xref: /linux-6.15/include/linux/jiffies.h (revision daa67b4b)
1 #ifndef _LINUX_JIFFIES_H
2 #define _LINUX_JIFFIES_H
3 
4 #include <linux/math64.h>
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/time.h>
8 #include <linux/timex.h>
9 #include <asm/param.h>			/* for HZ */
10 #include <generated/timeconst.h>
11 
12 /*
13  * The following defines establish the engineering parameters of the PLL
14  * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
15  * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
16  * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
17  * nearest power of two in order to avoid hardware multiply operations.
18  */
19 #if HZ >= 12 && HZ < 24
20 # define SHIFT_HZ	4
21 #elif HZ >= 24 && HZ < 48
22 # define SHIFT_HZ	5
23 #elif HZ >= 48 && HZ < 96
24 # define SHIFT_HZ	6
25 #elif HZ >= 96 && HZ < 192
26 # define SHIFT_HZ	7
27 #elif HZ >= 192 && HZ < 384
28 # define SHIFT_HZ	8
29 #elif HZ >= 384 && HZ < 768
30 # define SHIFT_HZ	9
31 #elif HZ >= 768 && HZ < 1536
32 # define SHIFT_HZ	10
33 #elif HZ >= 1536 && HZ < 3072
34 # define SHIFT_HZ	11
35 #elif HZ >= 3072 && HZ < 6144
36 # define SHIFT_HZ	12
37 #elif HZ >= 6144 && HZ < 12288
38 # define SHIFT_HZ	13
39 #else
40 # error Invalid value of HZ.
41 #endif
42 
43 /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
44  * improve accuracy by shifting LSH bits, hence calculating:
45  *     (NOM << LSH) / DEN
46  * This however means trouble for large NOM, because (NOM << LSH) may no
47  * longer fit in 32 bits. The following way of calculating this gives us
48  * some slack, under the following conditions:
49  *   - (NOM / DEN) fits in (32 - LSH) bits.
50  *   - (NOM % DEN) fits in (32 - LSH) bits.
51  */
52 #define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
53                              + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
54 
55 /* LATCH is used in the interval timer and ftape setup. */
56 #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)	/* For divider */
57 
58 extern int register_refined_jiffies(long clock_tick_rate);
59 
60 /* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
61 #define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
62 
63 /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
64 #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
65 
66 /* some arch's have a small-data section that can be accessed register-relative
67  * but that can only take up to, say, 4-byte variables. jiffies being part of
68  * an 8-byte variable may not be correctly accessed unless we force the issue
69  */
70 #define __jiffy_data  __attribute__((section(".data")))
71 
72 /*
73  * The 64-bit value is not atomic - you MUST NOT read it
74  * without sampling the sequence number in jiffies_lock.
75  * get_jiffies_64() will do this for you as appropriate.
76  */
77 extern u64 __jiffy_data jiffies_64;
78 extern unsigned long volatile __jiffy_data jiffies;
79 
80 #if (BITS_PER_LONG < 64)
81 u64 get_jiffies_64(void);
82 #else
83 static inline u64 get_jiffies_64(void)
84 {
85 	return (u64)jiffies;
86 }
87 #endif
88 
89 /*
90  *	These inlines deal with timer wrapping correctly. You are
91  *	strongly encouraged to use them
92  *	1. Because people otherwise forget
93  *	2. Because if the timer wrap changes in future you won't have to
94  *	   alter your driver code.
95  *
96  * time_after(a,b) returns true if the time a is after time b.
97  *
98  * Do this with "<0" and ">=0" to only test the sign of the result. A
99  * good compiler would generate better code (and a really good compiler
100  * wouldn't care). Gcc is currently neither.
101  */
102 #define time_after(a,b)		\
103 	(typecheck(unsigned long, a) && \
104 	 typecheck(unsigned long, b) && \
105 	 ((long)((b) - (a)) < 0))
106 #define time_before(a,b)	time_after(b,a)
107 
108 #define time_after_eq(a,b)	\
109 	(typecheck(unsigned long, a) && \
110 	 typecheck(unsigned long, b) && \
111 	 ((long)((a) - (b)) >= 0))
112 #define time_before_eq(a,b)	time_after_eq(b,a)
113 
114 /*
115  * Calculate whether a is in the range of [b, c].
116  */
117 #define time_in_range(a,b,c) \
118 	(time_after_eq(a,b) && \
119 	 time_before_eq(a,c))
120 
121 /*
122  * Calculate whether a is in the range of [b, c).
123  */
124 #define time_in_range_open(a,b,c) \
125 	(time_after_eq(a,b) && \
126 	 time_before(a,c))
127 
128 /* Same as above, but does so with platform independent 64bit types.
129  * These must be used when utilizing jiffies_64 (i.e. return value of
130  * get_jiffies_64() */
131 #define time_after64(a,b)	\
132 	(typecheck(__u64, a) &&	\
133 	 typecheck(__u64, b) && \
134 	 ((__s64)((b) - (a)) < 0))
135 #define time_before64(a,b)	time_after64(b,a)
136 
137 #define time_after_eq64(a,b)	\
138 	(typecheck(__u64, a) && \
139 	 typecheck(__u64, b) && \
140 	 ((__s64)((a) - (b)) >= 0))
141 #define time_before_eq64(a,b)	time_after_eq64(b,a)
142 
143 #define time_in_range64(a, b, c) \
144 	(time_after_eq64(a, b) && \
145 	 time_before_eq64(a, c))
146 
147 /*
148  * These four macros compare jiffies and 'a' for convenience.
149  */
150 
151 /* time_is_before_jiffies(a) return true if a is before jiffies */
152 #define time_is_before_jiffies(a) time_after(jiffies, a)
153 
154 /* time_is_after_jiffies(a) return true if a is after jiffies */
155 #define time_is_after_jiffies(a) time_before(jiffies, a)
156 
157 /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
158 #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
159 
160 /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
161 #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
162 
163 /*
164  * Have the 32 bit jiffies value wrap 5 minutes after boot
165  * so jiffies wrap bugs show up earlier.
166  */
167 #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
168 
169 /*
170  * Change timeval to jiffies, trying to avoid the
171  * most obvious overflows..
172  *
173  * And some not so obvious.
174  *
175  * Note that we don't want to return LONG_MAX, because
176  * for various timeout reasons we often end up having
177  * to wait "jiffies+1" in order to guarantee that we wait
178  * at _least_ "jiffies" - so "jiffies+1" had better still
179  * be positive.
180  */
181 #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
182 
183 extern unsigned long preset_lpj;
184 
185 /*
186  * We want to do realistic conversions of time so we need to use the same
187  * values the update wall clock code uses as the jiffies size.  This value
188  * is: TICK_NSEC (which is defined in timex.h).  This
189  * is a constant and is in nanoseconds.  We will use scaled math
190  * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
191  * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
192  * constants and so are computed at compile time.  SHIFT_HZ (computed in
193  * timex.h) adjusts the scaling for different HZ values.
194 
195  * Scaled math???  What is that?
196  *
197  * Scaled math is a way to do integer math on values that would,
198  * otherwise, either overflow, underflow, or cause undesired div
199  * instructions to appear in the execution path.  In short, we "scale"
200  * up the operands so they take more bits (more precision, less
201  * underflow), do the desired operation and then "scale" the result back
202  * by the same amount.  If we do the scaling by shifting we avoid the
203  * costly mpy and the dastardly div instructions.
204 
205  * Suppose, for example, we want to convert from seconds to jiffies
206  * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
207  * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
208  * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
209  * might calculate at compile time, however, the result will only have
210  * about 3-4 bits of precision (less for smaller values of HZ).
211  *
212  * So, we scale as follows:
213  * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
214  * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
215  * Then we make SCALE a power of two so:
216  * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
217  * Now we define:
218  * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
219  * jiff = (sec * SEC_CONV) >> SCALE;
220  *
221  * Often the math we use will expand beyond 32-bits so we tell C how to
222  * do this and pass the 64-bit result of the mpy through the ">> SCALE"
223  * which should take the result back to 32-bits.  We want this expansion
224  * to capture as much precision as possible.  At the same time we don't
225  * want to overflow so we pick the SCALE to avoid this.  In this file,
226  * that means using a different scale for each range of HZ values (as
227  * defined in timex.h).
228  *
229  * For those who want to know, gcc will give a 64-bit result from a "*"
230  * operator if the result is a long long AND at least one of the
231  * operands is cast to long long (usually just prior to the "*" so as
232  * not to confuse it into thinking it really has a 64-bit operand,
233  * which, buy the way, it can do, but it takes more code and at least 2
234  * mpys).
235 
236  * We also need to be aware that one second in nanoseconds is only a
237  * couple of bits away from overflowing a 32-bit word, so we MUST use
238  * 64-bits to get the full range time in nanoseconds.
239 
240  */
241 
242 /*
243  * Here are the scales we will use.  One for seconds, nanoseconds and
244  * microseconds.
245  *
246  * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
247  * check if the sign bit is set.  If not, we bump the shift count by 1.
248  * (Gets an extra bit of precision where we can use it.)
249  * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
250  * Haven't tested others.
251 
252  * Limits of cpp (for #if expressions) only long (no long long), but
253  * then we only need the most signicant bit.
254  */
255 
256 #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
257 #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
258 #undef SEC_JIFFIE_SC
259 #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
260 #endif
261 #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
262 #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
263                                 TICK_NSEC -1) / (u64)TICK_NSEC))
264 
265 #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
266                                         TICK_NSEC -1) / (u64)TICK_NSEC))
267 /*
268  * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
269  * into seconds.  The 64-bit case will overflow if we are not careful,
270  * so use the messy SH_DIV macro to do it.  Still all constants.
271  */
272 #if BITS_PER_LONG < 64
273 # define MAX_SEC_IN_JIFFIES \
274 	(long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
275 #else	/* take care of overflow on 64 bits machines */
276 # define MAX_SEC_IN_JIFFIES \
277 	(SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
278 
279 #endif
280 
281 /*
282  * Convert various time units to each other:
283  */
284 extern unsigned int jiffies_to_msecs(const unsigned long j);
285 extern unsigned int jiffies_to_usecs(const unsigned long j);
286 
287 static inline u64 jiffies_to_nsecs(const unsigned long j)
288 {
289 	return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
290 }
291 
292 extern unsigned long __msecs_to_jiffies(const unsigned int m);
293 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
294 /*
295  * HZ is equal to or smaller than 1000, and 1000 is a nice round
296  * multiple of HZ, divide with the factor between them, but round
297  * upwards:
298  */
299 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
300 {
301 		return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
302 }
303 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
304 /*
305  * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
306  * simply multiply with the factor between them.
307  *
308  * But first make sure the multiplication result cannot overflow:
309  */
310 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
311 {
312 		if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
313 			return MAX_JIFFY_OFFSET;
314 		return m * (HZ / MSEC_PER_SEC);
315 }
316 #else
317 /*
318  * Generic case - multiply, round and divide. But first check that if
319  * we are doing a net multiplication, that we wouldn't overflow:
320  */
321 static inline unsigned long _msecs_to_jiffies(const unsigned int m)
322 {
323 		if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
324 			return MAX_JIFFY_OFFSET;
325 
326 		return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
327 			>> MSEC_TO_HZ_SHR32;
328 }
329 #endif
330 /**
331  * msecs_to_jiffies: - convert milliseconds to jiffies
332  * @m:	time in milliseconds
333  *
334  * conversion is done as follows:
335  *
336  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
337  *
338  * - 'too large' values [that would result in larger than
339  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
340  *
341  * - all other values are converted to jiffies by either multiplying
342  *   the input value by a factor or dividing it with a factor and
343  *   handling any 32-bit overflows.
344  *   for the details see __msecs_to_jiffies()
345  *
346  * msecs_to_jiffies() checks for the passed in value being a constant
347  * via __builtin_constant_p() allowing gcc to eliminate most of the
348  * code, __msecs_to_jiffies() is called if the value passed does not
349  * allow constant folding and the actual conversion must be done at
350  * runtime.
351  * the HZ range specific helpers _msecs_to_jiffies() are called both
352  * directly here and from __msecs_to_jiffies() in the case where
353  * constant folding is not possible.
354  */
355 static inline unsigned long msecs_to_jiffies(const unsigned int m)
356 {
357 	if (__builtin_constant_p(m)) {
358 		if ((int)m < 0)
359 			return MAX_JIFFY_OFFSET;
360 		return _msecs_to_jiffies(m);
361 	} else {
362 		return __msecs_to_jiffies(m);
363 	}
364 }
365 
366 extern unsigned long usecs_to_jiffies(const unsigned int u);
367 extern unsigned long timespec_to_jiffies(const struct timespec *value);
368 extern void jiffies_to_timespec(const unsigned long jiffies,
369 				struct timespec *value);
370 extern unsigned long timeval_to_jiffies(const struct timeval *value);
371 extern void jiffies_to_timeval(const unsigned long jiffies,
372 			       struct timeval *value);
373 
374 extern clock_t jiffies_to_clock_t(unsigned long x);
375 static inline clock_t jiffies_delta_to_clock_t(long delta)
376 {
377 	return jiffies_to_clock_t(max(0L, delta));
378 }
379 
380 extern unsigned long clock_t_to_jiffies(unsigned long x);
381 extern u64 jiffies_64_to_clock_t(u64 x);
382 extern u64 nsec_to_clock_t(u64 x);
383 extern u64 nsecs_to_jiffies64(u64 n);
384 extern unsigned long nsecs_to_jiffies(u64 n);
385 
386 #define TIMESTAMP_SIZE	30
387 
388 #endif
389