1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_JIFFIES_H 3 #define _LINUX_JIFFIES_H 4 5 #include <linux/cache.h> 6 #include <linux/math64.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/time.h> 10 #include <linux/timex.h> 11 #include <asm/param.h> /* for HZ */ 12 #include <generated/timeconst.h> 13 14 /* 15 * The following defines establish the engineering parameters of the PLL 16 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz 17 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the 18 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the 19 * nearest power of two in order to avoid hardware multiply operations. 20 */ 21 #if HZ >= 12 && HZ < 24 22 # define SHIFT_HZ 4 23 #elif HZ >= 24 && HZ < 48 24 # define SHIFT_HZ 5 25 #elif HZ >= 48 && HZ < 96 26 # define SHIFT_HZ 6 27 #elif HZ >= 96 && HZ < 192 28 # define SHIFT_HZ 7 29 #elif HZ >= 192 && HZ < 384 30 # define SHIFT_HZ 8 31 #elif HZ >= 384 && HZ < 768 32 # define SHIFT_HZ 9 33 #elif HZ >= 768 && HZ < 1536 34 # define SHIFT_HZ 10 35 #elif HZ >= 1536 && HZ < 3072 36 # define SHIFT_HZ 11 37 #elif HZ >= 3072 && HZ < 6144 38 # define SHIFT_HZ 12 39 #elif HZ >= 6144 && HZ < 12288 40 # define SHIFT_HZ 13 41 #else 42 # error Invalid value of HZ. 43 #endif 44 45 /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can 46 * improve accuracy by shifting LSH bits, hence calculating: 47 * (NOM << LSH) / DEN 48 * This however means trouble for large NOM, because (NOM << LSH) may no 49 * longer fit in 32 bits. The following way of calculating this gives us 50 * some slack, under the following conditions: 51 * - (NOM / DEN) fits in (32 - LSH) bits. 52 * - (NOM % DEN) fits in (32 - LSH) bits. 53 */ 54 #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \ 55 + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN)) 56 57 /* LATCH is used in the interval timer and ftape setup. */ 58 #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */ 59 60 extern int register_refined_jiffies(long clock_tick_rate); 61 62 /* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */ 63 #define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ) 64 65 /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ 66 #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) 67 68 #ifndef __jiffy_arch_data 69 #define __jiffy_arch_data 70 #endif 71 72 /* 73 * The 64-bit value is not atomic - you MUST NOT read it 74 * without sampling the sequence number in jiffies_lock. 75 * get_jiffies_64() will do this for you as appropriate. 76 */ 77 extern u64 __cacheline_aligned_in_smp jiffies_64; 78 extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies; 79 80 #if (BITS_PER_LONG < 64) 81 u64 get_jiffies_64(void); 82 #else 83 static inline u64 get_jiffies_64(void) 84 { 85 return (u64)jiffies; 86 } 87 #endif 88 89 /* 90 * These inlines deal with timer wrapping correctly. You are 91 * strongly encouraged to use them 92 * 1. Because people otherwise forget 93 * 2. Because if the timer wrap changes in future you won't have to 94 * alter your driver code. 95 * 96 * time_after(a,b) returns true if the time a is after time b. 97 * 98 * Do this with "<0" and ">=0" to only test the sign of the result. A 99 * good compiler would generate better code (and a really good compiler 100 * wouldn't care). Gcc is currently neither. 101 */ 102 #define time_after(a,b) \ 103 (typecheck(unsigned long, a) && \ 104 typecheck(unsigned long, b) && \ 105 ((long)((b) - (a)) < 0)) 106 #define time_before(a,b) time_after(b,a) 107 108 #define time_after_eq(a,b) \ 109 (typecheck(unsigned long, a) && \ 110 typecheck(unsigned long, b) && \ 111 ((long)((a) - (b)) >= 0)) 112 #define time_before_eq(a,b) time_after_eq(b,a) 113 114 /* 115 * Calculate whether a is in the range of [b, c]. 116 */ 117 #define time_in_range(a,b,c) \ 118 (time_after_eq(a,b) && \ 119 time_before_eq(a,c)) 120 121 /* 122 * Calculate whether a is in the range of [b, c). 123 */ 124 #define time_in_range_open(a,b,c) \ 125 (time_after_eq(a,b) && \ 126 time_before(a,c)) 127 128 /* Same as above, but does so with platform independent 64bit types. 129 * These must be used when utilizing jiffies_64 (i.e. return value of 130 * get_jiffies_64() */ 131 #define time_after64(a,b) \ 132 (typecheck(__u64, a) && \ 133 typecheck(__u64, b) && \ 134 ((__s64)((b) - (a)) < 0)) 135 #define time_before64(a,b) time_after64(b,a) 136 137 #define time_after_eq64(a,b) \ 138 (typecheck(__u64, a) && \ 139 typecheck(__u64, b) && \ 140 ((__s64)((a) - (b)) >= 0)) 141 #define time_before_eq64(a,b) time_after_eq64(b,a) 142 143 #define time_in_range64(a, b, c) \ 144 (time_after_eq64(a, b) && \ 145 time_before_eq64(a, c)) 146 147 /* 148 * These four macros compare jiffies and 'a' for convenience. 149 */ 150 151 /* time_is_before_jiffies(a) return true if a is before jiffies */ 152 #define time_is_before_jiffies(a) time_after(jiffies, a) 153 #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a) 154 155 /* time_is_after_jiffies(a) return true if a is after jiffies */ 156 #define time_is_after_jiffies(a) time_before(jiffies, a) 157 #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a) 158 159 /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/ 160 #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a) 161 #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a) 162 163 /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/ 164 #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a) 165 #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a) 166 167 /* 168 * Have the 32 bit jiffies value wrap 5 minutes after boot 169 * so jiffies wrap bugs show up earlier. 170 */ 171 #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) 172 173 /* 174 * Change timeval to jiffies, trying to avoid the 175 * most obvious overflows.. 176 * 177 * And some not so obvious. 178 * 179 * Note that we don't want to return LONG_MAX, because 180 * for various timeout reasons we often end up having 181 * to wait "jiffies+1" in order to guarantee that we wait 182 * at _least_ "jiffies" - so "jiffies+1" had better still 183 * be positive. 184 */ 185 #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1) 186 187 extern unsigned long preset_lpj; 188 189 /* 190 * We want to do realistic conversions of time so we need to use the same 191 * values the update wall clock code uses as the jiffies size. This value 192 * is: TICK_NSEC (which is defined in timex.h). This 193 * is a constant and is in nanoseconds. We will use scaled math 194 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and 195 * NSEC_JIFFIE_SC. Note that these defines contain nothing but 196 * constants and so are computed at compile time. SHIFT_HZ (computed in 197 * timex.h) adjusts the scaling for different HZ values. 198 199 * Scaled math??? What is that? 200 * 201 * Scaled math is a way to do integer math on values that would, 202 * otherwise, either overflow, underflow, or cause undesired div 203 * instructions to appear in the execution path. In short, we "scale" 204 * up the operands so they take more bits (more precision, less 205 * underflow), do the desired operation and then "scale" the result back 206 * by the same amount. If we do the scaling by shifting we avoid the 207 * costly mpy and the dastardly div instructions. 208 209 * Suppose, for example, we want to convert from seconds to jiffies 210 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The 211 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We 212 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we 213 * might calculate at compile time, however, the result will only have 214 * about 3-4 bits of precision (less for smaller values of HZ). 215 * 216 * So, we scale as follows: 217 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); 218 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; 219 * Then we make SCALE a power of two so: 220 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; 221 * Now we define: 222 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) 223 * jiff = (sec * SEC_CONV) >> SCALE; 224 * 225 * Often the math we use will expand beyond 32-bits so we tell C how to 226 * do this and pass the 64-bit result of the mpy through the ">> SCALE" 227 * which should take the result back to 32-bits. We want this expansion 228 * to capture as much precision as possible. At the same time we don't 229 * want to overflow so we pick the SCALE to avoid this. In this file, 230 * that means using a different scale for each range of HZ values (as 231 * defined in timex.h). 232 * 233 * For those who want to know, gcc will give a 64-bit result from a "*" 234 * operator if the result is a long long AND at least one of the 235 * operands is cast to long long (usually just prior to the "*" so as 236 * not to confuse it into thinking it really has a 64-bit operand, 237 * which, buy the way, it can do, but it takes more code and at least 2 238 * mpys). 239 240 * We also need to be aware that one second in nanoseconds is only a 241 * couple of bits away from overflowing a 32-bit word, so we MUST use 242 * 64-bits to get the full range time in nanoseconds. 243 244 */ 245 246 /* 247 * Here are the scales we will use. One for seconds, nanoseconds and 248 * microseconds. 249 * 250 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and 251 * check if the sign bit is set. If not, we bump the shift count by 1. 252 * (Gets an extra bit of precision where we can use it.) 253 * We know it is set for HZ = 1024 and HZ = 100 not for 1000. 254 * Haven't tested others. 255 256 * Limits of cpp (for #if expressions) only long (no long long), but 257 * then we only need the most signicant bit. 258 */ 259 260 #define SEC_JIFFIE_SC (31 - SHIFT_HZ) 261 #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000) 262 #undef SEC_JIFFIE_SC 263 #define SEC_JIFFIE_SC (32 - SHIFT_HZ) 264 #endif 265 #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) 266 #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ 267 TICK_NSEC -1) / (u64)TICK_NSEC)) 268 269 #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ 270 TICK_NSEC -1) / (u64)TICK_NSEC)) 271 /* 272 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that 273 * into seconds. The 64-bit case will overflow if we are not careful, 274 * so use the messy SH_DIV macro to do it. Still all constants. 275 */ 276 #if BITS_PER_LONG < 64 277 # define MAX_SEC_IN_JIFFIES \ 278 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC) 279 #else /* take care of overflow on 64 bits machines */ 280 # define MAX_SEC_IN_JIFFIES \ 281 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1) 282 283 #endif 284 285 /* 286 * Convert various time units to each other: 287 */ 288 extern unsigned int jiffies_to_msecs(const unsigned long j); 289 extern unsigned int jiffies_to_usecs(const unsigned long j); 290 291 static inline u64 jiffies_to_nsecs(const unsigned long j) 292 { 293 return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC; 294 } 295 296 extern u64 jiffies64_to_nsecs(u64 j); 297 298 extern unsigned long __msecs_to_jiffies(const unsigned int m); 299 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 300 /* 301 * HZ is equal to or smaller than 1000, and 1000 is a nice round 302 * multiple of HZ, divide with the factor between them, but round 303 * upwards: 304 */ 305 static inline unsigned long _msecs_to_jiffies(const unsigned int m) 306 { 307 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); 308 } 309 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) 310 /* 311 * HZ is larger than 1000, and HZ is a nice round multiple of 1000 - 312 * simply multiply with the factor between them. 313 * 314 * But first make sure the multiplication result cannot overflow: 315 */ 316 static inline unsigned long _msecs_to_jiffies(const unsigned int m) 317 { 318 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) 319 return MAX_JIFFY_OFFSET; 320 return m * (HZ / MSEC_PER_SEC); 321 } 322 #else 323 /* 324 * Generic case - multiply, round and divide. But first check that if 325 * we are doing a net multiplication, that we wouldn't overflow: 326 */ 327 static inline unsigned long _msecs_to_jiffies(const unsigned int m) 328 { 329 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) 330 return MAX_JIFFY_OFFSET; 331 332 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32; 333 } 334 #endif 335 /** 336 * msecs_to_jiffies: - convert milliseconds to jiffies 337 * @m: time in milliseconds 338 * 339 * conversion is done as follows: 340 * 341 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) 342 * 343 * - 'too large' values [that would result in larger than 344 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 345 * 346 * - all other values are converted to jiffies by either multiplying 347 * the input value by a factor or dividing it with a factor and 348 * handling any 32-bit overflows. 349 * for the details see __msecs_to_jiffies() 350 * 351 * msecs_to_jiffies() checks for the passed in value being a constant 352 * via __builtin_constant_p() allowing gcc to eliminate most of the 353 * code, __msecs_to_jiffies() is called if the value passed does not 354 * allow constant folding and the actual conversion must be done at 355 * runtime. 356 * the HZ range specific helpers _msecs_to_jiffies() are called both 357 * directly here and from __msecs_to_jiffies() in the case where 358 * constant folding is not possible. 359 */ 360 static __always_inline unsigned long msecs_to_jiffies(const unsigned int m) 361 { 362 if (__builtin_constant_p(m)) { 363 if ((int)m < 0) 364 return MAX_JIFFY_OFFSET; 365 return _msecs_to_jiffies(m); 366 } else { 367 return __msecs_to_jiffies(m); 368 } 369 } 370 371 extern unsigned long __usecs_to_jiffies(const unsigned int u); 372 #if !(USEC_PER_SEC % HZ) 373 static inline unsigned long _usecs_to_jiffies(const unsigned int u) 374 { 375 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); 376 } 377 #else 378 static inline unsigned long _usecs_to_jiffies(const unsigned int u) 379 { 380 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32) 381 >> USEC_TO_HZ_SHR32; 382 } 383 #endif 384 385 /** 386 * usecs_to_jiffies: - convert microseconds to jiffies 387 * @u: time in microseconds 388 * 389 * conversion is done as follows: 390 * 391 * - 'too large' values [that would result in larger than 392 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 393 * 394 * - all other values are converted to jiffies by either multiplying 395 * the input value by a factor or dividing it with a factor and 396 * handling any 32-bit overflows as for msecs_to_jiffies. 397 * 398 * usecs_to_jiffies() checks for the passed in value being a constant 399 * via __builtin_constant_p() allowing gcc to eliminate most of the 400 * code, __usecs_to_jiffies() is called if the value passed does not 401 * allow constant folding and the actual conversion must be done at 402 * runtime. 403 * the HZ range specific helpers _usecs_to_jiffies() are called both 404 * directly here and from __msecs_to_jiffies() in the case where 405 * constant folding is not possible. 406 */ 407 static __always_inline unsigned long usecs_to_jiffies(const unsigned int u) 408 { 409 if (__builtin_constant_p(u)) { 410 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) 411 return MAX_JIFFY_OFFSET; 412 return _usecs_to_jiffies(u); 413 } else { 414 return __usecs_to_jiffies(u); 415 } 416 } 417 418 extern unsigned long timespec64_to_jiffies(const struct timespec64 *value); 419 extern void jiffies_to_timespec64(const unsigned long jiffies, 420 struct timespec64 *value); 421 static inline unsigned long timespec_to_jiffies(const struct timespec *value) 422 { 423 struct timespec64 ts = timespec_to_timespec64(*value); 424 425 return timespec64_to_jiffies(&ts); 426 } 427 428 static inline void jiffies_to_timespec(const unsigned long jiffies, 429 struct timespec *value) 430 { 431 struct timespec64 ts; 432 433 jiffies_to_timespec64(jiffies, &ts); 434 *value = timespec64_to_timespec(ts); 435 } 436 437 extern unsigned long timeval_to_jiffies(const struct timeval *value); 438 extern void jiffies_to_timeval(const unsigned long jiffies, 439 struct timeval *value); 440 441 extern clock_t jiffies_to_clock_t(unsigned long x); 442 static inline clock_t jiffies_delta_to_clock_t(long delta) 443 { 444 return jiffies_to_clock_t(max(0L, delta)); 445 } 446 447 extern unsigned long clock_t_to_jiffies(unsigned long x); 448 extern u64 jiffies_64_to_clock_t(u64 x); 449 extern u64 nsec_to_clock_t(u64 x); 450 extern u64 nsecs_to_jiffies64(u64 n); 451 extern unsigned long nsecs_to_jiffies(u64 n); 452 453 #define TIMESTAMP_SIZE 30 454 455 #endif 456