1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_JIFFIES_H 3 #define _LINUX_JIFFIES_H 4 5 #include <linux/cache.h> 6 #include <linux/limits.h> 7 #include <linux/math64.h> 8 #include <linux/minmax.h> 9 #include <linux/types.h> 10 #include <linux/time.h> 11 #include <linux/timex.h> 12 #include <vdso/jiffies.h> 13 #include <asm/param.h> /* for HZ */ 14 #include <generated/timeconst.h> 15 16 /* 17 * The following defines establish the engineering parameters of the PLL 18 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz 19 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the 20 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the 21 * nearest power of two in order to avoid hardware multiply operations. 22 */ 23 #if HZ >= 12 && HZ < 24 24 # define SHIFT_HZ 4 25 #elif HZ >= 24 && HZ < 48 26 # define SHIFT_HZ 5 27 #elif HZ >= 48 && HZ < 96 28 # define SHIFT_HZ 6 29 #elif HZ >= 96 && HZ < 192 30 # define SHIFT_HZ 7 31 #elif HZ >= 192 && HZ < 384 32 # define SHIFT_HZ 8 33 #elif HZ >= 384 && HZ < 768 34 # define SHIFT_HZ 9 35 #elif HZ >= 768 && HZ < 1536 36 # define SHIFT_HZ 10 37 #elif HZ >= 1536 && HZ < 3072 38 # define SHIFT_HZ 11 39 #elif HZ >= 3072 && HZ < 6144 40 # define SHIFT_HZ 12 41 #elif HZ >= 6144 && HZ < 12288 42 # define SHIFT_HZ 13 43 #else 44 # error Invalid value of HZ. 45 #endif 46 47 /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can 48 * improve accuracy by shifting LSH bits, hence calculating: 49 * (NOM << LSH) / DEN 50 * This however means trouble for large NOM, because (NOM << LSH) may no 51 * longer fit in 32 bits. The following way of calculating this gives us 52 * some slack, under the following conditions: 53 * - (NOM / DEN) fits in (32 - LSH) bits. 54 * - (NOM % DEN) fits in (32 - LSH) bits. 55 */ 56 #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \ 57 + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN)) 58 59 /* LATCH is used in the interval timer and ftape setup. */ 60 #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */ 61 62 extern int register_refined_jiffies(long clock_tick_rate); 63 64 /* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */ 65 #define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ) 66 67 /* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ 68 #define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) 69 70 #ifndef __jiffy_arch_data 71 #define __jiffy_arch_data 72 #endif 73 74 /* 75 * The 64-bit value is not atomic - you MUST NOT read it 76 * without sampling the sequence number in jiffies_lock. 77 * get_jiffies_64() will do this for you as appropriate. 78 */ 79 extern u64 __cacheline_aligned_in_smp jiffies_64; 80 extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies; 81 82 #if (BITS_PER_LONG < 64) 83 u64 get_jiffies_64(void); 84 #else 85 static inline u64 get_jiffies_64(void) 86 { 87 return (u64)jiffies; 88 } 89 #endif 90 91 /* 92 * These inlines deal with timer wrapping correctly. You are 93 * strongly encouraged to use them 94 * 1. Because people otherwise forget 95 * 2. Because if the timer wrap changes in future you won't have to 96 * alter your driver code. 97 * 98 * time_after(a,b) returns true if the time a is after time b. 99 * 100 * Do this with "<0" and ">=0" to only test the sign of the result. A 101 * good compiler would generate better code (and a really good compiler 102 * wouldn't care). Gcc is currently neither. 103 */ 104 #define time_after(a,b) \ 105 (typecheck(unsigned long, a) && \ 106 typecheck(unsigned long, b) && \ 107 ((long)((b) - (a)) < 0)) 108 #define time_before(a,b) time_after(b,a) 109 110 #define time_after_eq(a,b) \ 111 (typecheck(unsigned long, a) && \ 112 typecheck(unsigned long, b) && \ 113 ((long)((a) - (b)) >= 0)) 114 #define time_before_eq(a,b) time_after_eq(b,a) 115 116 /* 117 * Calculate whether a is in the range of [b, c]. 118 */ 119 #define time_in_range(a,b,c) \ 120 (time_after_eq(a,b) && \ 121 time_before_eq(a,c)) 122 123 /* 124 * Calculate whether a is in the range of [b, c). 125 */ 126 #define time_in_range_open(a,b,c) \ 127 (time_after_eq(a,b) && \ 128 time_before(a,c)) 129 130 /* Same as above, but does so with platform independent 64bit types. 131 * These must be used when utilizing jiffies_64 (i.e. return value of 132 * get_jiffies_64() */ 133 #define time_after64(a,b) \ 134 (typecheck(__u64, a) && \ 135 typecheck(__u64, b) && \ 136 ((__s64)((b) - (a)) < 0)) 137 #define time_before64(a,b) time_after64(b,a) 138 139 #define time_after_eq64(a,b) \ 140 (typecheck(__u64, a) && \ 141 typecheck(__u64, b) && \ 142 ((__s64)((a) - (b)) >= 0)) 143 #define time_before_eq64(a,b) time_after_eq64(b,a) 144 145 #define time_in_range64(a, b, c) \ 146 (time_after_eq64(a, b) && \ 147 time_before_eq64(a, c)) 148 149 /* 150 * These four macros compare jiffies and 'a' for convenience. 151 */ 152 153 /* time_is_before_jiffies(a) return true if a is before jiffies */ 154 #define time_is_before_jiffies(a) time_after(jiffies, a) 155 #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a) 156 157 /* time_is_after_jiffies(a) return true if a is after jiffies */ 158 #define time_is_after_jiffies(a) time_before(jiffies, a) 159 #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a) 160 161 /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/ 162 #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a) 163 #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a) 164 165 /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/ 166 #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a) 167 #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a) 168 169 /* 170 * Have the 32 bit jiffies value wrap 5 minutes after boot 171 * so jiffies wrap bugs show up earlier. 172 */ 173 #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) 174 175 /* 176 * Change timeval to jiffies, trying to avoid the 177 * most obvious overflows.. 178 * 179 * And some not so obvious. 180 * 181 * Note that we don't want to return LONG_MAX, because 182 * for various timeout reasons we often end up having 183 * to wait "jiffies+1" in order to guarantee that we wait 184 * at _least_ "jiffies" - so "jiffies+1" had better still 185 * be positive. 186 */ 187 #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1) 188 189 extern unsigned long preset_lpj; 190 191 /* 192 * We want to do realistic conversions of time so we need to use the same 193 * values the update wall clock code uses as the jiffies size. This value 194 * is: TICK_NSEC (which is defined in timex.h). This 195 * is a constant and is in nanoseconds. We will use scaled math 196 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and 197 * NSEC_JIFFIE_SC. Note that these defines contain nothing but 198 * constants and so are computed at compile time. SHIFT_HZ (computed in 199 * timex.h) adjusts the scaling for different HZ values. 200 201 * Scaled math??? What is that? 202 * 203 * Scaled math is a way to do integer math on values that would, 204 * otherwise, either overflow, underflow, or cause undesired div 205 * instructions to appear in the execution path. In short, we "scale" 206 * up the operands so they take more bits (more precision, less 207 * underflow), do the desired operation and then "scale" the result back 208 * by the same amount. If we do the scaling by shifting we avoid the 209 * costly mpy and the dastardly div instructions. 210 211 * Suppose, for example, we want to convert from seconds to jiffies 212 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The 213 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We 214 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we 215 * might calculate at compile time, however, the result will only have 216 * about 3-4 bits of precision (less for smaller values of HZ). 217 * 218 * So, we scale as follows: 219 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); 220 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; 221 * Then we make SCALE a power of two so: 222 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; 223 * Now we define: 224 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) 225 * jiff = (sec * SEC_CONV) >> SCALE; 226 * 227 * Often the math we use will expand beyond 32-bits so we tell C how to 228 * do this and pass the 64-bit result of the mpy through the ">> SCALE" 229 * which should take the result back to 32-bits. We want this expansion 230 * to capture as much precision as possible. At the same time we don't 231 * want to overflow so we pick the SCALE to avoid this. In this file, 232 * that means using a different scale for each range of HZ values (as 233 * defined in timex.h). 234 * 235 * For those who want to know, gcc will give a 64-bit result from a "*" 236 * operator if the result is a long long AND at least one of the 237 * operands is cast to long long (usually just prior to the "*" so as 238 * not to confuse it into thinking it really has a 64-bit operand, 239 * which, buy the way, it can do, but it takes more code and at least 2 240 * mpys). 241 242 * We also need to be aware that one second in nanoseconds is only a 243 * couple of bits away from overflowing a 32-bit word, so we MUST use 244 * 64-bits to get the full range time in nanoseconds. 245 246 */ 247 248 /* 249 * Here are the scales we will use. One for seconds, nanoseconds and 250 * microseconds. 251 * 252 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and 253 * check if the sign bit is set. If not, we bump the shift count by 1. 254 * (Gets an extra bit of precision where we can use it.) 255 * We know it is set for HZ = 1024 and HZ = 100 not for 1000. 256 * Haven't tested others. 257 258 * Limits of cpp (for #if expressions) only long (no long long), but 259 * then we only need the most signicant bit. 260 */ 261 262 #define SEC_JIFFIE_SC (31 - SHIFT_HZ) 263 #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000) 264 #undef SEC_JIFFIE_SC 265 #define SEC_JIFFIE_SC (32 - SHIFT_HZ) 266 #endif 267 #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) 268 #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ 269 TICK_NSEC -1) / (u64)TICK_NSEC)) 270 271 #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ 272 TICK_NSEC -1) / (u64)TICK_NSEC)) 273 /* 274 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that 275 * into seconds. The 64-bit case will overflow if we are not careful, 276 * so use the messy SH_DIV macro to do it. Still all constants. 277 */ 278 #if BITS_PER_LONG < 64 279 # define MAX_SEC_IN_JIFFIES \ 280 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC) 281 #else /* take care of overflow on 64 bits machines */ 282 # define MAX_SEC_IN_JIFFIES \ 283 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1) 284 285 #endif 286 287 /* 288 * Convert various time units to each other: 289 */ 290 extern unsigned int jiffies_to_msecs(const unsigned long j); 291 extern unsigned int jiffies_to_usecs(const unsigned long j); 292 293 static inline u64 jiffies_to_nsecs(const unsigned long j) 294 { 295 return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC; 296 } 297 298 extern u64 jiffies64_to_nsecs(u64 j); 299 extern u64 jiffies64_to_msecs(u64 j); 300 301 extern unsigned long __msecs_to_jiffies(const unsigned int m); 302 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 303 /* 304 * HZ is equal to or smaller than 1000, and 1000 is a nice round 305 * multiple of HZ, divide with the factor between them, but round 306 * upwards: 307 */ 308 static inline unsigned long _msecs_to_jiffies(const unsigned int m) 309 { 310 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); 311 } 312 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) 313 /* 314 * HZ is larger than 1000, and HZ is a nice round multiple of 1000 - 315 * simply multiply with the factor between them. 316 * 317 * But first make sure the multiplication result cannot overflow: 318 */ 319 static inline unsigned long _msecs_to_jiffies(const unsigned int m) 320 { 321 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) 322 return MAX_JIFFY_OFFSET; 323 return m * (HZ / MSEC_PER_SEC); 324 } 325 #else 326 /* 327 * Generic case - multiply, round and divide. But first check that if 328 * we are doing a net multiplication, that we wouldn't overflow: 329 */ 330 static inline unsigned long _msecs_to_jiffies(const unsigned int m) 331 { 332 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) 333 return MAX_JIFFY_OFFSET; 334 335 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32; 336 } 337 #endif 338 /** 339 * msecs_to_jiffies: - convert milliseconds to jiffies 340 * @m: time in milliseconds 341 * 342 * conversion is done as follows: 343 * 344 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) 345 * 346 * - 'too large' values [that would result in larger than 347 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 348 * 349 * - all other values are converted to jiffies by either multiplying 350 * the input value by a factor or dividing it with a factor and 351 * handling any 32-bit overflows. 352 * for the details see __msecs_to_jiffies() 353 * 354 * msecs_to_jiffies() checks for the passed in value being a constant 355 * via __builtin_constant_p() allowing gcc to eliminate most of the 356 * code, __msecs_to_jiffies() is called if the value passed does not 357 * allow constant folding and the actual conversion must be done at 358 * runtime. 359 * the HZ range specific helpers _msecs_to_jiffies() are called both 360 * directly here and from __msecs_to_jiffies() in the case where 361 * constant folding is not possible. 362 */ 363 static __always_inline unsigned long msecs_to_jiffies(const unsigned int m) 364 { 365 if (__builtin_constant_p(m)) { 366 if ((int)m < 0) 367 return MAX_JIFFY_OFFSET; 368 return _msecs_to_jiffies(m); 369 } else { 370 return __msecs_to_jiffies(m); 371 } 372 } 373 374 extern unsigned long __usecs_to_jiffies(const unsigned int u); 375 #if !(USEC_PER_SEC % HZ) 376 static inline unsigned long _usecs_to_jiffies(const unsigned int u) 377 { 378 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); 379 } 380 #else 381 static inline unsigned long _usecs_to_jiffies(const unsigned int u) 382 { 383 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32) 384 >> USEC_TO_HZ_SHR32; 385 } 386 #endif 387 388 /** 389 * usecs_to_jiffies: - convert microseconds to jiffies 390 * @u: time in microseconds 391 * 392 * conversion is done as follows: 393 * 394 * - 'too large' values [that would result in larger than 395 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 396 * 397 * - all other values are converted to jiffies by either multiplying 398 * the input value by a factor or dividing it with a factor and 399 * handling any 32-bit overflows as for msecs_to_jiffies. 400 * 401 * usecs_to_jiffies() checks for the passed in value being a constant 402 * via __builtin_constant_p() allowing gcc to eliminate most of the 403 * code, __usecs_to_jiffies() is called if the value passed does not 404 * allow constant folding and the actual conversion must be done at 405 * runtime. 406 * the HZ range specific helpers _usecs_to_jiffies() are called both 407 * directly here and from __msecs_to_jiffies() in the case where 408 * constant folding is not possible. 409 */ 410 static __always_inline unsigned long usecs_to_jiffies(const unsigned int u) 411 { 412 if (__builtin_constant_p(u)) { 413 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) 414 return MAX_JIFFY_OFFSET; 415 return _usecs_to_jiffies(u); 416 } else { 417 return __usecs_to_jiffies(u); 418 } 419 } 420 421 extern unsigned long timespec64_to_jiffies(const struct timespec64 *value); 422 extern void jiffies_to_timespec64(const unsigned long jiffies, 423 struct timespec64 *value); 424 extern clock_t jiffies_to_clock_t(unsigned long x); 425 static inline clock_t jiffies_delta_to_clock_t(long delta) 426 { 427 return jiffies_to_clock_t(max(0L, delta)); 428 } 429 430 static inline unsigned int jiffies_delta_to_msecs(long delta) 431 { 432 return jiffies_to_msecs(max(0L, delta)); 433 } 434 435 extern unsigned long clock_t_to_jiffies(unsigned long x); 436 extern u64 jiffies_64_to_clock_t(u64 x); 437 extern u64 nsec_to_clock_t(u64 x); 438 extern u64 nsecs_to_jiffies64(u64 n); 439 extern unsigned long nsecs_to_jiffies(u64 n); 440 441 #define TIMESTAMP_SIZE 30 442 443 #endif 444