctl_panic_on_rcu_stall; 502 extern int sysctl_panic_on_stackoverflow; 503 504 extern bool crash_kexec_post_notifiers; 505 506 /* 507 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It 508 * holds a CPU number which is executing panic() currently. A value of 509 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). 510 */ 511 extern atomic_t panic_cpu; 512 #define PANIC_CPU_INVALID -1 513 514 /* 515 * Only to be used by arch init code. If the user over-wrote the default 516 * CONFIG_PANIC_TIMEOUT, honor it. 517 */ 518 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 519 { 520 if (panic_timeout == arch_default_timeout) 521 panic_timeout = timeout; 522 } 523 extern const char *print_tainted(void); 524 enum lockdep_ok { 525 LOCKDEP_STILL_OK, 526 LOCKDEP_NOW_UNRELIABLE 527 }; 528 extern void add_taint(unsigned flag, enum lockdep_ok); 529 extern int test_taint(unsigned flag); 530 extern unsigned long get_taint(void); 531 extern int root_mountflags; 532 533 extern bool early_boot_irqs_disabled; 534 535 /* 536 * Values used for system_state. Ordering of the states must not be changed 537 * as code checks for <, <=, >, >= STATE. 538 */ 539 extern enum system_states { 540 SYSTEM_BOOTING, 541 SYSTEM_SCHEDULING, 542 SYSTEM_RUNNING, 543 SYSTEM_HALT, 544 SYSTEM_POWER_OFF, 545 SYSTEM_RESTART, 546 SYSTEM_SUSPEND, 547 } system_state; 548 549 /* This cannot be an enum because some may be used in assembly source. */ 550 #define TAINT_PROPRIETARY_MODULE 0 551 #define TAINT_FORCED_MODULE 1 552 #define TAINT_CPU_OUT_OF_SPEC 2 553 #define TAINT_FORCED_RMMOD 3 554 #define TAINT_MACHINE_CHECK 4 555 #define TAINT_BAD_PAGE 5 556 #define TAINT_USER 6 557 #define TAINT_DIE 7 558 #define TAINT_OVERRIDDEN_ACPI_TABLE 8 559 #define TAINT_WARN 9 560 #define TAINT_CRAP 10 561 #define TAINT_FIRMWARE_WORKAROUND 11 562 #define TAINT_OOT_MODULE 12 563 #define TAINT_UNSIGNED_MODULE 13 564 #define TAINT_SOFTLOCKUP 14 565 #define TAINT_LIVEPATCH 15 566 #define TAINT_AUX 16 567 #define TAINT_RANDSTRUCT 17 568 #define TAINT_FLAGS_COUNT 18 569 570 struct taint_flag { 571 char c_true; /* character printed when tainted */ 572 char c_false; /* character printed when not tainted */ 573 bool module; /* also show as a per-module taint flag */ 574 }; 575 576 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; 577 578 extern const char hex_asc[]; 579 #define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 580 #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 581 582 static inline char *hex_byte_pack(char *buf, u8 byte) 583 { 584 *buf++ = hex_asc_hi(byte); 585 *buf++ = hex_asc_lo(byte); 586 return buf; 587 } 588 589 extern const char hex_asc_upper[]; 590 #define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 591 #define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 592 593 static inline char *hex_byte_pack_upper(char *buf, u8 byte) 594 { 595 *buf++ = hex_asc_upper_hi(byte); 596 *buf++ = hex_asc_upper_lo(byte); 597 return buf; 598 } 599 600 extern int hex_to_bin(char ch); 601 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 602 extern char *bin2hex(char *dst, const void *src, size_t count); 603 604 bool mac_pton(const char *s, u8 *mac); 605 606 /* 607 * General tracing related utility functions - trace_printk(), 608 * tracing_on/tracing_off and tracing_start()/tracing_stop 609 * 610 * Use tracing_on/tracing_off when you want to quickly turn on or off 611 * tracing. It simply enables or disables the recording of the trace events. 612 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 613 * file, which gives a means for the kernel and userspace to interact. 614 * Place a tracing_off() in the kernel where you want tracing to end. 615 * From user space, examine the trace, and then echo 1 > tracing_on 616 * to continue tracing. 617 * 618 * tracing_stop/tracing_start has slightly more overhead. It is used 619 * by things like suspend to ram where disabling the recording of the 620 * trace is not enough, but tracing must actually stop because things 621 * like calling smp_processor_id() may crash the system. 622 * 623 * Most likely, you want to use tracing_on/tracing_off. 624 */ 625 626 enum ftrace_dump_mode { 627 DUMP_NONE, 628 DUMP_ALL, 629 DUMP_ORIG, 630 }; 631 632 #ifdef CONFIG_TRACING 633 void tracing_on(void); 634 void tracing_off(void); 635 int tracing_is_on(void); 636 void tracing_snapshot(void); 637 void tracing_snapshot_alloc(void); 638 639 extern void tracing_start(void); 640 extern void tracing_stop(void); 641 642 static inline __printf(1, 2) 643 void ____trace_printk_check_format(const char *fmt, ...) 644 { 645 } 646 #define __trace_printk_check_format(fmt, args...) \ 647 do { \ 648 if (0) \ 649 ____trace_printk_check_format(fmt, ##args); \ 650 } while (0) 651 652 /** 653 * trace_printk - printf formatting in the ftrace buffer 654 * @fmt: the printf format for printing 655 * 656 * Note: __trace_printk is an internal function for trace_printk() and 657 * the @ip is passed in via the trace_printk() macro. 658 * 659 * This function allows a kernel developer to debug fast path sections 660 * that printk is not appropriate for. By scattering in various 661 * printk like tracing in the code, a developer can quickly see 662 * where problems are occurring. 663 * 664 * This is intended as a debugging tool for the developer only. 665 * Please refrain from leaving trace_printks scattered around in 666 * your code. (Extra memory is used for special buffers that are 667 * allocated when trace_printk() is used.) 668 * 669 * A little optimization trick is done here. If there's only one 670 * argument, there's no need to scan the string for printf formats. 671 * The trace_puts() will suffice. But how can we take advantage of 672 * using trace_puts() when trace_printk() has only one argument? 673 * By stringifying the args and checking the size we can tell 674 * whether or not there are args. __stringify((__VA_ARGS__)) will 675 * turn into "()\0" with a size of 3 when there are no args, anything 676 * else will be bigger. All we need to do is define a string to this, 677 * and then take its size and compare to 3. If it's bigger, use 678 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 679 * let gcc optimize the rest. 680 */ 681 682 #define trace_printk(fmt, ...) \ 683 do { \ 684 char _______STR[] = __stringify((__VA_ARGS__)); \ 685 if (sizeof(_______STR) > 3) \ 686 do_trace_printk(fmt, ##__VA_ARGS__); \ 687 else \ 688 trace_puts(fmt); \ 689 } while (0) 690 691 #define do_trace_printk(fmt, args...) \ 692 do { \ 693 static const char *trace_printk_fmt __used \ 694 __attribute__((section("__trace_printk_fmt"))) = \ 695 __builtin_constant_p(fmt) ? fmt : NULL; \ 696 \ 697 __trace_printk_check_format(fmt, ##args); \ 698 \ 699 if (__builtin_constant_p(fmt)) \ 700 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 701 else \ 702 __trace_printk(_THIS_IP_, fmt, ##args); \ 703 } while (0) 704 705 extern __printf(2, 3) 706 int __trace_bprintk(unsigned long ip, const char *fmt, ...); 707 708 extern __printf(2, 3) 709 int __trace_printk(unsigned long ip, const char *fmt, ...); 710 711 /** 712 * trace_puts - write a string into the ftrace buffer 713 * @str: the string to record 714 * 715 * Note: __trace_bputs is an internal function for trace_puts and 716 * the @ip is passed in via the trace_puts macro. 717 * 718 * This is similar to trace_printk() but is made for those really fast 719 * paths that a developer wants the least amount of "Heisenbug" effects, 720 * where the processing of the print format is still too much. 721 * 722 * This function allows a kernel developer to debug fast path sections 723 * that printk is not appropriate for. By scattering in various 724 * printk like tracing in the code, a developer can quickly see 725 * where problems are occurring. 726 * 727 * This is intended as a debugging tool for the developer only. 728 * Please refrain from leaving trace_puts scattered around in 729 * your code. (Extra memory is used for special buffers that are 730 * allocated when trace_puts() is used.) 731 * 732 * Returns: 0 if nothing was written, positive # if string was. 733 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 734 */ 735 736 #define trace_puts(str) ({ \ 737 static const char *trace_printk_fmt __used \ 738 __attribute__((section("__trace_printk_fmt"))) = \ 739 __builtin_constant_p(str) ? str : NULL; \ 740 \ 741 if (__builtin_constant_p(str)) \ 742 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 743 else \ 744 __trace_puts(_THIS_IP_, str, strlen(str)); \ 745 }) 746 extern int __trace_bputs(unsigned long ip, const char *str); 747 extern int __trace_puts(unsigned long ip, const char *str, int size); 748 749 extern void trace_dump_stack(int skip); 750 751 /* 752 * The double __builtin_constant_p is because gcc will give us an error 753 * if we try to allocate the static variable to fmt if it is not a 754 * constant. Even with the outer if statement. 755 */ 756 #define ftrace_vprintk(fmt, vargs) \ 757 do { \ 758 if (__builtin_constant_p(fmt)) { \ 759 static const char *trace_printk_fmt __used \ 760 __attribute__((section("__trace_printk_fmt"))) = \ 761 __builtin_constant_p(fmt) ? fmt : NULL; \ 762 \ 763 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 764 } else \ 765 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 766 } while (0) 767 768 extern __printf(2, 0) int 769 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 770 771 extern __printf(2, 0) int 772 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 773 774 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 775 #else 776 static inline void tracing_start(void) { } 777 static inline void tracing_stop(void) { } 778 static inline void trace_dump_stack(int skip) { } 779 780 static inline void tracing_on(void) { } 781 static inline void tracing_off(void) { } 782 static inline int tracing_is_on(void) { return 0; } 783 static inline void tracing_snapshot(void) { } 784 static inline void tracing_snapshot_alloc(void) { } 785 786 static inline __printf(1, 2) 787 int trace_printk(const char *fmt, ...) 788 { 789 return 0; 790 } 791 static __printf(1, 0) inline int 792 ftrace_vprintk(const char *fmt, va_list ap) 793 { 794 return 0; 795 } 796 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 797 #endif /* CONFIG_TRACING */ 798 799 /* 800 * min()/max()/clamp() macros must accomplish three things: 801 * 802 * - avoid multiple evaluations of the arguments (so side-effects like 803 * "x++" happen only once) when non-constant. 804 * - perform strict type-checking (to generate warnings instead of 805 * nasty runtime surprises). See the "unnecessary" pointer comparison 806 * in __typecheck(). 807 * - retain result as a constant expressions when called with only 808 * constant expressions (to avoid tripping VLA warnings in stack 809 * allocation usage). 810 */ 811 #define __typecheck(x, y) \ 812 (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1))) 813 814 /* 815 * This returns a constant expression while determining if an argument is 816 * a constant expression, most importantly without evaluating the argument. 817 * Glory to Martin Uecker <[email protected]> 818 */ 819 #define __is_constexpr(x) \ 820 (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) 821 822 #define __no_side_effects(x, y) \ 823 (__is_constexpr(x) && __is_constexpr(y)) 824 825 #define __safe_cmp(x, y) \ 826 (__typecheck(x, y) && __no_side_effects(x, y)) 827 828 #define __cmp(x, y, op) ((x) op (y) ? (x) : (y)) 829 830 #define __cmp_once(x, y, unique_x, unique_y, op) ({ \ 831 typeof(x) unique_x = (x); \ 832 typeof(y) unique_y = (y); \ 833 __cmp(unique_x, unique_y, op); }) 834 835 #define __careful_cmp(x, y, op) \ 836 __builtin_choose_expr(__safe_cmp(x, y), \ 837 __cmp(x, y, op), \ 838 __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op)) 839 840 /** 841 * min - return minimum of two values of the same or compatible types 842 * @x: first value 843 * @y: second value 844 */ 845 #define min(x, y) __careful_cmp(x, y, <) 846 847 /** 848 * max - return maximum of two values of the same or compatible types 849 * @x: first value 850 * @y: second value 851 */ 852 #define max(x, y) __careful_cmp(x, y, >) 853 854 /** 855 * min3 - return minimum of three values 856 * @x: first value 857 * @y: second value 858 * @z: third value 859 */ 860 #define min3(x, y, z) min((typeof(x))min(x, y), z) 861 862 /** 863 * max3 - return maximum of three values 864 * @x: first value 865 * @y: second value 866 * @z: third value 867 */ 868 #define max3(x, y, z) max((typeof(x))max(x, y), z) 869 870 /** 871 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 872 * @x: value1 873 * @y: value2 874 */ 875 #define min_not_zero(x, y) ({ \ 876 typeof(x) __x = (x); \ 877 typeof(y) __y = (y); \ 878 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 879 880 /** 881 * clamp - return a value clamped to a given range with strict typechecking 882 * @val: current value 883 * @lo: lowest allowable value 884 * @hi: highest allowable value 885 * 886 * This macro does strict typechecking of @lo/@hi to make sure they are of the 887 * same type as @val. See the unnecessary pointer comparisons. 888 */ 889 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 890 891 /* 892 * ..and if you can't take the strict 893 * types, you can specify one yourself. 894 * 895 * Or not use min/max/clamp at all, of course. 896 */ 897 898 /** 899 * min_t - return minimum of two values, using the specified type 900 * @type: data type to use 901 * @x: first value 902 * @y: second value 903 */ 904 #define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <) 905 906 /** 907 * max_t - return maximum of two values, using the specified type 908 * @type: data type to use 909 * @x: first value 910 * @y: second value 911 */ 912 #define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >) 913 914 /** 915 * clamp_t - return a value clamped to a given range using a given type 916 * @type: the type of variable to use 917 * @val: current value 918 * @lo: minimum allowable value 919 * @hi: maximum allowable value 920 * 921 * This macro does no typechecking and uses temporary variables of type 922 * @type to make all the comparisons. 923 */ 924 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) 925 926 /** 927 * clamp_val - return a value clamped to a given range using val's type 928 * @val: current value 929 * @lo: minimum allowable value 930 * @hi: maximum allowable value 931 * 932 * This macro does no typechecking and uses temporary variables of whatever 933 * type the input argument @val is. This is useful when @val is an unsigned 934 * type and @lo and @hi are literals that will otherwise be assigned a signed 935 * integer type. 936 */ 937 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) 938 939 940 /** 941 * swap - swap values of @a and @b 942 * @a: first value 943 * @b: second value 944 */ 945 #define swap(a, b) \ 946 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 947 948 /* This counts to 12. Any more, it will return 13th argument. */ 949 #define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n 950 #define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 951 952 #define __CONCAT(a, b) a ## b 953 #define CONCATENATE(a, b) __CONCAT(a, b) 954 955 /** 956 * container_of - cast a member of a structure out to the containing structure 957 * @ptr: the pointer to the member. 958 * @type: the type of the container struct this is embedded in. 959 * @member: the name of the member within the struct. 960 * 961 */ 962 #define container_of(ptr, type, member) ({ \ 963 void *__mptr = (void *)(ptr); \ 964 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 965 !__same_type(*(ptr), void), \ 966 "pointer type mismatch in container_of()"); \ 967 ((type *)(__mptr - offsetof(type, member))); }) 968 969 /** 970 * container_of_safe - cast a member of a structure out to the containing structure 971 * @ptr: the pointer to the member. 972 * @type: the type of the container struct this is embedded in. 973 * @member: the name of the member within the struct. 974 * 975 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged. 976 */ 977 #define container_of_safe(ptr, type, member) ({ \ 978 void *__mptr = (void *)(ptr); \ 979 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 980 !__same_type(*(ptr), void), \ 981 "pointer type mismatch in container_of()"); \ 982 IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \ 983 ((type *)(__mptr - offsetof(type, member))); }) 984 985 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 986 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 987 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 988 #endif 989 990 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ 991 #define VERIFY_OCTAL_PERMISSIONS(perms) \ 992 (BUILD_BUG_ON_ZERO((perms) < 0) + \ 993 BUILD_BUG_ON_ZERO((perms) > 0777) + \ 994 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ 995 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ 996 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ 997 /* USER_WRITABLE >= GROUP_WRITABLE */ \ 998 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ 999 /* OTHER_WRITABLE? Generally considered a bad idea. */ \ 1000 BUILD_BUG_ON_ZERO((perms) & 2) + \ 1001 (perms)) 1002 #endif 1003