1 #ifndef _LINUX_JIFFIES_H 2 #define _LINUX_JIFFIES_H 3 4 #include <linux/cache.h> 5 #include <linux/math64.h> 6 #include <linux/kernel.h> 7 #include <linux/types.h> 8 #include <linux/time.h> 9 #include <linux/timex.h> 10 #include <asm/param.h> /* for HZ */ 11 #include <generated/timeconst.h> 12 13 /* 14 * The following defines establish the engineering parameters of the PLL 15 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz 16 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the 17 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the 18 * nearest power of two in order to avoid hardware multiply operations. 19 */ 20 #if HZ >= 12 && HZ < 24 21 # define SHIFT_HZ 4 22 #elif HZ >= 24 && HZ < 48 23 # define SHIFT_HZ 5 24 #elif HZ >= 48 && HZ < 96 25 # define SHIFT_HZ 6 26 #elif HZ >= 96 && HZ < 192 27 # define SHIFT_HZ 7 28 #elif HZ >= 192 && HZ < 384 29 # define SHIFT_HZ 8 30 #elif HZ >= 384 && HZ < 768 31 # define SHIFT_HZ 9 32 #elif HZ >= 768 && HZ < 1536 33 # define SHIFT_HZ 10 34 #elif HZ >= 1536 && HZ < 3072 35 # define SHIFT_HZ 11 36 #elif HZ >= 3072 && HZ < 6144 37 # define SHIFT_HZ 12 38 #elif HZ >= 6144 && HZ < 12288 39 # define SHIFT_HZ 13 40 #else 41 # error Invalid value of HZ. 42 #endif 43 44 /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can 45 * improve accuracy by shifting LSH bits, hence calculating: 46 * (NOM << LSH) / DEN 47 * This however means trouble for large NOM, because (NOM << LSH) may no 48 * longer fit in 32 bits. The following way of calculating this gives us 49 * some slack, under the following conditions: 50 * - (NOM / DEN) fits in (32 - LSH) bits. 51 * - (NOM % DEN) fits in (32 - LSH) bits. 52 */ 53 #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \ 54 + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN)) 55 56 /* LATCH is used in the interval timer and ftape setup. */ 57 #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */ 58 59 extern int register_refined_jiffies(long clock_tick_rate); 60 61 /* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */ 62 #define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ) 63 64 /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ 65 #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) 66 67 /* 68 * The 64-bit value is not atomic - you MUST NOT read it 69 * without sampling the sequence number in jiffies_lock. 70 * get_jiffies_64() will do this for you as appropriate. 71 */ 72 extern u64 __cacheline_aligned_in_smp jiffies_64; 73 extern unsigned long volatile __cacheline_aligned_in_smp jiffies; 74 75 #if (BITS_PER_LONG < 64) 76 u64 get_jiffies_64(void); 77 #else 78 static inline u64 get_jiffies_64(void) 79 { 80 return (u64)jiffies; 81 } 82 #endif 83 84 /* 85 * These inlines deal with timer wrapping correctly. You are 86 * strongly encouraged to use them 87 * 1. Because people otherwise forget 88 * 2. Because if the timer wrap changes in future you won't have to 89 * alter your driver code. 90 * 91 * time_after(a,b) returns true if the time a is after time b. 92 * 93 * Do this with "<0" and ">=0" to only test the sign of the result. A 94 * good compiler would generate better code (and a really good compiler 95 * wouldn't care). Gcc is currently neither. 96 */ 97 #define time_after(a,b) \ 98 (typecheck(unsigned long, a) && \ 99 typecheck(unsigned long, b) && \ 100 ((long)((b) - (a)) < 0)) 101 #define time_before(a,b) time_after(b,a) 102 103 #define time_after_eq(a,b) \ 104 (typecheck(unsigned long, a) && \ 105 typecheck(unsigned long, b) && \ 106 ((long)((a) - (b)) >= 0)) 107 #define time_before_eq(a,b) time_after_eq(b,a) 108 109 /* 110 * Calculate whether a is in the range of [b, c]. 111 */ 112 #define time_in_range(a,b,c) \ 113 (time_after_eq(a,b) && \ 114 time_before_eq(a,c)) 115 116 /* 117 * Calculate whether a is in the range of [b, c). 118 */ 119 #define time_in_range_open(a,b,c) \ 120 (time_after_eq(a,b) && \ 121 time_before(a,c)) 122 123 /* Same as above, but does so with platform independent 64bit types. 124 * These must be used when utilizing jiffies_64 (i.e. return value of 125 * get_jiffies_64() */ 126 #define time_after64(a,b) \ 127 (typecheck(__u64, a) && \ 128 typecheck(__u64, b) && \ 129 ((__s64)((b) - (a)) < 0)) 130 #define time_before64(a,b) time_after64(b,a) 131 132 #define time_after_eq64(a,b) \ 133 (typecheck(__u64, a) && \ 134 typecheck(__u64, b) && \ 135 ((__s64)((a) - (b)) >= 0)) 136 #define time_before_eq64(a,b) time_after_eq64(b,a) 137 138 #define time_in_range64(a, b, c) \ 139 (time_after_eq64(a, b) && \ 140 time_before_eq64(a, c)) 141 142 /* 143 * These four macros compare jiffies and 'a' for convenience. 144 */ 145 146 /* time_is_before_jiffies(a) return true if a is before jiffies */ 147 #define time_is_before_jiffies(a) time_after(jiffies, a) 148 #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a) 149 150 /* time_is_after_jiffies(a) return true if a is after jiffies */ 151 #define time_is_after_jiffies(a) time_before(jiffies, a) 152 #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a) 153 154 /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/ 155 #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a) 156 #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a) 157 158 /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/ 159 #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a) 160 #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a) 161 162 /* 163 * Have the 32 bit jiffies value wrap 5 minutes after boot 164 * so jiffies wrap bugs show up earlier. 165 */ 166 #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) 167 168 /* 169 * Change timeval to jiffies, trying to avoid the 170 * most obvious overflows.. 171 * 172 * And some not so obvious. 173 * 174 * Note that we don't want to return LONG_MAX, because 175 * for various timeout reasons we often end up having 176 * to wait "jiffies+1" in order to guarantee that we wait 177 * at _least_ "jiffies" - so "jiffies+1" had better still 178 * be positive. 179 */ 180 #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1) 181 182 extern unsigned long preset_lpj; 183 184 /* 185 * We want to do realistic conversions of time so we need to use the same 186 * values the update wall clock code uses as the jiffies size. This value 187 * is: TICK_NSEC (which is defined in timex.h). This 188 * is a constant and is in nanoseconds. We will use scaled math 189 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and 190 * NSEC_JIFFIE_SC. Note that these defines contain nothing but 191 * constants and so are computed at compile time. SHIFT_HZ (computed in 192 * timex.h) adjusts the scaling for different HZ values. 193 194 * Scaled math??? What is that? 195 * 196 * Scaled math is a way to do integer math on values that would, 197 * otherwise, either overflow, underflow, or cause undesired div 198 * instructions to appear in the execution path. In short, we "scale" 199 * up the operands so they take more bits (more precision, less 200 * underflow), do the desired operation and then "scale" the result back 201 * by the same amount. If we do the scaling by shifting we avoid the 202 * costly mpy and the dastardly div instructions. 203 204 * Suppose, for example, we want to convert from seconds to jiffies 205 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The 206 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We 207 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we 208 * might calculate at compile time, however, the result will only have 209 * about 3-4 bits of precision (less for smaller values of HZ). 210 * 211 * So, we scale as follows: 212 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); 213 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; 214 * Then we make SCALE a power of two so: 215 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; 216 * Now we define: 217 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) 218 * jiff = (sec * SEC_CONV) >> SCALE; 219 * 220 * Often the math we use will expand beyond 32-bits so we tell C how to 221 * do this and pass the 64-bit result of the mpy through the ">> SCALE" 222 * which should take the result back to 32-bits. We want this expansion 223 * to capture as much precision as possible. At the same time we don't 224 * want to overflow so we pick the SCALE to avoid this. In this file, 225 * that means using a different scale for each range of HZ values (as 226 * defined in timex.h). 227 * 228 * For those who want to know, gcc will give a 64-bit result from a "*" 229 * operator if the result is a long long AND at least one of the 230 * operands is cast to long long (usually just prior to the "*" so as 231 * not to confuse it into thinking it really has a 64-bit operand, 232 * which, buy the way, it can do, but it takes more code and at least 2 233 * mpys). 234 235 * We also need to be aware that one second in nanoseconds is only a 236 * couple of bits away from overflowing a 32-bit word, so we MUST use 237 * 64-bits to get the full range time in nanoseconds. 238 239 */ 240 241 /* 242 * Here are the scales we will use. One for seconds, nanoseconds and 243 * microseconds. 244 * 245 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and 246 * check if the sign bit is set. If not, we bump the shift count by 1. 247 * (Gets an extra bit of precision where we can use it.) 248 * We know it is set for HZ = 1024 and HZ = 100 not for 1000. 249 * Haven't tested others. 250 251 * Limits of cpp (for #if expressions) only long (no long long), but 252 * then we only need the most signicant bit. 253 */ 254 255 #define SEC_JIFFIE_SC (31 - SHIFT_HZ) 256 #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000) 257 #undef SEC_JIFFIE_SC 258 #define SEC_JIFFIE_SC (32 - SHIFT_HZ) 259 #endif 260 #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) 261 #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ 262 TICK_NSEC -1) / (u64)TICK_NSEC)) 263 264 #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ 265 TICK_NSEC -1) / (u64)TICK_NSEC)) 266 /* 267 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that 268 * into seconds. The 64-bit case will overflow if we are not careful, 269 * so use the messy SH_DIV macro to do it. Still all constants. 270 */ 271 #if BITS_PER_LONG < 64 272 # define MAX_SEC_IN_JIFFIES \ 273 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC) 274 #else /* take care of overflow on 64 bits machines */ 275 # define MAX_SEC_IN_JIFFIES \ 276 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1) 277 278 #endif 279 280 /* 281 * Convert various time units to each other: 282 */ 283 extern unsigned int jiffies_to_msecs(const unsigned long j); 284 extern unsigned int jiffies_to_usecs(const unsigned long j); 285 286 static inline u64 jiffies_to_nsecs(const unsigned long j) 287 { 288 return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC; 289 } 290 291 extern u64 jiffies64_to_nsecs(u64 j); 292 293 extern unsigned long __msecs_to_jiffies(const unsigned int m); 294 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) 295 /* 296 * HZ is equal to or smaller than 1000, and 1000 is a nice round 297 * multiple of HZ, divide with the factor between them, but round 298 * upwards: 299 */ 300 static inline unsigned long _msecs_to_jiffies(const unsigned int m) 301 { 302 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); 303 } 304 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) 305 /* 306 * HZ is larger than 1000, and HZ is a nice round multiple of 1000 - 307 * simply multiply with the factor between them. 308 * 309 * But first make sure the multiplication result cannot overflow: 310 */ 311 static inline unsigned long _msecs_to_jiffies(const unsigned int m) 312 { 313 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) 314 return MAX_JIFFY_OFFSET; 315 return m * (HZ / MSEC_PER_SEC); 316 } 317 #else 318 /* 319 * Generic case - multiply, round and divide. But first check that if 320 * we are doing a net multiplication, that we wouldn't overflow: 321 */ 322 static inline unsigned long _msecs_to_jiffies(const unsigned int m) 323 { 324 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) 325 return MAX_JIFFY_OFFSET; 326 327 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32; 328 } 329 #endif 330 /** 331 * msecs_to_jiffies: - convert milliseconds to jiffies 332 * @m: time in milliseconds 333 * 334 * conversion is done as follows: 335 * 336 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) 337 * 338 * - 'too large' values [that would result in larger than 339 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 340 * 341 * - all other values are converted to jiffies by either multiplying 342 * the input value by a factor or dividing it with a factor and 343 * handling any 32-bit overflows. 344 * for the details see __msecs_to_jiffies() 345 * 346 * msecs_to_jiffies() checks for the passed in value being a constant 347 * via __builtin_constant_p() allowing gcc to eliminate most of the 348 * code, __msecs_to_jiffies() is called if the value passed does not 349 * allow constant folding and the actual conversion must be done at 350 * runtime. 351 * the HZ range specific helpers _msecs_to_jiffies() are called both 352 * directly here and from __msecs_to_jiffies() in the case where 353 * constant folding is not possible. 354 */ 355 static __always_inline unsigned long msecs_to_jiffies(const unsigned int m) 356 { 357 if (__builtin_constant_p(m)) { 358 if ((int)m < 0) 359 return MAX_JIFFY_OFFSET; 360 return _msecs_to_jiffies(m); 361 } else { 362 return __msecs_to_jiffies(m); 363 } 364 } 365 366 extern unsigned long __usecs_to_jiffies(const unsigned int u); 367 #if !(USEC_PER_SEC % HZ) 368 static inline unsigned long _usecs_to_jiffies(const unsigned int u) 369 { 370 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); 371 } 372 #else 373 static inline unsigned long _usecs_to_jiffies(const unsigned int u) 374 { 375 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32) 376 >> USEC_TO_HZ_SHR32; 377 } 378 #endif 379 380 /** 381 * usecs_to_jiffies: - convert microseconds to jiffies 382 * @u: time in microseconds 383 * 384 * conversion is done as follows: 385 * 386 * - 'too large' values [that would result in larger than 387 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. 388 * 389 * - all other values are converted to jiffies by either multiplying 390 * the input value by a factor or dividing it with a factor and 391 * handling any 32-bit overflows as for msecs_to_jiffies. 392 * 393 * usecs_to_jiffies() checks for the passed in value being a constant 394 * via __builtin_constant_p() allowing gcc to eliminate most of the 395 * code, __usecs_to_jiffies() is called if the value passed does not 396 * allow constant folding and the actual conversion must be done at 397 * runtime. 398 * the HZ range specific helpers _usecs_to_jiffies() are called both 399 * directly here and from __msecs_to_jiffies() in the case where 400 * constant folding is not possible. 401 */ 402 static __always_inline unsigned long usecs_to_jiffies(const unsigned int u) 403 { 404 if (__builtin_constant_p(u)) { 405 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) 406 return MAX_JIFFY_OFFSET; 407 return _usecs_to_jiffies(u); 408 } else { 409 return __usecs_to_jiffies(u); 410 } 411 } 412 413 extern unsigned long timespec64_to_jiffies(const struct timespec64 *value); 414 extern void jiffies_to_timespec64(const unsigned long jiffies, 415 struct timespec64 *value); 416 static inline unsigned long timespec_to_jiffies(const struct timespec *value) 417 { 418 struct timespec64 ts = timespec_to_timespec64(*value); 419 420 return timespec64_to_jiffies(&ts); 421 } 422 423 static inline void jiffies_to_timespec(const unsigned long jiffies, 424 struct timespec *value) 425 { 426 struct timespec64 ts; 427 428 jiffies_to_timespec64(jiffies, &ts); 429 *value = timespec64_to_timespec(ts); 430 } 431 432 extern unsigned long timeval_to_jiffies(const struct timeval *value); 433 extern void jiffies_to_timeval(const unsigned long jiffies, 434 struct timeval *value); 435 436 extern clock_t jiffies_to_clock_t(unsigned long x); 437 static inline clock_t jiffies_delta_to_clock_t(long delta) 438 { 439 return jiffies_to_clock_t(max(0L, delta)); 440 } 441 442 extern unsigned long clock_t_to_jiffies(unsigned long x); 443 extern u64 jiffies_64_to_clock_t(u64 x); 444 extern u64 nsec_to_clock_t(u64 x); 445 extern u64 nsecs_to_jiffies64(u64 n); 446 extern unsigned long nsecs_to_jiffies(u64 n); 447 448 #define TIMESTAMP_SIZE 30 449 450 #endif 451