1 #ifndef _LINUX_JIFFIES_H 2 #define _LINUX_JIFFIES_H 3 4 #include <linux/math64.h> 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/time.h> 8 #include <linux/timex.h> 9 #include <asm/param.h> /* for HZ */ 10 #include <generated/timeconst.h> 11 12 /* 13 * The following defines establish the engineering parameters of the PLL 14 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz 15 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the 16 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the 17 * nearest power of two in order to avoid hardware multiply operations. 18 */ 19 #if HZ >= 12 && HZ < 24 20 # define SHIFT_HZ 4 21 #elif HZ >= 24 && HZ < 48 22 # define SHIFT_HZ 5 23 #elif HZ >= 48 && HZ < 96 24 # define SHIFT_HZ 6 25 #elif HZ >= 96 && HZ < 192 26 # define SHIFT_HZ 7 27 #elif HZ >= 192 && HZ < 384 28 # define SHIFT_HZ 8 29 #elif HZ >= 384 && HZ < 768 30 # define SHIFT_HZ 9 31 #elif HZ >= 768 && HZ < 1536 32 # define SHIFT_HZ 10 33 #elif HZ >= 1536 && HZ < 3072 34 # define SHIFT_HZ 11 35 #elif HZ >= 3072 && HZ < 6144 36 # define SHIFT_HZ 12 37 #elif HZ >= 6144 && HZ < 12288 38 # define SHIFT_HZ 13 39 #else 40 # error Invalid value of HZ. 41 #endif 42 43 /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can 44 * improve accuracy by shifting LSH bits, hence calculating: 45 * (NOM << LSH) / DEN 46 * This however means trouble for large NOM, because (NOM << LSH) may no 47 * longer fit in 32 bits. The following way of calculating this gives us 48 * some slack, under the following conditions: 49 * - (NOM / DEN) fits in (32 - LSH) bits. 50 * - (NOM % DEN) fits in (32 - LSH) bits. 51 */ 52 #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \ 53 + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN)) 54 55 /* LATCH is used in the interval timer and ftape setup. */ 56 #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */ 57 58 extern int register_refined_jiffies(long clock_tick_rate); 59 60 /* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */ 61 #define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ) 62 63 /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ 64 #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) 65 66 /* some arch's have a small-data section that can be accessed register-relative 67 * but that can only take up to, say, 4-byte variables. jiffies being part of 68 * an 8-byte variable may not be correctly accessed unless we force the issue 69 */ 70 #define __jiffy_data __attribute__((section(".data"))) 71 72 /* 73 * The 64-bit value is not atomic - you MUST NOT read it 74 * without sampling the sequence number in jiffies_lock. 75 * get_jiffies_64() will do this for you as appropriate. 76 */ 77 extern u64 __jiffy_data jiffies_64; 78 extern unsigned long volatile __jiffy_data jiffies; 79 80 #if (BITS_PER_LONG < 64) 81 u64 get_jiffies_64(void); 82 #else 83 static inline u64 get_jiffies_64(void) 84 { 85 return (u64)jiffies; 86 } 87 #endif 88 89 /* 90 * These inlines deal with timer wrapping correctly. You are 91 * strongly encouraged to use them 92 * 1. Because people otherwise forget 93 * 2. Because if the timer wrap changes in future you won't have to 94 * alter your driver code. 95 * 96 * time_after(a,b) returns true if the time a is after time b. 97 * 98 * Do this with "<0" and ">=0" to only test the sign of the result. A 99 * good compiler would generate better code (and a really good compiler 100 * wouldn't care). Gcc is currently neither. 101 */ 102 #define time_after(a,b) \ 103 (typecheck(unsigned long, a) && \ 104 typecheck(unsigned long, b) && \ 105 ((long)((b) - (a)) < 0)) 106 #define time_before(a,b) time_after(b,a) 107 108 #define time_after_eq(a,b) \ 109 (typecheck(unsigned long, a) && \ 110 typecheck(unsigned long, b) && \ 111 ((long)((a) - (b)) >= 0)) 112 #define time_before_eq(a,b) time_after_eq(b,a) 113 114 /* 115 * Calculate whether a is in the range of [b, c]. 116 */ 117 #define time_in_range(a,b,c) \ 118 (time_after_eq(a,b) && \ 119 time_before_eq(a,c)) 120 121 /* 122 * Calculate whether a is in the range of [b, c). 123 */ 124 #define time_in_range_open(a,b,c) \ 125 (time_after_eq(a,b) && \ 126 time_before(a,c)) 127 128 /* Same as above, but does so with platform independent 64bit types. 129 * These must be used when utilizing jiffies_64 (i.e. return value of 130 * get_jiffies_64() */ 131 #define time_after64(a,b) \ 132 (typecheck(__u64, a) && \ 133 typecheck(__u64, b) && \ 134 ((__s64)((b) - (a)) < 0)) 135 #define time_before64(a,b) time_after64(b,a) 136 137 #define time_after_eq64(a,b) \ 138 (typecheck(__u64, a) && \ 139 typecheck(__u64, b) && \ 140 ((__s64)((a) - (b)) >= 0)) 141 #define time_before_eq64(a,b) time_after_eq64(b,a) 142 143 #define time_in_range64(a, b, c) \ 144 (time_after_eq64(a, b) && \ 145 time_before_eq64(a, c)) 146 147 /* 148 * These four macros compare jiffies and 'a' for convenience. 149 */ 150 151 /* time_is_before_jiffies(a) return true if a is before jiffies */ 152 #define time_is_before_jiffies(a) time_after(jiffies, a) 153 154 /* time_is_after_jiffies(a) return true if a is after jiffies */ 155 #define time_is_after_jiffies(a) time_before(jiffies, a) 156 157 /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/ 158 #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a) 159 160 /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/ 161 #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a) 162 163 /* 164 * Have the 32 bit jiffies value wrap 5 minutes after boot 165 * so jiffies wrap bugs show up earlier. 166 */ 167 #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) 168 169 /* 170 * Change timeval to jiffies, trying to avoid the 171 * most obvious overflows.. 172 * 173 * And some not so obvious. 174 * 175 * Note that we don't want to return LONG_MAX, because 176 * for various timeout reasons we often end up having 177 * to wait "jiffies+1" in order to guarantee that we wait 178 * at _least_ "jiffies" - so "jiffies+1" had better still 179 * be positive. 180 */ 181 #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1) 182 183 extern unsigned long preset_lpj; 184 185 /* 186 * We want to do realistic conversions of time so we need to use the same 187 * values the update wall clock code uses as the jiffies size. This value 188 * is: TICK_NSEC (which is defined in timex.h). This 189 * is a constant and is in nanoseconds. We will use scaled math 190 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and 191 * NSEC_JIFFIE_SC. Note that these defines contain nothing but 192 * constants and so are computed at compile time. SHIFT_HZ (computed in 193 * timex.h) adjusts the scaling for different HZ values. 194 195 * Scaled math??? What is that? 196 * 197 * Scaled math is a way to do integer math on values that would, 198 * otherwise, either overflow, underflow, or cause undesired div 199 * instructions to appear in the execution path. In short, we "scale" 200 * up the operands so they take more bits (more precision, less 201 * underflow), do the desired operation and then "scale" the result back 202 * by the same amount. If we do the scaling by shifting we avoid the 203 * costly mpy and the dastardly div instructions. 204 205 * Suppose, for example, we want to convert from seconds to jiffies 206 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The 207 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We 208 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we 209 * might calculate at compile time, however, the result will only have 210 * about 3-4 bits of precision (less for smaller values of HZ). 211 * 212 * So, we scale as follows: 213 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); 214 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; 215 * Then we make SCALE a power of two so: 216 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; 217 * Now we define: 218 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) 219 * jiff = (sec * SEC_CONV) >> SCALE; 220 * 221 * Often the math we use will expand beyond 32-bits so we tell C how to 222 * do this and pass the 64-bit result of the mpy through the ">> SCALE" 223 * which should take the result back to 32-bits. We want this expansion 224 * to capture as much precision as possible. At the same time we don't 225 * want to overflow so we pick the SCALE to avoid this. In this file, 226 * that means using a different scale for each range of HZ values (as 227 * defined in timex.h). 228 * 229 * For those who want to know, gcc will give a 64-bit result from a "*" 230 * operator if the result is a long long AND at least one of the 231 * operands is cast to long long (usually just prior to the "*" so as 232 * not to confuse it into thinking it really has a 64-bit operand, 233 * which, buy the way, it can do, but it takes more code and at least 2 234 * mpys). 235 236 * We also need to be aware that one second in nanoseconds is only a 237 * couple of bits away from overflowing a 32-bit word, so we MUST use 238 * 64-bits to get the full range time in nanoseconds. 239 240 */ 241 242 /* 243 * Here are the scales we will use. One for seconds, nanoseconds and 244 * microseconds. 245 * 246 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and 247 * check if the sign bit is set. If not, we bump the shift count by 1. 248 * (Gets an extra bit of precision where we can use it.) 249 * We know it is set for HZ = 1024 and HZ = 100 not for 1000. 250 * Haven't tested others. 251 252 * Limits of cpp (for #if expressions) only long (no long long), but 253 * then we only need the most signicant bit. 254 */ 255 256 #define SEC_JIFFIE_SC (31 - SHIFT_HZ) 257 #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000) 258 #undef SEC_JIFFIE_SC 259 #define SEC_JIFFIE_SC (32 - SHIFT_HZ) 260 #endif 261 #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) 262 #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ 263 TICK_NSEC -1) / (u64)TICK_NSEC)) 264 265 #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ 266 TICK_NSEC -1) / (u64)TICK_NSEC)) 267 /* 268 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that 269 * into seconds. The 64-bit case will overflow if we are not careful, 270 * so use the messy SH_DIV macro to do it. Still all constants. 271 */ 272 #if BITS_PER_LONG < 64 273 # define MAX_SEC_IN_JIFFIES \ 274 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC) 275 #else /* take care of overflow on 64 bits machines */ 276 # define MAX_SEC_IN_JIFFIES \ 277 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1) 278 279 #endif 280 281 /* 282 * Convert various time units to each other: 283 */ 284 extern unsigned int jiffies_to_msecs(const unsigned long j); 285 extern unsigned int jiffies_to_usecs(const unsigned long j); 286 287 static inline u64 jiffies_to_nsecs(const unsigned long j) 288 { 289 return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC; 290 } 291 292 extern unsigned long __msecs_to_jiffies(const unsigned int m); 293 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 294 /* 295 * HZ is equal to or smaller than 1000, and 1000 is a nice round 296 * multiple of HZ, divide with the factor between them, but round 297 * upwards: 298 */ 299 static inline unsigned long _msecs_to_jiffies(const unsigned int m) 300 { 301 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); 302 } 303 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) 304 /* 305 * HZ is larger than 1000, and HZ is a nice round multiple of 1000 - 306 * simply multiply with the factor between them. 307 * 308 * But first make sure the multiplication result cannot overflow: 309 */ 310 static inline unsigned long _msecs_to_jiffies(const unsigned int m) 311 { 312 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) 313 return MAX_JIFFY_OFFSET; 314 return m * (HZ / MSEC_PER_SEC); 315 } 316 #else 317 /* 318 * Generic case - multiply, round and divide. But first check that if 319 * we are doing a net multiplication, that we wouldn't overflow: 320 */ 321 static inline unsigned long _msecs_to_jiffies(const unsigned int m) 322 { 323 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) 324 return MAX_JIFFY_OFFSET; 325 326 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) 327 >> MSEC_TO_HZ_SHR32; 328 } 329 #endif 330 /** 331 * msecs_to_jiffies: - convert milliseconds to jiffies 332 * @m: time in milliseconds 333 * 334 * conversion is done as follows: 335 * 336 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) 337 * 338 * - 'too large' values [that would result in larger than 339 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 340 * 341 * - all other values are converted to jiffies by either multiplying 342 * the input value by a factor or dividing it with a factor and 343 * handling any 32-bit overflows. 344 * for the details see __msecs_to_jiffies() 345 * 346 * msecs_to_jiffies() checks for the passed in value being a constant 347 * via __builtin_constant_p() allowing gcc to eliminate most of the 348 * code, __msecs_to_jiffies() is called if the value passed does not 349 * allow constant folding and the actual conversion must be done at 350 * runtime. 351 * the HZ range specific helpers _msecs_to_jiffies() are called both 352 * directly here and from __msecs_to_jiffies() in the case where 353 * constant folding is not possible. 354 */ 355 static inline unsigned long msecs_to_jiffies(const unsigned int m) 356 { 357 if (__builtin_constant_p(m)) { 358 if ((int)m < 0) 359 return MAX_JIFFY_OFFSET; 360 return _msecs_to_jiffies(m); 361 } else { 362 return __msecs_to_jiffies(m); 363 } 364 } 365 366 extern unsigned long usecs_to_jiffies(const unsigned int u); 367 extern unsigned long timespec_to_jiffies(const struct timespec *value); 368 extern void jiffies_to_timespec(const unsigned long jiffies, 369 struct timespec *value); 370 extern unsigned long timeval_to_jiffies(const struct timeval *value); 371 extern void jiffies_to_timeval(const unsigned long jiffies, 372 struct timeval *value); 373 374 extern clock_t jiffies_to_clock_t(unsigned long x); 375 static inline clock_t jiffies_delta_to_clock_t(long delta) 376 { 377 return jiffies_to_clock_t(max(0L, delta)); 378 } 379 380 extern unsigned long clock_t_to_jiffies(unsigned long x); 381 extern u64 jiffies_64_to_clock_t(u64 x); 382 extern u64 nsec_to_clock_t(u64 x); 383 extern u64 nsecs_to_jiffies64(u64 n); 384 extern unsigned long nsecs_to_jiffies(u64 n); 385 386 #define TIMESTAMP_SIZE 30 387 388 #endif 389