1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * IEEE 802.11 defines 4 * 5 * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen 6 * <[email protected]> 7 * Copyright (c) 2002-2003, Jouni Malinen <[email protected]> 8 * Copyright (c) 2005, Devicescape Software, Inc. 9 * Copyright (c) 2006, Michael Wu <[email protected]> 10 * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH 11 * Copyright (c) 2016 - 2017 Intel Deutschland GmbH 12 * Copyright (c) 2018 - 2024 Intel Corporation 13 */ 14 15 #ifndef LINUX_IEEE80211_H 16 #define LINUX_IEEE80211_H 17 18 #include <linux/types.h> 19 #include <linux/if_ether.h> 20 #include <linux/etherdevice.h> 21 #include <linux/bitfield.h> 22 #include <asm/byteorder.h> 23 #include <asm/unaligned.h> 24 25 /* 26 * DS bit usage 27 * 28 * TA = transmitter address 29 * RA = receiver address 30 * DA = destination address 31 * SA = source address 32 * 33 * ToDS FromDS A1(RA) A2(TA) A3 A4 Use 34 * ----------------------------------------------------------------- 35 * 0 0 DA SA BSSID - IBSS/DLS 36 * 0 1 DA BSSID SA - AP -> STA 37 * 1 0 BSSID SA DA - AP <- STA 38 * 1 1 RA TA DA SA unspecified (WDS) 39 */ 40 41 #define FCS_LEN 4 42 43 #define IEEE80211_FCTL_VERS 0x0003 44 #define IEEE80211_FCTL_FTYPE 0x000c 45 #define IEEE80211_FCTL_STYPE 0x00f0 46 #define IEEE80211_FCTL_TODS 0x0100 47 #define IEEE80211_FCTL_FROMDS 0x0200 48 #define IEEE80211_FCTL_MOREFRAGS 0x0400 49 #define IEEE80211_FCTL_RETRY 0x0800 50 #define IEEE80211_FCTL_PM 0x1000 51 #define IEEE80211_FCTL_MOREDATA 0x2000 52 #define IEEE80211_FCTL_PROTECTED 0x4000 53 #define IEEE80211_FCTL_ORDER 0x8000 54 #define IEEE80211_FCTL_CTL_EXT 0x0f00 55 56 #define IEEE80211_SCTL_FRAG 0x000F 57 #define IEEE80211_SCTL_SEQ 0xFFF0 58 59 #define IEEE80211_FTYPE_MGMT 0x0000 60 #define IEEE80211_FTYPE_CTL 0x0004 61 #define IEEE80211_FTYPE_DATA 0x0008 62 #define IEEE80211_FTYPE_EXT 0x000c 63 64 /* management */ 65 #define IEEE80211_STYPE_ASSOC_REQ 0x0000 66 #define IEEE80211_STYPE_ASSOC_RESP 0x0010 67 #define IEEE80211_STYPE_REASSOC_REQ 0x0020 68 #define IEEE80211_STYPE_REASSOC_RESP 0x0030 69 #define IEEE80211_STYPE_PROBE_REQ 0x0040 70 #define IEEE80211_STYPE_PROBE_RESP 0x0050 71 #define IEEE80211_STYPE_BEACON 0x0080 72 #define IEEE80211_STYPE_ATIM 0x0090 73 #define IEEE80211_STYPE_DISASSOC 0x00A0 74 #define IEEE80211_STYPE_AUTH 0x00B0 75 #define IEEE80211_STYPE_DEAUTH 0x00C0 76 #define IEEE80211_STYPE_ACTION 0x00D0 77 78 /* control */ 79 #define IEEE80211_STYPE_TRIGGER 0x0020 80 #define IEEE80211_STYPE_CTL_EXT 0x0060 81 #define IEEE80211_STYPE_BACK_REQ 0x0080 82 #define IEEE80211_STYPE_BACK 0x0090 83 #define IEEE80211_STYPE_PSPOLL 0x00A0 84 #define IEEE80211_STYPE_RTS 0x00B0 85 #define IEEE80211_STYPE_CTS 0x00C0 86 #define IEEE80211_STYPE_ACK 0x00D0 87 #define IEEE80211_STYPE_CFEND 0x00E0 88 #define IEEE80211_STYPE_CFENDACK 0x00F0 89 90 /* data */ 91 #define IEEE80211_STYPE_DATA 0x0000 92 #define IEEE80211_STYPE_DATA_CFACK 0x0010 93 #define IEEE80211_STYPE_DATA_CFPOLL 0x0020 94 #define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030 95 #define IEEE80211_STYPE_NULLFUNC 0x0040 96 #define IEEE80211_STYPE_CFACK 0x0050 97 #define IEEE80211_STYPE_CFPOLL 0x0060 98 #define IEEE80211_STYPE_CFACKPOLL 0x0070 99 #define IEEE80211_STYPE_QOS_DATA 0x0080 100 #define IEEE80211_STYPE_QOS_DATA_CFACK 0x0090 101 #define IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0 102 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0 103 #define IEEE80211_STYPE_QOS_NULLFUNC 0x00C0 104 #define IEEE80211_STYPE_QOS_CFACK 0x00D0 105 #define IEEE80211_STYPE_QOS_CFPOLL 0x00E0 106 #define IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0 107 108 /* extension, added by 802.11ad */ 109 #define IEEE80211_STYPE_DMG_BEACON 0x0000 110 #define IEEE80211_STYPE_S1G_BEACON 0x0010 111 112 /* bits unique to S1G beacon */ 113 #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100 114 115 /* see 802.11ah-2016 9.9 NDP CMAC frames */ 116 #define IEEE80211_S1G_1MHZ_NDP_BITS 25 117 #define IEEE80211_S1G_1MHZ_NDP_BYTES 4 118 #define IEEE80211_S1G_2MHZ_NDP_BITS 37 119 #define IEEE80211_S1G_2MHZ_NDP_BYTES 5 120 121 #define IEEE80211_NDP_FTYPE_CTS 0 122 #define IEEE80211_NDP_FTYPE_CF_END 0 123 #define IEEE80211_NDP_FTYPE_PS_POLL 1 124 #define IEEE80211_NDP_FTYPE_ACK 2 125 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK 3 126 #define IEEE80211_NDP_FTYPE_BA 4 127 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL 5 128 #define IEEE80211_NDP_FTYPE_PAGING 6 129 #define IEEE80211_NDP_FTYPE_PREQ 7 130 131 #define SM64(f, v) ((((u64)v) << f##_S) & f) 132 133 /* NDP CMAC frame fields */ 134 #define IEEE80211_NDP_FTYPE 0x0000000000000007 135 #define IEEE80211_NDP_FTYPE_S 0x0000000000000000 136 137 /* 1M Probe Request 11ah 9.9.3.1.1 */ 138 #define IEEE80211_NDP_1M_PREQ_ANO 0x0000000000000008 139 #define IEEE80211_NDP_1M_PREQ_ANO_S 3 140 #define IEEE80211_NDP_1M_PREQ_CSSID 0x00000000000FFFF0 141 #define IEEE80211_NDP_1M_PREQ_CSSID_S 4 142 #define IEEE80211_NDP_1M_PREQ_RTYPE 0x0000000000100000 143 #define IEEE80211_NDP_1M_PREQ_RTYPE_S 20 144 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000 145 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000 146 /* 2M Probe Request 11ah 9.9.3.1.2 */ 147 #define IEEE80211_NDP_2M_PREQ_ANO 0x0000000000000008 148 #define IEEE80211_NDP_2M_PREQ_ANO_S 3 149 #define IEEE80211_NDP_2M_PREQ_CSSID 0x0000000FFFFFFFF0 150 #define IEEE80211_NDP_2M_PREQ_CSSID_S 4 151 #define IEEE80211_NDP_2M_PREQ_RTYPE 0x0000001000000000 152 #define IEEE80211_NDP_2M_PREQ_RTYPE_S 36 153 154 #define IEEE80211_ANO_NETTYPE_WILD 15 155 156 /* bits unique to S1G beacon */ 157 #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100 158 159 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */ 160 #define IEEE80211_CTL_EXT_POLL 0x2000 161 #define IEEE80211_CTL_EXT_SPR 0x3000 162 #define IEEE80211_CTL_EXT_GRANT 0x4000 163 #define IEEE80211_CTL_EXT_DMG_CTS 0x5000 164 #define IEEE80211_CTL_EXT_DMG_DTS 0x6000 165 #define IEEE80211_CTL_EXT_SSW 0x8000 166 #define IEEE80211_CTL_EXT_SSW_FBACK 0x9000 167 #define IEEE80211_CTL_EXT_SSW_ACK 0xa000 168 169 170 #define IEEE80211_SN_MASK ((IEEE80211_SCTL_SEQ) >> 4) 171 #define IEEE80211_MAX_SN IEEE80211_SN_MASK 172 #define IEEE80211_SN_MODULO (IEEE80211_MAX_SN + 1) 173 174 175 /* PV1 Layout IEEE 802.11-2020 9.8.3.1 */ 176 #define IEEE80211_PV1_FCTL_VERS 0x0003 177 #define IEEE80211_PV1_FCTL_FTYPE 0x001c 178 #define IEEE80211_PV1_FCTL_STYPE 0x00e0 179 #define IEEE80211_PV1_FCTL_FROMDS 0x0100 180 #define IEEE80211_PV1_FCTL_MOREFRAGS 0x0200 181 #define IEEE80211_PV1_FCTL_PM 0x0400 182 #define IEEE80211_PV1_FCTL_MOREDATA 0x0800 183 #define IEEE80211_PV1_FCTL_PROTECTED 0x1000 184 #define IEEE80211_PV1_FCTL_END_SP 0x2000 185 #define IEEE80211_PV1_FCTL_RELAYED 0x4000 186 #define IEEE80211_PV1_FCTL_ACK_POLICY 0x8000 187 #define IEEE80211_PV1_FCTL_CTL_EXT 0x0f00 188 189 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2) 190 { 191 return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1); 192 } 193 194 static inline bool ieee80211_sn_less_eq(u16 sn1, u16 sn2) 195 { 196 return ((sn2 - sn1) & IEEE80211_SN_MASK) <= (IEEE80211_SN_MODULO >> 1); 197 } 198 199 static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2) 200 { 201 return (sn1 + sn2) & IEEE80211_SN_MASK; 202 } 203 204 static inline u16 ieee80211_sn_inc(u16 sn) 205 { 206 return ieee80211_sn_add(sn, 1); 207 } 208 209 static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2) 210 { 211 return (sn1 - sn2) & IEEE80211_SN_MASK; 212 } 213 214 #define IEEE80211_SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4) 215 #define IEEE80211_SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ) 216 217 /* miscellaneous IEEE 802.11 constants */ 218 #define IEEE80211_MAX_FRAG_THRESHOLD 2352 219 #define IEEE80211_MAX_RTS_THRESHOLD 2353 220 #define IEEE80211_MAX_AID 2007 221 #define IEEE80211_MAX_AID_S1G 8191 222 #define IEEE80211_MAX_TIM_LEN 251 223 #define IEEE80211_MAX_MESH_PEERINGS 63 224 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section 225 6.2.1.1.2. 226 227 802.11e clarifies the figure in section 7.1.2. The frame body is 228 up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */ 229 #define IEEE80211_MAX_DATA_LEN 2304 230 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks 231 * to 7920 bytes, see 8.2.3 General frame format 232 */ 233 #define IEEE80211_MAX_DATA_LEN_DMG 7920 234 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */ 235 #define IEEE80211_MAX_FRAME_LEN 2352 236 237 /* Maximal size of an A-MSDU that can be transported in a HT BA session */ 238 #define IEEE80211_MAX_MPDU_LEN_HT_BA 4095 239 240 /* Maximal size of an A-MSDU */ 241 #define IEEE80211_MAX_MPDU_LEN_HT_3839 3839 242 #define IEEE80211_MAX_MPDU_LEN_HT_7935 7935 243 244 #define IEEE80211_MAX_MPDU_LEN_VHT_3895 3895 245 #define IEEE80211_MAX_MPDU_LEN_VHT_7991 7991 246 #define IEEE80211_MAX_MPDU_LEN_VHT_11454 11454 247 248 #define IEEE80211_MAX_SSID_LEN 32 249 250 #define IEEE80211_MAX_MESH_ID_LEN 32 251 252 #define IEEE80211_FIRST_TSPEC_TSID 8 253 #define IEEE80211_NUM_TIDS 16 254 255 /* number of user priorities 802.11 uses */ 256 #define IEEE80211_NUM_UPS 8 257 /* number of ACs */ 258 #define IEEE80211_NUM_ACS 4 259 260 #define IEEE80211_QOS_CTL_LEN 2 261 /* 1d tag mask */ 262 #define IEEE80211_QOS_CTL_TAG1D_MASK 0x0007 263 /* TID mask */ 264 #define IEEE80211_QOS_CTL_TID_MASK 0x000f 265 /* EOSP */ 266 #define IEEE80211_QOS_CTL_EOSP 0x0010 267 /* ACK policy */ 268 #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL 0x0000 269 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK 0x0020 270 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL 0x0040 271 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK 0x0060 272 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK 0x0060 273 /* A-MSDU 802.11n */ 274 #define IEEE80211_QOS_CTL_A_MSDU_PRESENT 0x0080 275 /* Mesh Control 802.11s */ 276 #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT 0x0100 277 278 /* Mesh Power Save Level */ 279 #define IEEE80211_QOS_CTL_MESH_PS_LEVEL 0x0200 280 /* Mesh Receiver Service Period Initiated */ 281 #define IEEE80211_QOS_CTL_RSPI 0x0400 282 283 /* U-APSD queue for WMM IEs sent by AP */ 284 #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD (1<<7) 285 #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK 0x0f 286 287 /* U-APSD queues for WMM IEs sent by STA */ 288 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO (1<<0) 289 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI (1<<1) 290 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK (1<<2) 291 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE (1<<3) 292 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK 0x0f 293 294 /* U-APSD max SP length for WMM IEs sent by STA */ 295 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL 0x00 296 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2 0x01 297 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4 0x02 298 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6 0x03 299 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK 0x03 300 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT 5 301 302 #define IEEE80211_HT_CTL_LEN 4 303 304 /* trigger type within common_info of trigger frame */ 305 #define IEEE80211_TRIGGER_TYPE_MASK 0xf 306 #define IEEE80211_TRIGGER_TYPE_BASIC 0x0 307 #define IEEE80211_TRIGGER_TYPE_BFRP 0x1 308 #define IEEE80211_TRIGGER_TYPE_MU_BAR 0x2 309 #define IEEE80211_TRIGGER_TYPE_MU_RTS 0x3 310 #define IEEE80211_TRIGGER_TYPE_BSRP 0x4 311 #define IEEE80211_TRIGGER_TYPE_GCR_MU_BAR 0x5 312 #define IEEE80211_TRIGGER_TYPE_BQRP 0x6 313 #define IEEE80211_TRIGGER_TYPE_NFRP 0x7 314 315 /* UL-bandwidth within common_info of trigger frame */ 316 #define IEEE80211_TRIGGER_ULBW_MASK 0xc0000 317 #define IEEE80211_TRIGGER_ULBW_20MHZ 0x0 318 #define IEEE80211_TRIGGER_ULBW_40MHZ 0x1 319 #define IEEE80211_TRIGGER_ULBW_80MHZ 0x2 320 #define IEEE80211_TRIGGER_ULBW_160_80P80MHZ 0x3 321 322 struct ieee80211_hdr { 323 __le16 frame_control; 324 __le16 duration_id; 325 struct_group(addrs, 326 u8 addr1[ETH_ALEN]; 327 u8 addr2[ETH_ALEN]; 328 u8 addr3[ETH_ALEN]; 329 ); 330 __le16 seq_ctrl; 331 u8 addr4[ETH_ALEN]; 332 } __packed __aligned(2); 333 334 struct ieee80211_hdr_3addr { 335 __le16 frame_control; 336 __le16 duration_id; 337 u8 addr1[ETH_ALEN]; 338 u8 addr2[ETH_ALEN]; 339 u8 addr3[ETH_ALEN]; 340 __le16 seq_ctrl; 341 } __packed __aligned(2); 342 343 struct ieee80211_qos_hdr { 344 __le16 frame_control; 345 __le16 duration_id; 346 u8 addr1[ETH_ALEN]; 347 u8 addr2[ETH_ALEN]; 348 u8 addr3[ETH_ALEN]; 349 __le16 seq_ctrl; 350 __le16 qos_ctrl; 351 } __packed __aligned(2); 352 353 struct ieee80211_qos_hdr_4addr { 354 __le16 frame_control; 355 __le16 duration_id; 356 u8 addr1[ETH_ALEN]; 357 u8 addr2[ETH_ALEN]; 358 u8 addr3[ETH_ALEN]; 359 __le16 seq_ctrl; 360 u8 addr4[ETH_ALEN]; 361 __le16 qos_ctrl; 362 } __packed __aligned(2); 363 364 struct ieee80211_trigger { 365 __le16 frame_control; 366 __le16 duration; 367 u8 ra[ETH_ALEN]; 368 u8 ta[ETH_ALEN]; 369 __le64 common_info; 370 u8 variable[]; 371 } __packed __aligned(2); 372 373 /** 374 * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set 375 * @fc: frame control bytes in little-endian byteorder 376 */ 377 static inline bool ieee80211_has_tods(__le16 fc) 378 { 379 return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0; 380 } 381 382 /** 383 * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set 384 * @fc: frame control bytes in little-endian byteorder 385 */ 386 static inline bool ieee80211_has_fromds(__le16 fc) 387 { 388 return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0; 389 } 390 391 /** 392 * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set 393 * @fc: frame control bytes in little-endian byteorder 394 */ 395 static inline bool ieee80211_has_a4(__le16 fc) 396 { 397 __le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS); 398 return (fc & tmp) == tmp; 399 } 400 401 /** 402 * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set 403 * @fc: frame control bytes in little-endian byteorder 404 */ 405 static inline bool ieee80211_has_morefrags(__le16 fc) 406 { 407 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0; 408 } 409 410 /** 411 * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set 412 * @fc: frame control bytes in little-endian byteorder 413 */ 414 static inline bool ieee80211_has_retry(__le16 fc) 415 { 416 return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0; 417 } 418 419 /** 420 * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set 421 * @fc: frame control bytes in little-endian byteorder 422 */ 423 static inline bool ieee80211_has_pm(__le16 fc) 424 { 425 return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0; 426 } 427 428 /** 429 * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set 430 * @fc: frame control bytes in little-endian byteorder 431 */ 432 static inline bool ieee80211_has_moredata(__le16 fc) 433 { 434 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0; 435 } 436 437 /** 438 * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set 439 * @fc: frame control bytes in little-endian byteorder 440 */ 441 static inline bool ieee80211_has_protected(__le16 fc) 442 { 443 return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0; 444 } 445 446 /** 447 * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set 448 * @fc: frame control bytes in little-endian byteorder 449 */ 450 static inline bool ieee80211_has_order(__le16 fc) 451 { 452 return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0; 453 } 454 455 /** 456 * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT 457 * @fc: frame control bytes in little-endian byteorder 458 */ 459 static inline bool ieee80211_is_mgmt(__le16 fc) 460 { 461 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 462 cpu_to_le16(IEEE80211_FTYPE_MGMT); 463 } 464 465 /** 466 * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL 467 * @fc: frame control bytes in little-endian byteorder 468 */ 469 static inline bool ieee80211_is_ctl(__le16 fc) 470 { 471 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 472 cpu_to_le16(IEEE80211_FTYPE_CTL); 473 } 474 475 /** 476 * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA 477 * @fc: frame control bytes in little-endian byteorder 478 */ 479 static inline bool ieee80211_is_data(__le16 fc) 480 { 481 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 482 cpu_to_le16(IEEE80211_FTYPE_DATA); 483 } 484 485 /** 486 * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT 487 * @fc: frame control bytes in little-endian byteorder 488 */ 489 static inline bool ieee80211_is_ext(__le16 fc) 490 { 491 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 492 cpu_to_le16(IEEE80211_FTYPE_EXT); 493 } 494 495 496 /** 497 * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set 498 * @fc: frame control bytes in little-endian byteorder 499 */ 500 static inline bool ieee80211_is_data_qos(__le16 fc) 501 { 502 /* 503 * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need 504 * to check the one bit 505 */ 506 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) == 507 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA); 508 } 509 510 /** 511 * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data 512 * @fc: frame control bytes in little-endian byteorder 513 */ 514 static inline bool ieee80211_is_data_present(__le16 fc) 515 { 516 /* 517 * mask with 0x40 and test that that bit is clear to only return true 518 * for the data-containing substypes. 519 */ 520 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) == 521 cpu_to_le16(IEEE80211_FTYPE_DATA); 522 } 523 524 /** 525 * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ 526 * @fc: frame control bytes in little-endian byteorder 527 */ 528 static inline bool ieee80211_is_assoc_req(__le16 fc) 529 { 530 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 531 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ); 532 } 533 534 /** 535 * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP 536 * @fc: frame control bytes in little-endian byteorder 537 */ 538 static inline bool ieee80211_is_assoc_resp(__le16 fc) 539 { 540 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 541 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP); 542 } 543 544 /** 545 * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ 546 * @fc: frame control bytes in little-endian byteorder 547 */ 548 static inline bool ieee80211_is_reassoc_req(__le16 fc) 549 { 550 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 551 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ); 552 } 553 554 /** 555 * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP 556 * @fc: frame control bytes in little-endian byteorder 557 */ 558 static inline bool ieee80211_is_reassoc_resp(__le16 fc) 559 { 560 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 561 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP); 562 } 563 564 /** 565 * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ 566 * @fc: frame control bytes in little-endian byteorder 567 */ 568 static inline bool ieee80211_is_probe_req(__le16 fc) 569 { 570 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 571 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ); 572 } 573 574 /** 575 * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP 576 * @fc: frame control bytes in little-endian byteorder 577 */ 578 static inline bool ieee80211_is_probe_resp(__le16 fc) 579 { 580 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 581 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP); 582 } 583 584 /** 585 * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON 586 * @fc: frame control bytes in little-endian byteorder 587 */ 588 static inline bool ieee80211_is_beacon(__le16 fc) 589 { 590 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 591 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); 592 } 593 594 /** 595 * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT && 596 * IEEE80211_STYPE_S1G_BEACON 597 * @fc: frame control bytes in little-endian byteorder 598 */ 599 static inline bool ieee80211_is_s1g_beacon(__le16 fc) 600 { 601 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 602 IEEE80211_FCTL_STYPE)) == 603 cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON); 604 } 605 606 /** 607 * ieee80211_next_tbtt_present - check if IEEE80211_FTYPE_EXT && 608 * IEEE80211_STYPE_S1G_BEACON && IEEE80211_S1G_BCN_NEXT_TBTT 609 * @fc: frame control bytes in little-endian byteorder 610 */ 611 static inline bool ieee80211_next_tbtt_present(__le16 fc) 612 { 613 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 614 cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON) && 615 fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT); 616 } 617 618 /** 619 * ieee80211_is_s1g_short_beacon - check if next tbtt present bit is set. Only 620 * true for S1G beacons when they're short. 621 * @fc: frame control bytes in little-endian byteorder 622 */ 623 static inline bool ieee80211_is_s1g_short_beacon(__le16 fc) 624 { 625 return ieee80211_is_s1g_beacon(fc) && ieee80211_next_tbtt_present(fc); 626 } 627 628 /** 629 * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM 630 * @fc: frame control bytes in little-endian byteorder 631 */ 632 static inline bool ieee80211_is_atim(__le16 fc) 633 { 634 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 635 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM); 636 } 637 638 /** 639 * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC 640 * @fc: frame control bytes in little-endian byteorder 641 */ 642 static inline bool ieee80211_is_disassoc(__le16 fc) 643 { 644 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 645 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC); 646 } 647 648 /** 649 * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH 650 * @fc: frame control bytes in little-endian byteorder 651 */ 652 static inline bool ieee80211_is_auth(__le16 fc) 653 { 654 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 655 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH); 656 } 657 658 /** 659 * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH 660 * @fc: frame control bytes in little-endian byteorder 661 */ 662 static inline bool ieee80211_is_deauth(__le16 fc) 663 { 664 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 665 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH); 666 } 667 668 /** 669 * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION 670 * @fc: frame control bytes in little-endian byteorder 671 */ 672 static inline bool ieee80211_is_action(__le16 fc) 673 { 674 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 675 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); 676 } 677 678 /** 679 * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ 680 * @fc: frame control bytes in little-endian byteorder 681 */ 682 static inline bool ieee80211_is_back_req(__le16 fc) 683 { 684 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 685 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ); 686 } 687 688 /** 689 * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK 690 * @fc: frame control bytes in little-endian byteorder 691 */ 692 static inline bool ieee80211_is_back(__le16 fc) 693 { 694 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 695 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK); 696 } 697 698 /** 699 * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL 700 * @fc: frame control bytes in little-endian byteorder 701 */ 702 static inline bool ieee80211_is_pspoll(__le16 fc) 703 { 704 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 705 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL); 706 } 707 708 /** 709 * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS 710 * @fc: frame control bytes in little-endian byteorder 711 */ 712 static inline bool ieee80211_is_rts(__le16 fc) 713 { 714 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 715 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); 716 } 717 718 /** 719 * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS 720 * @fc: frame control bytes in little-endian byteorder 721 */ 722 static inline bool ieee80211_is_cts(__le16 fc) 723 { 724 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 725 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); 726 } 727 728 /** 729 * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK 730 * @fc: frame control bytes in little-endian byteorder 731 */ 732 static inline bool ieee80211_is_ack(__le16 fc) 733 { 734 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 735 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK); 736 } 737 738 /** 739 * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND 740 * @fc: frame control bytes in little-endian byteorder 741 */ 742 static inline bool ieee80211_is_cfend(__le16 fc) 743 { 744 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 745 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND); 746 } 747 748 /** 749 * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK 750 * @fc: frame control bytes in little-endian byteorder 751 */ 752 static inline bool ieee80211_is_cfendack(__le16 fc) 753 { 754 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 755 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK); 756 } 757 758 /** 759 * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame 760 * @fc: frame control bytes in little-endian byteorder 761 */ 762 static inline bool ieee80211_is_nullfunc(__le16 fc) 763 { 764 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 765 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC); 766 } 767 768 /** 769 * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame 770 * @fc: frame control bytes in little-endian byteorder 771 */ 772 static inline bool ieee80211_is_qos_nullfunc(__le16 fc) 773 { 774 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 775 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC); 776 } 777 778 /** 779 * ieee80211_is_trigger - check if frame is trigger frame 780 * @fc: frame control field in little-endian byteorder 781 */ 782 static inline bool ieee80211_is_trigger(__le16 fc) 783 { 784 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 785 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_TRIGGER); 786 } 787 788 /** 789 * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame 790 * @fc: frame control bytes in little-endian byteorder 791 */ 792 static inline bool ieee80211_is_any_nullfunc(__le16 fc) 793 { 794 return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc)); 795 } 796 797 /** 798 * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set 799 * @seq_ctrl: frame sequence control bytes in little-endian byteorder 800 */ 801 static inline bool ieee80211_is_first_frag(__le16 seq_ctrl) 802 { 803 return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0; 804 } 805 806 /** 807 * ieee80211_is_frag - check if a frame is a fragment 808 * @hdr: 802.11 header of the frame 809 */ 810 static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr) 811 { 812 return ieee80211_has_morefrags(hdr->frame_control) || 813 hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG); 814 } 815 816 static inline u16 ieee80211_get_sn(struct ieee80211_hdr *hdr) 817 { 818 return le16_get_bits(hdr->seq_ctrl, IEEE80211_SCTL_SEQ); 819 } 820 821 struct ieee80211s_hdr { 822 u8 flags; 823 u8 ttl; 824 __le32 seqnum; 825 u8 eaddr1[ETH_ALEN]; 826 u8 eaddr2[ETH_ALEN]; 827 } __packed __aligned(2); 828 829 /* Mesh flags */ 830 #define MESH_FLAGS_AE_A4 0x1 831 #define MESH_FLAGS_AE_A5_A6 0x2 832 #define MESH_FLAGS_AE 0x3 833 #define MESH_FLAGS_PS_DEEP 0x4 834 835 /** 836 * enum ieee80211_preq_flags - mesh PREQ element flags 837 * 838 * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield 839 */ 840 enum ieee80211_preq_flags { 841 IEEE80211_PREQ_PROACTIVE_PREP_FLAG = 1<<2, 842 }; 843 844 /** 845 * enum ieee80211_preq_target_flags - mesh PREQ element per target flags 846 * 847 * @IEEE80211_PREQ_TO_FLAG: target only subfield 848 * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield 849 */ 850 enum ieee80211_preq_target_flags { 851 IEEE80211_PREQ_TO_FLAG = 1<<0, 852 IEEE80211_PREQ_USN_FLAG = 1<<2, 853 }; 854 855 /** 856 * struct ieee80211_quiet_ie - Quiet element 857 * @count: Quiet Count 858 * @period: Quiet Period 859 * @duration: Quiet Duration 860 * @offset: Quiet Offset 861 * 862 * This structure represents the payload of the "Quiet element" as 863 * described in IEEE Std 802.11-2020 section 9.4.2.22. 864 */ 865 struct ieee80211_quiet_ie { 866 u8 count; 867 u8 period; 868 __le16 duration; 869 __le16 offset; 870 } __packed; 871 872 /** 873 * struct ieee80211_msrment_ie - Measurement element 874 * @token: Measurement Token 875 * @mode: Measurement Report Mode 876 * @type: Measurement Type 877 * @request: Measurement Request or Measurement Report 878 * 879 * This structure represents the payload of both the "Measurement 880 * Request element" and the "Measurement Report element" as described 881 * in IEEE Std 802.11-2020 sections 9.4.2.20 and 9.4.2.21. 882 */ 883 struct ieee80211_msrment_ie { 884 u8 token; 885 u8 mode; 886 u8 type; 887 u8 request[]; 888 } __packed; 889 890 /** 891 * struct ieee80211_channel_sw_ie - Channel Switch Announcement element 892 * @mode: Channel Switch Mode 893 * @new_ch_num: New Channel Number 894 * @count: Channel Switch Count 895 * 896 * This structure represents the payload of the "Channel Switch 897 * Announcement element" as described in IEEE Std 802.11-2020 section 898 * 9.4.2.18. 899 */ 900 struct ieee80211_channel_sw_ie { 901 u8 mode; 902 u8 new_ch_num; 903 u8 count; 904 } __packed; 905 906 /** 907 * struct ieee80211_ext_chansw_ie - Extended Channel Switch Announcement element 908 * @mode: Channel Switch Mode 909 * @new_operating_class: New Operating Class 910 * @new_ch_num: New Channel Number 911 * @count: Channel Switch Count 912 * 913 * This structure represents the "Extended Channel Switch Announcement 914 * element" as described in IEEE Std 802.11-2020 section 9.4.2.52. 915 */ 916 struct ieee80211_ext_chansw_ie { 917 u8 mode; 918 u8 new_operating_class; 919 u8 new_ch_num; 920 u8 count; 921 } __packed; 922 923 /** 924 * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE 925 * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_* 926 * values here 927 * This structure represents the "Secondary Channel Offset element" 928 */ 929 struct ieee80211_sec_chan_offs_ie { 930 u8 sec_chan_offs; 931 } __packed; 932 933 /** 934 * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE 935 * @mesh_ttl: Time To Live 936 * @mesh_flags: Flags 937 * @mesh_reason: Reason Code 938 * @mesh_pre_value: Precedence Value 939 * 940 * This structure represents the payload of the "Mesh Channel Switch 941 * Parameters element" as described in IEEE Std 802.11-2020 section 942 * 9.4.2.102. 943 */ 944 struct ieee80211_mesh_chansw_params_ie { 945 u8 mesh_ttl; 946 u8 mesh_flags; 947 __le16 mesh_reason; 948 __le16 mesh_pre_value; 949 } __packed; 950 951 /** 952 * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE 953 * @new_channel_width: New Channel Width 954 * @new_center_freq_seg0: New Channel Center Frequency Segment 0 955 * @new_center_freq_seg1: New Channel Center Frequency Segment 1 956 * 957 * This structure represents the payload of the "Wide Bandwidth 958 * Channel Switch element" as described in IEEE Std 802.11-2020 959 * section 9.4.2.160. 960 */ 961 struct ieee80211_wide_bw_chansw_ie { 962 u8 new_channel_width; 963 u8 new_center_freq_seg0, new_center_freq_seg1; 964 } __packed; 965 966 /** 967 * struct ieee80211_tim_ie - Traffic Indication Map information element 968 * @dtim_count: DTIM Count 969 * @dtim_period: DTIM Period 970 * @bitmap_ctrl: Bitmap Control 971 * @required_octet: "Syntatic sugar" to force the struct size to the 972 * minimum valid size when carried in a non-S1G PPDU 973 * @virtual_map: Partial Virtual Bitmap 974 * 975 * This structure represents the payload of the "TIM element" as 976 * described in IEEE Std 802.11-2020 section 9.4.2.5. Note that this 977 * definition is only applicable when the element is carried in a 978 * non-S1G PPDU. When the TIM is carried in an S1G PPDU, the Bitmap 979 * Control and Partial Virtual Bitmap may not be present. 980 */ 981 struct ieee80211_tim_ie { 982 u8 dtim_count; 983 u8 dtim_period; 984 u8 bitmap_ctrl; 985 union { 986 u8 required_octet; 987 DECLARE_FLEX_ARRAY(u8, virtual_map); 988 }; 989 } __packed; 990 991 /** 992 * struct ieee80211_meshconf_ie - Mesh Configuration element 993 * @meshconf_psel: Active Path Selection Protocol Identifier 994 * @meshconf_pmetric: Active Path Selection Metric Identifier 995 * @meshconf_congest: Congestion Control Mode Identifier 996 * @meshconf_synch: Synchronization Method Identifier 997 * @meshconf_auth: Authentication Protocol Identifier 998 * @meshconf_form: Mesh Formation Info 999 * @meshconf_cap: Mesh Capability (see &enum mesh_config_capab_flags) 1000 * 1001 * This structure represents the payload of the "Mesh Configuration 1002 * element" as described in IEEE Std 802.11-2020 section 9.4.2.97. 1003 */ 1004 struct ieee80211_meshconf_ie { 1005 u8 meshconf_psel; 1006 u8 meshconf_pmetric; 1007 u8 meshconf_congest; 1008 u8 meshconf_synch; 1009 u8 meshconf_auth; 1010 u8 meshconf_form; 1011 u8 meshconf_cap; 1012 } __packed; 1013 1014 /** 1015 * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags 1016 * 1017 * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish 1018 * additional mesh peerings with other mesh STAs 1019 * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs 1020 * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure 1021 * is ongoing 1022 * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has 1023 * neighbors in deep sleep mode 1024 * 1025 * Enumerates the "Mesh Capability" as described in IEEE Std 1026 * 802.11-2020 section 9.4.2.97.7. 1027 */ 1028 enum mesh_config_capab_flags { 1029 IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS = 0x01, 1030 IEEE80211_MESHCONF_CAPAB_FORWARDING = 0x08, 1031 IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING = 0x20, 1032 IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL = 0x40, 1033 }; 1034 1035 #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1 1036 1037 /* 1038 * mesh channel switch parameters element's flag indicator 1039 * 1040 */ 1041 #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0) 1042 #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1) 1043 #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2) 1044 1045 /** 1046 * struct ieee80211_rann_ie - RANN (root announcement) element 1047 * @rann_flags: Flags 1048 * @rann_hopcount: Hop Count 1049 * @rann_ttl: Element TTL 1050 * @rann_addr: Root Mesh STA Address 1051 * @rann_seq: HWMP Sequence Number 1052 * @rann_interval: Interval 1053 * @rann_metric: Metric 1054 * 1055 * This structure represents the payload of the "RANN element" as 1056 * described in IEEE Std 802.11-2020 section 9.4.2.111. 1057 */ 1058 struct ieee80211_rann_ie { 1059 u8 rann_flags; 1060 u8 rann_hopcount; 1061 u8 rann_ttl; 1062 u8 rann_addr[ETH_ALEN]; 1063 __le32 rann_seq; 1064 __le32 rann_interval; 1065 __le32 rann_metric; 1066 } __packed; 1067 1068 enum ieee80211_rann_flags { 1069 RANN_FLAG_IS_GATE = 1 << 0, 1070 }; 1071 1072 enum ieee80211_ht_chanwidth_values { 1073 IEEE80211_HT_CHANWIDTH_20MHZ = 0, 1074 IEEE80211_HT_CHANWIDTH_ANY = 1, 1075 }; 1076 1077 /** 1078 * enum ieee80211_vht_opmode_bits - VHT operating mode field bits 1079 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask 1080 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width 1081 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width 1082 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width 1083 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width 1084 * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag 1085 * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask 1086 * (the NSS value is the value of this field + 1) 1087 * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift 1088 * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU 1089 * using a beamforming steering matrix 1090 */ 1091 enum ieee80211_vht_opmode_bits { 1092 IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK = 0x03, 1093 IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ = 0, 1094 IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ = 1, 1095 IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ = 2, 1096 IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ = 3, 1097 IEEE80211_OPMODE_NOTIF_BW_160_80P80 = 0x04, 1098 IEEE80211_OPMODE_NOTIF_RX_NSS_MASK = 0x70, 1099 IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT = 4, 1100 IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF = 0x80, 1101 }; 1102 1103 /** 1104 * enum ieee80211_s1g_chanwidth 1105 * These are defined in IEEE802.11-2016ah Table 10-20 1106 * as BSS Channel Width 1107 * 1108 * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel 1109 * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel 1110 * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel 1111 * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel 1112 * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel 1113 */ 1114 enum ieee80211_s1g_chanwidth { 1115 IEEE80211_S1G_CHANWIDTH_1MHZ = 0, 1116 IEEE80211_S1G_CHANWIDTH_2MHZ = 1, 1117 IEEE80211_S1G_CHANWIDTH_4MHZ = 3, 1118 IEEE80211_S1G_CHANWIDTH_8MHZ = 7, 1119 IEEE80211_S1G_CHANWIDTH_16MHZ = 15, 1120 }; 1121 1122 #define WLAN_SA_QUERY_TR_ID_LEN 2 1123 #define WLAN_MEMBERSHIP_LEN 8 1124 #define WLAN_USER_POSITION_LEN 16 1125 1126 /** 1127 * struct ieee80211_tpc_report_ie - TPC Report element 1128 * @tx_power: Transmit Power 1129 * @link_margin: Link Margin 1130 * 1131 * This structure represents the payload of the "TPC Report element" as 1132 * described in IEEE Std 802.11-2020 section 9.4.2.16. 1133 */ 1134 struct ieee80211_tpc_report_ie { 1135 u8 tx_power; 1136 u8 link_margin; 1137 } __packed; 1138 1139 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK GENMASK(2, 1) 1140 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT 1 1141 #define IEEE80211_ADDBA_EXT_NO_FRAG BIT(0) 1142 #define IEEE80211_ADDBA_EXT_BUF_SIZE_MASK GENMASK(7, 5) 1143 #define IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT 10 1144 1145 struct ieee80211_addba_ext_ie { 1146 u8 data; 1147 } __packed; 1148 1149 /** 1150 * struct ieee80211_s1g_bcn_compat_ie - S1G Beacon Compatibility element 1151 * @compat_info: Compatibility Information 1152 * @beacon_int: Beacon Interval 1153 * @tsf_completion: TSF Completion 1154 * 1155 * This structure represents the payload of the "S1G Beacon 1156 * Compatibility element" as described in IEEE Std 802.11-2020 section 1157 * 9.4.2.196. 1158 */ 1159 struct ieee80211_s1g_bcn_compat_ie { 1160 __le16 compat_info; 1161 __le16 beacon_int; 1162 __le32 tsf_completion; 1163 } __packed; 1164 1165 /** 1166 * struct ieee80211_s1g_oper_ie - S1G Operation element 1167 * @ch_width: S1G Operation Information Channel Width 1168 * @oper_class: S1G Operation Information Operating Class 1169 * @primary_ch: S1G Operation Information Primary Channel Number 1170 * @oper_ch: S1G Operation Information Channel Center Frequency 1171 * @basic_mcs_nss: Basic S1G-MCS and NSS Set 1172 * 1173 * This structure represents the payload of the "S1G Operation 1174 * element" as described in IEEE Std 802.11-2020 section 9.4.2.212. 1175 */ 1176 struct ieee80211_s1g_oper_ie { 1177 u8 ch_width; 1178 u8 oper_class; 1179 u8 primary_ch; 1180 u8 oper_ch; 1181 __le16 basic_mcs_nss; 1182 } __packed; 1183 1184 /** 1185 * struct ieee80211_aid_response_ie - AID Response element 1186 * @aid: AID/Group AID 1187 * @switch_count: AID Switch Count 1188 * @response_int: AID Response Interval 1189 * 1190 * This structure represents the payload of the "AID Response element" 1191 * as described in IEEE Std 802.11-2020 section 9.4.2.194. 1192 */ 1193 struct ieee80211_aid_response_ie { 1194 __le16 aid; 1195 u8 switch_count; 1196 __le16 response_int; 1197 } __packed; 1198 1199 struct ieee80211_s1g_cap { 1200 u8 capab_info[10]; 1201 u8 supp_mcs_nss[5]; 1202 } __packed; 1203 1204 struct ieee80211_ext { 1205 __le16 frame_control; 1206 __le16 duration; 1207 union { 1208 struct { 1209 u8 sa[ETH_ALEN]; 1210 __le32 timestamp; 1211 u8 change_seq; 1212 u8 variable[0]; 1213 } __packed s1g_beacon; 1214 struct { 1215 u8 sa[ETH_ALEN]; 1216 __le32 timestamp; 1217 u8 change_seq; 1218 u8 next_tbtt[3]; 1219 u8 variable[0]; 1220 } __packed s1g_short_beacon; 1221 } u; 1222 } __packed __aligned(2); 1223 1224 #define IEEE80211_TWT_CONTROL_NDP BIT(0) 1225 #define IEEE80211_TWT_CONTROL_RESP_MODE BIT(1) 1226 #define IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST BIT(3) 1227 #define IEEE80211_TWT_CONTROL_RX_DISABLED BIT(4) 1228 #define IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT BIT(5) 1229 1230 #define IEEE80211_TWT_REQTYPE_REQUEST BIT(0) 1231 #define IEEE80211_TWT_REQTYPE_SETUP_CMD GENMASK(3, 1) 1232 #define IEEE80211_TWT_REQTYPE_TRIGGER BIT(4) 1233 #define IEEE80211_TWT_REQTYPE_IMPLICIT BIT(5) 1234 #define IEEE80211_TWT_REQTYPE_FLOWTYPE BIT(6) 1235 #define IEEE80211_TWT_REQTYPE_FLOWID GENMASK(9, 7) 1236 #define IEEE80211_TWT_REQTYPE_WAKE_INT_EXP GENMASK(14, 10) 1237 #define IEEE80211_TWT_REQTYPE_PROTECTION BIT(15) 1238 1239 enum ieee80211_twt_setup_cmd { 1240 TWT_SETUP_CMD_REQUEST, 1241 TWT_SETUP_CMD_SUGGEST, 1242 TWT_SETUP_CMD_DEMAND, 1243 TWT_SETUP_CMD_GROUPING, 1244 TWT_SETUP_CMD_ACCEPT, 1245 TWT_SETUP_CMD_ALTERNATE, 1246 TWT_SETUP_CMD_DICTATE, 1247 TWT_SETUP_CMD_REJECT, 1248 }; 1249 1250 struct ieee80211_twt_params { 1251 __le16 req_type; 1252 __le64 twt; 1253 u8 min_twt_dur; 1254 __le16 mantissa; 1255 u8 channel; 1256 } __packed; 1257 1258 struct ieee80211_twt_setup { 1259 u8 dialog_token; 1260 u8 element_id; 1261 u8 length; 1262 u8 control; 1263 u8 params[]; 1264 } __packed; 1265 1266 #define IEEE80211_TTLM_MAX_CNT 2 1267 #define IEEE80211_TTLM_CONTROL_DIRECTION 0x03 1268 #define IEEE80211_TTLM_CONTROL_DEF_LINK_MAP 0x04 1269 #define IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT 0x08 1270 #define IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT 0x10 1271 #define IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE 0x20 1272 1273 #define IEEE80211_TTLM_DIRECTION_DOWN 0 1274 #define IEEE80211_TTLM_DIRECTION_UP 1 1275 #define IEEE80211_TTLM_DIRECTION_BOTH 2 1276 1277 /** 1278 * struct ieee80211_ttlm_elem - TID-To-Link Mapping element 1279 * 1280 * Defined in section 9.4.2.314 in P802.11be_D4 1281 * 1282 * @control: the first part of control field 1283 * @optional: the second part of control field 1284 */ 1285 struct ieee80211_ttlm_elem { 1286 u8 control; 1287 u8 optional[]; 1288 } __packed; 1289 1290 /** 1291 * struct ieee80211_bss_load_elem - BSS Load elemen 1292 * 1293 * Defined in section 9.4.2.26 in IEEE 802.11-REVme D4.1 1294 * 1295 * @sta_count: total number of STAs currently associated with the AP. 1296 * @channel_util: Percentage of time that the access point sensed the channel 1297 * was busy. This value is in range [0, 255], the highest value means 1298 * 100% busy. 1299 * @avail_admission_capa: remaining amount of medium time used for admission 1300 * control. 1301 */ 1302 struct ieee80211_bss_load_elem { 1303 __le16 sta_count; 1304 u8 channel_util; 1305 __le16 avail_admission_capa; 1306 } __packed; 1307 1308 struct ieee80211_mgmt { 1309 __le16 frame_control; 1310 __le16 duration; 1311 u8 da[ETH_ALEN]; 1312 u8 sa[ETH_ALEN]; 1313 u8 bssid[ETH_ALEN]; 1314 __le16 seq_ctrl; 1315 union { 1316 struct { 1317 __le16 auth_alg; 1318 __le16 auth_transaction; 1319 __le16 status_code; 1320 /* possibly followed by Challenge text */ 1321 u8 variable[]; 1322 } __packed auth; 1323 struct { 1324 __le16 reason_code; 1325 } __packed deauth; 1326 struct { 1327 __le16 capab_info; 1328 __le16 listen_interval; 1329 /* followed by SSID and Supported rates */ 1330 u8 variable[]; 1331 } __packed assoc_req; 1332 struct { 1333 __le16 capab_info; 1334 __le16 status_code; 1335 __le16 aid; 1336 /* followed by Supported rates */ 1337 u8 variable[]; 1338 } __packed assoc_resp, reassoc_resp; 1339 struct { 1340 __le16 capab_info; 1341 __le16 status_code; 1342 u8 variable[]; 1343 } __packed s1g_assoc_resp, s1g_reassoc_resp; 1344 struct { 1345 __le16 capab_info; 1346 __le16 listen_interval; 1347 u8 current_ap[ETH_ALEN]; 1348 /* followed by SSID and Supported rates */ 1349 u8 variable[]; 1350 } __packed reassoc_req; 1351 struct { 1352 __le16 reason_code; 1353 } __packed disassoc; 1354 struct { 1355 __le64 timestamp; 1356 __le16 beacon_int; 1357 __le16 capab_info; 1358 /* followed by some of SSID, Supported rates, 1359 * FH Params, DS Params, CF Params, IBSS Params, TIM */ 1360 u8 variable[]; 1361 } __packed beacon; 1362 struct { 1363 /* only variable items: SSID, Supported rates */ 1364 DECLARE_FLEX_ARRAY(u8, variable); 1365 } __packed probe_req; 1366 struct { 1367 __le64 timestamp; 1368 __le16 beacon_int; 1369 __le16 capab_info; 1370 /* followed by some of SSID, Supported rates, 1371 * FH Params, DS Params, CF Params, IBSS Params */ 1372 u8 variable[]; 1373 } __packed probe_resp; 1374 struct { 1375 u8 category; 1376 union { 1377 struct { 1378 u8 action_code; 1379 u8 dialog_token; 1380 u8 status_code; 1381 u8 variable[]; 1382 } __packed wme_action; 1383 struct{ 1384 u8 action_code; 1385 u8 variable[]; 1386 } __packed chan_switch; 1387 struct{ 1388 u8 action_code; 1389 struct ieee80211_ext_chansw_ie data; 1390 u8 variable[]; 1391 } __packed ext_chan_switch; 1392 struct{ 1393 u8 action_code; 1394 u8 dialog_token; 1395 u8 element_id; 1396 u8 length; 1397 struct ieee80211_msrment_ie msr_elem; 1398 } __packed measurement; 1399 struct{ 1400 u8 action_code; 1401 u8 dialog_token; 1402 __le16 capab; 1403 __le16 timeout; 1404 __le16 start_seq_num; 1405 /* followed by BA Extension */ 1406 u8 variable[]; 1407 } __packed addba_req; 1408 struct{ 1409 u8 action_code; 1410 u8 dialog_token; 1411 __le16 status; 1412 __le16 capab; 1413 __le16 timeout; 1414 } __packed addba_resp; 1415 struct{ 1416 u8 action_code; 1417 __le16 params; 1418 __le16 reason_code; 1419 } __packed delba; 1420 struct { 1421 u8 action_code; 1422 u8 variable[]; 1423 } __packed self_prot; 1424 struct{ 1425 u8 action_code; 1426 u8 variable[]; 1427 } __packed mesh_action; 1428 struct { 1429 u8 action; 1430 u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN]; 1431 } __packed sa_query; 1432 struct { 1433 u8 action; 1434 u8 smps_control; 1435 } __packed ht_smps; 1436 struct { 1437 u8 action_code; 1438 u8 chanwidth; 1439 } __packed ht_notify_cw; 1440 struct { 1441 u8 action_code; 1442 u8 dialog_token; 1443 __le16 capability; 1444 u8 variable[0]; 1445 } __packed tdls_discover_resp; 1446 struct { 1447 u8 action_code; 1448 u8 operating_mode; 1449 } __packed vht_opmode_notif; 1450 struct { 1451 u8 action_code; 1452 u8 membership[WLAN_MEMBERSHIP_LEN]; 1453 u8 position[WLAN_USER_POSITION_LEN]; 1454 } __packed vht_group_notif; 1455 struct { 1456 u8 action_code; 1457 u8 dialog_token; 1458 u8 tpc_elem_id; 1459 u8 tpc_elem_length; 1460 struct ieee80211_tpc_report_ie tpc; 1461 } __packed tpc_report; 1462 struct { 1463 u8 action_code; 1464 u8 dialog_token; 1465 u8 follow_up; 1466 u8 tod[6]; 1467 u8 toa[6]; 1468 __le16 tod_error; 1469 __le16 toa_error; 1470 u8 variable[]; 1471 } __packed ftm; 1472 struct { 1473 u8 action_code; 1474 u8 variable[]; 1475 } __packed s1g; 1476 struct { 1477 u8 action_code; 1478 u8 dialog_token; 1479 u8 follow_up; 1480 u32 tod; 1481 u32 toa; 1482 u8 max_tod_error; 1483 u8 max_toa_error; 1484 } __packed wnm_timing_msr; 1485 struct { 1486 u8 action_code; 1487 u8 dialog_token; 1488 u8 variable[]; 1489 } __packed ttlm_req; 1490 struct { 1491 u8 action_code; 1492 u8 dialog_token; 1493 u8 status_code; 1494 u8 variable[]; 1495 } __packed ttlm_res; 1496 struct { 1497 u8 action_code; 1498 } __packed ttlm_tear_down; 1499 } u; 1500 } __packed action; 1501 DECLARE_FLEX_ARRAY(u8, body); /* Generic frame body */ 1502 } u; 1503 } __packed __aligned(2); 1504 1505 /* Supported rates membership selectors */ 1506 #define BSS_MEMBERSHIP_SELECTOR_HT_PHY 127 1507 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY 126 1508 #define BSS_MEMBERSHIP_SELECTOR_GLK 125 1509 #define BSS_MEMBERSHIP_SELECTOR_EPS 124 1510 #define BSS_MEMBERSHIP_SELECTOR_SAE_H2E 123 1511 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY 122 1512 #define BSS_MEMBERSHIP_SELECTOR_EHT_PHY 121 1513 1514 /* mgmt header + 1 byte category code */ 1515 #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u) 1516 1517 1518 /* Management MIC information element (IEEE 802.11w) */ 1519 struct ieee80211_mmie { 1520 u8 element_id; 1521 u8 length; 1522 __le16 key_id; 1523 u8 sequence_number[6]; 1524 u8 mic[8]; 1525 } __packed; 1526 1527 /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */ 1528 struct ieee80211_mmie_16 { 1529 u8 element_id; 1530 u8 length; 1531 __le16 key_id; 1532 u8 sequence_number[6]; 1533 u8 mic[16]; 1534 } __packed; 1535 1536 struct ieee80211_vendor_ie { 1537 u8 element_id; 1538 u8 len; 1539 u8 oui[3]; 1540 u8 oui_type; 1541 } __packed; 1542 1543 struct ieee80211_wmm_ac_param { 1544 u8 aci_aifsn; /* AIFSN, ACM, ACI */ 1545 u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */ 1546 __le16 txop_limit; 1547 } __packed; 1548 1549 struct ieee80211_wmm_param_ie { 1550 u8 element_id; /* Element ID: 221 (0xdd); */ 1551 u8 len; /* Length: 24 */ 1552 /* required fields for WMM version 1 */ 1553 u8 oui[3]; /* 00:50:f2 */ 1554 u8 oui_type; /* 2 */ 1555 u8 oui_subtype; /* 1 */ 1556 u8 version; /* 1 for WMM version 1.0 */ 1557 u8 qos_info; /* AP/STA specific QoS info */ 1558 u8 reserved; /* 0 */ 1559 /* AC_BE, AC_BK, AC_VI, AC_VO */ 1560 struct ieee80211_wmm_ac_param ac[4]; 1561 } __packed; 1562 1563 /* Control frames */ 1564 struct ieee80211_rts { 1565 __le16 frame_control; 1566 __le16 duration; 1567 u8 ra[ETH_ALEN]; 1568 u8 ta[ETH_ALEN]; 1569 } __packed __aligned(2); 1570 1571 struct ieee80211_cts { 1572 __le16 frame_control; 1573 __le16 duration; 1574 u8 ra[ETH_ALEN]; 1575 } __packed __aligned(2); 1576 1577 struct ieee80211_pspoll { 1578 __le16 frame_control; 1579 __le16 aid; 1580 u8 bssid[ETH_ALEN]; 1581 u8 ta[ETH_ALEN]; 1582 } __packed __aligned(2); 1583 1584 /* TDLS */ 1585 1586 /* Channel switch timing */ 1587 struct ieee80211_ch_switch_timing { 1588 __le16 switch_time; 1589 __le16 switch_timeout; 1590 } __packed; 1591 1592 /* Link-id information element */ 1593 struct ieee80211_tdls_lnkie { 1594 u8 ie_type; /* Link Identifier IE */ 1595 u8 ie_len; 1596 u8 bssid[ETH_ALEN]; 1597 u8 init_sta[ETH_ALEN]; 1598 u8 resp_sta[ETH_ALEN]; 1599 } __packed; 1600 1601 struct ieee80211_tdls_data { 1602 u8 da[ETH_ALEN]; 1603 u8 sa[ETH_ALEN]; 1604 __be16 ether_type; 1605 u8 payload_type; 1606 u8 category; 1607 u8 action_code; 1608 union { 1609 struct { 1610 u8 dialog_token; 1611 __le16 capability; 1612 u8 variable[0]; 1613 } __packed setup_req; 1614 struct { 1615 __le16 status_code; 1616 u8 dialog_token; 1617 __le16 capability; 1618 u8 variable[0]; 1619 } __packed setup_resp; 1620 struct { 1621 __le16 status_code; 1622 u8 dialog_token; 1623 u8 variable[0]; 1624 } __packed setup_cfm; 1625 struct { 1626 __le16 reason_code; 1627 u8 variable[0]; 1628 } __packed teardown; 1629 struct { 1630 u8 dialog_token; 1631 u8 variable[0]; 1632 } __packed discover_req; 1633 struct { 1634 u8 target_channel; 1635 u8 oper_class; 1636 u8 variable[0]; 1637 } __packed chan_switch_req; 1638 struct { 1639 __le16 status_code; 1640 u8 variable[0]; 1641 } __packed chan_switch_resp; 1642 } u; 1643 } __packed; 1644 1645 /* 1646 * Peer-to-Peer IE attribute related definitions. 1647 */ 1648 /* 1649 * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute. 1650 */ 1651 enum ieee80211_p2p_attr_id { 1652 IEEE80211_P2P_ATTR_STATUS = 0, 1653 IEEE80211_P2P_ATTR_MINOR_REASON, 1654 IEEE80211_P2P_ATTR_CAPABILITY, 1655 IEEE80211_P2P_ATTR_DEVICE_ID, 1656 IEEE80211_P2P_ATTR_GO_INTENT, 1657 IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT, 1658 IEEE80211_P2P_ATTR_LISTEN_CHANNEL, 1659 IEEE80211_P2P_ATTR_GROUP_BSSID, 1660 IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING, 1661 IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR, 1662 IEEE80211_P2P_ATTR_MANAGABILITY, 1663 IEEE80211_P2P_ATTR_CHANNEL_LIST, 1664 IEEE80211_P2P_ATTR_ABSENCE_NOTICE, 1665 IEEE80211_P2P_ATTR_DEVICE_INFO, 1666 IEEE80211_P2P_ATTR_GROUP_INFO, 1667 IEEE80211_P2P_ATTR_GROUP_ID, 1668 IEEE80211_P2P_ATTR_INTERFACE, 1669 IEEE80211_P2P_ATTR_OPER_CHANNEL, 1670 IEEE80211_P2P_ATTR_INVITE_FLAGS, 1671 /* 19 - 220: Reserved */ 1672 IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221, 1673 1674 IEEE80211_P2P_ATTR_MAX 1675 }; 1676 1677 /* Notice of Absence attribute - described in P2P spec 4.1.14 */ 1678 /* Typical max value used here */ 1679 #define IEEE80211_P2P_NOA_DESC_MAX 4 1680 1681 struct ieee80211_p2p_noa_desc { 1682 u8 count; 1683 __le32 duration; 1684 __le32 interval; 1685 __le32 start_time; 1686 } __packed; 1687 1688 struct ieee80211_p2p_noa_attr { 1689 u8 index; 1690 u8 oppps_ctwindow; 1691 struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX]; 1692 } __packed; 1693 1694 #define IEEE80211_P2P_OPPPS_ENABLE_BIT BIT(7) 1695 #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK 0x7F 1696 1697 /** 1698 * struct ieee80211_bar - Block Ack Request frame format 1699 * @frame_control: Frame Control 1700 * @duration: Duration 1701 * @ra: RA 1702 * @ta: TA 1703 * @control: BAR Control 1704 * @start_seq_num: Starting Sequence Number (see Figure 9-37) 1705 * 1706 * This structure represents the "BlockAckReq frame format" 1707 * as described in IEEE Std 802.11-2020 section 9.3.1.7. 1708 */ 1709 struct ieee80211_bar { 1710 __le16 frame_control; 1711 __le16 duration; 1712 __u8 ra[ETH_ALEN]; 1713 __u8 ta[ETH_ALEN]; 1714 __le16 control; 1715 __le16 start_seq_num; 1716 } __packed; 1717 1718 /* 802.11 BAR control masks */ 1719 #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL 0x0000 1720 #define IEEE80211_BAR_CTRL_MULTI_TID 0x0002 1721 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA 0x0004 1722 #define IEEE80211_BAR_CTRL_TID_INFO_MASK 0xf000 1723 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT 12 1724 1725 #define IEEE80211_HT_MCS_MASK_LEN 10 1726 1727 /** 1728 * struct ieee80211_mcs_info - Supported MCS Set field 1729 * @rx_mask: RX mask 1730 * @rx_highest: highest supported RX rate. If set represents 1731 * the highest supported RX data rate in units of 1 Mbps. 1732 * If this field is 0 this value should not be used to 1733 * consider the highest RX data rate supported. 1734 * @tx_params: TX parameters 1735 * @reserved: Reserved bits 1736 * 1737 * This structure represents the "Supported MCS Set field" as 1738 * described in IEEE Std 802.11-2020 section 9.4.2.55.4. 1739 */ 1740 struct ieee80211_mcs_info { 1741 u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN]; 1742 __le16 rx_highest; 1743 u8 tx_params; 1744 u8 reserved[3]; 1745 } __packed; 1746 1747 /* 802.11n HT capability MSC set */ 1748 #define IEEE80211_HT_MCS_RX_HIGHEST_MASK 0x3ff 1749 #define IEEE80211_HT_MCS_TX_DEFINED 0x01 1750 #define IEEE80211_HT_MCS_TX_RX_DIFF 0x02 1751 /* value 0 == 1 stream etc */ 1752 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK 0x0C 1753 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT 2 1754 #define IEEE80211_HT_MCS_TX_MAX_STREAMS 4 1755 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION 0x10 1756 1757 #define IEEE80211_HT_MCS_CHAINS(mcs) ((mcs) == 32 ? 1 : (1 + ((mcs) >> 3))) 1758 1759 /* 1760 * 802.11n D5.0 20.3.5 / 20.6 says: 1761 * - indices 0 to 7 and 32 are single spatial stream 1762 * - 8 to 31 are multiple spatial streams using equal modulation 1763 * [8..15 for two streams, 16..23 for three and 24..31 for four] 1764 * - remainder are multiple spatial streams using unequal modulation 1765 */ 1766 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33 1767 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \ 1768 (IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8) 1769 1770 /** 1771 * struct ieee80211_ht_cap - HT capabilities element 1772 * @cap_info: HT Capability Information 1773 * @ampdu_params_info: A-MPDU Parameters 1774 * @mcs: Supported MCS Set 1775 * @extended_ht_cap_info: HT Extended Capabilities 1776 * @tx_BF_cap_info: Transmit Beamforming Capabilities 1777 * @antenna_selection_info: ASEL Capability 1778 * 1779 * This structure represents the payload of the "HT Capabilities 1780 * element" as described in IEEE Std 802.11-2020 section 9.4.2.55. 1781 */ 1782 struct ieee80211_ht_cap { 1783 __le16 cap_info; 1784 u8 ampdu_params_info; 1785 1786 /* 16 bytes MCS information */ 1787 struct ieee80211_mcs_info mcs; 1788 1789 __le16 extended_ht_cap_info; 1790 __le32 tx_BF_cap_info; 1791 u8 antenna_selection_info; 1792 } __packed; 1793 1794 /* 802.11n HT capabilities masks (for cap_info) */ 1795 #define IEEE80211_HT_CAP_LDPC_CODING 0x0001 1796 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40 0x0002 1797 #define IEEE80211_HT_CAP_SM_PS 0x000C 1798 #define IEEE80211_HT_CAP_SM_PS_SHIFT 2 1799 #define IEEE80211_HT_CAP_GRN_FLD 0x0010 1800 #define IEEE80211_HT_CAP_SGI_20 0x0020 1801 #define IEEE80211_HT_CAP_SGI_40 0x0040 1802 #define IEEE80211_HT_CAP_TX_STBC 0x0080 1803 #define IEEE80211_HT_CAP_RX_STBC 0x0300 1804 #define IEEE80211_HT_CAP_RX_STBC_SHIFT 8 1805 #define IEEE80211_HT_CAP_DELAY_BA 0x0400 1806 #define IEEE80211_HT_CAP_MAX_AMSDU 0x0800 1807 #define IEEE80211_HT_CAP_DSSSCCK40 0x1000 1808 #define IEEE80211_HT_CAP_RESERVED 0x2000 1809 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT 0x4000 1810 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT 0x8000 1811 1812 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */ 1813 #define IEEE80211_HT_EXT_CAP_PCO 0x0001 1814 #define IEEE80211_HT_EXT_CAP_PCO_TIME 0x0006 1815 #define IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT 1 1816 #define IEEE80211_HT_EXT_CAP_MCS_FB 0x0300 1817 #define IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT 8 1818 #define IEEE80211_HT_EXT_CAP_HTC_SUP 0x0400 1819 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER 0x0800 1820 1821 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */ 1822 #define IEEE80211_HT_AMPDU_PARM_FACTOR 0x03 1823 #define IEEE80211_HT_AMPDU_PARM_DENSITY 0x1C 1824 #define IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT 2 1825 1826 /* 1827 * Maximum length of AMPDU that the STA can receive in high-throughput (HT). 1828 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) 1829 */ 1830 enum ieee80211_max_ampdu_length_exp { 1831 IEEE80211_HT_MAX_AMPDU_8K = 0, 1832 IEEE80211_HT_MAX_AMPDU_16K = 1, 1833 IEEE80211_HT_MAX_AMPDU_32K = 2, 1834 IEEE80211_HT_MAX_AMPDU_64K = 3 1835 }; 1836 1837 /* 1838 * Maximum length of AMPDU that the STA can receive in VHT. 1839 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) 1840 */ 1841 enum ieee80211_vht_max_ampdu_length_exp { 1842 IEEE80211_VHT_MAX_AMPDU_8K = 0, 1843 IEEE80211_VHT_MAX_AMPDU_16K = 1, 1844 IEEE80211_VHT_MAX_AMPDU_32K = 2, 1845 IEEE80211_VHT_MAX_AMPDU_64K = 3, 1846 IEEE80211_VHT_MAX_AMPDU_128K = 4, 1847 IEEE80211_VHT_MAX_AMPDU_256K = 5, 1848 IEEE80211_VHT_MAX_AMPDU_512K = 6, 1849 IEEE80211_VHT_MAX_AMPDU_1024K = 7 1850 }; 1851 1852 #define IEEE80211_HT_MAX_AMPDU_FACTOR 13 1853 1854 /* Minimum MPDU start spacing */ 1855 enum ieee80211_min_mpdu_spacing { 1856 IEEE80211_HT_MPDU_DENSITY_NONE = 0, /* No restriction */ 1857 IEEE80211_HT_MPDU_DENSITY_0_25 = 1, /* 1/4 usec */ 1858 IEEE80211_HT_MPDU_DENSITY_0_5 = 2, /* 1/2 usec */ 1859 IEEE80211_HT_MPDU_DENSITY_1 = 3, /* 1 usec */ 1860 IEEE80211_HT_MPDU_DENSITY_2 = 4, /* 2 usec */ 1861 IEEE80211_HT_MPDU_DENSITY_4 = 5, /* 4 usec */ 1862 IEEE80211_HT_MPDU_DENSITY_8 = 6, /* 8 usec */ 1863 IEEE80211_HT_MPDU_DENSITY_16 = 7 /* 16 usec */ 1864 }; 1865 1866 /** 1867 * struct ieee80211_ht_operation - HT operation IE 1868 * @primary_chan: Primary Channel 1869 * @ht_param: HT Operation Information parameters 1870 * @operation_mode: HT Operation Information operation mode 1871 * @stbc_param: HT Operation Information STBC params 1872 * @basic_set: Basic HT-MCS Set 1873 * 1874 * This structure represents the payload of the "HT Operation 1875 * element" as described in IEEE Std 802.11-2020 section 9.4.2.56. 1876 */ 1877 struct ieee80211_ht_operation { 1878 u8 primary_chan; 1879 u8 ht_param; 1880 __le16 operation_mode; 1881 __le16 stbc_param; 1882 u8 basic_set[16]; 1883 } __packed; 1884 1885 /* for ht_param */ 1886 #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET 0x03 1887 #define IEEE80211_HT_PARAM_CHA_SEC_NONE 0x00 1888 #define IEEE80211_HT_PARAM_CHA_SEC_ABOVE 0x01 1889 #define IEEE80211_HT_PARAM_CHA_SEC_BELOW 0x03 1890 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY 0x04 1891 #define IEEE80211_HT_PARAM_RIFS_MODE 0x08 1892 1893 /* for operation_mode */ 1894 #define IEEE80211_HT_OP_MODE_PROTECTION 0x0003 1895 #define IEEE80211_HT_OP_MODE_PROTECTION_NONE 0 1896 #define IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER 1 1897 #define IEEE80211_HT_OP_MODE_PROTECTION_20MHZ 2 1898 #define IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED 3 1899 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT 0x0004 1900 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT 0x0010 1901 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT 5 1902 #define IEEE80211_HT_OP_MODE_CCFS2_MASK 0x1fe0 1903 1904 /* for stbc_param */ 1905 #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON 0x0040 1906 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT 0x0080 1907 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON 0x0100 1908 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT 0x0200 1909 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE 0x0400 1910 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE 0x0800 1911 1912 1913 /* block-ack parameters */ 1914 #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001 1915 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002 1916 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C 1917 #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0 1918 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000 1919 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800 1920 1921 /* 1922 * A-MPDU buffer sizes 1923 * According to HT size varies from 8 to 64 frames 1924 * HE adds the ability to have up to 256 frames. 1925 * EHT adds the ability to have up to 1K frames. 1926 */ 1927 #define IEEE80211_MIN_AMPDU_BUF 0x8 1928 #define IEEE80211_MAX_AMPDU_BUF_HT 0x40 1929 #define IEEE80211_MAX_AMPDU_BUF_HE 0x100 1930 #define IEEE80211_MAX_AMPDU_BUF_EHT 0x400 1931 1932 1933 /* Spatial Multiplexing Power Save Modes (for capability) */ 1934 #define WLAN_HT_CAP_SM_PS_STATIC 0 1935 #define WLAN_HT_CAP_SM_PS_DYNAMIC 1 1936 #define WLAN_HT_CAP_SM_PS_INVALID 2 1937 #define WLAN_HT_CAP_SM_PS_DISABLED 3 1938 1939 /* for SM power control field lower two bits */ 1940 #define WLAN_HT_SMPS_CONTROL_DISABLED 0 1941 #define WLAN_HT_SMPS_CONTROL_STATIC 1 1942 #define WLAN_HT_SMPS_CONTROL_DYNAMIC 3 1943 1944 /** 1945 * struct ieee80211_vht_mcs_info - VHT MCS information 1946 * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams 1947 * @rx_highest: Indicates highest long GI VHT PPDU data rate 1948 * STA can receive. Rate expressed in units of 1 Mbps. 1949 * If this field is 0 this value should not be used to 1950 * consider the highest RX data rate supported. 1951 * The top 3 bits of this field indicate the Maximum NSTS,total 1952 * (a beamformee capability.) 1953 * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams 1954 * @tx_highest: Indicates highest long GI VHT PPDU data rate 1955 * STA can transmit. Rate expressed in units of 1 Mbps. 1956 * If this field is 0 this value should not be used to 1957 * consider the highest TX data rate supported. 1958 * The top 2 bits of this field are reserved, the 1959 * 3rd bit from the top indiciates VHT Extended NSS BW 1960 * Capability. 1961 */ 1962 struct ieee80211_vht_mcs_info { 1963 __le16 rx_mcs_map; 1964 __le16 rx_highest; 1965 __le16 tx_mcs_map; 1966 __le16 tx_highest; 1967 } __packed; 1968 1969 /* for rx_highest */ 1970 #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT 13 1971 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK (7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT) 1972 1973 /* for tx_highest */ 1974 #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE (1 << 13) 1975 1976 /** 1977 * enum ieee80211_vht_mcs_support - VHT MCS support definitions 1978 * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the 1979 * number of streams 1980 * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported 1981 * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported 1982 * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported 1983 * 1984 * These definitions are used in each 2-bit subfield of the @rx_mcs_map 1985 * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are 1986 * both split into 8 subfields by number of streams. These values indicate 1987 * which MCSes are supported for the number of streams the value appears 1988 * for. 1989 */ 1990 enum ieee80211_vht_mcs_support { 1991 IEEE80211_VHT_MCS_SUPPORT_0_7 = 0, 1992 IEEE80211_VHT_MCS_SUPPORT_0_8 = 1, 1993 IEEE80211_VHT_MCS_SUPPORT_0_9 = 2, 1994 IEEE80211_VHT_MCS_NOT_SUPPORTED = 3, 1995 }; 1996 1997 /** 1998 * struct ieee80211_vht_cap - VHT capabilities 1999 * 2000 * This structure is the "VHT capabilities element" as 2001 * described in 802.11ac D3.0 8.4.2.160 2002 * @vht_cap_info: VHT capability info 2003 * @supp_mcs: VHT MCS supported rates 2004 */ 2005 struct ieee80211_vht_cap { 2006 __le32 vht_cap_info; 2007 struct ieee80211_vht_mcs_info supp_mcs; 2008 } __packed; 2009 2010 /** 2011 * enum ieee80211_vht_chanwidth - VHT channel width 2012 * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to 2013 * determine the channel width (20 or 40 MHz) 2014 * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth 2015 * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth 2016 * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth 2017 */ 2018 enum ieee80211_vht_chanwidth { 2019 IEEE80211_VHT_CHANWIDTH_USE_HT = 0, 2020 IEEE80211_VHT_CHANWIDTH_80MHZ = 1, 2021 IEEE80211_VHT_CHANWIDTH_160MHZ = 2, 2022 IEEE80211_VHT_CHANWIDTH_80P80MHZ = 3, 2023 }; 2024 2025 /** 2026 * struct ieee80211_vht_operation - VHT operation IE 2027 * 2028 * This structure is the "VHT operation element" as 2029 * described in 802.11ac D3.0 8.4.2.161 2030 * @chan_width: Operating channel width 2031 * @center_freq_seg0_idx: center freq segment 0 index 2032 * @center_freq_seg1_idx: center freq segment 1 index 2033 * @basic_mcs_set: VHT Basic MCS rate set 2034 */ 2035 struct ieee80211_vht_operation { 2036 u8 chan_width; 2037 u8 center_freq_seg0_idx; 2038 u8 center_freq_seg1_idx; 2039 __le16 basic_mcs_set; 2040 } __packed; 2041 2042 /** 2043 * struct ieee80211_he_cap_elem - HE capabilities element 2044 * @mac_cap_info: HE MAC Capabilities Information 2045 * @phy_cap_info: HE PHY Capabilities Information 2046 * 2047 * This structure represents the fixed fields of the payload of the 2048 * "HE capabilities element" as described in IEEE Std 802.11ax-2021 2049 * sections 9.4.2.248.2 and 9.4.2.248.3. 2050 */ 2051 struct ieee80211_he_cap_elem { 2052 u8 mac_cap_info[6]; 2053 u8 phy_cap_info[11]; 2054 } __packed; 2055 2056 #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN 5 2057 2058 /** 2059 * enum ieee80211_he_mcs_support - HE MCS support definitions 2060 * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the 2061 * number of streams 2062 * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported 2063 * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported 2064 * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported 2065 * 2066 * These definitions are used in each 2-bit subfield of the rx_mcs_* 2067 * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are 2068 * both split into 8 subfields by number of streams. These values indicate 2069 * which MCSes are supported for the number of streams the value appears 2070 * for. 2071 */ 2072 enum ieee80211_he_mcs_support { 2073 IEEE80211_HE_MCS_SUPPORT_0_7 = 0, 2074 IEEE80211_HE_MCS_SUPPORT_0_9 = 1, 2075 IEEE80211_HE_MCS_SUPPORT_0_11 = 2, 2076 IEEE80211_HE_MCS_NOT_SUPPORTED = 3, 2077 }; 2078 2079 /** 2080 * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field 2081 * 2082 * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field 2083 * described in P802.11ax_D2.0 section 9.4.2.237.4 2084 * 2085 * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel 2086 * widths less than 80MHz. 2087 * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel 2088 * widths less than 80MHz. 2089 * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel 2090 * width 160MHz. 2091 * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel 2092 * width 160MHz. 2093 * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for 2094 * channel width 80p80MHz. 2095 * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for 2096 * channel width 80p80MHz. 2097 */ 2098 struct ieee80211_he_mcs_nss_supp { 2099 __le16 rx_mcs_80; 2100 __le16 tx_mcs_80; 2101 __le16 rx_mcs_160; 2102 __le16 tx_mcs_160; 2103 __le16 rx_mcs_80p80; 2104 __le16 tx_mcs_80p80; 2105 } __packed; 2106 2107 /** 2108 * struct ieee80211_he_operation - HE Operation element 2109 * @he_oper_params: HE Operation Parameters + BSS Color Information 2110 * @he_mcs_nss_set: Basic HE-MCS And NSS Set 2111 * @optional: Optional fields VHT Operation Information, Max Co-Hosted 2112 * BSSID Indicator, and 6 GHz Operation Information 2113 * 2114 * This structure represents the payload of the "HE Operation 2115 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.249. 2116 */ 2117 struct ieee80211_he_operation { 2118 __le32 he_oper_params; 2119 __le16 he_mcs_nss_set; 2120 u8 optional[]; 2121 } __packed; 2122 2123 /** 2124 * struct ieee80211_he_spr - Spatial Reuse Parameter Set element 2125 * @he_sr_control: SR Control 2126 * @optional: Optional fields Non-SRG OBSS PD Max Offset, SRG OBSS PD 2127 * Min Offset, SRG OBSS PD Max Offset, SRG BSS Color 2128 * Bitmap, and SRG Partial BSSID Bitmap 2129 * 2130 * This structure represents the payload of the "Spatial Reuse 2131 * Parameter Set element" as described in IEEE Std 802.11ax-2021 2132 * section 9.4.2.252. 2133 */ 2134 struct ieee80211_he_spr { 2135 u8 he_sr_control; 2136 u8 optional[]; 2137 } __packed; 2138 2139 /** 2140 * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field 2141 * @aifsn: ACI/AIFSN 2142 * @ecw_min_max: ECWmin/ECWmax 2143 * @mu_edca_timer: MU EDCA Timer 2144 * 2145 * This structure represents the "MU AC Parameter Record" as described 2146 * in IEEE Std 802.11ax-2021 section 9.4.2.251, Figure 9-788p. 2147 */ 2148 struct ieee80211_he_mu_edca_param_ac_rec { 2149 u8 aifsn; 2150 u8 ecw_min_max; 2151 u8 mu_edca_timer; 2152 } __packed; 2153 2154 /** 2155 * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element 2156 * @mu_qos_info: QoS Info 2157 * @ac_be: MU AC_BE Parameter Record 2158 * @ac_bk: MU AC_BK Parameter Record 2159 * @ac_vi: MU AC_VI Parameter Record 2160 * @ac_vo: MU AC_VO Parameter Record 2161 * 2162 * This structure represents the payload of the "MU EDCA Parameter Set 2163 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.251. 2164 */ 2165 struct ieee80211_mu_edca_param_set { 2166 u8 mu_qos_info; 2167 struct ieee80211_he_mu_edca_param_ac_rec ac_be; 2168 struct ieee80211_he_mu_edca_param_ac_rec ac_bk; 2169 struct ieee80211_he_mu_edca_param_ac_rec ac_vi; 2170 struct ieee80211_he_mu_edca_param_ac_rec ac_vo; 2171 } __packed; 2172 2173 #define IEEE80211_EHT_MCS_NSS_RX 0x0f 2174 #define IEEE80211_EHT_MCS_NSS_TX 0xf0 2175 2176 /** 2177 * struct ieee80211_eht_mcs_nss_supp_20mhz_only - EHT 20MHz only station max 2178 * supported NSS for per MCS. 2179 * 2180 * For each field below, bits 0 - 3 indicate the maximal number of spatial 2181 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams 2182 * for Tx. 2183 * 2184 * @rx_tx_mcs7_max_nss: indicates the maximum number of spatial streams 2185 * supported for reception and the maximum number of spatial streams 2186 * supported for transmission for MCS 0 - 7. 2187 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams 2188 * supported for reception and the maximum number of spatial streams 2189 * supported for transmission for MCS 8 - 9. 2190 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams 2191 * supported for reception and the maximum number of spatial streams 2192 * supported for transmission for MCS 10 - 11. 2193 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams 2194 * supported for reception and the maximum number of spatial streams 2195 * supported for transmission for MCS 12 - 13. 2196 * @rx_tx_max_nss: array of the previous fields for easier loop access 2197 */ 2198 struct ieee80211_eht_mcs_nss_supp_20mhz_only { 2199 union { 2200 struct { 2201 u8 rx_tx_mcs7_max_nss; 2202 u8 rx_tx_mcs9_max_nss; 2203 u8 rx_tx_mcs11_max_nss; 2204 u8 rx_tx_mcs13_max_nss; 2205 }; 2206 u8 rx_tx_max_nss[4]; 2207 }; 2208 }; 2209 2210 /** 2211 * struct ieee80211_eht_mcs_nss_supp_bw - EHT max supported NSS per MCS (except 2212 * 20MHz only stations). 2213 * 2214 * For each field below, bits 0 - 3 indicate the maximal number of spatial 2215 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams 2216 * for Tx. 2217 * 2218 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams 2219 * supported for reception and the maximum number of spatial streams 2220 * supported for transmission for MCS 0 - 9. 2221 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams 2222 * supported for reception and the maximum number of spatial streams 2223 * supported for transmission for MCS 10 - 11. 2224 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams 2225 * supported for reception and the maximum number of spatial streams 2226 * supported for transmission for MCS 12 - 13. 2227 * @rx_tx_max_nss: array of the previous fields for easier loop access 2228 */ 2229 struct ieee80211_eht_mcs_nss_supp_bw { 2230 union { 2231 struct { 2232 u8 rx_tx_mcs9_max_nss; 2233 u8 rx_tx_mcs11_max_nss; 2234 u8 rx_tx_mcs13_max_nss; 2235 }; 2236 u8 rx_tx_max_nss[3]; 2237 }; 2238 }; 2239 2240 /** 2241 * struct ieee80211_eht_cap_elem_fixed - EHT capabilities fixed data 2242 * 2243 * This structure is the "EHT Capabilities element" fixed fields as 2244 * described in P802.11be_D2.0 section 9.4.2.313. 2245 * 2246 * @mac_cap_info: MAC capabilities, see IEEE80211_EHT_MAC_CAP* 2247 * @phy_cap_info: PHY capabilities, see IEEE80211_EHT_PHY_CAP* 2248 */ 2249 struct ieee80211_eht_cap_elem_fixed { 2250 u8 mac_cap_info[2]; 2251 u8 phy_cap_info[9]; 2252 } __packed; 2253 2254 /** 2255 * struct ieee80211_eht_cap_elem - EHT capabilities element 2256 * @fixed: fixed parts, see &ieee80211_eht_cap_elem_fixed 2257 * @optional: optional parts 2258 */ 2259 struct ieee80211_eht_cap_elem { 2260 struct ieee80211_eht_cap_elem_fixed fixed; 2261 2262 /* 2263 * Followed by: 2264 * Supported EHT-MCS And NSS Set field: 4, 3, 6 or 9 octets. 2265 * EHT PPE Thresholds field: variable length. 2266 */ 2267 u8 optional[]; 2268 } __packed; 2269 2270 #define IEEE80211_EHT_OPER_INFO_PRESENT 0x01 2271 #define IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT 0x02 2272 #define IEEE80211_EHT_OPER_EHT_DEF_PE_DURATION 0x04 2273 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_LIMIT 0x08 2274 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_EXP_MASK 0x30 2275 2276 /** 2277 * struct ieee80211_eht_operation - eht operation element 2278 * 2279 * This structure is the "EHT Operation Element" fields as 2280 * described in P802.11be_D2.0 section 9.4.2.311 2281 * 2282 * @params: EHT operation element parameters. See &IEEE80211_EHT_OPER_* 2283 * @basic_mcs_nss: indicates the EHT-MCSs for each number of spatial streams in 2284 * EHT PPDUs that are supported by all EHT STAs in the BSS in transmit and 2285 * receive. 2286 * @optional: optional parts 2287 */ 2288 struct ieee80211_eht_operation { 2289 u8 params; 2290 struct ieee80211_eht_mcs_nss_supp_20mhz_only basic_mcs_nss; 2291 u8 optional[]; 2292 } __packed; 2293 2294 /** 2295 * struct ieee80211_eht_operation_info - eht operation information 2296 * 2297 * @control: EHT operation information control. 2298 * @ccfs0: defines a channel center frequency for a 20, 40, 80, 160, or 320 MHz 2299 * EHT BSS. 2300 * @ccfs1: defines a channel center frequency for a 160 or 320 MHz EHT BSS. 2301 * @optional: optional parts 2302 */ 2303 struct ieee80211_eht_operation_info { 2304 u8 control; 2305 u8 ccfs0; 2306 u8 ccfs1; 2307 u8 optional[]; 2308 } __packed; 2309 2310 /* 802.11ac VHT Capabilities */ 2311 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895 0x00000000 2312 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991 0x00000001 2313 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 0x00000002 2314 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK 0x00000003 2315 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ 0x00000004 2316 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ 0x00000008 2317 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK 0x0000000C 2318 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT 2 2319 #define IEEE80211_VHT_CAP_RXLDPC 0x00000010 2320 #define IEEE80211_VHT_CAP_SHORT_GI_80 0x00000020 2321 #define IEEE80211_VHT_CAP_SHORT_GI_160 0x00000040 2322 #define IEEE80211_VHT_CAP_TXSTBC 0x00000080 2323 #define IEEE80211_VHT_CAP_RXSTBC_1 0x00000100 2324 #define IEEE80211_VHT_CAP_RXSTBC_2 0x00000200 2325 #define IEEE80211_VHT_CAP_RXSTBC_3 0x00000300 2326 #define IEEE80211_VHT_CAP_RXSTBC_4 0x00000400 2327 #define IEEE80211_VHT_CAP_RXSTBC_MASK 0x00000700 2328 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT 8 2329 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE 0x00000800 2330 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE 0x00001000 2331 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT 13 2332 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK \ 2333 (7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT) 2334 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT 16 2335 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK \ 2336 (7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT) 2337 #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE 0x00080000 2338 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE 0x00100000 2339 #define IEEE80211_VHT_CAP_VHT_TXOP_PS 0x00200000 2340 #define IEEE80211_VHT_CAP_HTC_VHT 0x00400000 2341 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT 23 2342 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK \ 2343 (7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT) 2344 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB 0x08000000 2345 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB 0x0c000000 2346 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN 0x10000000 2347 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN 0x20000000 2348 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT 30 2349 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK 0xc0000000 2350 2351 /** 2352 * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS 2353 * @cap: VHT capabilities of the peer 2354 * @bw: bandwidth to use 2355 * @mcs: MCS index to use 2356 * @ext_nss_bw_capable: indicates whether or not the local transmitter 2357 * (rate scaling algorithm) can deal with the new logic 2358 * (dot11VHTExtendedNSSBWCapable) 2359 * @max_vht_nss: current maximum NSS as advertised by the STA in 2360 * operating mode notification, can be 0 in which case the 2361 * capability data will be used to derive this (from MCS support) 2362 * 2363 * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can 2364 * vary for a given BW/MCS. This function parses the data. 2365 * 2366 * Note: This function is exported by cfg80211. 2367 */ 2368 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2369 enum ieee80211_vht_chanwidth bw, 2370 int mcs, bool ext_nss_bw_capable, 2371 unsigned int max_vht_nss); 2372 2373 /** 2374 * enum ieee80211_ap_reg_power - regulatory power for a Access Point 2375 * 2376 * @IEEE80211_REG_UNSET_AP: Access Point has no regulatory power mode 2377 * @IEEE80211_REG_LPI_AP: Indoor Access Point 2378 * @IEEE80211_REG_SP_AP: Standard power Access Point 2379 * @IEEE80211_REG_VLP_AP: Very low power Access Point 2380 * @IEEE80211_REG_AP_POWER_AFTER_LAST: internal 2381 * @IEEE80211_REG_AP_POWER_MAX: maximum value 2382 */ 2383 enum ieee80211_ap_reg_power { 2384 IEEE80211_REG_UNSET_AP, 2385 IEEE80211_REG_LPI_AP, 2386 IEEE80211_REG_SP_AP, 2387 IEEE80211_REG_VLP_AP, 2388 IEEE80211_REG_AP_POWER_AFTER_LAST, 2389 IEEE80211_REG_AP_POWER_MAX = 2390 IEEE80211_REG_AP_POWER_AFTER_LAST - 1, 2391 }; 2392 2393 /** 2394 * enum ieee80211_client_reg_power - regulatory power for a client 2395 * 2396 * @IEEE80211_REG_UNSET_CLIENT: Client has no regulatory power mode 2397 * @IEEE80211_REG_DEFAULT_CLIENT: Default Client 2398 * @IEEE80211_REG_SUBORDINATE_CLIENT: Subordinate Client 2399 * @IEEE80211_REG_CLIENT_POWER_AFTER_LAST: internal 2400 * @IEEE80211_REG_CLIENT_POWER_MAX: maximum value 2401 */ 2402 enum ieee80211_client_reg_power { 2403 IEEE80211_REG_UNSET_CLIENT, 2404 IEEE80211_REG_DEFAULT_CLIENT, 2405 IEEE80211_REG_SUBORDINATE_CLIENT, 2406 IEEE80211_REG_CLIENT_POWER_AFTER_LAST, 2407 IEEE80211_REG_CLIENT_POWER_MAX = 2408 IEEE80211_REG_CLIENT_POWER_AFTER_LAST - 1, 2409 }; 2410 2411 /* 802.11ax HE MAC capabilities */ 2412 #define IEEE80211_HE_MAC_CAP0_HTC_HE 0x01 2413 #define IEEE80211_HE_MAC_CAP0_TWT_REQ 0x02 2414 #define IEEE80211_HE_MAC_CAP0_TWT_RES 0x04 2415 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP 0x00 2416 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1 0x08 2417 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2 0x10 2418 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3 0x18 2419 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK 0x18 2420 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1 0x00 2421 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2 0x20 2422 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4 0x40 2423 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8 0x60 2424 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16 0x80 2425 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32 0xa0 2426 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64 0xc0 2427 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED 0xe0 2428 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK 0xe0 2429 2430 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED 0x00 2431 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128 0x01 2432 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256 0x02 2433 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512 0x03 2434 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK 0x03 2435 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US 0x00 2436 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US 0x04 2437 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US 0x08 2438 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK 0x0c 2439 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1 0x00 2440 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2 0x10 2441 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3 0x20 2442 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4 0x30 2443 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5 0x40 2444 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6 0x50 2445 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7 0x60 2446 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8 0x70 2447 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK 0x70 2448 2449 /* Link adaptation is split between byte HE_MAC_CAP1 and 2450 * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE 2451 * in which case the following values apply: 2452 * 0 = No feedback. 2453 * 1 = reserved. 2454 * 2 = Unsolicited feedback. 2455 * 3 = both 2456 */ 2457 #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION 0x80 2458 2459 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION 0x01 2460 #define IEEE80211_HE_MAC_CAP2_ALL_ACK 0x02 2461 #define IEEE80211_HE_MAC_CAP2_TRS 0x04 2462 #define IEEE80211_HE_MAC_CAP2_BSR 0x08 2463 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT 0x10 2464 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP 0x20 2465 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING 0x40 2466 #define IEEE80211_HE_MAC_CAP2_ACK_EN 0x80 2467 2468 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL 0x02 2469 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA 0x04 2470 2471 /* The maximum length of an A-MDPU is defined by the combination of the Maximum 2472 * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the 2473 * same field in the HE capabilities. 2474 */ 2475 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0 0x00 2476 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1 0x08 2477 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2 0x10 2478 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3 0x18 2479 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK 0x18 2480 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG 0x20 2481 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED 0x40 2482 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS 0x80 2483 2484 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG 0x01 2485 #define IEEE80211_HE_MAC_CAP4_QTP 0x02 2486 #define IEEE80211_HE_MAC_CAP4_BQR 0x04 2487 #define IEEE80211_HE_MAC_CAP4_PSR_RESP 0x08 2488 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP 0x10 2489 #define IEEE80211_HE_MAC_CAP4_OPS 0x20 2490 #define IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU 0x40 2491 /* Multi TID agg TX is split between byte #4 and #5 2492 * The value is a combination of B39,B40,B41 2493 */ 2494 #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39 0x80 2495 2496 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 0x01 2497 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 0x02 2498 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION 0x04 2499 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU 0x08 2500 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX 0x10 2501 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS 0x20 2502 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING 0x40 2503 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX 0x80 2504 2505 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR 20 2506 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR 16 2507 #define IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR 13 2508 2509 /* 802.11ax HE PHY capabilities */ 2510 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G 0x02 2511 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G 0x04 2512 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G 0x08 2513 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G 0x10 2514 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL 0x1e 2515 2516 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G 0x20 2517 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G 0x40 2518 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK 0xfe 2519 2520 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ 0x01 2521 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ 0x02 2522 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ 0x04 2523 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ 0x08 2524 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK 0x0f 2525 #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A 0x10 2526 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD 0x20 2527 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US 0x40 2528 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */ 2529 #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS 0x80 2530 2531 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS 0x01 2532 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US 0x02 2533 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ 0x04 2534 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ 0x08 2535 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX 0x10 2536 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX 0x20 2537 2538 /* Note that the meaning of UL MU below is different between an AP and a non-AP 2539 * sta, where in the AP case it indicates support for Rx and in the non-AP sta 2540 * case it indicates support for Tx. 2541 */ 2542 #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO 0x40 2543 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO 0x80 2544 2545 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM 0x00 2546 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK 0x01 2547 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK 0x02 2548 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM 0x03 2549 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK 0x03 2550 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 0x00 2551 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2 0x04 2552 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM 0x00 2553 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK 0x08 2554 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK 0x10 2555 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM 0x18 2556 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK 0x18 2557 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1 0x00 2558 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2 0x20 2559 #define IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU 0x40 2560 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER 0x80 2561 2562 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE 0x01 2563 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER 0x02 2564 2565 /* Minimal allowed value of Max STS under 80MHz is 3 */ 2566 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 0x0c 2567 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 0x10 2568 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6 0x14 2569 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7 0x18 2570 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8 0x1c 2571 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK 0x1c 2572 2573 /* Minimal allowed value of Max STS above 80MHz is 3 */ 2574 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4 0x60 2575 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5 0x80 2576 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6 0xa0 2577 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7 0xc0 2578 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 0xe0 2579 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK 0xe0 2580 2581 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1 0x00 2582 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 0x01 2583 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3 0x02 2584 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4 0x03 2585 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5 0x04 2586 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6 0x05 2587 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7 0x06 2588 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8 0x07 2589 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK 0x07 2590 2591 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1 0x00 2592 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 0x08 2593 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3 0x10 2594 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4 0x18 2595 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5 0x20 2596 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6 0x28 2597 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7 0x30 2598 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8 0x38 2599 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK 0x38 2600 2601 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK 0x40 2602 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK 0x80 2603 2604 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU 0x01 2605 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU 0x02 2606 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB 0x04 2607 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB 0x08 2608 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB 0x10 2609 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE 0x20 2610 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO 0x40 2611 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT 0x80 2612 2613 #define IEEE80211_HE_PHY_CAP7_PSR_BASED_SR 0x01 2614 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP 0x02 2615 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI 0x04 2616 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1 0x08 2617 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2 0x10 2618 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3 0x18 2619 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4 0x20 2620 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5 0x28 2621 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6 0x30 2622 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7 0x38 2623 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK 0x38 2624 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ 0x40 2625 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ 0x80 2626 2627 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI 0x01 2628 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G 0x02 2629 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU 0x04 2630 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU 0x08 2631 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI 0x10 2632 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF 0x20 2633 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242 0x00 2634 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484 0x40 2635 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996 0x80 2636 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996 0xc0 2637 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK 0xc0 2638 2639 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM 0x01 2640 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK 0x02 2641 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU 0x04 2642 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU 0x08 2643 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB 0x10 2644 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB 0x20 2645 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US 0x0 2646 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US 0x1 2647 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US 0x2 2648 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED 0x3 2649 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS 6 2650 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK 0xc0 2651 2652 #define IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF 0x01 2653 2654 /* 802.11ax HE TX/RX MCS NSS Support */ 2655 #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS (3) 2656 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS (6) 2657 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS (11) 2658 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK 0x07c0 2659 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK 0xf800 2660 2661 /* TX/RX HE MCS Support field Highest MCS subfield encoding */ 2662 enum ieee80211_he_highest_mcs_supported_subfield_enc { 2663 HIGHEST_MCS_SUPPORTED_MCS7 = 0, 2664 HIGHEST_MCS_SUPPORTED_MCS8, 2665 HIGHEST_MCS_SUPPORTED_MCS9, 2666 HIGHEST_MCS_SUPPORTED_MCS10, 2667 HIGHEST_MCS_SUPPORTED_MCS11, 2668 }; 2669 2670 /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */ 2671 static inline u8 2672 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap) 2673 { 2674 u8 count = 4; 2675 2676 if (he_cap->phy_cap_info[0] & 2677 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) 2678 count += 4; 2679 2680 if (he_cap->phy_cap_info[0] & 2681 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) 2682 count += 4; 2683 2684 return count; 2685 } 2686 2687 /* 802.11ax HE PPE Thresholds */ 2688 #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS (1) 2689 #define IEEE80211_PPE_THRES_NSS_POS (0) 2690 #define IEEE80211_PPE_THRES_NSS_MASK (7) 2691 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU \ 2692 (BIT(5) | BIT(6)) 2693 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK 0x78 2694 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS (3) 2695 #define IEEE80211_PPE_THRES_INFO_PPET_SIZE (3) 2696 #define IEEE80211_HE_PPE_THRES_INFO_HEADER_SIZE (7) 2697 2698 /* 2699 * Calculate 802.11ax HE capabilities IE PPE field size 2700 * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8* 2701 */ 2702 static inline u8 2703 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info) 2704 { 2705 u8 n; 2706 2707 if ((phy_cap_info[6] & 2708 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2709 return 0; 2710 2711 n = hweight8(ppe_thres_hdr & 2712 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2713 n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >> 2714 IEEE80211_PPE_THRES_NSS_POS)); 2715 2716 /* 2717 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2718 * total size. 2719 */ 2720 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2721 n = DIV_ROUND_UP(n, 8); 2722 2723 return n; 2724 } 2725 2726 static inline bool ieee80211_he_capa_size_ok(const u8 *data, u8 len) 2727 { 2728 const struct ieee80211_he_cap_elem *he_cap_ie_elem = (const void *)data; 2729 u8 needed = sizeof(*he_cap_ie_elem); 2730 2731 if (len < needed) 2732 return false; 2733 2734 needed += ieee80211_he_mcs_nss_size(he_cap_ie_elem); 2735 if (len < needed) 2736 return false; 2737 2738 if (he_cap_ie_elem->phy_cap_info[6] & 2739 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) { 2740 if (len < needed + 1) 2741 return false; 2742 needed += ieee80211_he_ppe_size(data[needed], 2743 he_cap_ie_elem->phy_cap_info); 2744 } 2745 2746 return len >= needed; 2747 } 2748 2749 /* HE Operation defines */ 2750 #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK 0x00000007 2751 #define IEEE80211_HE_OPERATION_TWT_REQUIRED 0x00000008 2752 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK 0x00003ff0 2753 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET 4 2754 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO 0x00004000 2755 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS 0x00008000 2756 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE 0x00010000 2757 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO 0x00020000 2758 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK 0x3f000000 2759 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET 24 2760 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR 0x40000000 2761 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED 0x80000000 2762 2763 #define IEEE80211_6GHZ_CTRL_REG_LPI_AP 0 2764 #define IEEE80211_6GHZ_CTRL_REG_SP_AP 1 2765 #define IEEE80211_6GHZ_CTRL_REG_VLP_AP 2 2766 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP 3 2767 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP 4 2768 2769 /** 2770 * struct ieee80211_he_6ghz_oper - HE 6 GHz operation Information field 2771 * @primary: primary channel 2772 * @control: control flags 2773 * @ccfs0: channel center frequency segment 0 2774 * @ccfs1: channel center frequency segment 1 2775 * @minrate: minimum rate (in 1 Mbps units) 2776 */ 2777 struct ieee80211_he_6ghz_oper { 2778 u8 primary; 2779 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH 0x3 2780 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ 0 2781 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ 1 2782 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ 2 2783 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ 3 2784 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON 0x4 2785 #define IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO 0x38 2786 u8 control; 2787 u8 ccfs0; 2788 u8 ccfs1; 2789 u8 minrate; 2790 } __packed; 2791 2792 /* 2793 * In "9.4.2.161 Transmit Power Envelope element" of "IEEE Std 802.11ax-2021", 2794 * it show four types in "Table 9-275a-Maximum Transmit Power Interpretation 2795 * subfield encoding", and two category for each type in "Table E-12-Regulatory 2796 * Info subfield encoding in the United States". 2797 * So it it totally max 8 Transmit Power Envelope element. 2798 */ 2799 #define IEEE80211_TPE_MAX_IE_COUNT 8 2800 /* 2801 * In "Table 9-277—Meaning of Maximum Transmit Power Count subfield" 2802 * of "IEEE Std 802.11ax™‐2021", the max power level is 8. 2803 */ 2804 #define IEEE80211_MAX_NUM_PWR_LEVEL 8 2805 2806 #define IEEE80211_TPE_MAX_POWER_COUNT 8 2807 2808 /* transmit power interpretation type of transmit power envelope element */ 2809 enum ieee80211_tx_power_intrpt_type { 2810 IEEE80211_TPE_LOCAL_EIRP, 2811 IEEE80211_TPE_LOCAL_EIRP_PSD, 2812 IEEE80211_TPE_REG_CLIENT_EIRP, 2813 IEEE80211_TPE_REG_CLIENT_EIRP_PSD, 2814 }; 2815 2816 /** 2817 * struct ieee80211_tx_pwr_env - Transmit Power Envelope 2818 * @tx_power_info: Transmit Power Information field 2819 * @tx_power: Maximum Transmit Power field 2820 * 2821 * This structure represents the payload of the "Transmit Power 2822 * Envelope element" as described in IEEE Std 802.11ax-2021 section 2823 * 9.4.2.161 2824 */ 2825 struct ieee80211_tx_pwr_env { 2826 u8 tx_power_info; 2827 s8 tx_power[IEEE80211_TPE_MAX_POWER_COUNT]; 2828 } __packed; 2829 2830 #define IEEE80211_TX_PWR_ENV_INFO_COUNT 0x7 2831 #define IEEE80211_TX_PWR_ENV_INFO_INTERPRET 0x38 2832 #define IEEE80211_TX_PWR_ENV_INFO_CATEGORY 0xC0 2833 2834 /* 2835 * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size 2836 * @he_oper_ie: byte data of the He Operations IE, stating from the byte 2837 * after the ext ID byte. It is assumed that he_oper_ie has at least 2838 * sizeof(struct ieee80211_he_operation) bytes, the caller must have 2839 * validated this. 2840 * @return the actual size of the IE data (not including header), or 0 on error 2841 */ 2842 static inline u8 2843 ieee80211_he_oper_size(const u8 *he_oper_ie) 2844 { 2845 const struct ieee80211_he_operation *he_oper = (const void *)he_oper_ie; 2846 u8 oper_len = sizeof(struct ieee80211_he_operation); 2847 u32 he_oper_params; 2848 2849 /* Make sure the input is not NULL */ 2850 if (!he_oper_ie) 2851 return 0; 2852 2853 /* Calc required length */ 2854 he_oper_params = le32_to_cpu(he_oper->he_oper_params); 2855 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO) 2856 oper_len += 3; 2857 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS) 2858 oper_len++; 2859 if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO) 2860 oper_len += sizeof(struct ieee80211_he_6ghz_oper); 2861 2862 /* Add the first byte (extension ID) to the total length */ 2863 oper_len++; 2864 2865 return oper_len; 2866 } 2867 2868 /** 2869 * ieee80211_he_6ghz_oper - obtain 6 GHz operation field 2870 * @he_oper: HE operation element (must be pre-validated for size) 2871 * but may be %NULL 2872 * 2873 * Return: a pointer to the 6 GHz operation field, or %NULL 2874 */ 2875 static inline const struct ieee80211_he_6ghz_oper * 2876 ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper) 2877 { 2878 const u8 *ret; 2879 u32 he_oper_params; 2880 2881 if (!he_oper) 2882 return NULL; 2883 2884 ret = (const void *)&he_oper->optional; 2885 2886 he_oper_params = le32_to_cpu(he_oper->he_oper_params); 2887 2888 if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)) 2889 return NULL; 2890 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO) 2891 ret += 3; 2892 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS) 2893 ret++; 2894 2895 return (const void *)ret; 2896 } 2897 2898 /* HE Spatial Reuse defines */ 2899 #define IEEE80211_HE_SPR_PSR_DISALLOWED BIT(0) 2900 #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED BIT(1) 2901 #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT BIT(2) 2902 #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT BIT(3) 2903 #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED BIT(4) 2904 2905 /* 2906 * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size 2907 * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte 2908 * after the ext ID byte. It is assumed that he_spr_ie has at least 2909 * sizeof(struct ieee80211_he_spr) bytes, the caller must have validated 2910 * this 2911 * @return the actual size of the IE data (not including header), or 0 on error 2912 */ 2913 static inline u8 2914 ieee80211_he_spr_size(const u8 *he_spr_ie) 2915 { 2916 const struct ieee80211_he_spr *he_spr = (const void *)he_spr_ie; 2917 u8 spr_len = sizeof(struct ieee80211_he_spr); 2918 u8 he_spr_params; 2919 2920 /* Make sure the input is not NULL */ 2921 if (!he_spr_ie) 2922 return 0; 2923 2924 /* Calc required length */ 2925 he_spr_params = he_spr->he_sr_control; 2926 if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT) 2927 spr_len++; 2928 if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT) 2929 spr_len += 18; 2930 2931 /* Add the first byte (extension ID) to the total length */ 2932 spr_len++; 2933 2934 return spr_len; 2935 } 2936 2937 /* S1G Capabilities Information field */ 2938 #define IEEE80211_S1G_CAPABILITY_LEN 15 2939 2940 #define S1G_CAP0_S1G_LONG BIT(0) 2941 #define S1G_CAP0_SGI_1MHZ BIT(1) 2942 #define S1G_CAP0_SGI_2MHZ BIT(2) 2943 #define S1G_CAP0_SGI_4MHZ BIT(3) 2944 #define S1G_CAP0_SGI_8MHZ BIT(4) 2945 #define S1G_CAP0_SGI_16MHZ BIT(5) 2946 #define S1G_CAP0_SUPP_CH_WIDTH GENMASK(7, 6) 2947 2948 #define S1G_SUPP_CH_WIDTH_2 0 2949 #define S1G_SUPP_CH_WIDTH_4 1 2950 #define S1G_SUPP_CH_WIDTH_8 2 2951 #define S1G_SUPP_CH_WIDTH_16 3 2952 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \ 2953 cap[0])) << 1) 2954 2955 #define S1G_CAP1_RX_LDPC BIT(0) 2956 #define S1G_CAP1_TX_STBC BIT(1) 2957 #define S1G_CAP1_RX_STBC BIT(2) 2958 #define S1G_CAP1_SU_BFER BIT(3) 2959 #define S1G_CAP1_SU_BFEE BIT(4) 2960 #define S1G_CAP1_BFEE_STS GENMASK(7, 5) 2961 2962 #define S1G_CAP2_SOUNDING_DIMENSIONS GENMASK(2, 0) 2963 #define S1G_CAP2_MU_BFER BIT(3) 2964 #define S1G_CAP2_MU_BFEE BIT(4) 2965 #define S1G_CAP2_PLUS_HTC_VHT BIT(5) 2966 #define S1G_CAP2_TRAVELING_PILOT GENMASK(7, 6) 2967 2968 #define S1G_CAP3_RD_RESPONDER BIT(0) 2969 #define S1G_CAP3_HT_DELAYED_BA BIT(1) 2970 #define S1G_CAP3_MAX_MPDU_LEN BIT(2) 2971 #define S1G_CAP3_MAX_AMPDU_LEN_EXP GENMASK(4, 3) 2972 #define S1G_CAP3_MIN_MPDU_START GENMASK(7, 5) 2973 2974 #define S1G_CAP4_UPLINK_SYNC BIT(0) 2975 #define S1G_CAP4_DYNAMIC_AID BIT(1) 2976 #define S1G_CAP4_BAT BIT(2) 2977 #define S1G_CAP4_TIME_ADE BIT(3) 2978 #define S1G_CAP4_NON_TIM BIT(4) 2979 #define S1G_CAP4_GROUP_AID BIT(5) 2980 #define S1G_CAP4_STA_TYPE GENMASK(7, 6) 2981 2982 #define S1G_CAP5_CENT_AUTH_CONTROL BIT(0) 2983 #define S1G_CAP5_DIST_AUTH_CONTROL BIT(1) 2984 #define S1G_CAP5_AMSDU BIT(2) 2985 #define S1G_CAP5_AMPDU BIT(3) 2986 #define S1G_CAP5_ASYMMETRIC_BA BIT(4) 2987 #define S1G_CAP5_FLOW_CONTROL BIT(5) 2988 #define S1G_CAP5_SECTORIZED_BEAM GENMASK(7, 6) 2989 2990 #define S1G_CAP6_OBSS_MITIGATION BIT(0) 2991 #define S1G_CAP6_FRAGMENT_BA BIT(1) 2992 #define S1G_CAP6_NDP_PS_POLL BIT(2) 2993 #define S1G_CAP6_RAW_OPERATION BIT(3) 2994 #define S1G_CAP6_PAGE_SLICING BIT(4) 2995 #define S1G_CAP6_TXOP_SHARING_IMP_ACK BIT(5) 2996 #define S1G_CAP6_VHT_LINK_ADAPT GENMASK(7, 6) 2997 2998 #define S1G_CAP7_TACK_AS_PS_POLL BIT(0) 2999 #define S1G_CAP7_DUP_1MHZ BIT(1) 3000 #define S1G_CAP7_MCS_NEGOTIATION BIT(2) 3001 #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE BIT(3) 3002 #define S1G_CAP7_NDP_BFING_REPORT_POLL BIT(4) 3003 #define S1G_CAP7_UNSOLICITED_DYN_AID BIT(5) 3004 #define S1G_CAP7_SECTOR_TRAINING_OPERATION BIT(6) 3005 #define S1G_CAP7_TEMP_PS_MODE_SWITCH BIT(7) 3006 3007 #define S1G_CAP8_TWT_GROUPING BIT(0) 3008 #define S1G_CAP8_BDT BIT(1) 3009 #define S1G_CAP8_COLOR GENMASK(4, 2) 3010 #define S1G_CAP8_TWT_REQUEST BIT(5) 3011 #define S1G_CAP8_TWT_RESPOND BIT(6) 3012 #define S1G_CAP8_PV1_FRAME BIT(7) 3013 3014 #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0) 3015 3016 #define S1G_OPER_CH_WIDTH_PRIMARY_1MHZ BIT(0) 3017 #define S1G_OPER_CH_WIDTH_OPER GENMASK(4, 1) 3018 3019 /* EHT MAC capabilities as defined in P802.11be_D2.0 section 9.4.2.313.2 */ 3020 #define IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS 0x01 3021 #define IEEE80211_EHT_MAC_CAP0_OM_CONTROL 0x02 3022 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 0x04 3023 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 0x08 3024 #define IEEE80211_EHT_MAC_CAP0_RESTRICTED_TWT 0x10 3025 #define IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC 0x20 3026 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK 0xc0 3027 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895 0 3028 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991 1 3029 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454 2 3030 3031 #define IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK 0x01 3032 3033 /* EHT PHY capabilities as defined in P802.11be_D2.0 section 9.4.2.313.3 */ 3034 #define IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ 0x02 3035 #define IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ 0x04 3036 #define IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI 0x08 3037 #define IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO 0x10 3038 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER 0x20 3039 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE 0x40 3040 3041 /* EHT beamformee number of spatial streams <= 80MHz is split */ 3042 #define IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK 0x80 3043 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK 0x03 3044 3045 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK 0x1c 3046 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK 0xe0 3047 3048 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK 0x07 3049 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK 0x38 3050 3051 /* EHT number of sounding dimensions for 320MHz is split */ 3052 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK 0xc0 3053 #define IEEE80211_EHT_PHY_CAP3_SOUNDING_DIM_320MHZ_MASK 0x01 3054 #define IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK 0x02 3055 #define IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK 0x04 3056 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK 0x08 3057 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK 0x10 3058 #define IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK 0x20 3059 #define IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK 0x40 3060 #define IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK 0x80 3061 3062 #define IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO 0x01 3063 #define IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP 0x02 3064 #define IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP 0x04 3065 #define IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI 0x08 3066 #define IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK 0xf0 3067 3068 #define IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK 0x01 3069 #define IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP 0x02 3070 #define IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP 0x04 3071 #define IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT 0x08 3072 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK 0x30 3073 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US 0 3074 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US 1 3075 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US 2 3076 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US 3 3077 3078 /* Maximum number of supported EHT LTF is split */ 3079 #define IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK 0xc0 3080 #define IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF 0x40 3081 #define IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK 0x07 3082 3083 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ 0x08 3084 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ 0x30 3085 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ 0x40 3086 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK 0x78 3087 #define IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP 0x80 3088 3089 #define IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW 0x01 3090 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ 0x02 3091 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ 0x04 3092 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ 0x08 3093 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ 0x10 3094 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ 0x20 3095 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ 0x40 3096 #define IEEE80211_EHT_PHY_CAP7_TB_SOUNDING_FDBK_RATE_LIMIT 0x80 3097 3098 #define IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA 0x01 3099 #define IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA 0x02 3100 3101 /* 3102 * EHT operation channel width as defined in P802.11be_D2.0 section 9.4.2.311 3103 */ 3104 #define IEEE80211_EHT_OPER_CHAN_WIDTH 0x7 3105 #define IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ 0 3106 #define IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ 1 3107 #define IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ 2 3108 #define IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ 3 3109 #define IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ 4 3110 3111 /* Calculate 802.11be EHT capabilities IE Tx/Rx EHT MCS NSS Support Field size */ 3112 static inline u8 3113 ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap, 3114 const struct ieee80211_eht_cap_elem_fixed *eht_cap, 3115 bool from_ap) 3116 { 3117 u8 count = 0; 3118 3119 /* on 2.4 GHz, if it supports 40 MHz, the result is 3 */ 3120 if (he_cap->phy_cap_info[0] & 3121 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G) 3122 return 3; 3123 3124 /* on 2.4 GHz, these three bits are reserved, so should be 0 */ 3125 if (he_cap->phy_cap_info[0] & 3126 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G) 3127 count += 3; 3128 3129 if (he_cap->phy_cap_info[0] & 3130 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) 3131 count += 3; 3132 3133 if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) 3134 count += 3; 3135 3136 if (count) 3137 return count; 3138 3139 return from_ap ? 3 : 4; 3140 } 3141 3142 /* 802.11be EHT PPE Thresholds */ 3143 #define IEEE80211_EHT_PPE_THRES_NSS_POS 0 3144 #define IEEE80211_EHT_PPE_THRES_NSS_MASK 0xf 3145 #define IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK 0x1f0 3146 #define IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE 3 3147 #define IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE 9 3148 3149 /* 3150 * Calculate 802.11be EHT capabilities IE EHT field size 3151 */ 3152 static inline u8 3153 ieee80211_eht_ppe_size(u16 ppe_thres_hdr, const u8 *phy_cap_info) 3154 { 3155 u32 n; 3156 3157 if (!(phy_cap_info[5] & 3158 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT)) 3159 return 0; 3160 3161 n = hweight16(ppe_thres_hdr & 3162 IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK); 3163 n *= 1 + u16_get_bits(ppe_thres_hdr, IEEE80211_EHT_PPE_THRES_NSS_MASK); 3164 3165 /* 3166 * Each pair is 6 bits, and we need to add the 9 "header" bits to the 3167 * total size. 3168 */ 3169 n = n * IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2 + 3170 IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE; 3171 return DIV_ROUND_UP(n, 8); 3172 } 3173 3174 static inline bool 3175 ieee80211_eht_capa_size_ok(const u8 *he_capa, const u8 *data, u8 len, 3176 bool from_ap) 3177 { 3178 const struct ieee80211_eht_cap_elem_fixed *elem = (const void *)data; 3179 u8 needed = sizeof(struct ieee80211_eht_cap_elem_fixed); 3180 3181 if (len < needed || !he_capa) 3182 return false; 3183 3184 needed += ieee80211_eht_mcs_nss_size((const void *)he_capa, 3185 (const void *)data, 3186 from_ap); 3187 if (len < needed) 3188 return false; 3189 3190 if (elem->phy_cap_info[5] & 3191 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) { 3192 u16 ppe_thres_hdr; 3193 3194 if (len < needed + sizeof(ppe_thres_hdr)) 3195 return false; 3196 3197 ppe_thres_hdr = get_unaligned_le16(data + needed); 3198 needed += ieee80211_eht_ppe_size(ppe_thres_hdr, 3199 elem->phy_cap_info); 3200 } 3201 3202 return len >= needed; 3203 } 3204 3205 static inline bool 3206 ieee80211_eht_oper_size_ok(const u8 *data, u8 len) 3207 { 3208 const struct ieee80211_eht_operation *elem = (const void *)data; 3209 u8 needed = sizeof(*elem); 3210 3211 if (len < needed) 3212 return false; 3213 3214 if (elem->params & IEEE80211_EHT_OPER_INFO_PRESENT) { 3215 needed += 3; 3216 3217 if (elem->params & 3218 IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT) 3219 needed += 2; 3220 } 3221 3222 return len >= needed; 3223 } 3224 3225 /* must validate ieee80211_eht_oper_size_ok() first */ 3226 static inline u16 3227 ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation *eht_oper) 3228 { 3229 const struct ieee80211_eht_operation_info *info = 3230 (const void *)eht_oper->optional; 3231 3232 if (!(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) 3233 return 0; 3234 3235 if (!(eht_oper->params & IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)) 3236 return 0; 3237 3238 return get_unaligned_le16(info->optional); 3239 } 3240 3241 #define IEEE80211_BW_IND_DIS_SUBCH_PRESENT BIT(1) 3242 3243 struct ieee80211_bandwidth_indication { 3244 u8 params; 3245 struct ieee80211_eht_operation_info info; 3246 } __packed; 3247 3248 static inline bool 3249 ieee80211_bandwidth_indication_size_ok(const u8 *data, u8 len) 3250 { 3251 const struct ieee80211_bandwidth_indication *bwi = (const void *)data; 3252 3253 if (len < sizeof(*bwi)) 3254 return false; 3255 3256 if (bwi->params & IEEE80211_BW_IND_DIS_SUBCH_PRESENT && 3257 len < sizeof(*bwi) + 2) 3258 return false; 3259 3260 return true; 3261 } 3262 3263 #define LISTEN_INT_USF GENMASK(15, 14) 3264 #define LISTEN_INT_UI GENMASK(13, 0) 3265 3266 #define IEEE80211_MAX_USF FIELD_MAX(LISTEN_INT_USF) 3267 #define IEEE80211_MAX_UI FIELD_MAX(LISTEN_INT_UI) 3268 3269 /* Authentication algorithms */ 3270 #define WLAN_AUTH_OPEN 0 3271 #define WLAN_AUTH_SHARED_KEY 1 3272 #define WLAN_AUTH_FT 2 3273 #define WLAN_AUTH_SAE 3 3274 #define WLAN_AUTH_FILS_SK 4 3275 #define WLAN_AUTH_FILS_SK_PFS 5 3276 #define WLAN_AUTH_FILS_PK 6 3277 #define WLAN_AUTH_LEAP 128 3278 3279 #define WLAN_AUTH_CHALLENGE_LEN 128 3280 3281 #define WLAN_CAPABILITY_ESS (1<<0) 3282 #define WLAN_CAPABILITY_IBSS (1<<1) 3283 3284 /* 3285 * A mesh STA sets the ESS and IBSS capability bits to zero. 3286 * however, this holds true for p2p probe responses (in the p2p_find 3287 * phase) as well. 3288 */ 3289 #define WLAN_CAPABILITY_IS_STA_BSS(cap) \ 3290 (!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS))) 3291 3292 #define WLAN_CAPABILITY_CF_POLLABLE (1<<2) 3293 #define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3) 3294 #define WLAN_CAPABILITY_PRIVACY (1<<4) 3295 #define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5) 3296 #define WLAN_CAPABILITY_PBCC (1<<6) 3297 #define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7) 3298 3299 /* 802.11h */ 3300 #define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8) 3301 #define WLAN_CAPABILITY_QOS (1<<9) 3302 #define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10) 3303 #define WLAN_CAPABILITY_APSD (1<<11) 3304 #define WLAN_CAPABILITY_RADIO_MEASURE (1<<12) 3305 #define WLAN_CAPABILITY_DSSS_OFDM (1<<13) 3306 #define WLAN_CAPABILITY_DEL_BACK (1<<14) 3307 #define WLAN_CAPABILITY_IMM_BACK (1<<15) 3308 3309 /* DMG (60gHz) 802.11ad */ 3310 /* type - bits 0..1 */ 3311 #define WLAN_CAPABILITY_DMG_TYPE_MASK (3<<0) 3312 #define WLAN_CAPABILITY_DMG_TYPE_IBSS (1<<0) /* Tx by: STA */ 3313 #define WLAN_CAPABILITY_DMG_TYPE_PBSS (2<<0) /* Tx by: PCP */ 3314 #define WLAN_CAPABILITY_DMG_TYPE_AP (3<<0) /* Tx by: AP */ 3315 3316 #define WLAN_CAPABILITY_DMG_CBAP_ONLY (1<<2) 3317 #define WLAN_CAPABILITY_DMG_CBAP_SOURCE (1<<3) 3318 #define WLAN_CAPABILITY_DMG_PRIVACY (1<<4) 3319 #define WLAN_CAPABILITY_DMG_ECPAC (1<<5) 3320 3321 #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT (1<<8) 3322 #define WLAN_CAPABILITY_DMG_RADIO_MEASURE (1<<12) 3323 3324 /* measurement */ 3325 #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE (1<<0) 3326 #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE (1<<1) 3327 #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED (1<<2) 3328 3329 #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC 0 3330 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA 1 3331 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI 2 3332 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI 8 3333 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC 11 3334 3335 /* 802.11g ERP information element */ 3336 #define WLAN_ERP_NON_ERP_PRESENT (1<<0) 3337 #define WLAN_ERP_USE_PROTECTION (1<<1) 3338 #define WLAN_ERP_BARKER_PREAMBLE (1<<2) 3339 3340 /* WLAN_ERP_BARKER_PREAMBLE values */ 3341 enum { 3342 WLAN_ERP_PREAMBLE_SHORT = 0, 3343 WLAN_ERP_PREAMBLE_LONG = 1, 3344 }; 3345 3346 /* Band ID, 802.11ad #8.4.1.45 */ 3347 enum { 3348 IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */ 3349 IEEE80211_BANDID_SUB1 = 1, /* Sub-1 GHz (excluding TV white spaces) */ 3350 IEEE80211_BANDID_2G = 2, /* 2.4 GHz */ 3351 IEEE80211_BANDID_3G = 3, /* 3.6 GHz */ 3352 IEEE80211_BANDID_5G = 4, /* 4.9 and 5 GHz */ 3353 IEEE80211_BANDID_60G = 5, /* 60 GHz */ 3354 }; 3355 3356 /* Status codes */ 3357 enum ieee80211_statuscode { 3358 WLAN_STATUS_SUCCESS = 0, 3359 WLAN_STATUS_UNSPECIFIED_FAILURE = 1, 3360 WLAN_STATUS_CAPS_UNSUPPORTED = 10, 3361 WLAN_STATUS_REASSOC_NO_ASSOC = 11, 3362 WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12, 3363 WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13, 3364 WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14, 3365 WLAN_STATUS_CHALLENGE_FAIL = 15, 3366 WLAN_STATUS_AUTH_TIMEOUT = 16, 3367 WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17, 3368 WLAN_STATUS_ASSOC_DENIED_RATES = 18, 3369 /* 802.11b */ 3370 WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19, 3371 WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20, 3372 WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21, 3373 /* 802.11h */ 3374 WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22, 3375 WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23, 3376 WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24, 3377 /* 802.11g */ 3378 WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25, 3379 WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26, 3380 /* 802.11w */ 3381 WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30, 3382 WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31, 3383 /* 802.11i */ 3384 WLAN_STATUS_INVALID_IE = 40, 3385 WLAN_STATUS_INVALID_GROUP_CIPHER = 41, 3386 WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42, 3387 WLAN_STATUS_INVALID_AKMP = 43, 3388 WLAN_STATUS_UNSUPP_RSN_VERSION = 44, 3389 WLAN_STATUS_INVALID_RSN_IE_CAP = 45, 3390 WLAN_STATUS_CIPHER_SUITE_REJECTED = 46, 3391 /* 802.11e */ 3392 WLAN_STATUS_UNSPECIFIED_QOS = 32, 3393 WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33, 3394 WLAN_STATUS_ASSOC_DENIED_LOWACK = 34, 3395 WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35, 3396 WLAN_STATUS_REQUEST_DECLINED = 37, 3397 WLAN_STATUS_INVALID_QOS_PARAM = 38, 3398 WLAN_STATUS_CHANGE_TSPEC = 39, 3399 WLAN_STATUS_WAIT_TS_DELAY = 47, 3400 WLAN_STATUS_NO_DIRECT_LINK = 48, 3401 WLAN_STATUS_STA_NOT_PRESENT = 49, 3402 WLAN_STATUS_STA_NOT_QSTA = 50, 3403 /* 802.11s */ 3404 WLAN_STATUS_ANTI_CLOG_REQUIRED = 76, 3405 WLAN_STATUS_FCG_NOT_SUPP = 78, 3406 WLAN_STATUS_STA_NO_TBTT = 78, 3407 /* 802.11ad */ 3408 WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39, 3409 WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47, 3410 WLAN_STATUS_REJECT_WITH_SCHEDULE = 83, 3411 WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86, 3412 WLAN_STATUS_PERFORMING_FST_NOW = 87, 3413 WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88, 3414 WLAN_STATUS_REJECT_U_PID_SETTING = 89, 3415 WLAN_STATUS_REJECT_DSE_BAND = 96, 3416 WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99, 3417 WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103, 3418 /* 802.11ai */ 3419 WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108, 3420 WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109, 3421 WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126, 3422 WLAN_STATUS_SAE_PK = 127, 3423 WLAN_STATUS_DENIED_TID_TO_LINK_MAPPING = 133, 3424 WLAN_STATUS_PREF_TID_TO_LINK_MAPPING_SUGGESTED = 134, 3425 }; 3426 3427 3428 /* Reason codes */ 3429 enum ieee80211_reasoncode { 3430 WLAN_REASON_UNSPECIFIED = 1, 3431 WLAN_REASON_PREV_AUTH_NOT_VALID = 2, 3432 WLAN_REASON_DEAUTH_LEAVING = 3, 3433 WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4, 3434 WLAN_REASON_DISASSOC_AP_BUSY = 5, 3435 WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6, 3436 WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7, 3437 WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8, 3438 WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9, 3439 /* 802.11h */ 3440 WLAN_REASON_DISASSOC_BAD_POWER = 10, 3441 WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11, 3442 /* 802.11i */ 3443 WLAN_REASON_INVALID_IE = 13, 3444 WLAN_REASON_MIC_FAILURE = 14, 3445 WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15, 3446 WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16, 3447 WLAN_REASON_IE_DIFFERENT = 17, 3448 WLAN_REASON_INVALID_GROUP_CIPHER = 18, 3449 WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19, 3450 WLAN_REASON_INVALID_AKMP = 20, 3451 WLAN_REASON_UNSUPP_RSN_VERSION = 21, 3452 WLAN_REASON_INVALID_RSN_IE_CAP = 22, 3453 WLAN_REASON_IEEE8021X_FAILED = 23, 3454 WLAN_REASON_CIPHER_SUITE_REJECTED = 24, 3455 /* TDLS (802.11z) */ 3456 WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25, 3457 WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26, 3458 /* 802.11e */ 3459 WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32, 3460 WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33, 3461 WLAN_REASON_DISASSOC_LOW_ACK = 34, 3462 WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35, 3463 WLAN_REASON_QSTA_LEAVE_QBSS = 36, 3464 WLAN_REASON_QSTA_NOT_USE = 37, 3465 WLAN_REASON_QSTA_REQUIRE_SETUP = 38, 3466 WLAN_REASON_QSTA_TIMEOUT = 39, 3467 WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45, 3468 /* 802.11s */ 3469 WLAN_REASON_MESH_PEER_CANCELED = 52, 3470 WLAN_REASON_MESH_MAX_PEERS = 53, 3471 WLAN_REASON_MESH_CONFIG = 54, 3472 WLAN_REASON_MESH_CLOSE = 55, 3473 WLAN_REASON_MESH_MAX_RETRIES = 56, 3474 WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57, 3475 WLAN_REASON_MESH_INVALID_GTK = 58, 3476 WLAN_REASON_MESH_INCONSISTENT_PARAM = 59, 3477 WLAN_REASON_MESH_INVALID_SECURITY = 60, 3478 WLAN_REASON_MESH_PATH_ERROR = 61, 3479 WLAN_REASON_MESH_PATH_NOFORWARD = 62, 3480 WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63, 3481 WLAN_REASON_MAC_EXISTS_IN_MBSS = 64, 3482 WLAN_REASON_MESH_CHAN_REGULATORY = 65, 3483 WLAN_REASON_MESH_CHAN = 66, 3484 }; 3485 3486 3487 /* Information Element IDs */ 3488 enum ieee80211_eid { 3489 WLAN_EID_SSID = 0, 3490 WLAN_EID_SUPP_RATES = 1, 3491 WLAN_EID_FH_PARAMS = 2, /* reserved now */ 3492 WLAN_EID_DS_PARAMS = 3, 3493 WLAN_EID_CF_PARAMS = 4, 3494 WLAN_EID_TIM = 5, 3495 WLAN_EID_IBSS_PARAMS = 6, 3496 WLAN_EID_COUNTRY = 7, 3497 /* 8, 9 reserved */ 3498 WLAN_EID_REQUEST = 10, 3499 WLAN_EID_QBSS_LOAD = 11, 3500 WLAN_EID_EDCA_PARAM_SET = 12, 3501 WLAN_EID_TSPEC = 13, 3502 WLAN_EID_TCLAS = 14, 3503 WLAN_EID_SCHEDULE = 15, 3504 WLAN_EID_CHALLENGE = 16, 3505 /* 17-31 reserved for challenge text extension */ 3506 WLAN_EID_PWR_CONSTRAINT = 32, 3507 WLAN_EID_PWR_CAPABILITY = 33, 3508 WLAN_EID_TPC_REQUEST = 34, 3509 WLAN_EID_TPC_REPORT = 35, 3510 WLAN_EID_SUPPORTED_CHANNELS = 36, 3511 WLAN_EID_CHANNEL_SWITCH = 37, 3512 WLAN_EID_MEASURE_REQUEST = 38, 3513 WLAN_EID_MEASURE_REPORT = 39, 3514 WLAN_EID_QUIET = 40, 3515 WLAN_EID_IBSS_DFS = 41, 3516 WLAN_EID_ERP_INFO = 42, 3517 WLAN_EID_TS_DELAY = 43, 3518 WLAN_EID_TCLAS_PROCESSING = 44, 3519 WLAN_EID_HT_CAPABILITY = 45, 3520 WLAN_EID_QOS_CAPA = 46, 3521 /* 47 reserved for Broadcom */ 3522 WLAN_EID_RSN = 48, 3523 WLAN_EID_802_15_COEX = 49, 3524 WLAN_EID_EXT_SUPP_RATES = 50, 3525 WLAN_EID_AP_CHAN_REPORT = 51, 3526 WLAN_EID_NEIGHBOR_REPORT = 52, 3527 WLAN_EID_RCPI = 53, 3528 WLAN_EID_MOBILITY_DOMAIN = 54, 3529 WLAN_EID_FAST_BSS_TRANSITION = 55, 3530 WLAN_EID_TIMEOUT_INTERVAL = 56, 3531 WLAN_EID_RIC_DATA = 57, 3532 WLAN_EID_DSE_REGISTERED_LOCATION = 58, 3533 WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59, 3534 WLAN_EID_EXT_CHANSWITCH_ANN = 60, 3535 WLAN_EID_HT_OPERATION = 61, 3536 WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62, 3537 WLAN_EID_BSS_AVG_ACCESS_DELAY = 63, 3538 WLAN_EID_ANTENNA_INFO = 64, 3539 WLAN_EID_RSNI = 65, 3540 WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66, 3541 WLAN_EID_BSS_AVAILABLE_CAPACITY = 67, 3542 WLAN_EID_BSS_AC_ACCESS_DELAY = 68, 3543 WLAN_EID_TIME_ADVERTISEMENT = 69, 3544 WLAN_EID_RRM_ENABLED_CAPABILITIES = 70, 3545 WLAN_EID_MULTIPLE_BSSID = 71, 3546 WLAN_EID_BSS_COEX_2040 = 72, 3547 WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73, 3548 WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74, 3549 WLAN_EID_RIC_DESCRIPTOR = 75, 3550 WLAN_EID_MMIE = 76, 3551 WLAN_EID_ASSOC_COMEBACK_TIME = 77, 3552 WLAN_EID_EVENT_REQUEST = 78, 3553 WLAN_EID_EVENT_REPORT = 79, 3554 WLAN_EID_DIAGNOSTIC_REQUEST = 80, 3555 WLAN_EID_DIAGNOSTIC_REPORT = 81, 3556 WLAN_EID_LOCATION_PARAMS = 82, 3557 WLAN_EID_NON_TX_BSSID_CAP = 83, 3558 WLAN_EID_SSID_LIST = 84, 3559 WLAN_EID_MULTI_BSSID_IDX = 85, 3560 WLAN_EID_FMS_DESCRIPTOR = 86, 3561 WLAN_EID_FMS_REQUEST = 87, 3562 WLAN_EID_FMS_RESPONSE = 88, 3563 WLAN_EID_QOS_TRAFFIC_CAPA = 89, 3564 WLAN_EID_BSS_MAX_IDLE_PERIOD = 90, 3565 WLAN_EID_TSF_REQUEST = 91, 3566 WLAN_EID_TSF_RESPOSNE = 92, 3567 WLAN_EID_WNM_SLEEP_MODE = 93, 3568 WLAN_EID_TIM_BCAST_REQ = 94, 3569 WLAN_EID_TIM_BCAST_RESP = 95, 3570 WLAN_EID_COLL_IF_REPORT = 96, 3571 WLAN_EID_CHANNEL_USAGE = 97, 3572 WLAN_EID_TIME_ZONE = 98, 3573 WLAN_EID_DMS_REQUEST = 99, 3574 WLAN_EID_DMS_RESPONSE = 100, 3575 WLAN_EID_LINK_ID = 101, 3576 WLAN_EID_WAKEUP_SCHEDUL = 102, 3577 /* 103 reserved */ 3578 WLAN_EID_CHAN_SWITCH_TIMING = 104, 3579 WLAN_EID_PTI_CONTROL = 105, 3580 WLAN_EID_PU_BUFFER_STATUS = 106, 3581 WLAN_EID_INTERWORKING = 107, 3582 WLAN_EID_ADVERTISEMENT_PROTOCOL = 108, 3583 WLAN_EID_EXPEDITED_BW_REQ = 109, 3584 WLAN_EID_QOS_MAP_SET = 110, 3585 WLAN_EID_ROAMING_CONSORTIUM = 111, 3586 WLAN_EID_EMERGENCY_ALERT = 112, 3587 WLAN_EID_MESH_CONFIG = 113, 3588 WLAN_EID_MESH_ID = 114, 3589 WLAN_EID_LINK_METRIC_REPORT = 115, 3590 WLAN_EID_CONGESTION_NOTIFICATION = 116, 3591 WLAN_EID_PEER_MGMT = 117, 3592 WLAN_EID_CHAN_SWITCH_PARAM = 118, 3593 WLAN_EID_MESH_AWAKE_WINDOW = 119, 3594 WLAN_EID_BEACON_TIMING = 120, 3595 WLAN_EID_MCCAOP_SETUP_REQ = 121, 3596 WLAN_EID_MCCAOP_SETUP_RESP = 122, 3597 WLAN_EID_MCCAOP_ADVERT = 123, 3598 WLAN_EID_MCCAOP_TEARDOWN = 124, 3599 WLAN_EID_GANN = 125, 3600 WLAN_EID_RANN = 126, 3601 WLAN_EID_EXT_CAPABILITY = 127, 3602 /* 128, 129 reserved for Agere */ 3603 WLAN_EID_PREQ = 130, 3604 WLAN_EID_PREP = 131, 3605 WLAN_EID_PERR = 132, 3606 /* 133-136 reserved for Cisco */ 3607 WLAN_EID_PXU = 137, 3608 WLAN_EID_PXUC = 138, 3609 WLAN_EID_AUTH_MESH_PEER_EXCH = 139, 3610 WLAN_EID_MIC = 140, 3611 WLAN_EID_DESTINATION_URI = 141, 3612 WLAN_EID_UAPSD_COEX = 142, 3613 WLAN_EID_WAKEUP_SCHEDULE = 143, 3614 WLAN_EID_EXT_SCHEDULE = 144, 3615 WLAN_EID_STA_AVAILABILITY = 145, 3616 WLAN_EID_DMG_TSPEC = 146, 3617 WLAN_EID_DMG_AT = 147, 3618 WLAN_EID_DMG_CAP = 148, 3619 /* 149 reserved for Cisco */ 3620 WLAN_EID_CISCO_VENDOR_SPECIFIC = 150, 3621 WLAN_EID_DMG_OPERATION = 151, 3622 WLAN_EID_DMG_BSS_PARAM_CHANGE = 152, 3623 WLAN_EID_DMG_BEAM_REFINEMENT = 153, 3624 WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154, 3625 /* 155-156 reserved for Cisco */ 3626 WLAN_EID_AWAKE_WINDOW = 157, 3627 WLAN_EID_MULTI_BAND = 158, 3628 WLAN_EID_ADDBA_EXT = 159, 3629 WLAN_EID_NEXT_PCP_LIST = 160, 3630 WLAN_EID_PCP_HANDOVER = 161, 3631 WLAN_EID_DMG_LINK_MARGIN = 162, 3632 WLAN_EID_SWITCHING_STREAM = 163, 3633 WLAN_EID_SESSION_TRANSITION = 164, 3634 WLAN_EID_DYN_TONE_PAIRING_REPORT = 165, 3635 WLAN_EID_CLUSTER_REPORT = 166, 3636 WLAN_EID_RELAY_CAP = 167, 3637 WLAN_EID_RELAY_XFER_PARAM_SET = 168, 3638 WLAN_EID_BEAM_LINK_MAINT = 169, 3639 WLAN_EID_MULTIPLE_MAC_ADDR = 170, 3640 WLAN_EID_U_PID = 171, 3641 WLAN_EID_DMG_LINK_ADAPT_ACK = 172, 3642 /* 173 reserved for Symbol */ 3643 WLAN_EID_MCCAOP_ADV_OVERVIEW = 174, 3644 WLAN_EID_QUIET_PERIOD_REQ = 175, 3645 /* 176 reserved for Symbol */ 3646 WLAN_EID_QUIET_PERIOD_RESP = 177, 3647 /* 178-179 reserved for Symbol */ 3648 /* 180 reserved for ISO/IEC 20011 */ 3649 WLAN_EID_EPAC_POLICY = 182, 3650 WLAN_EID_CLISTER_TIME_OFF = 183, 3651 WLAN_EID_INTER_AC_PRIO = 184, 3652 WLAN_EID_SCS_DESCRIPTOR = 185, 3653 WLAN_EID_QLOAD_REPORT = 186, 3654 WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187, 3655 WLAN_EID_HL_STREAM_ID = 188, 3656 WLAN_EID_GCR_GROUP_ADDR = 189, 3657 WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190, 3658 WLAN_EID_VHT_CAPABILITY = 191, 3659 WLAN_EID_VHT_OPERATION = 192, 3660 WLAN_EID_EXTENDED_BSS_LOAD = 193, 3661 WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194, 3662 WLAN_EID_TX_POWER_ENVELOPE = 195, 3663 WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196, 3664 WLAN_EID_AID = 197, 3665 WLAN_EID_QUIET_CHANNEL = 198, 3666 WLAN_EID_OPMODE_NOTIF = 199, 3667 3668 WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201, 3669 3670 WLAN_EID_AID_REQUEST = 210, 3671 WLAN_EID_AID_RESPONSE = 211, 3672 WLAN_EID_S1G_BCN_COMPAT = 213, 3673 WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214, 3674 WLAN_EID_S1G_TWT = 216, 3675 WLAN_EID_S1G_CAPABILITIES = 217, 3676 WLAN_EID_VENDOR_SPECIFIC = 221, 3677 WLAN_EID_QOS_PARAMETER = 222, 3678 WLAN_EID_S1G_OPERATION = 232, 3679 WLAN_EID_CAG_NUMBER = 237, 3680 WLAN_EID_AP_CSN = 239, 3681 WLAN_EID_FILS_INDICATION = 240, 3682 WLAN_EID_DILS = 241, 3683 WLAN_EID_FRAGMENT = 242, 3684 WLAN_EID_RSNX = 244, 3685 WLAN_EID_EXTENSION = 255 3686 }; 3687 3688 /* Element ID Extensions for Element ID 255 */ 3689 enum ieee80211_eid_ext { 3690 WLAN_EID_EXT_ASSOC_DELAY_INFO = 1, 3691 WLAN_EID_EXT_FILS_REQ_PARAMS = 2, 3692 WLAN_EID_EXT_FILS_KEY_CONFIRM = 3, 3693 WLAN_EID_EXT_FILS_SESSION = 4, 3694 WLAN_EID_EXT_FILS_HLP_CONTAINER = 5, 3695 WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6, 3696 WLAN_EID_EXT_KEY_DELIVERY = 7, 3697 WLAN_EID_EXT_FILS_WRAPPED_DATA = 8, 3698 WLAN_EID_EXT_FILS_PUBLIC_KEY = 12, 3699 WLAN_EID_EXT_FILS_NONCE = 13, 3700 WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14, 3701 WLAN_EID_EXT_HE_CAPABILITY = 35, 3702 WLAN_EID_EXT_HE_OPERATION = 36, 3703 WLAN_EID_EXT_UORA = 37, 3704 WLAN_EID_EXT_HE_MU_EDCA = 38, 3705 WLAN_EID_EXT_HE_SPR = 39, 3706 WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41, 3707 WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42, 3708 WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43, 3709 WLAN_EID_EXT_ESS_REPORT = 45, 3710 WLAN_EID_EXT_OPS = 46, 3711 WLAN_EID_EXT_HE_BSS_LOAD = 47, 3712 WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52, 3713 WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55, 3714 WLAN_EID_EXT_NON_INHERITANCE = 56, 3715 WLAN_EID_EXT_KNOWN_BSSID = 57, 3716 WLAN_EID_EXT_SHORT_SSID_LIST = 58, 3717 WLAN_EID_EXT_HE_6GHZ_CAPA = 59, 3718 WLAN_EID_EXT_UL_MU_POWER_CAPA = 60, 3719 WLAN_EID_EXT_EHT_OPERATION = 106, 3720 WLAN_EID_EXT_EHT_MULTI_LINK = 107, 3721 WLAN_EID_EXT_EHT_CAPABILITY = 108, 3722 WLAN_EID_EXT_TID_TO_LINK_MAPPING = 109, 3723 WLAN_EID_EXT_BANDWIDTH_INDICATION = 135, 3724 }; 3725 3726 /* Action category code */ 3727 enum ieee80211_category { 3728 WLAN_CATEGORY_SPECTRUM_MGMT = 0, 3729 WLAN_CATEGORY_QOS = 1, 3730 WLAN_CATEGORY_DLS = 2, 3731 WLAN_CATEGORY_BACK = 3, 3732 WLAN_CATEGORY_PUBLIC = 4, 3733 WLAN_CATEGORY_RADIO_MEASUREMENT = 5, 3734 WLAN_CATEGORY_FAST_BBS_TRANSITION = 6, 3735 WLAN_CATEGORY_HT = 7, 3736 WLAN_CATEGORY_SA_QUERY = 8, 3737 WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9, 3738 WLAN_CATEGORY_WNM = 10, 3739 WLAN_CATEGORY_WNM_UNPROTECTED = 11, 3740 WLAN_CATEGORY_TDLS = 12, 3741 WLAN_CATEGORY_MESH_ACTION = 13, 3742 WLAN_CATEGORY_MULTIHOP_ACTION = 14, 3743 WLAN_CATEGORY_SELF_PROTECTED = 15, 3744 WLAN_CATEGORY_DMG = 16, 3745 WLAN_CATEGORY_WMM = 17, 3746 WLAN_CATEGORY_FST = 18, 3747 WLAN_CATEGORY_UNPROT_DMG = 20, 3748 WLAN_CATEGORY_VHT = 21, 3749 WLAN_CATEGORY_S1G = 22, 3750 WLAN_CATEGORY_PROTECTED_EHT = 37, 3751 WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126, 3752 WLAN_CATEGORY_VENDOR_SPECIFIC = 127, 3753 }; 3754 3755 /* SPECTRUM_MGMT action code */ 3756 enum ieee80211_spectrum_mgmt_actioncode { 3757 WLAN_ACTION_SPCT_MSR_REQ = 0, 3758 WLAN_ACTION_SPCT_MSR_RPRT = 1, 3759 WLAN_ACTION_SPCT_TPC_REQ = 2, 3760 WLAN_ACTION_SPCT_TPC_RPRT = 3, 3761 WLAN_ACTION_SPCT_CHL_SWITCH = 4, 3762 }; 3763 3764 /* HT action codes */ 3765 enum ieee80211_ht_actioncode { 3766 WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0, 3767 WLAN_HT_ACTION_SMPS = 1, 3768 WLAN_HT_ACTION_PSMP = 2, 3769 WLAN_HT_ACTION_PCO_PHASE = 3, 3770 WLAN_HT_ACTION_CSI = 4, 3771 WLAN_HT_ACTION_NONCOMPRESSED_BF = 5, 3772 WLAN_HT_ACTION_COMPRESSED_BF = 6, 3773 WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7, 3774 }; 3775 3776 /* VHT action codes */ 3777 enum ieee80211_vht_actioncode { 3778 WLAN_VHT_ACTION_COMPRESSED_BF = 0, 3779 WLAN_VHT_ACTION_GROUPID_MGMT = 1, 3780 WLAN_VHT_ACTION_OPMODE_NOTIF = 2, 3781 }; 3782 3783 /* Self Protected Action codes */ 3784 enum ieee80211_self_protected_actioncode { 3785 WLAN_SP_RESERVED = 0, 3786 WLAN_SP_MESH_PEERING_OPEN = 1, 3787 WLAN_SP_MESH_PEERING_CONFIRM = 2, 3788 WLAN_SP_MESH_PEERING_CLOSE = 3, 3789 WLAN_SP_MGK_INFORM = 4, 3790 WLAN_SP_MGK_ACK = 5, 3791 }; 3792 3793 /* Mesh action codes */ 3794 enum ieee80211_mesh_actioncode { 3795 WLAN_MESH_ACTION_LINK_METRIC_REPORT, 3796 WLAN_MESH_ACTION_HWMP_PATH_SELECTION, 3797 WLAN_MESH_ACTION_GATE_ANNOUNCEMENT, 3798 WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION, 3799 WLAN_MESH_ACTION_MCCA_SETUP_REQUEST, 3800 WLAN_MESH_ACTION_MCCA_SETUP_REPLY, 3801 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST, 3802 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT, 3803 WLAN_MESH_ACTION_MCCA_TEARDOWN, 3804 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST, 3805 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE, 3806 }; 3807 3808 /* Unprotected WNM action codes */ 3809 enum ieee80211_unprotected_wnm_actioncode { 3810 WLAN_UNPROTECTED_WNM_ACTION_TIM = 0, 3811 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE = 1, 3812 }; 3813 3814 /* Protected EHT action codes */ 3815 enum ieee80211_protected_eht_actioncode { 3816 WLAN_PROTECTED_EHT_ACTION_TTLM_REQ = 0, 3817 WLAN_PROTECTED_EHT_ACTION_TTLM_RES = 1, 3818 WLAN_PROTECTED_EHT_ACTION_TTLM_TEARDOWN = 2, 3819 }; 3820 3821 /* Security key length */ 3822 enum ieee80211_key_len { 3823 WLAN_KEY_LEN_WEP40 = 5, 3824 WLAN_KEY_LEN_WEP104 = 13, 3825 WLAN_KEY_LEN_CCMP = 16, 3826 WLAN_KEY_LEN_CCMP_256 = 32, 3827 WLAN_KEY_LEN_TKIP = 32, 3828 WLAN_KEY_LEN_AES_CMAC = 16, 3829 WLAN_KEY_LEN_SMS4 = 32, 3830 WLAN_KEY_LEN_GCMP = 16, 3831 WLAN_KEY_LEN_GCMP_256 = 32, 3832 WLAN_KEY_LEN_BIP_CMAC_256 = 32, 3833 WLAN_KEY_LEN_BIP_GMAC_128 = 16, 3834 WLAN_KEY_LEN_BIP_GMAC_256 = 32, 3835 }; 3836 3837 enum ieee80211_s1g_actioncode { 3838 WLAN_S1G_AID_SWITCH_REQUEST, 3839 WLAN_S1G_AID_SWITCH_RESPONSE, 3840 WLAN_S1G_SYNC_CONTROL, 3841 WLAN_S1G_STA_INFO_ANNOUNCE, 3842 WLAN_S1G_EDCA_PARAM_SET, 3843 WLAN_S1G_EL_OPERATION, 3844 WLAN_S1G_TWT_SETUP, 3845 WLAN_S1G_TWT_TEARDOWN, 3846 WLAN_S1G_SECT_GROUP_ID_LIST, 3847 WLAN_S1G_SECT_ID_FEEDBACK, 3848 WLAN_S1G_TWT_INFORMATION = 11, 3849 }; 3850 3851 #define IEEE80211_WEP_IV_LEN 4 3852 #define IEEE80211_WEP_ICV_LEN 4 3853 #define IEEE80211_CCMP_HDR_LEN 8 3854 #define IEEE80211_CCMP_MIC_LEN 8 3855 #define IEEE80211_CCMP_PN_LEN 6 3856 #define IEEE80211_CCMP_256_HDR_LEN 8 3857 #define IEEE80211_CCMP_256_MIC_LEN 16 3858 #define IEEE80211_CCMP_256_PN_LEN 6 3859 #define IEEE80211_TKIP_IV_LEN 8 3860 #define IEEE80211_TKIP_ICV_LEN 4 3861 #define IEEE80211_CMAC_PN_LEN 6 3862 #define IEEE80211_GMAC_PN_LEN 6 3863 #define IEEE80211_GCMP_HDR_LEN 8 3864 #define IEEE80211_GCMP_MIC_LEN 16 3865 #define IEEE80211_GCMP_PN_LEN 6 3866 3867 #define FILS_NONCE_LEN 16 3868 #define FILS_MAX_KEK_LEN 64 3869 3870 #define FILS_ERP_MAX_USERNAME_LEN 16 3871 #define FILS_ERP_MAX_REALM_LEN 253 3872 #define FILS_ERP_MAX_RRK_LEN 64 3873 3874 #define PMK_MAX_LEN 64 3875 #define SAE_PASSWORD_MAX_LEN 128 3876 3877 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */ 3878 enum ieee80211_pub_actioncode { 3879 WLAN_PUB_ACTION_20_40_BSS_COEX = 0, 3880 WLAN_PUB_ACTION_DSE_ENABLEMENT = 1, 3881 WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2, 3882 WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3, 3883 WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4, 3884 WLAN_PUB_ACTION_DSE_MSMT_REQ = 5, 3885 WLAN_PUB_ACTION_DSE_MSMT_RESP = 6, 3886 WLAN_PUB_ACTION_MSMT_PILOT = 7, 3887 WLAN_PUB_ACTION_DSE_PC = 8, 3888 WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9, 3889 WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10, 3890 WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11, 3891 WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12, 3892 WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13, 3893 WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14, 3894 WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15, 3895 WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16, 3896 WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17, 3897 WLAN_PUB_ACTION_QMF_POLICY = 18, 3898 WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19, 3899 WLAN_PUB_ACTION_QLOAD_REQUEST = 20, 3900 WLAN_PUB_ACTION_QLOAD_REPORT = 21, 3901 WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22, 3902 WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23, 3903 WLAN_PUB_ACTION_PUBLIC_KEY = 24, 3904 WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25, 3905 WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26, 3906 WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27, 3907 WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28, 3908 WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29, 3909 WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30, 3910 WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31, 3911 WLAN_PUB_ACTION_FTM_REQUEST = 32, 3912 WLAN_PUB_ACTION_FTM_RESPONSE = 33, 3913 WLAN_PUB_ACTION_FILS_DISCOVERY = 34, 3914 }; 3915 3916 /* TDLS action codes */ 3917 enum ieee80211_tdls_actioncode { 3918 WLAN_TDLS_SETUP_REQUEST = 0, 3919 WLAN_TDLS_SETUP_RESPONSE = 1, 3920 WLAN_TDLS_SETUP_CONFIRM = 2, 3921 WLAN_TDLS_TEARDOWN = 3, 3922 WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4, 3923 WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5, 3924 WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6, 3925 WLAN_TDLS_PEER_PSM_REQUEST = 7, 3926 WLAN_TDLS_PEER_PSM_RESPONSE = 8, 3927 WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9, 3928 WLAN_TDLS_DISCOVERY_REQUEST = 10, 3929 }; 3930 3931 /* Extended Channel Switching capability to be set in the 1st byte of 3932 * the @WLAN_EID_EXT_CAPABILITY information element 3933 */ 3934 #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING BIT(2) 3935 3936 /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the 3937 * @WLAN_EID_EXT_CAPABILITY information element 3938 */ 3939 #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT BIT(6) 3940 3941 /* Timing Measurement protocol for time sync is set in the 7th bit of 3rd byte 3942 * of the @WLAN_EID_EXT_CAPABILITY information element 3943 */ 3944 #define WLAN_EXT_CAPA3_TIMING_MEASUREMENT_SUPPORT BIT(7) 3945 3946 /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */ 3947 #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA BIT(4) 3948 #define WLAN_EXT_CAPA4_TDLS_PEER_PSM BIT(5) 3949 #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH BIT(6) 3950 3951 /* Interworking capabilities are set in 7th bit of 4th byte of the 3952 * @WLAN_EID_EXT_CAPABILITY information element 3953 */ 3954 #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED BIT(7) 3955 3956 /* 3957 * TDLS capabililites to be enabled in the 5th byte of the 3958 * @WLAN_EID_EXT_CAPABILITY information element 3959 */ 3960 #define WLAN_EXT_CAPA5_TDLS_ENABLED BIT(5) 3961 #define WLAN_EXT_CAPA5_TDLS_PROHIBITED BIT(6) 3962 #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED BIT(7) 3963 3964 #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED BIT(5) 3965 #define WLAN_EXT_CAPA8_OPMODE_NOTIF BIT(6) 3966 3967 /* Defines the maximal number of MSDUs in an A-MSDU. */ 3968 #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB BIT(7) 3969 #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB BIT(0) 3970 3971 /* 3972 * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY 3973 * information element 3974 */ 3975 #define WLAN_EXT_CAPA9_FTM_INITIATOR BIT(7) 3976 3977 /* Defines support for TWT Requester and TWT Responder */ 3978 #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT BIT(5) 3979 #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT BIT(6) 3980 3981 /* 3982 * When set, indicates that the AP is able to tolerate 26-tone RU UL 3983 * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the 3984 * 26-tone RU UL OFDMA transmissions as radar pulses). 3985 */ 3986 #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7) 3987 3988 /* Defines support for enhanced multi-bssid advertisement*/ 3989 #define WLAN_EXT_CAPA11_EMA_SUPPORT BIT(3) 3990 3991 /* TDLS specific payload type in the LLC/SNAP header */ 3992 #define WLAN_TDLS_SNAP_RFTYPE 0x2 3993 3994 /* BSS Coex IE information field bits */ 3995 #define WLAN_BSS_COEX_INFORMATION_REQUEST BIT(0) 3996 3997 /** 3998 * enum ieee80211_mesh_sync_method - mesh synchronization method identifier 3999 * 4000 * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method 4001 * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method 4002 * that will be specified in a vendor specific information element 4003 */ 4004 enum ieee80211_mesh_sync_method { 4005 IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1, 4006 IEEE80211_SYNC_METHOD_VENDOR = 255, 4007 }; 4008 4009 /** 4010 * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier 4011 * 4012 * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol 4013 * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will 4014 * be specified in a vendor specific information element 4015 */ 4016 enum ieee80211_mesh_path_protocol { 4017 IEEE80211_PATH_PROTOCOL_HWMP = 1, 4018 IEEE80211_PATH_PROTOCOL_VENDOR = 255, 4019 }; 4020 4021 /** 4022 * enum ieee80211_mesh_path_metric - mesh path selection metric identifier 4023 * 4024 * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric 4025 * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be 4026 * specified in a vendor specific information element 4027 */ 4028 enum ieee80211_mesh_path_metric { 4029 IEEE80211_PATH_METRIC_AIRTIME = 1, 4030 IEEE80211_PATH_METRIC_VENDOR = 255, 4031 }; 4032 4033 /** 4034 * enum ieee80211_root_mode_identifier - root mesh STA mode identifier 4035 * 4036 * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode 4037 * 4038 * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default) 4039 * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than 4040 * this value 4041 * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports 4042 * the proactive PREQ with proactive PREP subfield set to 0 4043 * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA 4044 * supports the proactive PREQ with proactive PREP subfield set to 1 4045 * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports 4046 * the proactive RANN 4047 */ 4048 enum ieee80211_root_mode_identifier { 4049 IEEE80211_ROOTMODE_NO_ROOT = 0, 4050 IEEE80211_ROOTMODE_ROOT = 1, 4051 IEEE80211_PROACTIVE_PREQ_NO_PREP = 2, 4052 IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3, 4053 IEEE80211_PROACTIVE_RANN = 4, 4054 }; 4055 4056 /* 4057 * IEEE 802.11-2007 7.3.2.9 Country information element 4058 * 4059 * Minimum length is 8 octets, ie len must be evenly 4060 * divisible by 2 4061 */ 4062 4063 /* Although the spec says 8 I'm seeing 6 in practice */ 4064 #define IEEE80211_COUNTRY_IE_MIN_LEN 6 4065 4066 /* The Country String field of the element shall be 3 octets in length */ 4067 #define IEEE80211_COUNTRY_STRING_LEN 3 4068 4069 /* 4070 * For regulatory extension stuff see IEEE 802.11-2007 4071 * Annex I (page 1141) and Annex J (page 1147). Also 4072 * review 7.3.2.9. 4073 * 4074 * When dot11RegulatoryClassesRequired is true and the 4075 * first_channel/reg_extension_id is >= 201 then the IE 4076 * compromises of the 'ext' struct represented below: 4077 * 4078 * - Regulatory extension ID - when generating IE this just needs 4079 * to be monotonically increasing for each triplet passed in 4080 * the IE 4081 * - Regulatory class - index into set of rules 4082 * - Coverage class - index into air propagation time (Table 7-27), 4083 * in microseconds, you can compute the air propagation time from 4084 * the index by multiplying by 3, so index 10 yields a propagation 4085 * of 10 us. Valid values are 0-31, values 32-255 are not defined 4086 * yet. A value of 0 inicates air propagation of <= 1 us. 4087 * 4088 * See also Table I.2 for Emission limit sets and table 4089 * I.3 for Behavior limit sets. Table J.1 indicates how to map 4090 * a reg_class to an emission limit set and behavior limit set. 4091 */ 4092 #define IEEE80211_COUNTRY_EXTENSION_ID 201 4093 4094 /* 4095 * Channels numbers in the IE must be monotonically increasing 4096 * if dot11RegulatoryClassesRequired is not true. 4097 * 4098 * If dot11RegulatoryClassesRequired is true consecutive 4099 * subband triplets following a regulatory triplet shall 4100 * have monotonically increasing first_channel number fields. 4101 * 4102 * Channel numbers shall not overlap. 4103 * 4104 * Note that max_power is signed. 4105 */ 4106 struct ieee80211_country_ie_triplet { 4107 union { 4108 struct { 4109 u8 first_channel; 4110 u8 num_channels; 4111 s8 max_power; 4112 } __packed chans; 4113 struct { 4114 u8 reg_extension_id; 4115 u8 reg_class; 4116 u8 coverage_class; 4117 } __packed ext; 4118 }; 4119 } __packed; 4120 4121 enum ieee80211_timeout_interval_type { 4122 WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */, 4123 WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */, 4124 WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */, 4125 }; 4126 4127 /** 4128 * struct ieee80211_timeout_interval_ie - Timeout Interval element 4129 * @type: type, see &enum ieee80211_timeout_interval_type 4130 * @value: timeout interval value 4131 */ 4132 struct ieee80211_timeout_interval_ie { 4133 u8 type; 4134 __le32 value; 4135 } __packed; 4136 4137 /** 4138 * enum ieee80211_idle_options - BSS idle options 4139 * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN 4140 * protected frame to the AP to reset the idle timer at the AP for 4141 * the station. 4142 */ 4143 enum ieee80211_idle_options { 4144 WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0), 4145 }; 4146 4147 /** 4148 * struct ieee80211_bss_max_idle_period_ie 4149 * 4150 * This structure refers to "BSS Max idle period element" 4151 * 4152 * @max_idle_period: indicates the time period during which a station can 4153 * refrain from transmitting frames to its associated AP without being 4154 * disassociated. In units of 1000 TUs. 4155 * @idle_options: indicates the options associated with the BSS idle capability 4156 * as specified in &enum ieee80211_idle_options. 4157 */ 4158 struct ieee80211_bss_max_idle_period_ie { 4159 __le16 max_idle_period; 4160 u8 idle_options; 4161 } __packed; 4162 4163 /* BACK action code */ 4164 enum ieee80211_back_actioncode { 4165 WLAN_ACTION_ADDBA_REQ = 0, 4166 WLAN_ACTION_ADDBA_RESP = 1, 4167 WLAN_ACTION_DELBA = 2, 4168 }; 4169 4170 /* BACK (block-ack) parties */ 4171 enum ieee80211_back_parties { 4172 WLAN_BACK_RECIPIENT = 0, 4173 WLAN_BACK_INITIATOR = 1, 4174 }; 4175 4176 /* SA Query action */ 4177 enum ieee80211_sa_query_action { 4178 WLAN_ACTION_SA_QUERY_REQUEST = 0, 4179 WLAN_ACTION_SA_QUERY_RESPONSE = 1, 4180 }; 4181 4182 /** 4183 * struct ieee80211_bssid_index 4184 * 4185 * This structure refers to "Multiple BSSID-index element" 4186 * 4187 * @bssid_index: BSSID index 4188 * @dtim_period: optional, overrides transmitted BSS dtim period 4189 * @dtim_count: optional, overrides transmitted BSS dtim count 4190 */ 4191 struct ieee80211_bssid_index { 4192 u8 bssid_index; 4193 u8 dtim_period; 4194 u8 dtim_count; 4195 }; 4196 4197 /** 4198 * struct ieee80211_multiple_bssid_configuration 4199 * 4200 * This structure refers to "Multiple BSSID Configuration element" 4201 * 4202 * @bssid_count: total number of active BSSIDs in the set 4203 * @profile_periodicity: the least number of beacon frames need to be received 4204 * in order to discover all the nontransmitted BSSIDs in the set. 4205 */ 4206 struct ieee80211_multiple_bssid_configuration { 4207 u8 bssid_count; 4208 u8 profile_periodicity; 4209 }; 4210 4211 #define SUITE(oui, id) (((oui) << 8) | (id)) 4212 4213 /* cipher suite selectors */ 4214 #define WLAN_CIPHER_SUITE_USE_GROUP SUITE(0x000FAC, 0) 4215 #define WLAN_CIPHER_SUITE_WEP40 SUITE(0x000FAC, 1) 4216 #define WLAN_CIPHER_SUITE_TKIP SUITE(0x000FAC, 2) 4217 /* reserved: SUITE(0x000FAC, 3) */ 4218 #define WLAN_CIPHER_SUITE_CCMP SUITE(0x000FAC, 4) 4219 #define WLAN_CIPHER_SUITE_WEP104 SUITE(0x000FAC, 5) 4220 #define WLAN_CIPHER_SUITE_AES_CMAC SUITE(0x000FAC, 6) 4221 #define WLAN_CIPHER_SUITE_GCMP SUITE(0x000FAC, 8) 4222 #define WLAN_CIPHER_SUITE_GCMP_256 SUITE(0x000FAC, 9) 4223 #define WLAN_CIPHER_SUITE_CCMP_256 SUITE(0x000FAC, 10) 4224 #define WLAN_CIPHER_SUITE_BIP_GMAC_128 SUITE(0x000FAC, 11) 4225 #define WLAN_CIPHER_SUITE_BIP_GMAC_256 SUITE(0x000FAC, 12) 4226 #define WLAN_CIPHER_SUITE_BIP_CMAC_256 SUITE(0x000FAC, 13) 4227 4228 #define WLAN_CIPHER_SUITE_SMS4 SUITE(0x001472, 1) 4229 4230 /* AKM suite selectors */ 4231 #define WLAN_AKM_SUITE_8021X SUITE(0x000FAC, 1) 4232 #define WLAN_AKM_SUITE_PSK SUITE(0x000FAC, 2) 4233 #define WLAN_AKM_SUITE_FT_8021X SUITE(0x000FAC, 3) 4234 #define WLAN_AKM_SUITE_FT_PSK SUITE(0x000FAC, 4) 4235 #define WLAN_AKM_SUITE_8021X_SHA256 SUITE(0x000FAC, 5) 4236 #define WLAN_AKM_SUITE_PSK_SHA256 SUITE(0x000FAC, 6) 4237 #define WLAN_AKM_SUITE_TDLS SUITE(0x000FAC, 7) 4238 #define WLAN_AKM_SUITE_SAE SUITE(0x000FAC, 8) 4239 #define WLAN_AKM_SUITE_FT_OVER_SAE SUITE(0x000FAC, 9) 4240 #define WLAN_AKM_SUITE_AP_PEER_KEY SUITE(0x000FAC, 10) 4241 #define WLAN_AKM_SUITE_8021X_SUITE_B SUITE(0x000FAC, 11) 4242 #define WLAN_AKM_SUITE_8021X_SUITE_B_192 SUITE(0x000FAC, 12) 4243 #define WLAN_AKM_SUITE_FT_8021X_SHA384 SUITE(0x000FAC, 13) 4244 #define WLAN_AKM_SUITE_FILS_SHA256 SUITE(0x000FAC, 14) 4245 #define WLAN_AKM_SUITE_FILS_SHA384 SUITE(0x000FAC, 15) 4246 #define WLAN_AKM_SUITE_FT_FILS_SHA256 SUITE(0x000FAC, 16) 4247 #define WLAN_AKM_SUITE_FT_FILS_SHA384 SUITE(0x000FAC, 17) 4248 #define WLAN_AKM_SUITE_OWE SUITE(0x000FAC, 18) 4249 #define WLAN_AKM_SUITE_FT_PSK_SHA384 SUITE(0x000FAC, 19) 4250 #define WLAN_AKM_SUITE_PSK_SHA384 SUITE(0x000FAC, 20) 4251 4252 #define WLAN_AKM_SUITE_WFA_DPP SUITE(WLAN_OUI_WFA, 2) 4253 4254 #define WLAN_MAX_KEY_LEN 32 4255 4256 #define WLAN_PMK_NAME_LEN 16 4257 #define WLAN_PMKID_LEN 16 4258 #define WLAN_PMK_LEN_EAP_LEAP 16 4259 #define WLAN_PMK_LEN 32 4260 #define WLAN_PMK_LEN_SUITE_B_192 48 4261 4262 #define WLAN_OUI_WFA 0x506f9a 4263 #define WLAN_OUI_TYPE_WFA_P2P 9 4264 #define WLAN_OUI_TYPE_WFA_DPP 0x1A 4265 #define WLAN_OUI_MICROSOFT 0x0050f2 4266 #define WLAN_OUI_TYPE_MICROSOFT_WPA 1 4267 #define WLAN_OUI_TYPE_MICROSOFT_WMM 2 4268 #define WLAN_OUI_TYPE_MICROSOFT_WPS 4 4269 #define WLAN_OUI_TYPE_MICROSOFT_TPC 8 4270 4271 /* 4272 * WMM/802.11e Tspec Element 4273 */ 4274 #define IEEE80211_WMM_IE_TSPEC_TID_MASK 0x0F 4275 #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT 1 4276 4277 enum ieee80211_tspec_status_code { 4278 IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0, 4279 IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1, 4280 }; 4281 4282 struct ieee80211_tspec_ie { 4283 u8 element_id; 4284 u8 len; 4285 u8 oui[3]; 4286 u8 oui_type; 4287 u8 oui_subtype; 4288 u8 version; 4289 __le16 tsinfo; 4290 u8 tsinfo_resvd; 4291 __le16 nominal_msdu; 4292 __le16 max_msdu; 4293 __le32 min_service_int; 4294 __le32 max_service_int; 4295 __le32 inactivity_int; 4296 __le32 suspension_int; 4297 __le32 service_start_time; 4298 __le32 min_data_rate; 4299 __le32 mean_data_rate; 4300 __le32 peak_data_rate; 4301 __le32 max_burst_size; 4302 __le32 delay_bound; 4303 __le32 min_phy_rate; 4304 __le16 sba; 4305 __le16 medium_time; 4306 } __packed; 4307 4308 struct ieee80211_he_6ghz_capa { 4309 /* uses IEEE80211_HE_6GHZ_CAP_* below */ 4310 __le16 capa; 4311 } __packed; 4312 4313 /* HE 6 GHz band capabilities */ 4314 /* uses enum ieee80211_min_mpdu_spacing values */ 4315 #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START 0x0007 4316 /* uses enum ieee80211_vht_max_ampdu_length_exp values */ 4317 #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP 0x0038 4318 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */ 4319 #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN 0x00c0 4320 /* WLAN_HT_CAP_SM_PS_* values */ 4321 #define IEEE80211_HE_6GHZ_CAP_SM_PS 0x0600 4322 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER 0x0800 4323 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS 0x1000 4324 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS 0x2000 4325 4326 /** 4327 * ieee80211_get_qos_ctl - get pointer to qos control bytes 4328 * @hdr: the frame 4329 * 4330 * The qos ctrl bytes come after the frame_control, duration, seq_num 4331 * and 3 or 4 addresses of length ETH_ALEN. Checks frame_control to choose 4332 * between struct ieee80211_qos_hdr_4addr and struct ieee80211_qos_hdr. 4333 */ 4334 static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr) 4335 { 4336 union { 4337 struct ieee80211_qos_hdr addr3; 4338 struct ieee80211_qos_hdr_4addr addr4; 4339 } *qos; 4340 4341 qos = (void *)hdr; 4342 if (ieee80211_has_a4(qos->addr3.frame_control)) 4343 return (u8 *)&qos->addr4.qos_ctrl; 4344 else 4345 return (u8 *)&qos->addr3.qos_ctrl; 4346 } 4347 4348 /** 4349 * ieee80211_get_tid - get qos TID 4350 * @hdr: the frame 4351 */ 4352 static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr) 4353 { 4354 u8 *qc = ieee80211_get_qos_ctl(hdr); 4355 4356 return qc[0] & IEEE80211_QOS_CTL_TID_MASK; 4357 } 4358 4359 /** 4360 * ieee80211_get_SA - get pointer to SA 4361 * @hdr: the frame 4362 * 4363 * Given an 802.11 frame, this function returns the offset 4364 * to the source address (SA). It does not verify that the 4365 * header is long enough to contain the address, and the 4366 * header must be long enough to contain the frame control 4367 * field. 4368 */ 4369 static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr) 4370 { 4371 if (ieee80211_has_a4(hdr->frame_control)) 4372 return hdr->addr4; 4373 if (ieee80211_has_fromds(hdr->frame_control)) 4374 return hdr->addr3; 4375 return hdr->addr2; 4376 } 4377 4378 /** 4379 * ieee80211_get_DA - get pointer to DA 4380 * @hdr: the frame 4381 * 4382 * Given an 802.11 frame, this function returns the offset 4383 * to the destination address (DA). It does not verify that 4384 * the header is long enough to contain the address, and the 4385 * header must be long enough to contain the frame control 4386 * field. 4387 */ 4388 static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr) 4389 { 4390 if (ieee80211_has_tods(hdr->frame_control)) 4391 return hdr->addr3; 4392 else 4393 return hdr->addr1; 4394 } 4395 4396 /** 4397 * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU 4398 * @skb: the skb to check, starting with the 802.11 header 4399 */ 4400 static inline bool ieee80211_is_bufferable_mmpdu(struct sk_buff *skb) 4401 { 4402 struct ieee80211_mgmt *mgmt = (void *)skb->data; 4403 __le16 fc = mgmt->frame_control; 4404 4405 /* 4406 * IEEE 802.11 REVme D2.0 definition of bufferable MMPDU; 4407 * note that this ignores the IBSS special case. 4408 */ 4409 if (!ieee80211_is_mgmt(fc)) 4410 return false; 4411 4412 if (ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc)) 4413 return true; 4414 4415 if (!ieee80211_is_action(fc)) 4416 return false; 4417 4418 if (skb->len < offsetofend(typeof(*mgmt), u.action.u.ftm.action_code)) 4419 return true; 4420 4421 /* action frame - additionally check for non-bufferable FTM */ 4422 4423 if (mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 4424 mgmt->u.action.category != WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION) 4425 return true; 4426 4427 if (mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_REQUEST || 4428 mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_RESPONSE) 4429 return false; 4430 4431 return true; 4432 } 4433 4434 /** 4435 * _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame 4436 * @hdr: the frame (buffer must include at least the first octet of payload) 4437 */ 4438 static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr) 4439 { 4440 if (ieee80211_is_disassoc(hdr->frame_control) || 4441 ieee80211_is_deauth(hdr->frame_control)) 4442 return true; 4443 4444 if (ieee80211_is_action(hdr->frame_control)) { 4445 u8 *category; 4446 4447 /* 4448 * Action frames, excluding Public Action frames, are Robust 4449 * Management Frames. However, if we are looking at a Protected 4450 * frame, skip the check since the data may be encrypted and 4451 * the frame has already been found to be a Robust Management 4452 * Frame (by the other end). 4453 */ 4454 if (ieee80211_has_protected(hdr->frame_control)) 4455 return true; 4456 category = ((u8 *) hdr) + 24; 4457 return *category != WLAN_CATEGORY_PUBLIC && 4458 *category != WLAN_CATEGORY_HT && 4459 *category != WLAN_CATEGORY_WNM_UNPROTECTED && 4460 *category != WLAN_CATEGORY_SELF_PROTECTED && 4461 *category != WLAN_CATEGORY_UNPROT_DMG && 4462 *category != WLAN_CATEGORY_VHT && 4463 *category != WLAN_CATEGORY_S1G && 4464 *category != WLAN_CATEGORY_VENDOR_SPECIFIC; 4465 } 4466 4467 return false; 4468 } 4469 4470 /** 4471 * ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame 4472 * @skb: the skb containing the frame, length will be checked 4473 */ 4474 static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb) 4475 { 4476 if (skb->len < IEEE80211_MIN_ACTION_SIZE) 4477 return false; 4478 return _ieee80211_is_robust_mgmt_frame((void *)skb->data); 4479 } 4480 4481 /** 4482 * ieee80211_is_public_action - check if frame is a public action frame 4483 * @hdr: the frame 4484 * @len: length of the frame 4485 */ 4486 static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr, 4487 size_t len) 4488 { 4489 struct ieee80211_mgmt *mgmt = (void *)hdr; 4490 4491 if (len < IEEE80211_MIN_ACTION_SIZE) 4492 return false; 4493 if (!ieee80211_is_action(hdr->frame_control)) 4494 return false; 4495 return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC; 4496 } 4497 4498 /** 4499 * ieee80211_is_protected_dual_of_public_action - check if skb contains a 4500 * protected dual of public action management frame 4501 * @skb: the skb containing the frame, length will be checked 4502 * 4503 * Return: true if the skb contains a protected dual of public action 4504 * management frame, false otherwise. 4505 */ 4506 static inline bool 4507 ieee80211_is_protected_dual_of_public_action(struct sk_buff *skb) 4508 { 4509 u8 action; 4510 4511 if (!ieee80211_is_public_action((void *)skb->data, skb->len) || 4512 skb->len < IEEE80211_MIN_ACTION_SIZE + 1) 4513 return false; 4514 4515 action = *(u8 *)(skb->data + IEEE80211_MIN_ACTION_SIZE); 4516 4517 return action != WLAN_PUB_ACTION_20_40_BSS_COEX && 4518 action != WLAN_PUB_ACTION_DSE_REG_LOC_ANN && 4519 action != WLAN_PUB_ACTION_MSMT_PILOT && 4520 action != WLAN_PUB_ACTION_TDLS_DISCOVER_RES && 4521 action != WLAN_PUB_ACTION_LOC_TRACK_NOTI && 4522 action != WLAN_PUB_ACTION_FTM_REQUEST && 4523 action != WLAN_PUB_ACTION_FTM_RESPONSE && 4524 action != WLAN_PUB_ACTION_FILS_DISCOVERY && 4525 action != WLAN_PUB_ACTION_VENDOR_SPECIFIC; 4526 } 4527 4528 /** 4529 * _ieee80211_is_group_privacy_action - check if frame is a group addressed 4530 * privacy action frame 4531 * @hdr: the frame 4532 */ 4533 static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr) 4534 { 4535 struct ieee80211_mgmt *mgmt = (void *)hdr; 4536 4537 if (!ieee80211_is_action(hdr->frame_control) || 4538 !is_multicast_ether_addr(hdr->addr1)) 4539 return false; 4540 4541 return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION || 4542 mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION; 4543 } 4544 4545 /** 4546 * ieee80211_is_group_privacy_action - check if frame is a group addressed 4547 * privacy action frame 4548 * @skb: the skb containing the frame, length will be checked 4549 */ 4550 static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb) 4551 { 4552 if (skb->len < IEEE80211_MIN_ACTION_SIZE) 4553 return false; 4554 return _ieee80211_is_group_privacy_action((void *)skb->data); 4555 } 4556 4557 /** 4558 * ieee80211_tu_to_usec - convert time units (TU) to microseconds 4559 * @tu: the TUs 4560 */ 4561 static inline unsigned long ieee80211_tu_to_usec(unsigned long tu) 4562 { 4563 return 1024 * tu; 4564 } 4565 4566 /** 4567 * ieee80211_check_tim - check if AID bit is set in TIM 4568 * @tim: the TIM IE 4569 * @tim_len: length of the TIM IE 4570 * @aid: the AID to look for 4571 */ 4572 static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim, 4573 u8 tim_len, u16 aid) 4574 { 4575 u8 mask; 4576 u8 index, indexn1, indexn2; 4577 4578 if (unlikely(!tim || tim_len < sizeof(*tim))) 4579 return false; 4580 4581 aid &= 0x3fff; 4582 index = aid / 8; 4583 mask = 1 << (aid & 7); 4584 4585 indexn1 = tim->bitmap_ctrl & 0xfe; 4586 indexn2 = tim_len + indexn1 - 4; 4587 4588 if (index < indexn1 || index > indexn2) 4589 return false; 4590 4591 index -= indexn1; 4592 4593 return !!(tim->virtual_map[index] & mask); 4594 } 4595 4596 /** 4597 * ieee80211_get_tdls_action - get tdls packet action (or -1, if not tdls packet) 4598 * @skb: the skb containing the frame, length will not be checked 4599 * 4600 * This function assumes the frame is a data frame, and that the network header 4601 * is in the correct place. 4602 */ 4603 static inline int ieee80211_get_tdls_action(struct sk_buff *skb) 4604 { 4605 if (!skb_is_nonlinear(skb) && 4606 skb->len > (skb_network_offset(skb) + 2)) { 4607 /* Point to where the indication of TDLS should start */ 4608 const u8 *tdls_data = skb_network_header(skb) - 2; 4609 4610 if (get_unaligned_be16(tdls_data) == ETH_P_TDLS && 4611 tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE && 4612 tdls_data[3] == WLAN_CATEGORY_TDLS) 4613 return tdls_data[4]; 4614 } 4615 4616 return -1; 4617 } 4618 4619 /* convert time units */ 4620 #define TU_TO_JIFFIES(x) (usecs_to_jiffies((x) * 1024)) 4621 #define TU_TO_EXP_TIME(x) (jiffies + TU_TO_JIFFIES(x)) 4622 4623 /* convert frequencies */ 4624 #define MHZ_TO_KHZ(freq) ((freq) * 1000) 4625 #define KHZ_TO_MHZ(freq) ((freq) / 1000) 4626 #define PR_KHZ(f) KHZ_TO_MHZ(f), f % 1000 4627 #define KHZ_F "%d.%03d" 4628 4629 /* convert powers */ 4630 #define DBI_TO_MBI(gain) ((gain) * 100) 4631 #define MBI_TO_DBI(gain) ((gain) / 100) 4632 #define DBM_TO_MBM(gain) ((gain) * 100) 4633 #define MBM_TO_DBM(gain) ((gain) / 100) 4634 4635 /** 4636 * ieee80211_action_contains_tpc - checks if the frame contains TPC element 4637 * @skb: the skb containing the frame, length will be checked 4638 * 4639 * This function checks if it's either TPC report action frame or Link 4640 * Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5 4641 * and 8.5.7.5 accordingly. 4642 */ 4643 static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb) 4644 { 4645 struct ieee80211_mgmt *mgmt = (void *)skb->data; 4646 4647 if (!ieee80211_is_action(mgmt->frame_control)) 4648 return false; 4649 4650 if (skb->len < IEEE80211_MIN_ACTION_SIZE + 4651 sizeof(mgmt->u.action.u.tpc_report)) 4652 return false; 4653 4654 /* 4655 * TPC report - check that: 4656 * category = 0 (Spectrum Management) or 5 (Radio Measurement) 4657 * spectrum management action = 3 (TPC/Link Measurement report) 4658 * TPC report EID = 35 4659 * TPC report element length = 2 4660 * 4661 * The spectrum management's tpc_report struct is used here both for 4662 * parsing tpc_report and radio measurement's link measurement report 4663 * frame, since the relevant part is identical in both frames. 4664 */ 4665 if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT && 4666 mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT) 4667 return false; 4668 4669 /* both spectrum mgmt and link measurement have same action code */ 4670 if (mgmt->u.action.u.tpc_report.action_code != 4671 WLAN_ACTION_SPCT_TPC_RPRT) 4672 return false; 4673 4674 if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT || 4675 mgmt->u.action.u.tpc_report.tpc_elem_length != 4676 sizeof(struct ieee80211_tpc_report_ie)) 4677 return false; 4678 4679 return true; 4680 } 4681 4682 static inline bool ieee80211_is_timing_measurement(struct sk_buff *skb) 4683 { 4684 struct ieee80211_mgmt *mgmt = (void *)skb->data; 4685 4686 if (skb->len < IEEE80211_MIN_ACTION_SIZE) 4687 return false; 4688 4689 if (!ieee80211_is_action(mgmt->frame_control)) 4690 return false; 4691 4692 if (mgmt->u.action.category == WLAN_CATEGORY_WNM_UNPROTECTED && 4693 mgmt->u.action.u.wnm_timing_msr.action_code == 4694 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE && 4695 skb->len >= offsetofend(typeof(*mgmt), u.action.u.wnm_timing_msr)) 4696 return true; 4697 4698 return false; 4699 } 4700 4701 static inline bool ieee80211_is_ftm(struct sk_buff *skb) 4702 { 4703 struct ieee80211_mgmt *mgmt = (void *)skb->data; 4704 4705 if (!ieee80211_is_public_action((void *)mgmt, skb->len)) 4706 return false; 4707 4708 if (mgmt->u.action.u.ftm.action_code == 4709 WLAN_PUB_ACTION_FTM_RESPONSE && 4710 skb->len >= offsetofend(typeof(*mgmt), u.action.u.ftm)) 4711 return true; 4712 4713 return false; 4714 } 4715 4716 struct element { 4717 u8 id; 4718 u8 datalen; 4719 u8 data[]; 4720 } __packed; 4721 4722 /* element iteration helpers */ 4723 #define for_each_element(_elem, _data, _datalen) \ 4724 for (_elem = (const struct element *)(_data); \ 4725 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \ 4726 (int)sizeof(*_elem) && \ 4727 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \ 4728 (int)sizeof(*_elem) + _elem->datalen; \ 4729 _elem = (const struct element *)(_elem->data + _elem->datalen)) 4730 4731 #define for_each_element_id(element, _id, data, datalen) \ 4732 for_each_element(element, data, datalen) \ 4733 if (element->id == (_id)) 4734 4735 #define for_each_element_extid(element, extid, _data, _datalen) \ 4736 for_each_element(element, _data, _datalen) \ 4737 if (element->id == WLAN_EID_EXTENSION && \ 4738 element->datalen > 0 && \ 4739 element->data[0] == (extid)) 4740 4741 #define for_each_subelement(sub, element) \ 4742 for_each_element(sub, (element)->data, (element)->datalen) 4743 4744 #define for_each_subelement_id(sub, id, element) \ 4745 for_each_element_id(sub, id, (element)->data, (element)->datalen) 4746 4747 #define for_each_subelement_extid(sub, extid, element) \ 4748 for_each_element_extid(sub, extid, (element)->data, (element)->datalen) 4749 4750 /** 4751 * for_each_element_completed - determine if element parsing consumed all data 4752 * @element: element pointer after for_each_element() or friends 4753 * @data: same data pointer as passed to for_each_element() or friends 4754 * @datalen: same data length as passed to for_each_element() or friends 4755 * 4756 * This function returns %true if all the data was parsed or considered 4757 * while walking the elements. Only use this if your for_each_element() 4758 * loop cannot be broken out of, otherwise it always returns %false. 4759 * 4760 * If some data was malformed, this returns %false since the last parsed 4761 * element will not fill the whole remaining data. 4762 */ 4763 static inline bool for_each_element_completed(const struct element *element, 4764 const void *data, size_t datalen) 4765 { 4766 return (const u8 *)element == (const u8 *)data + datalen; 4767 } 4768 4769 /* 4770 * RSNX Capabilities: 4771 * bits 0-3: Field length (n-1) 4772 */ 4773 #define WLAN_RSNX_CAPA_PROTECTED_TWT BIT(4) 4774 #define WLAN_RSNX_CAPA_SAE_H2E BIT(5) 4775 4776 /* 4777 * reduced neighbor report, based on Draft P802.11ax_D6.1, 4778 * section 9.4.2.170 and accepted contributions. 4779 */ 4780 #define IEEE80211_AP_INFO_TBTT_HDR_TYPE 0x03 4781 #define IEEE80211_AP_INFO_TBTT_HDR_FILTERED 0x04 4782 #define IEEE80211_AP_INFO_TBTT_HDR_COLOC 0x08 4783 #define IEEE80211_AP_INFO_TBTT_HDR_COUNT 0xF0 4784 #define IEEE80211_TBTT_INFO_TYPE_TBTT 0 4785 #define IEEE80211_TBTT_INFO_TYPE_MLD 1 4786 4787 #define IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED 0x01 4788 #define IEEE80211_RNR_TBTT_PARAMS_SAME_SSID 0x02 4789 #define IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID 0x04 4790 #define IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID 0x08 4791 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS 0x10 4792 #define IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE 0x20 4793 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_AP 0x40 4794 4795 #define IEEE80211_RNR_TBTT_PARAMS_PSD_NO_LIMIT 127 4796 #define IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED -128 4797 4798 struct ieee80211_neighbor_ap_info { 4799 u8 tbtt_info_hdr; 4800 u8 tbtt_info_len; 4801 u8 op_class; 4802 u8 channel; 4803 } __packed; 4804 4805 enum ieee80211_range_params_max_total_ltf { 4806 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_4 = 0, 4807 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_8, 4808 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_16, 4809 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_UNSPECIFIED, 4810 }; 4811 4812 /* 4813 * reduced neighbor report, based on Draft P802.11be_D3.0, 4814 * section 9.4.2.170.2. 4815 */ 4816 struct ieee80211_rnr_mld_params { 4817 u8 mld_id; 4818 __le16 params; 4819 } __packed; 4820 4821 #define IEEE80211_RNR_MLD_PARAMS_LINK_ID 0x000F 4822 #define IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT 0x0FF0 4823 #define IEEE80211_RNR_MLD_PARAMS_UPDATES_INCLUDED 0x1000 4824 #define IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK 0x2000 4825 4826 /* Format of the TBTT information element if it has 7, 8 or 9 bytes */ 4827 struct ieee80211_tbtt_info_7_8_9 { 4828 u8 tbtt_offset; 4829 u8 bssid[ETH_ALEN]; 4830 4831 /* The following element is optional, structure may not grow */ 4832 u8 bss_params; 4833 s8 psd_20; 4834 } __packed; 4835 4836 /* Format of the TBTT information element if it has >= 11 bytes */ 4837 struct ieee80211_tbtt_info_ge_11 { 4838 u8 tbtt_offset; 4839 u8 bssid[ETH_ALEN]; 4840 __le32 short_ssid; 4841 4842 /* The following elements are optional, structure may grow */ 4843 u8 bss_params; 4844 s8 psd_20; 4845 struct ieee80211_rnr_mld_params mld_params; 4846 } __packed; 4847 4848 /* multi-link device */ 4849 #define IEEE80211_MLD_MAX_NUM_LINKS 15 4850 4851 #define IEEE80211_ML_CONTROL_TYPE 0x0007 4852 #define IEEE80211_ML_CONTROL_TYPE_BASIC 0 4853 #define IEEE80211_ML_CONTROL_TYPE_PREQ 1 4854 #define IEEE80211_ML_CONTROL_TYPE_RECONF 2 4855 #define IEEE80211_ML_CONTROL_TYPE_TDLS 3 4856 #define IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS 4 4857 #define IEEE80211_ML_CONTROL_PRESENCE_MASK 0xfff0 4858 4859 struct ieee80211_multi_link_elem { 4860 __le16 control; 4861 u8 variable[]; 4862 } __packed; 4863 4864 #define IEEE80211_MLC_BASIC_PRES_LINK_ID 0x0010 4865 #define IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT 0x0020 4866 #define IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY 0x0040 4867 #define IEEE80211_MLC_BASIC_PRES_EML_CAPA 0x0080 4868 #define IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP 0x0100 4869 #define IEEE80211_MLC_BASIC_PRES_MLD_ID 0x0200 4870 4871 #define IEEE80211_MED_SYNC_DELAY_DURATION 0x00ff 4872 #define IEEE80211_MED_SYNC_DELAY_SYNC_OFDM_ED_THRESH 0x0f00 4873 #define IEEE80211_MED_SYNC_DELAY_SYNC_MAX_NUM_TXOPS 0xf000 4874 4875 /* 4876 * Described in P802.11be_D3.0 4877 * dot11MSDTimerDuration should default to 5484 (i.e. 171.375) 4878 * dot11MSDOFDMEDthreshold defaults to -72 (i.e. 0) 4879 * dot11MSDTXOPMAX defaults to 1 4880 */ 4881 #define IEEE80211_MED_SYNC_DELAY_DEFAULT 0x10ac 4882 4883 #define IEEE80211_EML_CAP_EMLSR_SUPP 0x0001 4884 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY 0x000e 4885 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_0US 0 4886 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_32US 1 4887 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_64US 2 4888 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_128US 3 4889 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US 4 4890 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY 0x0070 4891 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_0US 0 4892 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_16US 1 4893 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_32US 2 4894 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_64US 3 4895 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_128US 4 4896 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US 5 4897 #define IEEE80211_EML_CAP_EMLMR_SUPPORT 0x0080 4898 #define IEEE80211_EML_CAP_EMLMR_DELAY 0x0700 4899 #define IEEE80211_EML_CAP_EMLMR_DELAY_0US 0 4900 #define IEEE80211_EML_CAP_EMLMR_DELAY_32US 1 4901 #define IEEE80211_EML_CAP_EMLMR_DELAY_64US 2 4902 #define IEEE80211_EML_CAP_EMLMR_DELAY_128US 3 4903 #define IEEE80211_EML_CAP_EMLMR_DELAY_256US 4 4904 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT 0x7800 4905 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_0 0 4906 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128US 1 4907 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_256US 2 4908 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_512US 3 4909 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_1TU 4 4910 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_2TU 5 4911 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_4TU 6 4912 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_8TU 7 4913 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_16TU 8 4914 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_32TU 9 4915 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_64TU 10 4916 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU 11 4917 4918 #define IEEE80211_MLD_CAP_OP_MAX_SIMUL_LINKS 0x000f 4919 #define IEEE80211_MLD_CAP_OP_SRS_SUPPORT 0x0010 4920 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP 0x0060 4921 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_NO_SUPP 0 4922 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_SAME 1 4923 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_RESERVED 2 4924 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_DIFF 3 4925 #define IEEE80211_MLD_CAP_OP_FREQ_SEP_TYPE_IND 0x0f80 4926 #define IEEE80211_MLD_CAP_OP_AAR_SUPPORT 0x1000 4927 4928 struct ieee80211_mle_basic_common_info { 4929 u8 len; 4930 u8 mld_mac_addr[ETH_ALEN]; 4931 u8 variable[]; 4932 } __packed; 4933 4934 #define IEEE80211_MLC_PREQ_PRES_MLD_ID 0x0010 4935 4936 struct ieee80211_mle_preq_common_info { 4937 u8 len; 4938 u8 variable[]; 4939 } __packed; 4940 4941 #define IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR 0x0010 4942 4943 /* no fixed fields in RECONF */ 4944 4945 struct ieee80211_mle_tdls_common_info { 4946 u8 len; 4947 u8 ap_mld_mac_addr[ETH_ALEN]; 4948 } __packed; 4949 4950 #define IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR 0x0010 4951 4952 /* no fixed fields in PRIO_ACCESS */ 4953 4954 /** 4955 * ieee80211_mle_common_size - check multi-link element common size 4956 * @data: multi-link element, must already be checked for size using 4957 * ieee80211_mle_size_ok() 4958 */ 4959 static inline u8 ieee80211_mle_common_size(const u8 *data) 4960 { 4961 const struct ieee80211_multi_link_elem *mle = (const void *)data; 4962 u16 control = le16_to_cpu(mle->control); 4963 u8 common = 0; 4964 4965 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) { 4966 case IEEE80211_ML_CONTROL_TYPE_BASIC: 4967 case IEEE80211_ML_CONTROL_TYPE_PREQ: 4968 case IEEE80211_ML_CONTROL_TYPE_TDLS: 4969 case IEEE80211_ML_CONTROL_TYPE_RECONF: 4970 /* 4971 * The length is the first octet pointed by mle->variable so no 4972 * need to add anything 4973 */ 4974 break; 4975 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS: 4976 if (control & IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR) 4977 common += ETH_ALEN; 4978 return common; 4979 default: 4980 WARN_ON(1); 4981 return 0; 4982 } 4983 4984 return sizeof(*mle) + common + mle->variable[0]; 4985 } 4986 4987 /** 4988 * ieee80211_mle_get_link_id - returns the link ID 4989 * @data: the basic multi link element 4990 * 4991 * The element is assumed to be of the correct type (BASIC) and big enough, 4992 * this must be checked using ieee80211_mle_type_ok(). 4993 * 4994 * If the BSS link ID can't be found, -1 will be returned 4995 */ 4996 static inline int ieee80211_mle_get_link_id(const u8 *data) 4997 { 4998 const struct ieee80211_multi_link_elem *mle = (const void *)data; 4999 u16 control = le16_to_cpu(mle->control); 5000 const u8 *common = mle->variable; 5001 5002 /* common points now at the beginning of ieee80211_mle_basic_common_info */ 5003 common += sizeof(struct ieee80211_mle_basic_common_info); 5004 5005 if (!(control & IEEE80211_MLC_BASIC_PRES_LINK_ID)) 5006 return -1; 5007 5008 return *common; 5009 } 5010 5011 /** 5012 * ieee80211_mle_get_bss_param_ch_cnt - returns the BSS parameter change count 5013 * @data: pointer to the basic multi link element 5014 * 5015 * The element is assumed to be of the correct type (BASIC) and big enough, 5016 * this must be checked using ieee80211_mle_type_ok(). 5017 * 5018 * If the BSS parameter change count value can't be found (the presence bit 5019 * for it is clear), -1 will be returned. 5020 */ 5021 static inline int 5022 ieee80211_mle_get_bss_param_ch_cnt(const u8 *data) 5023 { 5024 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5025 u16 control = le16_to_cpu(mle->control); 5026 const u8 *common = mle->variable; 5027 5028 /* common points now at the beginning of ieee80211_mle_basic_common_info */ 5029 common += sizeof(struct ieee80211_mle_basic_common_info); 5030 5031 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)) 5032 return -1; 5033 5034 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5035 common += 1; 5036 5037 return *common; 5038 } 5039 5040 /** 5041 * ieee80211_mle_get_eml_med_sync_delay - returns the medium sync delay 5042 * @data: pointer to the multi link EHT IE 5043 * 5044 * The element is assumed to be of the correct type (BASIC) and big enough, 5045 * this must be checked using ieee80211_mle_type_ok(). 5046 * 5047 * If the medium synchronization is not present, then the default value is 5048 * returned. 5049 */ 5050 static inline u16 ieee80211_mle_get_eml_med_sync_delay(const u8 *data) 5051 { 5052 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5053 u16 control = le16_to_cpu(mle->control); 5054 const u8 *common = mle->variable; 5055 5056 /* common points now at the beginning of ieee80211_mle_basic_common_info */ 5057 common += sizeof(struct ieee80211_mle_basic_common_info); 5058 5059 if (!(control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)) 5060 return IEEE80211_MED_SYNC_DELAY_DEFAULT; 5061 5062 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5063 common += 1; 5064 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5065 common += 1; 5066 5067 return get_unaligned_le16(common); 5068 } 5069 5070 /** 5071 * ieee80211_mle_get_eml_cap - returns the EML capability 5072 * @data: pointer to the multi link EHT IE 5073 * 5074 * The element is assumed to be of the correct type (BASIC) and big enough, 5075 * this must be checked using ieee80211_mle_type_ok(). 5076 * 5077 * If the EML capability is not present, 0 will be returned. 5078 */ 5079 static inline u16 ieee80211_mle_get_eml_cap(const u8 *data) 5080 { 5081 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5082 u16 control = le16_to_cpu(mle->control); 5083 const u8 *common = mle->variable; 5084 5085 /* common points now at the beginning of ieee80211_mle_basic_common_info */ 5086 common += sizeof(struct ieee80211_mle_basic_common_info); 5087 5088 if (!(control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)) 5089 return 0; 5090 5091 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5092 common += 1; 5093 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5094 common += 1; 5095 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5096 common += 2; 5097 5098 return get_unaligned_le16(common); 5099 } 5100 5101 /** 5102 * ieee80211_mle_get_mld_capa_op - returns the MLD capabilities and operations. 5103 * @data: pointer to the multi link EHT IE 5104 * 5105 * The element is assumed to be of the correct type (BASIC) and big enough, 5106 * this must be checked using ieee80211_mle_type_ok(). 5107 * 5108 * If the MLD capabilities and operations field is not present, 0 will be 5109 * returned. 5110 */ 5111 static inline u16 ieee80211_mle_get_mld_capa_op(const u8 *data) 5112 { 5113 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5114 u16 control = le16_to_cpu(mle->control); 5115 const u8 *common = mle->variable; 5116 5117 /* 5118 * common points now at the beginning of 5119 * ieee80211_mle_basic_common_info 5120 */ 5121 common += sizeof(struct ieee80211_mle_basic_common_info); 5122 5123 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) 5124 return 0; 5125 5126 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5127 common += 1; 5128 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5129 common += 1; 5130 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5131 common += 2; 5132 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA) 5133 common += 2; 5134 5135 return get_unaligned_le16(common); 5136 } 5137 5138 /** 5139 * ieee80211_mle_get_mld_id - returns the MLD ID 5140 * @data: pointer to the multi link element 5141 * 5142 * The element is assumed to be of the correct type (BASIC) and big enough, 5143 * this must be checked using ieee80211_mle_type_ok(). 5144 * 5145 * If the MLD ID is not present, 0 will be returned. 5146 */ 5147 static inline u8 ieee80211_mle_get_mld_id(const u8 *data) 5148 { 5149 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5150 u16 control = le16_to_cpu(mle->control); 5151 const u8 *common = mle->variable; 5152 5153 /* 5154 * common points now at the beginning of 5155 * ieee80211_mle_basic_common_info 5156 */ 5157 common += sizeof(struct ieee80211_mle_basic_common_info); 5158 5159 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_ID)) 5160 return 0; 5161 5162 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5163 common += 1; 5164 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5165 common += 1; 5166 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5167 common += 2; 5168 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA) 5169 common += 2; 5170 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP) 5171 common += 2; 5172 5173 return *common; 5174 } 5175 5176 /** 5177 * ieee80211_mle_size_ok - validate multi-link element size 5178 * @data: pointer to the element data 5179 * @len: length of the containing element 5180 */ 5181 static inline bool ieee80211_mle_size_ok(const u8 *data, size_t len) 5182 { 5183 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5184 u8 fixed = sizeof(*mle); 5185 u8 common = 0; 5186 bool check_common_len = false; 5187 u16 control; 5188 5189 if (!data || len < fixed) 5190 return false; 5191 5192 control = le16_to_cpu(mle->control); 5193 5194 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) { 5195 case IEEE80211_ML_CONTROL_TYPE_BASIC: 5196 common += sizeof(struct ieee80211_mle_basic_common_info); 5197 check_common_len = true; 5198 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5199 common += 1; 5200 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5201 common += 1; 5202 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5203 common += 2; 5204 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA) 5205 common += 2; 5206 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP) 5207 common += 2; 5208 if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID) 5209 common += 1; 5210 break; 5211 case IEEE80211_ML_CONTROL_TYPE_PREQ: 5212 common += sizeof(struct ieee80211_mle_preq_common_info); 5213 if (control & IEEE80211_MLC_PREQ_PRES_MLD_ID) 5214 common += 1; 5215 check_common_len = true; 5216 break; 5217 case IEEE80211_ML_CONTROL_TYPE_RECONF: 5218 if (control & IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR) 5219 common += ETH_ALEN; 5220 break; 5221 case IEEE80211_ML_CONTROL_TYPE_TDLS: 5222 common += sizeof(struct ieee80211_mle_tdls_common_info); 5223 check_common_len = true; 5224 break; 5225 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS: 5226 if (control & IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR) 5227 common += ETH_ALEN; 5228 break; 5229 default: 5230 /* we don't know this type */ 5231 return true; 5232 } 5233 5234 if (len < fixed + common) 5235 return false; 5236 5237 if (!check_common_len) 5238 return true; 5239 5240 /* if present, common length is the first octet there */ 5241 return mle->variable[0] >= common; 5242 } 5243 5244 /** 5245 * ieee80211_mle_type_ok - validate multi-link element type and size 5246 * @data: pointer to the element data 5247 * @type: expected type of the element 5248 * @len: length of the containing element 5249 */ 5250 static inline bool ieee80211_mle_type_ok(const u8 *data, u8 type, size_t len) 5251 { 5252 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5253 u16 control; 5254 5255 if (!ieee80211_mle_size_ok(data, len)) 5256 return false; 5257 5258 control = le16_to_cpu(mle->control); 5259 5260 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) == type) 5261 return true; 5262 5263 return false; 5264 } 5265 5266 enum ieee80211_mle_subelems { 5267 IEEE80211_MLE_SUBELEM_PER_STA_PROFILE = 0, 5268 IEEE80211_MLE_SUBELEM_FRAGMENT = 254, 5269 }; 5270 5271 #define IEEE80211_MLE_STA_CONTROL_LINK_ID 0x000f 5272 #define IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE 0x0010 5273 #define IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT 0x0020 5274 #define IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT 0x0040 5275 #define IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT 0x0080 5276 #define IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT 0x0100 5277 #define IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT 0x0200 5278 #define IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE 0x0400 5279 #define IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT 0x0800 5280 5281 struct ieee80211_mle_per_sta_profile { 5282 __le16 control; 5283 u8 sta_info_len; 5284 u8 variable[]; 5285 } __packed; 5286 5287 /** 5288 * ieee80211_mle_basic_sta_prof_size_ok - validate basic multi-link element sta 5289 * profile size 5290 * @data: pointer to the sub element data 5291 * @len: length of the containing sub element 5292 */ 5293 static inline bool ieee80211_mle_basic_sta_prof_size_ok(const u8 *data, 5294 size_t len) 5295 { 5296 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data; 5297 u16 control; 5298 u8 fixed = sizeof(*prof); 5299 u8 info_len = 1; 5300 5301 if (len < fixed) 5302 return false; 5303 5304 control = le16_to_cpu(prof->control); 5305 5306 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT) 5307 info_len += 6; 5308 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) 5309 info_len += 2; 5310 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) 5311 info_len += 8; 5312 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT) 5313 info_len += 2; 5314 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE && 5315 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) { 5316 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE) 5317 info_len += 2; 5318 else 5319 info_len += 1; 5320 } 5321 if (control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT) 5322 info_len += 1; 5323 5324 return prof->sta_info_len >= info_len && 5325 fixed + prof->sta_info_len - 1 <= len; 5326 } 5327 5328 /** 5329 * ieee80211_mle_basic_sta_prof_bss_param_ch_cnt - get per-STA profile BSS 5330 * parameter change count 5331 * @prof: the per-STA profile, having been checked with 5332 * ieee80211_mle_basic_sta_prof_size_ok() for the correct length 5333 * 5334 * Return: The BSS parameter change count value if present, 0 otherwise. 5335 */ 5336 static inline u8 5337 ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile *prof) 5338 { 5339 u16 control = le16_to_cpu(prof->control); 5340 const u8 *pos = prof->variable; 5341 5342 if (!(control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT)) 5343 return 0; 5344 5345 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT) 5346 pos += 6; 5347 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) 5348 pos += 2; 5349 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) 5350 pos += 8; 5351 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT) 5352 pos += 2; 5353 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE && 5354 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) { 5355 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE) 5356 pos += 2; 5357 else 5358 pos += 1; 5359 } 5360 5361 return *pos; 5362 } 5363 5364 #define IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID 0x000f 5365 #define IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE 0x0010 5366 #define IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT 0x0020 5367 #define IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT 0x0040 5368 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_UPDATE_TYPE 0x0780 5369 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT 0x0800 5370 5371 /** 5372 * ieee80211_mle_reconf_sta_prof_size_ok - validate reconfiguration multi-link 5373 * element sta profile size. 5374 * @data: pointer to the sub element data 5375 * @len: length of the containing sub element 5376 */ 5377 static inline bool ieee80211_mle_reconf_sta_prof_size_ok(const u8 *data, 5378 size_t len) 5379 { 5380 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data; 5381 u16 control; 5382 u8 fixed = sizeof(*prof); 5383 u8 info_len = 1; 5384 5385 if (len < fixed) 5386 return false; 5387 5388 control = le16_to_cpu(prof->control); 5389 5390 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT) 5391 info_len += ETH_ALEN; 5392 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT) 5393 info_len += 2; 5394 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT) 5395 info_len += 2; 5396 5397 return prof->sta_info_len >= info_len && 5398 fixed + prof->sta_info_len - 1 <= len; 5399 } 5400 5401 static inline bool ieee80211_tid_to_link_map_size_ok(const u8 *data, size_t len) 5402 { 5403 const struct ieee80211_ttlm_elem *t2l = (const void *)data; 5404 u8 control, fixed = sizeof(*t2l), elem_len = 0; 5405 5406 if (len < fixed) 5407 return false; 5408 5409 control = t2l->control; 5410 5411 if (control & IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT) 5412 elem_len += 2; 5413 if (control & IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT) 5414 elem_len += 3; 5415 5416 if (!(control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP)) { 5417 u8 bm_size; 5418 5419 elem_len += 1; 5420 if (len < fixed + elem_len) 5421 return false; 5422 5423 if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE) 5424 bm_size = 1; 5425 else 5426 bm_size = 2; 5427 5428 elem_len += hweight8(t2l->optional[0]) * bm_size; 5429 } 5430 5431 return len >= fixed + elem_len; 5432 } 5433 5434 #define for_each_mle_subelement(_elem, _data, _len) \ 5435 if (ieee80211_mle_size_ok(_data, _len)) \ 5436 for_each_element(_elem, \ 5437 _data + ieee80211_mle_common_size(_data),\ 5438 _len - ieee80211_mle_common_size(_data)) 5439 5440 #endif /* LINUX_IEEE80211_H */ 5441