1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * IEEE 802.11 defines 4 * 5 * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen 6 * <[email protected]> 7 * Copyright (c) 2002-2003, Jouni Malinen <[email protected]> 8 * Copyright (c) 2005, Devicescape Software, Inc. 9 * Copyright (c) 2006, Michael Wu <[email protected]> 10 * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH 11 * Copyright (c) 2016 - 2017 Intel Deutschland GmbH 12 * Copyright (c) 2018 - 2024 Intel Corporation 13 */ 14 15 #ifndef LINUX_IEEE80211_H 16 #define LINUX_IEEE80211_H 17 18 #include <linux/types.h> 19 #include <linux/if_ether.h> 20 #include <linux/etherdevice.h> 21 #include <linux/bitfield.h> 22 #include <asm/byteorder.h> 23 #include <linux/unaligned.h> 24 25 /* 26 * DS bit usage 27 * 28 * TA = transmitter address 29 * RA = receiver address 30 * DA = destination address 31 * SA = source address 32 * 33 * ToDS FromDS A1(RA) A2(TA) A3 A4 Use 34 * ----------------------------------------------------------------- 35 * 0 0 DA SA BSSID - IBSS/DLS 36 * 0 1 DA BSSID SA - AP -> STA 37 * 1 0 BSSID SA DA - AP <- STA 38 * 1 1 RA TA DA SA unspecified (WDS) 39 */ 40 41 #define FCS_LEN 4 42 43 #define IEEE80211_FCTL_VERS 0x0003 44 #define IEEE80211_FCTL_FTYPE 0x000c 45 #define IEEE80211_FCTL_STYPE 0x00f0 46 #define IEEE80211_FCTL_TODS 0x0100 47 #define IEEE80211_FCTL_FROMDS 0x0200 48 #define IEEE80211_FCTL_MOREFRAGS 0x0400 49 #define IEEE80211_FCTL_RETRY 0x0800 50 #define IEEE80211_FCTL_PM 0x1000 51 #define IEEE80211_FCTL_MOREDATA 0x2000 52 #define IEEE80211_FCTL_PROTECTED 0x4000 53 #define IEEE80211_FCTL_ORDER 0x8000 54 #define IEEE80211_FCTL_CTL_EXT 0x0f00 55 56 #define IEEE80211_SCTL_FRAG 0x000F 57 #define IEEE80211_SCTL_SEQ 0xFFF0 58 59 #define IEEE80211_FTYPE_MGMT 0x0000 60 #define IEEE80211_FTYPE_CTL 0x0004 61 #define IEEE80211_FTYPE_DATA 0x0008 62 #define IEEE80211_FTYPE_EXT 0x000c 63 64 /* management */ 65 #define IEEE80211_STYPE_ASSOC_REQ 0x0000 66 #define IEEE80211_STYPE_ASSOC_RESP 0x0010 67 #define IEEE80211_STYPE_REASSOC_REQ 0x0020 68 #define IEEE80211_STYPE_REASSOC_RESP 0x0030 69 #define IEEE80211_STYPE_PROBE_REQ 0x0040 70 #define IEEE80211_STYPE_PROBE_RESP 0x0050 71 #define IEEE80211_STYPE_BEACON 0x0080 72 #define IEEE80211_STYPE_ATIM 0x0090 73 #define IEEE80211_STYPE_DISASSOC 0x00A0 74 #define IEEE80211_STYPE_AUTH 0x00B0 75 #define IEEE80211_STYPE_DEAUTH 0x00C0 76 #define IEEE80211_STYPE_ACTION 0x00D0 77 78 /* control */ 79 #define IEEE80211_STYPE_TRIGGER 0x0020 80 #define IEEE80211_STYPE_CTL_EXT 0x0060 81 #define IEEE80211_STYPE_BACK_REQ 0x0080 82 #define IEEE80211_STYPE_BACK 0x0090 83 #define IEEE80211_STYPE_PSPOLL 0x00A0 84 #define IEEE80211_STYPE_RTS 0x00B0 85 #define IEEE80211_STYPE_CTS 0x00C0 86 #define IEEE80211_STYPE_ACK 0x00D0 87 #define IEEE80211_STYPE_CFEND 0x00E0 88 #define IEEE80211_STYPE_CFENDACK 0x00F0 89 90 /* data */ 91 #define IEEE80211_STYPE_DATA 0x0000 92 #define IEEE80211_STYPE_DATA_CFACK 0x0010 93 #define IEEE80211_STYPE_DATA_CFPOLL 0x0020 94 #define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030 95 #define IEEE80211_STYPE_NULLFUNC 0x0040 96 #define IEEE80211_STYPE_CFACK 0x0050 97 #define IEEE80211_STYPE_CFPOLL 0x0060 98 #define IEEE80211_STYPE_CFACKPOLL 0x0070 99 #define IEEE80211_STYPE_QOS_DATA 0x0080 100 #define IEEE80211_STYPE_QOS_DATA_CFACK 0x0090 101 #define IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0 102 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0 103 #define IEEE80211_STYPE_QOS_NULLFUNC 0x00C0 104 #define IEEE80211_STYPE_QOS_CFACK 0x00D0 105 #define IEEE80211_STYPE_QOS_CFPOLL 0x00E0 106 #define IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0 107 108 /* extension, added by 802.11ad */ 109 #define IEEE80211_STYPE_DMG_BEACON 0x0000 110 #define IEEE80211_STYPE_S1G_BEACON 0x0010 111 112 /* bits unique to S1G beacon */ 113 #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100 114 115 /* see 802.11ah-2016 9.9 NDP CMAC frames */ 116 #define IEEE80211_S1G_1MHZ_NDP_BITS 25 117 #define IEEE80211_S1G_1MHZ_NDP_BYTES 4 118 #define IEEE80211_S1G_2MHZ_NDP_BITS 37 119 #define IEEE80211_S1G_2MHZ_NDP_BYTES 5 120 121 #define IEEE80211_NDP_FTYPE_CTS 0 122 #define IEEE80211_NDP_FTYPE_CF_END 0 123 #define IEEE80211_NDP_FTYPE_PS_POLL 1 124 #define IEEE80211_NDP_FTYPE_ACK 2 125 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK 3 126 #define IEEE80211_NDP_FTYPE_BA 4 127 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL 5 128 #define IEEE80211_NDP_FTYPE_PAGING 6 129 #define IEEE80211_NDP_FTYPE_PREQ 7 130 131 #define SM64(f, v) ((((u64)v) << f##_S) & f) 132 133 /* NDP CMAC frame fields */ 134 #define IEEE80211_NDP_FTYPE 0x0000000000000007 135 #define IEEE80211_NDP_FTYPE_S 0x0000000000000000 136 137 /* 1M Probe Request 11ah 9.9.3.1.1 */ 138 #define IEEE80211_NDP_1M_PREQ_ANO 0x0000000000000008 139 #define IEEE80211_NDP_1M_PREQ_ANO_S 3 140 #define IEEE80211_NDP_1M_PREQ_CSSID 0x00000000000FFFF0 141 #define IEEE80211_NDP_1M_PREQ_CSSID_S 4 142 #define IEEE80211_NDP_1M_PREQ_RTYPE 0x0000000000100000 143 #define IEEE80211_NDP_1M_PREQ_RTYPE_S 20 144 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000 145 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000 146 /* 2M Probe Request 11ah 9.9.3.1.2 */ 147 #define IEEE80211_NDP_2M_PREQ_ANO 0x0000000000000008 148 #define IEEE80211_NDP_2M_PREQ_ANO_S 3 149 #define IEEE80211_NDP_2M_PREQ_CSSID 0x0000000FFFFFFFF0 150 #define IEEE80211_NDP_2M_PREQ_CSSID_S 4 151 #define IEEE80211_NDP_2M_PREQ_RTYPE 0x0000001000000000 152 #define IEEE80211_NDP_2M_PREQ_RTYPE_S 36 153 154 #define IEEE80211_ANO_NETTYPE_WILD 15 155 156 /* bits unique to S1G beacon */ 157 #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100 158 159 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */ 160 #define IEEE80211_CTL_EXT_POLL 0x2000 161 #define IEEE80211_CTL_EXT_SPR 0x3000 162 #define IEEE80211_CTL_EXT_GRANT 0x4000 163 #define IEEE80211_CTL_EXT_DMG_CTS 0x5000 164 #define IEEE80211_CTL_EXT_DMG_DTS 0x6000 165 #define IEEE80211_CTL_EXT_SSW 0x8000 166 #define IEEE80211_CTL_EXT_SSW_FBACK 0x9000 167 #define IEEE80211_CTL_EXT_SSW_ACK 0xa000 168 169 170 #define IEEE80211_SN_MASK ((IEEE80211_SCTL_SEQ) >> 4) 171 #define IEEE80211_MAX_SN IEEE80211_SN_MASK 172 #define IEEE80211_SN_MODULO (IEEE80211_MAX_SN + 1) 173 174 175 /* PV1 Layout IEEE 802.11-2020 9.8.3.1 */ 176 #define IEEE80211_PV1_FCTL_VERS 0x0003 177 #define IEEE80211_PV1_FCTL_FTYPE 0x001c 178 #define IEEE80211_PV1_FCTL_STYPE 0x00e0 179 #define IEEE80211_PV1_FCTL_FROMDS 0x0100 180 #define IEEE80211_PV1_FCTL_MOREFRAGS 0x0200 181 #define IEEE80211_PV1_FCTL_PM 0x0400 182 #define IEEE80211_PV1_FCTL_MOREDATA 0x0800 183 #define IEEE80211_PV1_FCTL_PROTECTED 0x1000 184 #define IEEE80211_PV1_FCTL_END_SP 0x2000 185 #define IEEE80211_PV1_FCTL_RELAYED 0x4000 186 #define IEEE80211_PV1_FCTL_ACK_POLICY 0x8000 187 #define IEEE80211_PV1_FCTL_CTL_EXT 0x0f00 188 189 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2) 190 { 191 return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1); 192 } 193 194 static inline bool ieee80211_sn_less_eq(u16 sn1, u16 sn2) 195 { 196 return ((sn2 - sn1) & IEEE80211_SN_MASK) <= (IEEE80211_SN_MODULO >> 1); 197 } 198 199 static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2) 200 { 201 return (sn1 + sn2) & IEEE80211_SN_MASK; 202 } 203 204 static inline u16 ieee80211_sn_inc(u16 sn) 205 { 206 return ieee80211_sn_add(sn, 1); 207 } 208 209 static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2) 210 { 211 return (sn1 - sn2) & IEEE80211_SN_MASK; 212 } 213 214 #define IEEE80211_SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4) 215 #define IEEE80211_SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ) 216 217 /* miscellaneous IEEE 802.11 constants */ 218 #define IEEE80211_MAX_FRAG_THRESHOLD 2352 219 #define IEEE80211_MAX_RTS_THRESHOLD 2353 220 #define IEEE80211_MAX_AID 2007 221 #define IEEE80211_MAX_AID_S1G 8191 222 #define IEEE80211_MAX_TIM_LEN 251 223 #define IEEE80211_MAX_MESH_PEERINGS 63 224 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section 225 6.2.1.1.2. 226 227 802.11e clarifies the figure in section 7.1.2. The frame body is 228 up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */ 229 #define IEEE80211_MAX_DATA_LEN 2304 230 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks 231 * to 7920 bytes, see 8.2.3 General frame format 232 */ 233 #define IEEE80211_MAX_DATA_LEN_DMG 7920 234 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */ 235 #define IEEE80211_MAX_FRAME_LEN 2352 236 237 /* Maximal size of an A-MSDU that can be transported in a HT BA session */ 238 #define IEEE80211_MAX_MPDU_LEN_HT_BA 4095 239 240 /* Maximal size of an A-MSDU */ 241 #define IEEE80211_MAX_MPDU_LEN_HT_3839 3839 242 #define IEEE80211_MAX_MPDU_LEN_HT_7935 7935 243 244 #define IEEE80211_MAX_MPDU_LEN_VHT_3895 3895 245 #define IEEE80211_MAX_MPDU_LEN_VHT_7991 7991 246 #define IEEE80211_MAX_MPDU_LEN_VHT_11454 11454 247 248 #define IEEE80211_MAX_SSID_LEN 32 249 250 #define IEEE80211_MAX_MESH_ID_LEN 32 251 252 #define IEEE80211_FIRST_TSPEC_TSID 8 253 #define IEEE80211_NUM_TIDS 16 254 255 /* number of user priorities 802.11 uses */ 256 #define IEEE80211_NUM_UPS 8 257 /* number of ACs */ 258 #define IEEE80211_NUM_ACS 4 259 260 #define IEEE80211_QOS_CTL_LEN 2 261 /* 1d tag mask */ 262 #define IEEE80211_QOS_CTL_TAG1D_MASK 0x0007 263 /* TID mask */ 264 #define IEEE80211_QOS_CTL_TID_MASK 0x000f 265 /* EOSP */ 266 #define IEEE80211_QOS_CTL_EOSP 0x0010 267 /* ACK policy */ 268 #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL 0x0000 269 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK 0x0020 270 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL 0x0040 271 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK 0x0060 272 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK 0x0060 273 /* A-MSDU 802.11n */ 274 #define IEEE80211_QOS_CTL_A_MSDU_PRESENT 0x0080 275 /* Mesh Control 802.11s */ 276 #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT 0x0100 277 278 /* Mesh Power Save Level */ 279 #define IEEE80211_QOS_CTL_MESH_PS_LEVEL 0x0200 280 /* Mesh Receiver Service Period Initiated */ 281 #define IEEE80211_QOS_CTL_RSPI 0x0400 282 283 /* U-APSD queue for WMM IEs sent by AP */ 284 #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD (1<<7) 285 #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK 0x0f 286 287 /* U-APSD queues for WMM IEs sent by STA */ 288 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO (1<<0) 289 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI (1<<1) 290 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK (1<<2) 291 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE (1<<3) 292 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK 0x0f 293 294 /* U-APSD max SP length for WMM IEs sent by STA */ 295 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL 0x00 296 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2 0x01 297 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4 0x02 298 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6 0x03 299 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK 0x03 300 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT 5 301 302 #define IEEE80211_HT_CTL_LEN 4 303 304 /* trigger type within common_info of trigger frame */ 305 #define IEEE80211_TRIGGER_TYPE_MASK 0xf 306 #define IEEE80211_TRIGGER_TYPE_BASIC 0x0 307 #define IEEE80211_TRIGGER_TYPE_BFRP 0x1 308 #define IEEE80211_TRIGGER_TYPE_MU_BAR 0x2 309 #define IEEE80211_TRIGGER_TYPE_MU_RTS 0x3 310 #define IEEE80211_TRIGGER_TYPE_BSRP 0x4 311 #define IEEE80211_TRIGGER_TYPE_GCR_MU_BAR 0x5 312 #define IEEE80211_TRIGGER_TYPE_BQRP 0x6 313 #define IEEE80211_TRIGGER_TYPE_NFRP 0x7 314 315 /* UL-bandwidth within common_info of trigger frame */ 316 #define IEEE80211_TRIGGER_ULBW_MASK 0xc0000 317 #define IEEE80211_TRIGGER_ULBW_20MHZ 0x0 318 #define IEEE80211_TRIGGER_ULBW_40MHZ 0x1 319 #define IEEE80211_TRIGGER_ULBW_80MHZ 0x2 320 #define IEEE80211_TRIGGER_ULBW_160_80P80MHZ 0x3 321 322 struct ieee80211_hdr { 323 __le16 frame_control; 324 __le16 duration_id; 325 struct_group(addrs, 326 u8 addr1[ETH_ALEN]; 327 u8 addr2[ETH_ALEN]; 328 u8 addr3[ETH_ALEN]; 329 ); 330 __le16 seq_ctrl; 331 u8 addr4[ETH_ALEN]; 332 } __packed __aligned(2); 333 334 struct ieee80211_hdr_3addr { 335 __le16 frame_control; 336 __le16 duration_id; 337 u8 addr1[ETH_ALEN]; 338 u8 addr2[ETH_ALEN]; 339 u8 addr3[ETH_ALEN]; 340 __le16 seq_ctrl; 341 } __packed __aligned(2); 342 343 struct ieee80211_qos_hdr { 344 __le16 frame_control; 345 __le16 duration_id; 346 u8 addr1[ETH_ALEN]; 347 u8 addr2[ETH_ALEN]; 348 u8 addr3[ETH_ALEN]; 349 __le16 seq_ctrl; 350 __le16 qos_ctrl; 351 } __packed __aligned(2); 352 353 struct ieee80211_qos_hdr_4addr { 354 __le16 frame_control; 355 __le16 duration_id; 356 u8 addr1[ETH_ALEN]; 357 u8 addr2[ETH_ALEN]; 358 u8 addr3[ETH_ALEN]; 359 __le16 seq_ctrl; 360 u8 addr4[ETH_ALEN]; 361 __le16 qos_ctrl; 362 } __packed __aligned(2); 363 364 struct ieee80211_trigger { 365 __le16 frame_control; 366 __le16 duration; 367 u8 ra[ETH_ALEN]; 368 u8 ta[ETH_ALEN]; 369 __le64 common_info; 370 u8 variable[]; 371 } __packed __aligned(2); 372 373 /** 374 * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set 375 * @fc: frame control bytes in little-endian byteorder 376 * Return: whether or not the frame has to-DS set 377 */ 378 static inline bool ieee80211_has_tods(__le16 fc) 379 { 380 return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0; 381 } 382 383 /** 384 * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set 385 * @fc: frame control bytes in little-endian byteorder 386 * Return: whether or not the frame has from-DS set 387 */ 388 static inline bool ieee80211_has_fromds(__le16 fc) 389 { 390 return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0; 391 } 392 393 /** 394 * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set 395 * @fc: frame control bytes in little-endian byteorder 396 * Return: whether or not it's a 4-address frame (from-DS and to-DS set) 397 */ 398 static inline bool ieee80211_has_a4(__le16 fc) 399 { 400 __le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS); 401 return (fc & tmp) == tmp; 402 } 403 404 /** 405 * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set 406 * @fc: frame control bytes in little-endian byteorder 407 * Return: whether or not the frame has more fragments (more frags bit set) 408 */ 409 static inline bool ieee80211_has_morefrags(__le16 fc) 410 { 411 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0; 412 } 413 414 /** 415 * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set 416 * @fc: frame control bytes in little-endian byteorder 417 * Return: whether or not the retry flag is set 418 */ 419 static inline bool ieee80211_has_retry(__le16 fc) 420 { 421 return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0; 422 } 423 424 /** 425 * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set 426 * @fc: frame control bytes in little-endian byteorder 427 * Return: whether or not the power management flag is set 428 */ 429 static inline bool ieee80211_has_pm(__le16 fc) 430 { 431 return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0; 432 } 433 434 /** 435 * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set 436 * @fc: frame control bytes in little-endian byteorder 437 * Return: whether or not the more data flag is set 438 */ 439 static inline bool ieee80211_has_moredata(__le16 fc) 440 { 441 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0; 442 } 443 444 /** 445 * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set 446 * @fc: frame control bytes in little-endian byteorder 447 * Return: whether or not the protected flag is set 448 */ 449 static inline bool ieee80211_has_protected(__le16 fc) 450 { 451 return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0; 452 } 453 454 /** 455 * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set 456 * @fc: frame control bytes in little-endian byteorder 457 * Return: whether or not the order flag is set 458 */ 459 static inline bool ieee80211_has_order(__le16 fc) 460 { 461 return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0; 462 } 463 464 /** 465 * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT 466 * @fc: frame control bytes in little-endian byteorder 467 * Return: whether or not the frame type is management 468 */ 469 static inline bool ieee80211_is_mgmt(__le16 fc) 470 { 471 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 472 cpu_to_le16(IEEE80211_FTYPE_MGMT); 473 } 474 475 /** 476 * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL 477 * @fc: frame control bytes in little-endian byteorder 478 * Return: whether or not the frame type is control 479 */ 480 static inline bool ieee80211_is_ctl(__le16 fc) 481 { 482 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 483 cpu_to_le16(IEEE80211_FTYPE_CTL); 484 } 485 486 /** 487 * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA 488 * @fc: frame control bytes in little-endian byteorder 489 * Return: whether or not the frame is a data frame 490 */ 491 static inline bool ieee80211_is_data(__le16 fc) 492 { 493 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 494 cpu_to_le16(IEEE80211_FTYPE_DATA); 495 } 496 497 /** 498 * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT 499 * @fc: frame control bytes in little-endian byteorder 500 * Return: whether or not the frame type is extended 501 */ 502 static inline bool ieee80211_is_ext(__le16 fc) 503 { 504 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 505 cpu_to_le16(IEEE80211_FTYPE_EXT); 506 } 507 508 509 /** 510 * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set 511 * @fc: frame control bytes in little-endian byteorder 512 * Return: whether or not the frame is a QoS data frame 513 */ 514 static inline bool ieee80211_is_data_qos(__le16 fc) 515 { 516 /* 517 * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need 518 * to check the one bit 519 */ 520 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) == 521 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA); 522 } 523 524 /** 525 * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data 526 * @fc: frame control bytes in little-endian byteorder 527 * Return: whether or not the frame is a QoS data frame that has data 528 * (i.e. is not null data) 529 */ 530 static inline bool ieee80211_is_data_present(__le16 fc) 531 { 532 /* 533 * mask with 0x40 and test that that bit is clear to only return true 534 * for the data-containing substypes. 535 */ 536 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) == 537 cpu_to_le16(IEEE80211_FTYPE_DATA); 538 } 539 540 /** 541 * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ 542 * @fc: frame control bytes in little-endian byteorder 543 * Return: whether or not the frame is an association request 544 */ 545 static inline bool ieee80211_is_assoc_req(__le16 fc) 546 { 547 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 548 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ); 549 } 550 551 /** 552 * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP 553 * @fc: frame control bytes in little-endian byteorder 554 * Return: whether or not the frame is an association response 555 */ 556 static inline bool ieee80211_is_assoc_resp(__le16 fc) 557 { 558 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 559 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP); 560 } 561 562 /** 563 * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ 564 * @fc: frame control bytes in little-endian byteorder 565 * Return: whether or not the frame is a reassociation request 566 */ 567 static inline bool ieee80211_is_reassoc_req(__le16 fc) 568 { 569 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 570 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ); 571 } 572 573 /** 574 * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP 575 * @fc: frame control bytes in little-endian byteorder 576 * Return: whether or not the frame is a reassociation response 577 */ 578 static inline bool ieee80211_is_reassoc_resp(__le16 fc) 579 { 580 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 581 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP); 582 } 583 584 /** 585 * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ 586 * @fc: frame control bytes in little-endian byteorder 587 * Return: whether or not the frame is a probe request 588 */ 589 static inline bool ieee80211_is_probe_req(__le16 fc) 590 { 591 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 592 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ); 593 } 594 595 /** 596 * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP 597 * @fc: frame control bytes in little-endian byteorder 598 * Return: whether or not the frame is a probe response 599 */ 600 static inline bool ieee80211_is_probe_resp(__le16 fc) 601 { 602 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 603 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP); 604 } 605 606 /** 607 * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON 608 * @fc: frame control bytes in little-endian byteorder 609 * Return: whether or not the frame is a (regular, not S1G) beacon 610 */ 611 static inline bool ieee80211_is_beacon(__le16 fc) 612 { 613 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 614 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); 615 } 616 617 /** 618 * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT && 619 * IEEE80211_STYPE_S1G_BEACON 620 * @fc: frame control bytes in little-endian byteorder 621 * Return: whether or not the frame is an S1G beacon 622 */ 623 static inline bool ieee80211_is_s1g_beacon(__le16 fc) 624 { 625 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 626 IEEE80211_FCTL_STYPE)) == 627 cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON); 628 } 629 630 /** 631 * ieee80211_is_s1g_short_beacon - check if frame is an S1G short beacon 632 * @fc: frame control bytes in little-endian byteorder 633 * Return: whether or not the frame is an S1G short beacon, 634 * i.e. it is an S1G beacon with 'next TBTT' flag set 635 */ 636 static inline bool ieee80211_is_s1g_short_beacon(__le16 fc) 637 { 638 return ieee80211_is_s1g_beacon(fc) && 639 (fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT)); 640 } 641 642 /** 643 * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM 644 * @fc: frame control bytes in little-endian byteorder 645 * Return: whether or not the frame is an ATIM frame 646 */ 647 static inline bool ieee80211_is_atim(__le16 fc) 648 { 649 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 650 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM); 651 } 652 653 /** 654 * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC 655 * @fc: frame control bytes in little-endian byteorder 656 * Return: whether or not the frame is a disassociation frame 657 */ 658 static inline bool ieee80211_is_disassoc(__le16 fc) 659 { 660 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 661 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC); 662 } 663 664 /** 665 * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH 666 * @fc: frame control bytes in little-endian byteorder 667 * Return: whether or not the frame is an authentication frame 668 */ 669 static inline bool ieee80211_is_auth(__le16 fc) 670 { 671 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 672 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH); 673 } 674 675 /** 676 * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH 677 * @fc: frame control bytes in little-endian byteorder 678 * Return: whether or not the frame is a deauthentication frame 679 */ 680 static inline bool ieee80211_is_deauth(__le16 fc) 681 { 682 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 683 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH); 684 } 685 686 /** 687 * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION 688 * @fc: frame control bytes in little-endian byteorder 689 * Return: whether or not the frame is an action frame 690 */ 691 static inline bool ieee80211_is_action(__le16 fc) 692 { 693 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 694 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); 695 } 696 697 /** 698 * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ 699 * @fc: frame control bytes in little-endian byteorder 700 * Return: whether or not the frame is a block-ACK request frame 701 */ 702 static inline bool ieee80211_is_back_req(__le16 fc) 703 { 704 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 705 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ); 706 } 707 708 /** 709 * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK 710 * @fc: frame control bytes in little-endian byteorder 711 * Return: whether or not the frame is a block-ACK frame 712 */ 713 static inline bool ieee80211_is_back(__le16 fc) 714 { 715 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 716 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK); 717 } 718 719 /** 720 * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL 721 * @fc: frame control bytes in little-endian byteorder 722 * Return: whether or not the frame is a PS-poll frame 723 */ 724 static inline bool ieee80211_is_pspoll(__le16 fc) 725 { 726 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 727 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL); 728 } 729 730 /** 731 * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS 732 * @fc: frame control bytes in little-endian byteorder 733 * Return: whether or not the frame is an RTS frame 734 */ 735 static inline bool ieee80211_is_rts(__le16 fc) 736 { 737 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 738 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); 739 } 740 741 /** 742 * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS 743 * @fc: frame control bytes in little-endian byteorder 744 * Return: whether or not the frame is a CTS frame 745 */ 746 static inline bool ieee80211_is_cts(__le16 fc) 747 { 748 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 749 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); 750 } 751 752 /** 753 * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK 754 * @fc: frame control bytes in little-endian byteorder 755 * Return: whether or not the frame is an ACK frame 756 */ 757 static inline bool ieee80211_is_ack(__le16 fc) 758 { 759 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 760 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK); 761 } 762 763 /** 764 * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND 765 * @fc: frame control bytes in little-endian byteorder 766 * Return: whether or not the frame is a CF-end frame 767 */ 768 static inline bool ieee80211_is_cfend(__le16 fc) 769 { 770 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 771 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND); 772 } 773 774 /** 775 * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK 776 * @fc: frame control bytes in little-endian byteorder 777 * Return: whether or not the frame is a CF-end-ack frame 778 */ 779 static inline bool ieee80211_is_cfendack(__le16 fc) 780 { 781 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 782 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK); 783 } 784 785 /** 786 * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame 787 * @fc: frame control bytes in little-endian byteorder 788 * Return: whether or not the frame is a nullfunc frame 789 */ 790 static inline bool ieee80211_is_nullfunc(__le16 fc) 791 { 792 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 793 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC); 794 } 795 796 /** 797 * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame 798 * @fc: frame control bytes in little-endian byteorder 799 * Return: whether or not the frame is a QoS nullfunc frame 800 */ 801 static inline bool ieee80211_is_qos_nullfunc(__le16 fc) 802 { 803 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 804 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC); 805 } 806 807 /** 808 * ieee80211_is_trigger - check if frame is trigger frame 809 * @fc: frame control field in little-endian byteorder 810 * Return: whether or not the frame is a trigger frame 811 */ 812 static inline bool ieee80211_is_trigger(__le16 fc) 813 { 814 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 815 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_TRIGGER); 816 } 817 818 /** 819 * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame 820 * @fc: frame control bytes in little-endian byteorder 821 * Return: whether or not the frame is a nullfunc or QoS nullfunc frame 822 */ 823 static inline bool ieee80211_is_any_nullfunc(__le16 fc) 824 { 825 return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc)); 826 } 827 828 /** 829 * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set 830 * @seq_ctrl: frame sequence control bytes in little-endian byteorder 831 * Return: whether or not the frame is the first fragment (also true if 832 * it's not fragmented at all) 833 */ 834 static inline bool ieee80211_is_first_frag(__le16 seq_ctrl) 835 { 836 return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0; 837 } 838 839 /** 840 * ieee80211_is_frag - check if a frame is a fragment 841 * @hdr: 802.11 header of the frame 842 * Return: whether or not the frame is a fragment 843 */ 844 static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr) 845 { 846 return ieee80211_has_morefrags(hdr->frame_control) || 847 hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG); 848 } 849 850 static inline u16 ieee80211_get_sn(struct ieee80211_hdr *hdr) 851 { 852 return le16_get_bits(hdr->seq_ctrl, IEEE80211_SCTL_SEQ); 853 } 854 855 struct ieee80211s_hdr { 856 u8 flags; 857 u8 ttl; 858 __le32 seqnum; 859 u8 eaddr1[ETH_ALEN]; 860 u8 eaddr2[ETH_ALEN]; 861 } __packed __aligned(2); 862 863 /* Mesh flags */ 864 #define MESH_FLAGS_AE_A4 0x1 865 #define MESH_FLAGS_AE_A5_A6 0x2 866 #define MESH_FLAGS_AE 0x3 867 #define MESH_FLAGS_PS_DEEP 0x4 868 869 /** 870 * enum ieee80211_preq_flags - mesh PREQ element flags 871 * 872 * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield 873 */ 874 enum ieee80211_preq_flags { 875 IEEE80211_PREQ_PROACTIVE_PREP_FLAG = 1<<2, 876 }; 877 878 /** 879 * enum ieee80211_preq_target_flags - mesh PREQ element per target flags 880 * 881 * @IEEE80211_PREQ_TO_FLAG: target only subfield 882 * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield 883 */ 884 enum ieee80211_preq_target_flags { 885 IEEE80211_PREQ_TO_FLAG = 1<<0, 886 IEEE80211_PREQ_USN_FLAG = 1<<2, 887 }; 888 889 /** 890 * struct ieee80211_quiet_ie - Quiet element 891 * @count: Quiet Count 892 * @period: Quiet Period 893 * @duration: Quiet Duration 894 * @offset: Quiet Offset 895 * 896 * This structure represents the payload of the "Quiet element" as 897 * described in IEEE Std 802.11-2020 section 9.4.2.22. 898 */ 899 struct ieee80211_quiet_ie { 900 u8 count; 901 u8 period; 902 __le16 duration; 903 __le16 offset; 904 } __packed; 905 906 /** 907 * struct ieee80211_msrment_ie - Measurement element 908 * @token: Measurement Token 909 * @mode: Measurement Report Mode 910 * @type: Measurement Type 911 * @request: Measurement Request or Measurement Report 912 * 913 * This structure represents the payload of both the "Measurement 914 * Request element" and the "Measurement Report element" as described 915 * in IEEE Std 802.11-2020 sections 9.4.2.20 and 9.4.2.21. 916 */ 917 struct ieee80211_msrment_ie { 918 u8 token; 919 u8 mode; 920 u8 type; 921 u8 request[]; 922 } __packed; 923 924 /** 925 * struct ieee80211_channel_sw_ie - Channel Switch Announcement element 926 * @mode: Channel Switch Mode 927 * @new_ch_num: New Channel Number 928 * @count: Channel Switch Count 929 * 930 * This structure represents the payload of the "Channel Switch 931 * Announcement element" as described in IEEE Std 802.11-2020 section 932 * 9.4.2.18. 933 */ 934 struct ieee80211_channel_sw_ie { 935 u8 mode; 936 u8 new_ch_num; 937 u8 count; 938 } __packed; 939 940 /** 941 * struct ieee80211_ext_chansw_ie - Extended Channel Switch Announcement element 942 * @mode: Channel Switch Mode 943 * @new_operating_class: New Operating Class 944 * @new_ch_num: New Channel Number 945 * @count: Channel Switch Count 946 * 947 * This structure represents the "Extended Channel Switch Announcement 948 * element" as described in IEEE Std 802.11-2020 section 9.4.2.52. 949 */ 950 struct ieee80211_ext_chansw_ie { 951 u8 mode; 952 u8 new_operating_class; 953 u8 new_ch_num; 954 u8 count; 955 } __packed; 956 957 /** 958 * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE 959 * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_* 960 * values here 961 * This structure represents the "Secondary Channel Offset element" 962 */ 963 struct ieee80211_sec_chan_offs_ie { 964 u8 sec_chan_offs; 965 } __packed; 966 967 /** 968 * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE 969 * @mesh_ttl: Time To Live 970 * @mesh_flags: Flags 971 * @mesh_reason: Reason Code 972 * @mesh_pre_value: Precedence Value 973 * 974 * This structure represents the payload of the "Mesh Channel Switch 975 * Parameters element" as described in IEEE Std 802.11-2020 section 976 * 9.4.2.102. 977 */ 978 struct ieee80211_mesh_chansw_params_ie { 979 u8 mesh_ttl; 980 u8 mesh_flags; 981 __le16 mesh_reason; 982 __le16 mesh_pre_value; 983 } __packed; 984 985 /** 986 * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE 987 * @new_channel_width: New Channel Width 988 * @new_center_freq_seg0: New Channel Center Frequency Segment 0 989 * @new_center_freq_seg1: New Channel Center Frequency Segment 1 990 * 991 * This structure represents the payload of the "Wide Bandwidth 992 * Channel Switch element" as described in IEEE Std 802.11-2020 993 * section 9.4.2.160. 994 */ 995 struct ieee80211_wide_bw_chansw_ie { 996 u8 new_channel_width; 997 u8 new_center_freq_seg0, new_center_freq_seg1; 998 } __packed; 999 1000 /** 1001 * struct ieee80211_tim_ie - Traffic Indication Map information element 1002 * @dtim_count: DTIM Count 1003 * @dtim_period: DTIM Period 1004 * @bitmap_ctrl: Bitmap Control 1005 * @required_octet: "Syntatic sugar" to force the struct size to the 1006 * minimum valid size when carried in a non-S1G PPDU 1007 * @virtual_map: Partial Virtual Bitmap 1008 * 1009 * This structure represents the payload of the "TIM element" as 1010 * described in IEEE Std 802.11-2020 section 9.4.2.5. Note that this 1011 * definition is only applicable when the element is carried in a 1012 * non-S1G PPDU. When the TIM is carried in an S1G PPDU, the Bitmap 1013 * Control and Partial Virtual Bitmap may not be present. 1014 */ 1015 struct ieee80211_tim_ie { 1016 u8 dtim_count; 1017 u8 dtim_period; 1018 u8 bitmap_ctrl; 1019 union { 1020 u8 required_octet; 1021 DECLARE_FLEX_ARRAY(u8, virtual_map); 1022 }; 1023 } __packed; 1024 1025 /** 1026 * struct ieee80211_meshconf_ie - Mesh Configuration element 1027 * @meshconf_psel: Active Path Selection Protocol Identifier 1028 * @meshconf_pmetric: Active Path Selection Metric Identifier 1029 * @meshconf_congest: Congestion Control Mode Identifier 1030 * @meshconf_synch: Synchronization Method Identifier 1031 * @meshconf_auth: Authentication Protocol Identifier 1032 * @meshconf_form: Mesh Formation Info 1033 * @meshconf_cap: Mesh Capability (see &enum mesh_config_capab_flags) 1034 * 1035 * This structure represents the payload of the "Mesh Configuration 1036 * element" as described in IEEE Std 802.11-2020 section 9.4.2.97. 1037 */ 1038 struct ieee80211_meshconf_ie { 1039 u8 meshconf_psel; 1040 u8 meshconf_pmetric; 1041 u8 meshconf_congest; 1042 u8 meshconf_synch; 1043 u8 meshconf_auth; 1044 u8 meshconf_form; 1045 u8 meshconf_cap; 1046 } __packed; 1047 1048 /** 1049 * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags 1050 * 1051 * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish 1052 * additional mesh peerings with other mesh STAs 1053 * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs 1054 * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure 1055 * is ongoing 1056 * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has 1057 * neighbors in deep sleep mode 1058 * 1059 * Enumerates the "Mesh Capability" as described in IEEE Std 1060 * 802.11-2020 section 9.4.2.97.7. 1061 */ 1062 enum mesh_config_capab_flags { 1063 IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS = 0x01, 1064 IEEE80211_MESHCONF_CAPAB_FORWARDING = 0x08, 1065 IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING = 0x20, 1066 IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL = 0x40, 1067 }; 1068 1069 #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1 1070 1071 /* 1072 * mesh channel switch parameters element's flag indicator 1073 * 1074 */ 1075 #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0) 1076 #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1) 1077 #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2) 1078 1079 /** 1080 * struct ieee80211_rann_ie - RANN (root announcement) element 1081 * @rann_flags: Flags 1082 * @rann_hopcount: Hop Count 1083 * @rann_ttl: Element TTL 1084 * @rann_addr: Root Mesh STA Address 1085 * @rann_seq: HWMP Sequence Number 1086 * @rann_interval: Interval 1087 * @rann_metric: Metric 1088 * 1089 * This structure represents the payload of the "RANN element" as 1090 * described in IEEE Std 802.11-2020 section 9.4.2.111. 1091 */ 1092 struct ieee80211_rann_ie { 1093 u8 rann_flags; 1094 u8 rann_hopcount; 1095 u8 rann_ttl; 1096 u8 rann_addr[ETH_ALEN]; 1097 __le32 rann_seq; 1098 __le32 rann_interval; 1099 __le32 rann_metric; 1100 } __packed; 1101 1102 enum ieee80211_rann_flags { 1103 RANN_FLAG_IS_GATE = 1 << 0, 1104 }; 1105 1106 enum ieee80211_ht_chanwidth_values { 1107 IEEE80211_HT_CHANWIDTH_20MHZ = 0, 1108 IEEE80211_HT_CHANWIDTH_ANY = 1, 1109 }; 1110 1111 /** 1112 * enum ieee80211_vht_opmode_bits - VHT operating mode field bits 1113 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask 1114 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width 1115 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width 1116 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width 1117 * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width 1118 * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag 1119 * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask 1120 * (the NSS value is the value of this field + 1) 1121 * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift 1122 * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU 1123 * using a beamforming steering matrix 1124 */ 1125 enum ieee80211_vht_opmode_bits { 1126 IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK = 0x03, 1127 IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ = 0, 1128 IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ = 1, 1129 IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ = 2, 1130 IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ = 3, 1131 IEEE80211_OPMODE_NOTIF_BW_160_80P80 = 0x04, 1132 IEEE80211_OPMODE_NOTIF_RX_NSS_MASK = 0x70, 1133 IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT = 4, 1134 IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF = 0x80, 1135 }; 1136 1137 /** 1138 * enum ieee80211_s1g_chanwidth - S1G channel widths 1139 * These are defined in IEEE802.11-2016ah Table 10-20 1140 * as BSS Channel Width 1141 * 1142 * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel 1143 * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel 1144 * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel 1145 * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel 1146 * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel 1147 */ 1148 enum ieee80211_s1g_chanwidth { 1149 IEEE80211_S1G_CHANWIDTH_1MHZ = 0, 1150 IEEE80211_S1G_CHANWIDTH_2MHZ = 1, 1151 IEEE80211_S1G_CHANWIDTH_4MHZ = 3, 1152 IEEE80211_S1G_CHANWIDTH_8MHZ = 7, 1153 IEEE80211_S1G_CHANWIDTH_16MHZ = 15, 1154 }; 1155 1156 #define WLAN_SA_QUERY_TR_ID_LEN 2 1157 #define WLAN_MEMBERSHIP_LEN 8 1158 #define WLAN_USER_POSITION_LEN 16 1159 1160 /** 1161 * struct ieee80211_tpc_report_ie - TPC Report element 1162 * @tx_power: Transmit Power 1163 * @link_margin: Link Margin 1164 * 1165 * This structure represents the payload of the "TPC Report element" as 1166 * described in IEEE Std 802.11-2020 section 9.4.2.16. 1167 */ 1168 struct ieee80211_tpc_report_ie { 1169 u8 tx_power; 1170 u8 link_margin; 1171 } __packed; 1172 1173 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK GENMASK(2, 1) 1174 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT 1 1175 #define IEEE80211_ADDBA_EXT_NO_FRAG BIT(0) 1176 #define IEEE80211_ADDBA_EXT_BUF_SIZE_MASK GENMASK(7, 5) 1177 #define IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT 10 1178 1179 struct ieee80211_addba_ext_ie { 1180 u8 data; 1181 } __packed; 1182 1183 /** 1184 * struct ieee80211_s1g_bcn_compat_ie - S1G Beacon Compatibility element 1185 * @compat_info: Compatibility Information 1186 * @beacon_int: Beacon Interval 1187 * @tsf_completion: TSF Completion 1188 * 1189 * This structure represents the payload of the "S1G Beacon 1190 * Compatibility element" as described in IEEE Std 802.11-2020 section 1191 * 9.4.2.196. 1192 */ 1193 struct ieee80211_s1g_bcn_compat_ie { 1194 __le16 compat_info; 1195 __le16 beacon_int; 1196 __le32 tsf_completion; 1197 } __packed; 1198 1199 /** 1200 * struct ieee80211_s1g_oper_ie - S1G Operation element 1201 * @ch_width: S1G Operation Information Channel Width 1202 * @oper_class: S1G Operation Information Operating Class 1203 * @primary_ch: S1G Operation Information Primary Channel Number 1204 * @oper_ch: S1G Operation Information Channel Center Frequency 1205 * @basic_mcs_nss: Basic S1G-MCS and NSS Set 1206 * 1207 * This structure represents the payload of the "S1G Operation 1208 * element" as described in IEEE Std 802.11-2020 section 9.4.2.212. 1209 */ 1210 struct ieee80211_s1g_oper_ie { 1211 u8 ch_width; 1212 u8 oper_class; 1213 u8 primary_ch; 1214 u8 oper_ch; 1215 __le16 basic_mcs_nss; 1216 } __packed; 1217 1218 /** 1219 * struct ieee80211_aid_response_ie - AID Response element 1220 * @aid: AID/Group AID 1221 * @switch_count: AID Switch Count 1222 * @response_int: AID Response Interval 1223 * 1224 * This structure represents the payload of the "AID Response element" 1225 * as described in IEEE Std 802.11-2020 section 9.4.2.194. 1226 */ 1227 struct ieee80211_aid_response_ie { 1228 __le16 aid; 1229 u8 switch_count; 1230 __le16 response_int; 1231 } __packed; 1232 1233 struct ieee80211_s1g_cap { 1234 u8 capab_info[10]; 1235 u8 supp_mcs_nss[5]; 1236 } __packed; 1237 1238 struct ieee80211_ext { 1239 __le16 frame_control; 1240 __le16 duration; 1241 union { 1242 struct { 1243 u8 sa[ETH_ALEN]; 1244 __le32 timestamp; 1245 u8 change_seq; 1246 u8 variable[0]; 1247 } __packed s1g_beacon; 1248 struct { 1249 u8 sa[ETH_ALEN]; 1250 __le32 timestamp; 1251 u8 change_seq; 1252 u8 next_tbtt[3]; 1253 u8 variable[0]; 1254 } __packed s1g_short_beacon; 1255 } u; 1256 } __packed __aligned(2); 1257 1258 #define IEEE80211_TWT_CONTROL_NDP BIT(0) 1259 #define IEEE80211_TWT_CONTROL_RESP_MODE BIT(1) 1260 #define IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST BIT(3) 1261 #define IEEE80211_TWT_CONTROL_RX_DISABLED BIT(4) 1262 #define IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT BIT(5) 1263 1264 #define IEEE80211_TWT_REQTYPE_REQUEST BIT(0) 1265 #define IEEE80211_TWT_REQTYPE_SETUP_CMD GENMASK(3, 1) 1266 #define IEEE80211_TWT_REQTYPE_TRIGGER BIT(4) 1267 #define IEEE80211_TWT_REQTYPE_IMPLICIT BIT(5) 1268 #define IEEE80211_TWT_REQTYPE_FLOWTYPE BIT(6) 1269 #define IEEE80211_TWT_REQTYPE_FLOWID GENMASK(9, 7) 1270 #define IEEE80211_TWT_REQTYPE_WAKE_INT_EXP GENMASK(14, 10) 1271 #define IEEE80211_TWT_REQTYPE_PROTECTION BIT(15) 1272 1273 enum ieee80211_twt_setup_cmd { 1274 TWT_SETUP_CMD_REQUEST, 1275 TWT_SETUP_CMD_SUGGEST, 1276 TWT_SETUP_CMD_DEMAND, 1277 TWT_SETUP_CMD_GROUPING, 1278 TWT_SETUP_CMD_ACCEPT, 1279 TWT_SETUP_CMD_ALTERNATE, 1280 TWT_SETUP_CMD_DICTATE, 1281 TWT_SETUP_CMD_REJECT, 1282 }; 1283 1284 struct ieee80211_twt_params { 1285 __le16 req_type; 1286 __le64 twt; 1287 u8 min_twt_dur; 1288 __le16 mantissa; 1289 u8 channel; 1290 } __packed; 1291 1292 struct ieee80211_twt_setup { 1293 u8 dialog_token; 1294 u8 element_id; 1295 u8 length; 1296 u8 control; 1297 u8 params[]; 1298 } __packed; 1299 1300 #define IEEE80211_TTLM_MAX_CNT 2 1301 #define IEEE80211_TTLM_CONTROL_DIRECTION 0x03 1302 #define IEEE80211_TTLM_CONTROL_DEF_LINK_MAP 0x04 1303 #define IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT 0x08 1304 #define IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT 0x10 1305 #define IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE 0x20 1306 1307 #define IEEE80211_TTLM_DIRECTION_DOWN 0 1308 #define IEEE80211_TTLM_DIRECTION_UP 1 1309 #define IEEE80211_TTLM_DIRECTION_BOTH 2 1310 1311 /** 1312 * struct ieee80211_ttlm_elem - TID-To-Link Mapping element 1313 * 1314 * Defined in section 9.4.2.314 in P802.11be_D4 1315 * 1316 * @control: the first part of control field 1317 * @optional: the second part of control field 1318 */ 1319 struct ieee80211_ttlm_elem { 1320 u8 control; 1321 u8 optional[]; 1322 } __packed; 1323 1324 /** 1325 * struct ieee80211_bss_load_elem - BSS Load elemen 1326 * 1327 * Defined in section 9.4.2.26 in IEEE 802.11-REVme D4.1 1328 * 1329 * @sta_count: total number of STAs currently associated with the AP. 1330 * @channel_util: Percentage of time that the access point sensed the channel 1331 * was busy. This value is in range [0, 255], the highest value means 1332 * 100% busy. 1333 * @avail_admission_capa: remaining amount of medium time used for admission 1334 * control. 1335 */ 1336 struct ieee80211_bss_load_elem { 1337 __le16 sta_count; 1338 u8 channel_util; 1339 __le16 avail_admission_capa; 1340 } __packed; 1341 1342 struct ieee80211_mgmt { 1343 __le16 frame_control; 1344 __le16 duration; 1345 u8 da[ETH_ALEN]; 1346 u8 sa[ETH_ALEN]; 1347 u8 bssid[ETH_ALEN]; 1348 __le16 seq_ctrl; 1349 union { 1350 struct { 1351 __le16 auth_alg; 1352 __le16 auth_transaction; 1353 __le16 status_code; 1354 /* possibly followed by Challenge text */ 1355 u8 variable[]; 1356 } __packed auth; 1357 struct { 1358 __le16 reason_code; 1359 } __packed deauth; 1360 struct { 1361 __le16 capab_info; 1362 __le16 listen_interval; 1363 /* followed by SSID and Supported rates */ 1364 u8 variable[]; 1365 } __packed assoc_req; 1366 struct { 1367 __le16 capab_info; 1368 __le16 status_code; 1369 __le16 aid; 1370 /* followed by Supported rates */ 1371 u8 variable[]; 1372 } __packed assoc_resp, reassoc_resp; 1373 struct { 1374 __le16 capab_info; 1375 __le16 status_code; 1376 u8 variable[]; 1377 } __packed s1g_assoc_resp, s1g_reassoc_resp; 1378 struct { 1379 __le16 capab_info; 1380 __le16 listen_interval; 1381 u8 current_ap[ETH_ALEN]; 1382 /* followed by SSID and Supported rates */ 1383 u8 variable[]; 1384 } __packed reassoc_req; 1385 struct { 1386 __le16 reason_code; 1387 } __packed disassoc; 1388 struct { 1389 __le64 timestamp; 1390 __le16 beacon_int; 1391 __le16 capab_info; 1392 /* followed by some of SSID, Supported rates, 1393 * FH Params, DS Params, CF Params, IBSS Params, TIM */ 1394 u8 variable[]; 1395 } __packed beacon; 1396 struct { 1397 /* only variable items: SSID, Supported rates */ 1398 DECLARE_FLEX_ARRAY(u8, variable); 1399 } __packed probe_req; 1400 struct { 1401 __le64 timestamp; 1402 __le16 beacon_int; 1403 __le16 capab_info; 1404 /* followed by some of SSID, Supported rates, 1405 * FH Params, DS Params, CF Params, IBSS Params */ 1406 u8 variable[]; 1407 } __packed probe_resp; 1408 struct { 1409 u8 category; 1410 union { 1411 struct { 1412 u8 action_code; 1413 u8 dialog_token; 1414 u8 status_code; 1415 u8 variable[]; 1416 } __packed wme_action; 1417 struct{ 1418 u8 action_code; 1419 u8 variable[]; 1420 } __packed chan_switch; 1421 struct{ 1422 u8 action_code; 1423 struct ieee80211_ext_chansw_ie data; 1424 u8 variable[]; 1425 } __packed ext_chan_switch; 1426 struct{ 1427 u8 action_code; 1428 u8 dialog_token; 1429 u8 element_id; 1430 u8 length; 1431 struct ieee80211_msrment_ie msr_elem; 1432 } __packed measurement; 1433 struct{ 1434 u8 action_code; 1435 u8 dialog_token; 1436 __le16 capab; 1437 __le16 timeout; 1438 __le16 start_seq_num; 1439 /* followed by BA Extension */ 1440 u8 variable[]; 1441 } __packed addba_req; 1442 struct{ 1443 u8 action_code; 1444 u8 dialog_token; 1445 __le16 status; 1446 __le16 capab; 1447 __le16 timeout; 1448 /* followed by BA Extension */ 1449 u8 variable[]; 1450 } __packed addba_resp; 1451 struct{ 1452 u8 action_code; 1453 __le16 params; 1454 __le16 reason_code; 1455 } __packed delba; 1456 struct { 1457 u8 action_code; 1458 u8 variable[]; 1459 } __packed self_prot; 1460 struct{ 1461 u8 action_code; 1462 u8 variable[]; 1463 } __packed mesh_action; 1464 struct { 1465 u8 action; 1466 u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN]; 1467 } __packed sa_query; 1468 struct { 1469 u8 action; 1470 u8 smps_control; 1471 } __packed ht_smps; 1472 struct { 1473 u8 action_code; 1474 u8 chanwidth; 1475 } __packed ht_notify_cw; 1476 struct { 1477 u8 action_code; 1478 u8 dialog_token; 1479 __le16 capability; 1480 u8 variable[0]; 1481 } __packed tdls_discover_resp; 1482 struct { 1483 u8 action_code; 1484 u8 operating_mode; 1485 } __packed vht_opmode_notif; 1486 struct { 1487 u8 action_code; 1488 u8 membership[WLAN_MEMBERSHIP_LEN]; 1489 u8 position[WLAN_USER_POSITION_LEN]; 1490 } __packed vht_group_notif; 1491 struct { 1492 u8 action_code; 1493 u8 dialog_token; 1494 u8 tpc_elem_id; 1495 u8 tpc_elem_length; 1496 struct ieee80211_tpc_report_ie tpc; 1497 } __packed tpc_report; 1498 struct { 1499 u8 action_code; 1500 u8 dialog_token; 1501 u8 follow_up; 1502 u8 tod[6]; 1503 u8 toa[6]; 1504 __le16 tod_error; 1505 __le16 toa_error; 1506 u8 variable[]; 1507 } __packed ftm; 1508 struct { 1509 u8 action_code; 1510 u8 variable[]; 1511 } __packed s1g; 1512 struct { 1513 u8 action_code; 1514 u8 dialog_token; 1515 u8 follow_up; 1516 u32 tod; 1517 u32 toa; 1518 u8 max_tod_error; 1519 u8 max_toa_error; 1520 } __packed wnm_timing_msr; 1521 struct { 1522 u8 action_code; 1523 u8 dialog_token; 1524 u8 variable[]; 1525 } __packed ttlm_req; 1526 struct { 1527 u8 action_code; 1528 u8 dialog_token; 1529 u8 status_code; 1530 u8 variable[]; 1531 } __packed ttlm_res; 1532 struct { 1533 u8 action_code; 1534 } __packed ttlm_tear_down; 1535 struct { 1536 u8 action_code; 1537 u8 dialog_token; 1538 u8 variable[]; 1539 } __packed ml_reconf_req; 1540 struct { 1541 u8 action_code; 1542 u8 dialog_token; 1543 u8 count; 1544 u8 variable[]; 1545 } __packed ml_reconf_resp; 1546 } u; 1547 } __packed action; 1548 DECLARE_FLEX_ARRAY(u8, body); /* Generic frame body */ 1549 } u; 1550 } __packed __aligned(2); 1551 1552 /* Supported rates membership selectors */ 1553 #define BSS_MEMBERSHIP_SELECTOR_HT_PHY 127 1554 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY 126 1555 #define BSS_MEMBERSHIP_SELECTOR_GLK 125 1556 #define BSS_MEMBERSHIP_SELECTOR_EPD 124 1557 #define BSS_MEMBERSHIP_SELECTOR_SAE_H2E 123 1558 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY 122 1559 #define BSS_MEMBERSHIP_SELECTOR_EHT_PHY 121 1560 1561 #define BSS_MEMBERSHIP_SELECTOR_MIN BSS_MEMBERSHIP_SELECTOR_EHT_PHY 1562 1563 /* mgmt header + 1 byte category code */ 1564 #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u) 1565 1566 1567 /* Management MIC information element (IEEE 802.11w) */ 1568 struct ieee80211_mmie { 1569 u8 element_id; 1570 u8 length; 1571 __le16 key_id; 1572 u8 sequence_number[6]; 1573 u8 mic[8]; 1574 } __packed; 1575 1576 /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */ 1577 struct ieee80211_mmie_16 { 1578 u8 element_id; 1579 u8 length; 1580 __le16 key_id; 1581 u8 sequence_number[6]; 1582 u8 mic[16]; 1583 } __packed; 1584 1585 struct ieee80211_vendor_ie { 1586 u8 element_id; 1587 u8 len; 1588 u8 oui[3]; 1589 u8 oui_type; 1590 } __packed; 1591 1592 struct ieee80211_wmm_ac_param { 1593 u8 aci_aifsn; /* AIFSN, ACM, ACI */ 1594 u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */ 1595 __le16 txop_limit; 1596 } __packed; 1597 1598 struct ieee80211_wmm_param_ie { 1599 u8 element_id; /* Element ID: 221 (0xdd); */ 1600 u8 len; /* Length: 24 */ 1601 /* required fields for WMM version 1 */ 1602 u8 oui[3]; /* 00:50:f2 */ 1603 u8 oui_type; /* 2 */ 1604 u8 oui_subtype; /* 1 */ 1605 u8 version; /* 1 for WMM version 1.0 */ 1606 u8 qos_info; /* AP/STA specific QoS info */ 1607 u8 reserved; /* 0 */ 1608 /* AC_BE, AC_BK, AC_VI, AC_VO */ 1609 struct ieee80211_wmm_ac_param ac[4]; 1610 } __packed; 1611 1612 /* Control frames */ 1613 struct ieee80211_rts { 1614 __le16 frame_control; 1615 __le16 duration; 1616 u8 ra[ETH_ALEN]; 1617 u8 ta[ETH_ALEN]; 1618 } __packed __aligned(2); 1619 1620 struct ieee80211_cts { 1621 __le16 frame_control; 1622 __le16 duration; 1623 u8 ra[ETH_ALEN]; 1624 } __packed __aligned(2); 1625 1626 struct ieee80211_pspoll { 1627 __le16 frame_control; 1628 __le16 aid; 1629 u8 bssid[ETH_ALEN]; 1630 u8 ta[ETH_ALEN]; 1631 } __packed __aligned(2); 1632 1633 /* TDLS */ 1634 1635 /* Channel switch timing */ 1636 struct ieee80211_ch_switch_timing { 1637 __le16 switch_time; 1638 __le16 switch_timeout; 1639 } __packed; 1640 1641 /* Link-id information element */ 1642 struct ieee80211_tdls_lnkie { 1643 u8 ie_type; /* Link Identifier IE */ 1644 u8 ie_len; 1645 u8 bssid[ETH_ALEN]; 1646 u8 init_sta[ETH_ALEN]; 1647 u8 resp_sta[ETH_ALEN]; 1648 } __packed; 1649 1650 struct ieee80211_tdls_data { 1651 u8 da[ETH_ALEN]; 1652 u8 sa[ETH_ALEN]; 1653 __be16 ether_type; 1654 u8 payload_type; 1655 u8 category; 1656 u8 action_code; 1657 union { 1658 struct { 1659 u8 dialog_token; 1660 __le16 capability; 1661 u8 variable[0]; 1662 } __packed setup_req; 1663 struct { 1664 __le16 status_code; 1665 u8 dialog_token; 1666 __le16 capability; 1667 u8 variable[0]; 1668 } __packed setup_resp; 1669 struct { 1670 __le16 status_code; 1671 u8 dialog_token; 1672 u8 variable[0]; 1673 } __packed setup_cfm; 1674 struct { 1675 __le16 reason_code; 1676 u8 variable[0]; 1677 } __packed teardown; 1678 struct { 1679 u8 dialog_token; 1680 u8 variable[0]; 1681 } __packed discover_req; 1682 struct { 1683 u8 target_channel; 1684 u8 oper_class; 1685 u8 variable[0]; 1686 } __packed chan_switch_req; 1687 struct { 1688 __le16 status_code; 1689 u8 variable[0]; 1690 } __packed chan_switch_resp; 1691 } u; 1692 } __packed; 1693 1694 /* 1695 * Peer-to-Peer IE attribute related definitions. 1696 */ 1697 /* 1698 * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute. 1699 */ 1700 enum ieee80211_p2p_attr_id { 1701 IEEE80211_P2P_ATTR_STATUS = 0, 1702 IEEE80211_P2P_ATTR_MINOR_REASON, 1703 IEEE80211_P2P_ATTR_CAPABILITY, 1704 IEEE80211_P2P_ATTR_DEVICE_ID, 1705 IEEE80211_P2P_ATTR_GO_INTENT, 1706 IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT, 1707 IEEE80211_P2P_ATTR_LISTEN_CHANNEL, 1708 IEEE80211_P2P_ATTR_GROUP_BSSID, 1709 IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING, 1710 IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR, 1711 IEEE80211_P2P_ATTR_MANAGABILITY, 1712 IEEE80211_P2P_ATTR_CHANNEL_LIST, 1713 IEEE80211_P2P_ATTR_ABSENCE_NOTICE, 1714 IEEE80211_P2P_ATTR_DEVICE_INFO, 1715 IEEE80211_P2P_ATTR_GROUP_INFO, 1716 IEEE80211_P2P_ATTR_GROUP_ID, 1717 IEEE80211_P2P_ATTR_INTERFACE, 1718 IEEE80211_P2P_ATTR_OPER_CHANNEL, 1719 IEEE80211_P2P_ATTR_INVITE_FLAGS, 1720 /* 19 - 220: Reserved */ 1721 IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221, 1722 1723 IEEE80211_P2P_ATTR_MAX 1724 }; 1725 1726 /* Notice of Absence attribute - described in P2P spec 4.1.14 */ 1727 /* Typical max value used here */ 1728 #define IEEE80211_P2P_NOA_DESC_MAX 4 1729 1730 struct ieee80211_p2p_noa_desc { 1731 u8 count; 1732 __le32 duration; 1733 __le32 interval; 1734 __le32 start_time; 1735 } __packed; 1736 1737 struct ieee80211_p2p_noa_attr { 1738 u8 index; 1739 u8 oppps_ctwindow; 1740 struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX]; 1741 } __packed; 1742 1743 #define IEEE80211_P2P_OPPPS_ENABLE_BIT BIT(7) 1744 #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK 0x7F 1745 1746 /** 1747 * struct ieee80211_bar - Block Ack Request frame format 1748 * @frame_control: Frame Control 1749 * @duration: Duration 1750 * @ra: RA 1751 * @ta: TA 1752 * @control: BAR Control 1753 * @start_seq_num: Starting Sequence Number (see Figure 9-37) 1754 * 1755 * This structure represents the "BlockAckReq frame format" 1756 * as described in IEEE Std 802.11-2020 section 9.3.1.7. 1757 */ 1758 struct ieee80211_bar { 1759 __le16 frame_control; 1760 __le16 duration; 1761 __u8 ra[ETH_ALEN]; 1762 __u8 ta[ETH_ALEN]; 1763 __le16 control; 1764 __le16 start_seq_num; 1765 } __packed; 1766 1767 /* 802.11 BAR control masks */ 1768 #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL 0x0000 1769 #define IEEE80211_BAR_CTRL_MULTI_TID 0x0002 1770 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA 0x0004 1771 #define IEEE80211_BAR_CTRL_TID_INFO_MASK 0xf000 1772 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT 12 1773 1774 #define IEEE80211_HT_MCS_MASK_LEN 10 1775 1776 /** 1777 * struct ieee80211_mcs_info - Supported MCS Set field 1778 * @rx_mask: RX mask 1779 * @rx_highest: highest supported RX rate. If set represents 1780 * the highest supported RX data rate in units of 1 Mbps. 1781 * If this field is 0 this value should not be used to 1782 * consider the highest RX data rate supported. 1783 * @tx_params: TX parameters 1784 * @reserved: Reserved bits 1785 * 1786 * This structure represents the "Supported MCS Set field" as 1787 * described in IEEE Std 802.11-2020 section 9.4.2.55.4. 1788 */ 1789 struct ieee80211_mcs_info { 1790 u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN]; 1791 __le16 rx_highest; 1792 u8 tx_params; 1793 u8 reserved[3]; 1794 } __packed; 1795 1796 /* 802.11n HT capability MSC set */ 1797 #define IEEE80211_HT_MCS_RX_HIGHEST_MASK 0x3ff 1798 #define IEEE80211_HT_MCS_TX_DEFINED 0x01 1799 #define IEEE80211_HT_MCS_TX_RX_DIFF 0x02 1800 /* value 0 == 1 stream etc */ 1801 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK 0x0C 1802 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT 2 1803 #define IEEE80211_HT_MCS_TX_MAX_STREAMS 4 1804 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION 0x10 1805 1806 #define IEEE80211_HT_MCS_CHAINS(mcs) ((mcs) == 32 ? 1 : (1 + ((mcs) >> 3))) 1807 1808 /* 1809 * 802.11n D5.0 20.3.5 / 20.6 says: 1810 * - indices 0 to 7 and 32 are single spatial stream 1811 * - 8 to 31 are multiple spatial streams using equal modulation 1812 * [8..15 for two streams, 16..23 for three and 24..31 for four] 1813 * - remainder are multiple spatial streams using unequal modulation 1814 */ 1815 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33 1816 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \ 1817 (IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8) 1818 1819 /** 1820 * struct ieee80211_ht_cap - HT capabilities element 1821 * @cap_info: HT Capability Information 1822 * @ampdu_params_info: A-MPDU Parameters 1823 * @mcs: Supported MCS Set 1824 * @extended_ht_cap_info: HT Extended Capabilities 1825 * @tx_BF_cap_info: Transmit Beamforming Capabilities 1826 * @antenna_selection_info: ASEL Capability 1827 * 1828 * This structure represents the payload of the "HT Capabilities 1829 * element" as described in IEEE Std 802.11-2020 section 9.4.2.55. 1830 */ 1831 struct ieee80211_ht_cap { 1832 __le16 cap_info; 1833 u8 ampdu_params_info; 1834 1835 /* 16 bytes MCS information */ 1836 struct ieee80211_mcs_info mcs; 1837 1838 __le16 extended_ht_cap_info; 1839 __le32 tx_BF_cap_info; 1840 u8 antenna_selection_info; 1841 } __packed; 1842 1843 /* 802.11n HT capabilities masks (for cap_info) */ 1844 #define IEEE80211_HT_CAP_LDPC_CODING 0x0001 1845 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40 0x0002 1846 #define IEEE80211_HT_CAP_SM_PS 0x000C 1847 #define IEEE80211_HT_CAP_SM_PS_SHIFT 2 1848 #define IEEE80211_HT_CAP_GRN_FLD 0x0010 1849 #define IEEE80211_HT_CAP_SGI_20 0x0020 1850 #define IEEE80211_HT_CAP_SGI_40 0x0040 1851 #define IEEE80211_HT_CAP_TX_STBC 0x0080 1852 #define IEEE80211_HT_CAP_RX_STBC 0x0300 1853 #define IEEE80211_HT_CAP_RX_STBC_SHIFT 8 1854 #define IEEE80211_HT_CAP_DELAY_BA 0x0400 1855 #define IEEE80211_HT_CAP_MAX_AMSDU 0x0800 1856 #define IEEE80211_HT_CAP_DSSSCCK40 0x1000 1857 #define IEEE80211_HT_CAP_RESERVED 0x2000 1858 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT 0x4000 1859 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT 0x8000 1860 1861 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */ 1862 #define IEEE80211_HT_EXT_CAP_PCO 0x0001 1863 #define IEEE80211_HT_EXT_CAP_PCO_TIME 0x0006 1864 #define IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT 1 1865 #define IEEE80211_HT_EXT_CAP_MCS_FB 0x0300 1866 #define IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT 8 1867 #define IEEE80211_HT_EXT_CAP_HTC_SUP 0x0400 1868 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER 0x0800 1869 1870 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */ 1871 #define IEEE80211_HT_AMPDU_PARM_FACTOR 0x03 1872 #define IEEE80211_HT_AMPDU_PARM_DENSITY 0x1C 1873 #define IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT 2 1874 1875 /* 1876 * Maximum length of AMPDU that the STA can receive in high-throughput (HT). 1877 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) 1878 */ 1879 enum ieee80211_max_ampdu_length_exp { 1880 IEEE80211_HT_MAX_AMPDU_8K = 0, 1881 IEEE80211_HT_MAX_AMPDU_16K = 1, 1882 IEEE80211_HT_MAX_AMPDU_32K = 2, 1883 IEEE80211_HT_MAX_AMPDU_64K = 3 1884 }; 1885 1886 /* 1887 * Maximum length of AMPDU that the STA can receive in VHT. 1888 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) 1889 */ 1890 enum ieee80211_vht_max_ampdu_length_exp { 1891 IEEE80211_VHT_MAX_AMPDU_8K = 0, 1892 IEEE80211_VHT_MAX_AMPDU_16K = 1, 1893 IEEE80211_VHT_MAX_AMPDU_32K = 2, 1894 IEEE80211_VHT_MAX_AMPDU_64K = 3, 1895 IEEE80211_VHT_MAX_AMPDU_128K = 4, 1896 IEEE80211_VHT_MAX_AMPDU_256K = 5, 1897 IEEE80211_VHT_MAX_AMPDU_512K = 6, 1898 IEEE80211_VHT_MAX_AMPDU_1024K = 7 1899 }; 1900 1901 #define IEEE80211_HT_MAX_AMPDU_FACTOR 13 1902 1903 /* Minimum MPDU start spacing */ 1904 enum ieee80211_min_mpdu_spacing { 1905 IEEE80211_HT_MPDU_DENSITY_NONE = 0, /* No restriction */ 1906 IEEE80211_HT_MPDU_DENSITY_0_25 = 1, /* 1/4 usec */ 1907 IEEE80211_HT_MPDU_DENSITY_0_5 = 2, /* 1/2 usec */ 1908 IEEE80211_HT_MPDU_DENSITY_1 = 3, /* 1 usec */ 1909 IEEE80211_HT_MPDU_DENSITY_2 = 4, /* 2 usec */ 1910 IEEE80211_HT_MPDU_DENSITY_4 = 5, /* 4 usec */ 1911 IEEE80211_HT_MPDU_DENSITY_8 = 6, /* 8 usec */ 1912 IEEE80211_HT_MPDU_DENSITY_16 = 7 /* 16 usec */ 1913 }; 1914 1915 /** 1916 * struct ieee80211_ht_operation - HT operation IE 1917 * @primary_chan: Primary Channel 1918 * @ht_param: HT Operation Information parameters 1919 * @operation_mode: HT Operation Information operation mode 1920 * @stbc_param: HT Operation Information STBC params 1921 * @basic_set: Basic HT-MCS Set 1922 * 1923 * This structure represents the payload of the "HT Operation 1924 * element" as described in IEEE Std 802.11-2020 section 9.4.2.56. 1925 */ 1926 struct ieee80211_ht_operation { 1927 u8 primary_chan; 1928 u8 ht_param; 1929 __le16 operation_mode; 1930 __le16 stbc_param; 1931 u8 basic_set[16]; 1932 } __packed; 1933 1934 /* for ht_param */ 1935 #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET 0x03 1936 #define IEEE80211_HT_PARAM_CHA_SEC_NONE 0x00 1937 #define IEEE80211_HT_PARAM_CHA_SEC_ABOVE 0x01 1938 #define IEEE80211_HT_PARAM_CHA_SEC_BELOW 0x03 1939 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY 0x04 1940 #define IEEE80211_HT_PARAM_RIFS_MODE 0x08 1941 1942 /* for operation_mode */ 1943 #define IEEE80211_HT_OP_MODE_PROTECTION 0x0003 1944 #define IEEE80211_HT_OP_MODE_PROTECTION_NONE 0 1945 #define IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER 1 1946 #define IEEE80211_HT_OP_MODE_PROTECTION_20MHZ 2 1947 #define IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED 3 1948 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT 0x0004 1949 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT 0x0010 1950 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT 5 1951 #define IEEE80211_HT_OP_MODE_CCFS2_MASK 0x1fe0 1952 1953 /* for stbc_param */ 1954 #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON 0x0040 1955 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT 0x0080 1956 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON 0x0100 1957 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT 0x0200 1958 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE 0x0400 1959 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE 0x0800 1960 1961 1962 /* block-ack parameters */ 1963 #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001 1964 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002 1965 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C 1966 #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0 1967 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000 1968 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800 1969 1970 /* 1971 * A-MPDU buffer sizes 1972 * According to HT size varies from 8 to 64 frames 1973 * HE adds the ability to have up to 256 frames. 1974 * EHT adds the ability to have up to 1K frames. 1975 */ 1976 #define IEEE80211_MIN_AMPDU_BUF 0x8 1977 #define IEEE80211_MAX_AMPDU_BUF_HT 0x40 1978 #define IEEE80211_MAX_AMPDU_BUF_HE 0x100 1979 #define IEEE80211_MAX_AMPDU_BUF_EHT 0x400 1980 1981 1982 /* Spatial Multiplexing Power Save Modes (for capability) */ 1983 #define WLAN_HT_CAP_SM_PS_STATIC 0 1984 #define WLAN_HT_CAP_SM_PS_DYNAMIC 1 1985 #define WLAN_HT_CAP_SM_PS_INVALID 2 1986 #define WLAN_HT_CAP_SM_PS_DISABLED 3 1987 1988 /* for SM power control field lower two bits */ 1989 #define WLAN_HT_SMPS_CONTROL_DISABLED 0 1990 #define WLAN_HT_SMPS_CONTROL_STATIC 1 1991 #define WLAN_HT_SMPS_CONTROL_DYNAMIC 3 1992 1993 /** 1994 * struct ieee80211_vht_mcs_info - VHT MCS information 1995 * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams 1996 * @rx_highest: Indicates highest long GI VHT PPDU data rate 1997 * STA can receive. Rate expressed in units of 1 Mbps. 1998 * If this field is 0 this value should not be used to 1999 * consider the highest RX data rate supported. 2000 * The top 3 bits of this field indicate the Maximum NSTS,total 2001 * (a beamformee capability.) 2002 * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams 2003 * @tx_highest: Indicates highest long GI VHT PPDU data rate 2004 * STA can transmit. Rate expressed in units of 1 Mbps. 2005 * If this field is 0 this value should not be used to 2006 * consider the highest TX data rate supported. 2007 * The top 2 bits of this field are reserved, the 2008 * 3rd bit from the top indiciates VHT Extended NSS BW 2009 * Capability. 2010 */ 2011 struct ieee80211_vht_mcs_info { 2012 __le16 rx_mcs_map; 2013 __le16 rx_highest; 2014 __le16 tx_mcs_map; 2015 __le16 tx_highest; 2016 } __packed; 2017 2018 /* for rx_highest */ 2019 #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT 13 2020 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK (7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT) 2021 2022 /* for tx_highest */ 2023 #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE (1 << 13) 2024 2025 /** 2026 * enum ieee80211_vht_mcs_support - VHT MCS support definitions 2027 * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the 2028 * number of streams 2029 * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported 2030 * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported 2031 * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported 2032 * 2033 * These definitions are used in each 2-bit subfield of the @rx_mcs_map 2034 * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are 2035 * both split into 8 subfields by number of streams. These values indicate 2036 * which MCSes are supported for the number of streams the value appears 2037 * for. 2038 */ 2039 enum ieee80211_vht_mcs_support { 2040 IEEE80211_VHT_MCS_SUPPORT_0_7 = 0, 2041 IEEE80211_VHT_MCS_SUPPORT_0_8 = 1, 2042 IEEE80211_VHT_MCS_SUPPORT_0_9 = 2, 2043 IEEE80211_VHT_MCS_NOT_SUPPORTED = 3, 2044 }; 2045 2046 /** 2047 * struct ieee80211_vht_cap - VHT capabilities 2048 * 2049 * This structure is the "VHT capabilities element" as 2050 * described in 802.11ac D3.0 8.4.2.160 2051 * @vht_cap_info: VHT capability info 2052 * @supp_mcs: VHT MCS supported rates 2053 */ 2054 struct ieee80211_vht_cap { 2055 __le32 vht_cap_info; 2056 struct ieee80211_vht_mcs_info supp_mcs; 2057 } __packed; 2058 2059 /** 2060 * enum ieee80211_vht_chanwidth - VHT channel width 2061 * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to 2062 * determine the channel width (20 or 40 MHz) 2063 * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth 2064 * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth 2065 * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth 2066 */ 2067 enum ieee80211_vht_chanwidth { 2068 IEEE80211_VHT_CHANWIDTH_USE_HT = 0, 2069 IEEE80211_VHT_CHANWIDTH_80MHZ = 1, 2070 IEEE80211_VHT_CHANWIDTH_160MHZ = 2, 2071 IEEE80211_VHT_CHANWIDTH_80P80MHZ = 3, 2072 }; 2073 2074 /** 2075 * struct ieee80211_vht_operation - VHT operation IE 2076 * 2077 * This structure is the "VHT operation element" as 2078 * described in 802.11ac D3.0 8.4.2.161 2079 * @chan_width: Operating channel width 2080 * @center_freq_seg0_idx: center freq segment 0 index 2081 * @center_freq_seg1_idx: center freq segment 1 index 2082 * @basic_mcs_set: VHT Basic MCS rate set 2083 */ 2084 struct ieee80211_vht_operation { 2085 u8 chan_width; 2086 u8 center_freq_seg0_idx; 2087 u8 center_freq_seg1_idx; 2088 __le16 basic_mcs_set; 2089 } __packed; 2090 2091 /** 2092 * struct ieee80211_he_cap_elem - HE capabilities element 2093 * @mac_cap_info: HE MAC Capabilities Information 2094 * @phy_cap_info: HE PHY Capabilities Information 2095 * 2096 * This structure represents the fixed fields of the payload of the 2097 * "HE capabilities element" as described in IEEE Std 802.11ax-2021 2098 * sections 9.4.2.248.2 and 9.4.2.248.3. 2099 */ 2100 struct ieee80211_he_cap_elem { 2101 u8 mac_cap_info[6]; 2102 u8 phy_cap_info[11]; 2103 } __packed; 2104 2105 #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN 5 2106 2107 /** 2108 * enum ieee80211_he_mcs_support - HE MCS support definitions 2109 * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the 2110 * number of streams 2111 * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported 2112 * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported 2113 * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported 2114 * 2115 * These definitions are used in each 2-bit subfield of the rx_mcs_* 2116 * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are 2117 * both split into 8 subfields by number of streams. These values indicate 2118 * which MCSes are supported for the number of streams the value appears 2119 * for. 2120 */ 2121 enum ieee80211_he_mcs_support { 2122 IEEE80211_HE_MCS_SUPPORT_0_7 = 0, 2123 IEEE80211_HE_MCS_SUPPORT_0_9 = 1, 2124 IEEE80211_HE_MCS_SUPPORT_0_11 = 2, 2125 IEEE80211_HE_MCS_NOT_SUPPORTED = 3, 2126 }; 2127 2128 /** 2129 * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field 2130 * 2131 * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field 2132 * described in P802.11ax_D2.0 section 9.4.2.237.4 2133 * 2134 * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel 2135 * widths less than 80MHz. 2136 * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel 2137 * widths less than 80MHz. 2138 * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel 2139 * width 160MHz. 2140 * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel 2141 * width 160MHz. 2142 * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for 2143 * channel width 80p80MHz. 2144 * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for 2145 * channel width 80p80MHz. 2146 */ 2147 struct ieee80211_he_mcs_nss_supp { 2148 __le16 rx_mcs_80; 2149 __le16 tx_mcs_80; 2150 __le16 rx_mcs_160; 2151 __le16 tx_mcs_160; 2152 __le16 rx_mcs_80p80; 2153 __le16 tx_mcs_80p80; 2154 } __packed; 2155 2156 /** 2157 * struct ieee80211_he_operation - HE Operation element 2158 * @he_oper_params: HE Operation Parameters + BSS Color Information 2159 * @he_mcs_nss_set: Basic HE-MCS And NSS Set 2160 * @optional: Optional fields VHT Operation Information, Max Co-Hosted 2161 * BSSID Indicator, and 6 GHz Operation Information 2162 * 2163 * This structure represents the payload of the "HE Operation 2164 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.249. 2165 */ 2166 struct ieee80211_he_operation { 2167 __le32 he_oper_params; 2168 __le16 he_mcs_nss_set; 2169 u8 optional[]; 2170 } __packed; 2171 2172 /** 2173 * struct ieee80211_he_spr - Spatial Reuse Parameter Set element 2174 * @he_sr_control: SR Control 2175 * @optional: Optional fields Non-SRG OBSS PD Max Offset, SRG OBSS PD 2176 * Min Offset, SRG OBSS PD Max Offset, SRG BSS Color 2177 * Bitmap, and SRG Partial BSSID Bitmap 2178 * 2179 * This structure represents the payload of the "Spatial Reuse 2180 * Parameter Set element" as described in IEEE Std 802.11ax-2021 2181 * section 9.4.2.252. 2182 */ 2183 struct ieee80211_he_spr { 2184 u8 he_sr_control; 2185 u8 optional[]; 2186 } __packed; 2187 2188 /** 2189 * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field 2190 * @aifsn: ACI/AIFSN 2191 * @ecw_min_max: ECWmin/ECWmax 2192 * @mu_edca_timer: MU EDCA Timer 2193 * 2194 * This structure represents the "MU AC Parameter Record" as described 2195 * in IEEE Std 802.11ax-2021 section 9.4.2.251, Figure 9-788p. 2196 */ 2197 struct ieee80211_he_mu_edca_param_ac_rec { 2198 u8 aifsn; 2199 u8 ecw_min_max; 2200 u8 mu_edca_timer; 2201 } __packed; 2202 2203 /** 2204 * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element 2205 * @mu_qos_info: QoS Info 2206 * @ac_be: MU AC_BE Parameter Record 2207 * @ac_bk: MU AC_BK Parameter Record 2208 * @ac_vi: MU AC_VI Parameter Record 2209 * @ac_vo: MU AC_VO Parameter Record 2210 * 2211 * This structure represents the payload of the "MU EDCA Parameter Set 2212 * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.251. 2213 */ 2214 struct ieee80211_mu_edca_param_set { 2215 u8 mu_qos_info; 2216 struct ieee80211_he_mu_edca_param_ac_rec ac_be; 2217 struct ieee80211_he_mu_edca_param_ac_rec ac_bk; 2218 struct ieee80211_he_mu_edca_param_ac_rec ac_vi; 2219 struct ieee80211_he_mu_edca_param_ac_rec ac_vo; 2220 } __packed; 2221 2222 #define IEEE80211_EHT_MCS_NSS_RX 0x0f 2223 #define IEEE80211_EHT_MCS_NSS_TX 0xf0 2224 2225 /** 2226 * struct ieee80211_eht_mcs_nss_supp_20mhz_only - EHT 20MHz only station max 2227 * supported NSS for per MCS. 2228 * 2229 * For each field below, bits 0 - 3 indicate the maximal number of spatial 2230 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams 2231 * for Tx. 2232 * 2233 * @rx_tx_mcs7_max_nss: indicates the maximum number of spatial streams 2234 * supported for reception and the maximum number of spatial streams 2235 * supported for transmission for MCS 0 - 7. 2236 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams 2237 * supported for reception and the maximum number of spatial streams 2238 * supported for transmission for MCS 8 - 9. 2239 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams 2240 * supported for reception and the maximum number of spatial streams 2241 * supported for transmission for MCS 10 - 11. 2242 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams 2243 * supported for reception and the maximum number of spatial streams 2244 * supported for transmission for MCS 12 - 13. 2245 * @rx_tx_max_nss: array of the previous fields for easier loop access 2246 */ 2247 struct ieee80211_eht_mcs_nss_supp_20mhz_only { 2248 union { 2249 struct { 2250 u8 rx_tx_mcs7_max_nss; 2251 u8 rx_tx_mcs9_max_nss; 2252 u8 rx_tx_mcs11_max_nss; 2253 u8 rx_tx_mcs13_max_nss; 2254 }; 2255 u8 rx_tx_max_nss[4]; 2256 }; 2257 }; 2258 2259 /** 2260 * struct ieee80211_eht_mcs_nss_supp_bw - EHT max supported NSS per MCS (except 2261 * 20MHz only stations). 2262 * 2263 * For each field below, bits 0 - 3 indicate the maximal number of spatial 2264 * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams 2265 * for Tx. 2266 * 2267 * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams 2268 * supported for reception and the maximum number of spatial streams 2269 * supported for transmission for MCS 0 - 9. 2270 * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams 2271 * supported for reception and the maximum number of spatial streams 2272 * supported for transmission for MCS 10 - 11. 2273 * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams 2274 * supported for reception and the maximum number of spatial streams 2275 * supported for transmission for MCS 12 - 13. 2276 * @rx_tx_max_nss: array of the previous fields for easier loop access 2277 */ 2278 struct ieee80211_eht_mcs_nss_supp_bw { 2279 union { 2280 struct { 2281 u8 rx_tx_mcs9_max_nss; 2282 u8 rx_tx_mcs11_max_nss; 2283 u8 rx_tx_mcs13_max_nss; 2284 }; 2285 u8 rx_tx_max_nss[3]; 2286 }; 2287 }; 2288 2289 /** 2290 * struct ieee80211_eht_cap_elem_fixed - EHT capabilities fixed data 2291 * 2292 * This structure is the "EHT Capabilities element" fixed fields as 2293 * described in P802.11be_D2.0 section 9.4.2.313. 2294 * 2295 * @mac_cap_info: MAC capabilities, see IEEE80211_EHT_MAC_CAP* 2296 * @phy_cap_info: PHY capabilities, see IEEE80211_EHT_PHY_CAP* 2297 */ 2298 struct ieee80211_eht_cap_elem_fixed { 2299 u8 mac_cap_info[2]; 2300 u8 phy_cap_info[9]; 2301 } __packed; 2302 2303 /** 2304 * struct ieee80211_eht_cap_elem - EHT capabilities element 2305 * @fixed: fixed parts, see &ieee80211_eht_cap_elem_fixed 2306 * @optional: optional parts 2307 */ 2308 struct ieee80211_eht_cap_elem { 2309 struct ieee80211_eht_cap_elem_fixed fixed; 2310 2311 /* 2312 * Followed by: 2313 * Supported EHT-MCS And NSS Set field: 4, 3, 6 or 9 octets. 2314 * EHT PPE Thresholds field: variable length. 2315 */ 2316 u8 optional[]; 2317 } __packed; 2318 2319 #define IEEE80211_EHT_OPER_INFO_PRESENT 0x01 2320 #define IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT 0x02 2321 #define IEEE80211_EHT_OPER_EHT_DEF_PE_DURATION 0x04 2322 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_LIMIT 0x08 2323 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_EXP_MASK 0x30 2324 2325 /** 2326 * struct ieee80211_eht_operation - eht operation element 2327 * 2328 * This structure is the "EHT Operation Element" fields as 2329 * described in P802.11be_D2.0 section 9.4.2.311 2330 * 2331 * @params: EHT operation element parameters. See &IEEE80211_EHT_OPER_* 2332 * @basic_mcs_nss: indicates the EHT-MCSs for each number of spatial streams in 2333 * EHT PPDUs that are supported by all EHT STAs in the BSS in transmit and 2334 * receive. 2335 * @optional: optional parts 2336 */ 2337 struct ieee80211_eht_operation { 2338 u8 params; 2339 struct ieee80211_eht_mcs_nss_supp_20mhz_only basic_mcs_nss; 2340 u8 optional[]; 2341 } __packed; 2342 2343 /** 2344 * struct ieee80211_eht_operation_info - eht operation information 2345 * 2346 * @control: EHT operation information control. 2347 * @ccfs0: defines a channel center frequency for a 20, 40, 80, 160, or 320 MHz 2348 * EHT BSS. 2349 * @ccfs1: defines a channel center frequency for a 160 or 320 MHz EHT BSS. 2350 * @optional: optional parts 2351 */ 2352 struct ieee80211_eht_operation_info { 2353 u8 control; 2354 u8 ccfs0; 2355 u8 ccfs1; 2356 u8 optional[]; 2357 } __packed; 2358 2359 /* 802.11ac VHT Capabilities */ 2360 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895 0x00000000 2361 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991 0x00000001 2362 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 0x00000002 2363 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK 0x00000003 2364 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ 0x00000004 2365 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ 0x00000008 2366 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK 0x0000000C 2367 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT 2 2368 #define IEEE80211_VHT_CAP_RXLDPC 0x00000010 2369 #define IEEE80211_VHT_CAP_SHORT_GI_80 0x00000020 2370 #define IEEE80211_VHT_CAP_SHORT_GI_160 0x00000040 2371 #define IEEE80211_VHT_CAP_TXSTBC 0x00000080 2372 #define IEEE80211_VHT_CAP_RXSTBC_1 0x00000100 2373 #define IEEE80211_VHT_CAP_RXSTBC_2 0x00000200 2374 #define IEEE80211_VHT_CAP_RXSTBC_3 0x00000300 2375 #define IEEE80211_VHT_CAP_RXSTBC_4 0x00000400 2376 #define IEEE80211_VHT_CAP_RXSTBC_MASK 0x00000700 2377 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT 8 2378 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE 0x00000800 2379 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE 0x00001000 2380 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT 13 2381 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK \ 2382 (7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT) 2383 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT 16 2384 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK \ 2385 (7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT) 2386 #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE 0x00080000 2387 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE 0x00100000 2388 #define IEEE80211_VHT_CAP_VHT_TXOP_PS 0x00200000 2389 #define IEEE80211_VHT_CAP_HTC_VHT 0x00400000 2390 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT 23 2391 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK \ 2392 (7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT) 2393 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB 0x08000000 2394 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB 0x0c000000 2395 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN 0x10000000 2396 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN 0x20000000 2397 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT 30 2398 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK 0xc0000000 2399 2400 /** 2401 * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS 2402 * @cap: VHT capabilities of the peer 2403 * @bw: bandwidth to use 2404 * @mcs: MCS index to use 2405 * @ext_nss_bw_capable: indicates whether or not the local transmitter 2406 * (rate scaling algorithm) can deal with the new logic 2407 * (dot11VHTExtendedNSSBWCapable) 2408 * @max_vht_nss: current maximum NSS as advertised by the STA in 2409 * operating mode notification, can be 0 in which case the 2410 * capability data will be used to derive this (from MCS support) 2411 * Return: The maximum NSS that can be used for the given bandwidth/MCS 2412 * combination 2413 * 2414 * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can 2415 * vary for a given BW/MCS. This function parses the data. 2416 * 2417 * Note: This function is exported by cfg80211. 2418 */ 2419 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2420 enum ieee80211_vht_chanwidth bw, 2421 int mcs, bool ext_nss_bw_capable, 2422 unsigned int max_vht_nss); 2423 2424 /* 802.11ax HE MAC capabilities */ 2425 #define IEEE80211_HE_MAC_CAP0_HTC_HE 0x01 2426 #define IEEE80211_HE_MAC_CAP0_TWT_REQ 0x02 2427 #define IEEE80211_HE_MAC_CAP0_TWT_RES 0x04 2428 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP 0x00 2429 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1 0x08 2430 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2 0x10 2431 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3 0x18 2432 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK 0x18 2433 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1 0x00 2434 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2 0x20 2435 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4 0x40 2436 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8 0x60 2437 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16 0x80 2438 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32 0xa0 2439 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64 0xc0 2440 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED 0xe0 2441 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK 0xe0 2442 2443 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED 0x00 2444 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128 0x01 2445 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256 0x02 2446 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512 0x03 2447 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK 0x03 2448 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US 0x00 2449 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US 0x04 2450 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US 0x08 2451 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK 0x0c 2452 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1 0x00 2453 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2 0x10 2454 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3 0x20 2455 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4 0x30 2456 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5 0x40 2457 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6 0x50 2458 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7 0x60 2459 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8 0x70 2460 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK 0x70 2461 2462 /* Link adaptation is split between byte HE_MAC_CAP1 and 2463 * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE 2464 * in which case the following values apply: 2465 * 0 = No feedback. 2466 * 1 = reserved. 2467 * 2 = Unsolicited feedback. 2468 * 3 = both 2469 */ 2470 #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION 0x80 2471 2472 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION 0x01 2473 #define IEEE80211_HE_MAC_CAP2_ALL_ACK 0x02 2474 #define IEEE80211_HE_MAC_CAP2_TRS 0x04 2475 #define IEEE80211_HE_MAC_CAP2_BSR 0x08 2476 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT 0x10 2477 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP 0x20 2478 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING 0x40 2479 #define IEEE80211_HE_MAC_CAP2_ACK_EN 0x80 2480 2481 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL 0x02 2482 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA 0x04 2483 2484 /* The maximum length of an A-MDPU is defined by the combination of the Maximum 2485 * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the 2486 * same field in the HE capabilities. 2487 */ 2488 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0 0x00 2489 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1 0x08 2490 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2 0x10 2491 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3 0x18 2492 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK 0x18 2493 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG 0x20 2494 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED 0x40 2495 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS 0x80 2496 2497 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG 0x01 2498 #define IEEE80211_HE_MAC_CAP4_QTP 0x02 2499 #define IEEE80211_HE_MAC_CAP4_BQR 0x04 2500 #define IEEE80211_HE_MAC_CAP4_PSR_RESP 0x08 2501 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP 0x10 2502 #define IEEE80211_HE_MAC_CAP4_OPS 0x20 2503 #define IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU 0x40 2504 /* Multi TID agg TX is split between byte #4 and #5 2505 * The value is a combination of B39,B40,B41 2506 */ 2507 #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39 0x80 2508 2509 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 0x01 2510 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 0x02 2511 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION 0x04 2512 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU 0x08 2513 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX 0x10 2514 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS 0x20 2515 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING 0x40 2516 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX 0x80 2517 2518 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR 20 2519 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR 16 2520 #define IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR 13 2521 2522 /* 802.11ax HE PHY capabilities */ 2523 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G 0x02 2524 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G 0x04 2525 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G 0x08 2526 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G 0x10 2527 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL 0x1e 2528 2529 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G 0x20 2530 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G 0x40 2531 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK 0xfe 2532 2533 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ 0x01 2534 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ 0x02 2535 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ 0x04 2536 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ 0x08 2537 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK 0x0f 2538 #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A 0x10 2539 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD 0x20 2540 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US 0x40 2541 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */ 2542 #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS 0x80 2543 2544 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS 0x01 2545 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US 0x02 2546 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ 0x04 2547 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ 0x08 2548 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX 0x10 2549 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX 0x20 2550 2551 /* Note that the meaning of UL MU below is different between an AP and a non-AP 2552 * sta, where in the AP case it indicates support for Rx and in the non-AP sta 2553 * case it indicates support for Tx. 2554 */ 2555 #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO 0x40 2556 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO 0x80 2557 2558 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM 0x00 2559 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK 0x01 2560 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK 0x02 2561 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM 0x03 2562 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK 0x03 2563 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 0x00 2564 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2 0x04 2565 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM 0x00 2566 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK 0x08 2567 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK 0x10 2568 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM 0x18 2569 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK 0x18 2570 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1 0x00 2571 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2 0x20 2572 #define IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU 0x40 2573 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER 0x80 2574 2575 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE 0x01 2576 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER 0x02 2577 2578 /* Minimal allowed value of Max STS under 80MHz is 3 */ 2579 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 0x0c 2580 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 0x10 2581 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6 0x14 2582 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7 0x18 2583 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8 0x1c 2584 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK 0x1c 2585 2586 /* Minimal allowed value of Max STS above 80MHz is 3 */ 2587 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4 0x60 2588 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5 0x80 2589 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6 0xa0 2590 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7 0xc0 2591 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 0xe0 2592 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK 0xe0 2593 2594 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1 0x00 2595 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 0x01 2596 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3 0x02 2597 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4 0x03 2598 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5 0x04 2599 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6 0x05 2600 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7 0x06 2601 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8 0x07 2602 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK 0x07 2603 2604 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1 0x00 2605 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 0x08 2606 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3 0x10 2607 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4 0x18 2608 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5 0x20 2609 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6 0x28 2610 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7 0x30 2611 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8 0x38 2612 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK 0x38 2613 2614 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK 0x40 2615 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK 0x80 2616 2617 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU 0x01 2618 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU 0x02 2619 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB 0x04 2620 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB 0x08 2621 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB 0x10 2622 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE 0x20 2623 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO 0x40 2624 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT 0x80 2625 2626 #define IEEE80211_HE_PHY_CAP7_PSR_BASED_SR 0x01 2627 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP 0x02 2628 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI 0x04 2629 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1 0x08 2630 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2 0x10 2631 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3 0x18 2632 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4 0x20 2633 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5 0x28 2634 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6 0x30 2635 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7 0x38 2636 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK 0x38 2637 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ 0x40 2638 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ 0x80 2639 2640 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI 0x01 2641 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G 0x02 2642 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU 0x04 2643 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU 0x08 2644 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI 0x10 2645 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF 0x20 2646 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242 0x00 2647 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484 0x40 2648 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996 0x80 2649 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996 0xc0 2650 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK 0xc0 2651 2652 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM 0x01 2653 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK 0x02 2654 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU 0x04 2655 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU 0x08 2656 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB 0x10 2657 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB 0x20 2658 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US 0x0 2659 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US 0x1 2660 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US 0x2 2661 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED 0x3 2662 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS 6 2663 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK 0xc0 2664 2665 #define IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF 0x01 2666 2667 /* 802.11ax HE TX/RX MCS NSS Support */ 2668 #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS (3) 2669 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS (6) 2670 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS (11) 2671 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK 0x07c0 2672 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK 0xf800 2673 2674 /* TX/RX HE MCS Support field Highest MCS subfield encoding */ 2675 enum ieee80211_he_highest_mcs_supported_subfield_enc { 2676 HIGHEST_MCS_SUPPORTED_MCS7 = 0, 2677 HIGHEST_MCS_SUPPORTED_MCS8, 2678 HIGHEST_MCS_SUPPORTED_MCS9, 2679 HIGHEST_MCS_SUPPORTED_MCS10, 2680 HIGHEST_MCS_SUPPORTED_MCS11, 2681 }; 2682 2683 /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */ 2684 static inline u8 2685 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap) 2686 { 2687 u8 count = 4; 2688 2689 if (he_cap->phy_cap_info[0] & 2690 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) 2691 count += 4; 2692 2693 if (he_cap->phy_cap_info[0] & 2694 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) 2695 count += 4; 2696 2697 return count; 2698 } 2699 2700 /* 802.11ax HE PPE Thresholds */ 2701 #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS (1) 2702 #define IEEE80211_PPE_THRES_NSS_POS (0) 2703 #define IEEE80211_PPE_THRES_NSS_MASK (7) 2704 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU \ 2705 (BIT(5) | BIT(6)) 2706 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK 0x78 2707 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS (3) 2708 #define IEEE80211_PPE_THRES_INFO_PPET_SIZE (3) 2709 #define IEEE80211_HE_PPE_THRES_INFO_HEADER_SIZE (7) 2710 2711 /* 2712 * Calculate 802.11ax HE capabilities IE PPE field size 2713 * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8* 2714 */ 2715 static inline u8 2716 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info) 2717 { 2718 u8 n; 2719 2720 if ((phy_cap_info[6] & 2721 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2722 return 0; 2723 2724 n = hweight8(ppe_thres_hdr & 2725 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2726 n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >> 2727 IEEE80211_PPE_THRES_NSS_POS)); 2728 2729 /* 2730 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2731 * total size. 2732 */ 2733 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2734 n = DIV_ROUND_UP(n, 8); 2735 2736 return n; 2737 } 2738 2739 static inline bool ieee80211_he_capa_size_ok(const u8 *data, u8 len) 2740 { 2741 const struct ieee80211_he_cap_elem *he_cap_ie_elem = (const void *)data; 2742 u8 needed = sizeof(*he_cap_ie_elem); 2743 2744 if (len < needed) 2745 return false; 2746 2747 needed += ieee80211_he_mcs_nss_size(he_cap_ie_elem); 2748 if (len < needed) 2749 return false; 2750 2751 if (he_cap_ie_elem->phy_cap_info[6] & 2752 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) { 2753 if (len < needed + 1) 2754 return false; 2755 needed += ieee80211_he_ppe_size(data[needed], 2756 he_cap_ie_elem->phy_cap_info); 2757 } 2758 2759 return len >= needed; 2760 } 2761 2762 /* HE Operation defines */ 2763 #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK 0x00000007 2764 #define IEEE80211_HE_OPERATION_TWT_REQUIRED 0x00000008 2765 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK 0x00003ff0 2766 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET 4 2767 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO 0x00004000 2768 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS 0x00008000 2769 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE 0x00010000 2770 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO 0x00020000 2771 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK 0x3f000000 2772 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET 24 2773 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR 0x40000000 2774 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED 0x80000000 2775 2776 #define IEEE80211_6GHZ_CTRL_REG_LPI_AP 0 2777 #define IEEE80211_6GHZ_CTRL_REG_SP_AP 1 2778 #define IEEE80211_6GHZ_CTRL_REG_VLP_AP 2 2779 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP 3 2780 #define IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP 4 2781 2782 /** 2783 * struct ieee80211_he_6ghz_oper - HE 6 GHz operation Information field 2784 * @primary: primary channel 2785 * @control: control flags 2786 * @ccfs0: channel center frequency segment 0 2787 * @ccfs1: channel center frequency segment 1 2788 * @minrate: minimum rate (in 1 Mbps units) 2789 */ 2790 struct ieee80211_he_6ghz_oper { 2791 u8 primary; 2792 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH 0x3 2793 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ 0 2794 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ 1 2795 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ 2 2796 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ 3 2797 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON 0x4 2798 #define IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO 0x38 2799 u8 control; 2800 u8 ccfs0; 2801 u8 ccfs1; 2802 u8 minrate; 2803 } __packed; 2804 2805 /* transmit power interpretation type of transmit power envelope element */ 2806 enum ieee80211_tx_power_intrpt_type { 2807 IEEE80211_TPE_LOCAL_EIRP, 2808 IEEE80211_TPE_LOCAL_EIRP_PSD, 2809 IEEE80211_TPE_REG_CLIENT_EIRP, 2810 IEEE80211_TPE_REG_CLIENT_EIRP_PSD, 2811 }; 2812 2813 /* category type of transmit power envelope element */ 2814 enum ieee80211_tx_power_category_6ghz { 2815 IEEE80211_TPE_CAT_6GHZ_DEFAULT = 0, 2816 IEEE80211_TPE_CAT_6GHZ_SUBORDINATE = 1, 2817 }; 2818 2819 /* 2820 * For IEEE80211_TPE_LOCAL_EIRP / IEEE80211_TPE_REG_CLIENT_EIRP, 2821 * setting to 63.5 dBm means no constraint. 2822 */ 2823 #define IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT 127 2824 2825 /* 2826 * For IEEE80211_TPE_LOCAL_EIRP_PSD / IEEE80211_TPE_REG_CLIENT_EIRP_PSD, 2827 * setting to 127 indicates no PSD limit for the 20 MHz channel. 2828 */ 2829 #define IEEE80211_TPE_PSD_NO_LIMIT 127 2830 2831 /** 2832 * struct ieee80211_tx_pwr_env - Transmit Power Envelope 2833 * @info: Transmit Power Information field 2834 * @variable: Maximum Transmit Power field 2835 * 2836 * This structure represents the payload of the "Transmit Power 2837 * Envelope element" as described in IEEE Std 802.11ax-2021 section 2838 * 9.4.2.161 2839 */ 2840 struct ieee80211_tx_pwr_env { 2841 u8 info; 2842 u8 variable[]; 2843 } __packed; 2844 2845 #define IEEE80211_TX_PWR_ENV_INFO_COUNT 0x7 2846 #define IEEE80211_TX_PWR_ENV_INFO_INTERPRET 0x38 2847 #define IEEE80211_TX_PWR_ENV_INFO_CATEGORY 0xC0 2848 2849 #define IEEE80211_TX_PWR_ENV_EXT_COUNT 0xF 2850 2851 static inline bool ieee80211_valid_tpe_element(const u8 *data, u8 len) 2852 { 2853 const struct ieee80211_tx_pwr_env *env = (const void *)data; 2854 u8 count, interpret, category; 2855 u8 needed = sizeof(*env); 2856 u8 N; /* also called N in the spec */ 2857 2858 if (len < needed) 2859 return false; 2860 2861 count = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_COUNT); 2862 interpret = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_INTERPRET); 2863 category = u8_get_bits(env->info, IEEE80211_TX_PWR_ENV_INFO_CATEGORY); 2864 2865 switch (category) { 2866 case IEEE80211_TPE_CAT_6GHZ_DEFAULT: 2867 case IEEE80211_TPE_CAT_6GHZ_SUBORDINATE: 2868 break; 2869 default: 2870 return false; 2871 } 2872 2873 switch (interpret) { 2874 case IEEE80211_TPE_LOCAL_EIRP: 2875 case IEEE80211_TPE_REG_CLIENT_EIRP: 2876 if (count > 3) 2877 return false; 2878 2879 /* count == 0 encodes 1 value for 20 MHz, etc. */ 2880 needed += count + 1; 2881 2882 if (len < needed) 2883 return false; 2884 2885 /* there can be extension fields not accounted for in 'count' */ 2886 2887 return true; 2888 case IEEE80211_TPE_LOCAL_EIRP_PSD: 2889 case IEEE80211_TPE_REG_CLIENT_EIRP_PSD: 2890 if (count > 4) 2891 return false; 2892 2893 N = count ? 1 << (count - 1) : 1; 2894 needed += N; 2895 2896 if (len < needed) 2897 return false; 2898 2899 if (len > needed) { 2900 u8 K = u8_get_bits(env->variable[N], 2901 IEEE80211_TX_PWR_ENV_EXT_COUNT); 2902 2903 needed += 1 + K; 2904 if (len < needed) 2905 return false; 2906 } 2907 2908 return true; 2909 } 2910 2911 return false; 2912 } 2913 2914 /* 2915 * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size 2916 * @he_oper_ie: byte data of the He Operations IE, stating from the byte 2917 * after the ext ID byte. It is assumed that he_oper_ie has at least 2918 * sizeof(struct ieee80211_he_operation) bytes, the caller must have 2919 * validated this. 2920 * @return the actual size of the IE data (not including header), or 0 on error 2921 */ 2922 static inline u8 2923 ieee80211_he_oper_size(const u8 *he_oper_ie) 2924 { 2925 const struct ieee80211_he_operation *he_oper = (const void *)he_oper_ie; 2926 u8 oper_len = sizeof(struct ieee80211_he_operation); 2927 u32 he_oper_params; 2928 2929 /* Make sure the input is not NULL */ 2930 if (!he_oper_ie) 2931 return 0; 2932 2933 /* Calc required length */ 2934 he_oper_params = le32_to_cpu(he_oper->he_oper_params); 2935 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO) 2936 oper_len += 3; 2937 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS) 2938 oper_len++; 2939 if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO) 2940 oper_len += sizeof(struct ieee80211_he_6ghz_oper); 2941 2942 /* Add the first byte (extension ID) to the total length */ 2943 oper_len++; 2944 2945 return oper_len; 2946 } 2947 2948 /** 2949 * ieee80211_he_6ghz_oper - obtain 6 GHz operation field 2950 * @he_oper: HE operation element (must be pre-validated for size) 2951 * but may be %NULL 2952 * 2953 * Return: a pointer to the 6 GHz operation field, or %NULL 2954 */ 2955 static inline const struct ieee80211_he_6ghz_oper * 2956 ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper) 2957 { 2958 const u8 *ret; 2959 u32 he_oper_params; 2960 2961 if (!he_oper) 2962 return NULL; 2963 2964 ret = (const void *)&he_oper->optional; 2965 2966 he_oper_params = le32_to_cpu(he_oper->he_oper_params); 2967 2968 if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)) 2969 return NULL; 2970 if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO) 2971 ret += 3; 2972 if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS) 2973 ret++; 2974 2975 return (const void *)ret; 2976 } 2977 2978 /* HE Spatial Reuse defines */ 2979 #define IEEE80211_HE_SPR_PSR_DISALLOWED BIT(0) 2980 #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED BIT(1) 2981 #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT BIT(2) 2982 #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT BIT(3) 2983 #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED BIT(4) 2984 2985 /* 2986 * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size 2987 * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte 2988 * after the ext ID byte. It is assumed that he_spr_ie has at least 2989 * sizeof(struct ieee80211_he_spr) bytes, the caller must have validated 2990 * this 2991 * @return the actual size of the IE data (not including header), or 0 on error 2992 */ 2993 static inline u8 2994 ieee80211_he_spr_size(const u8 *he_spr_ie) 2995 { 2996 const struct ieee80211_he_spr *he_spr = (const void *)he_spr_ie; 2997 u8 spr_len = sizeof(struct ieee80211_he_spr); 2998 u8 he_spr_params; 2999 3000 /* Make sure the input is not NULL */ 3001 if (!he_spr_ie) 3002 return 0; 3003 3004 /* Calc required length */ 3005 he_spr_params = he_spr->he_sr_control; 3006 if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT) 3007 spr_len++; 3008 if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT) 3009 spr_len += 18; 3010 3011 /* Add the first byte (extension ID) to the total length */ 3012 spr_len++; 3013 3014 return spr_len; 3015 } 3016 3017 /* S1G Capabilities Information field */ 3018 #define IEEE80211_S1G_CAPABILITY_LEN 15 3019 3020 #define S1G_CAP0_S1G_LONG BIT(0) 3021 #define S1G_CAP0_SGI_1MHZ BIT(1) 3022 #define S1G_CAP0_SGI_2MHZ BIT(2) 3023 #define S1G_CAP0_SGI_4MHZ BIT(3) 3024 #define S1G_CAP0_SGI_8MHZ BIT(4) 3025 #define S1G_CAP0_SGI_16MHZ BIT(5) 3026 #define S1G_CAP0_SUPP_CH_WIDTH GENMASK(7, 6) 3027 3028 #define S1G_SUPP_CH_WIDTH_2 0 3029 #define S1G_SUPP_CH_WIDTH_4 1 3030 #define S1G_SUPP_CH_WIDTH_8 2 3031 #define S1G_SUPP_CH_WIDTH_16 3 3032 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \ 3033 cap[0])) << 1) 3034 3035 #define S1G_CAP1_RX_LDPC BIT(0) 3036 #define S1G_CAP1_TX_STBC BIT(1) 3037 #define S1G_CAP1_RX_STBC BIT(2) 3038 #define S1G_CAP1_SU_BFER BIT(3) 3039 #define S1G_CAP1_SU_BFEE BIT(4) 3040 #define S1G_CAP1_BFEE_STS GENMASK(7, 5) 3041 3042 #define S1G_CAP2_SOUNDING_DIMENSIONS GENMASK(2, 0) 3043 #define S1G_CAP2_MU_BFER BIT(3) 3044 #define S1G_CAP2_MU_BFEE BIT(4) 3045 #define S1G_CAP2_PLUS_HTC_VHT BIT(5) 3046 #define S1G_CAP2_TRAVELING_PILOT GENMASK(7, 6) 3047 3048 #define S1G_CAP3_RD_RESPONDER BIT(0) 3049 #define S1G_CAP3_HT_DELAYED_BA BIT(1) 3050 #define S1G_CAP3_MAX_MPDU_LEN BIT(2) 3051 #define S1G_CAP3_MAX_AMPDU_LEN_EXP GENMASK(4, 3) 3052 #define S1G_CAP3_MIN_MPDU_START GENMASK(7, 5) 3053 3054 #define S1G_CAP4_UPLINK_SYNC BIT(0) 3055 #define S1G_CAP4_DYNAMIC_AID BIT(1) 3056 #define S1G_CAP4_BAT BIT(2) 3057 #define S1G_CAP4_TIME_ADE BIT(3) 3058 #define S1G_CAP4_NON_TIM BIT(4) 3059 #define S1G_CAP4_GROUP_AID BIT(5) 3060 #define S1G_CAP4_STA_TYPE GENMASK(7, 6) 3061 3062 #define S1G_CAP5_CENT_AUTH_CONTROL BIT(0) 3063 #define S1G_CAP5_DIST_AUTH_CONTROL BIT(1) 3064 #define S1G_CAP5_AMSDU BIT(2) 3065 #define S1G_CAP5_AMPDU BIT(3) 3066 #define S1G_CAP5_ASYMMETRIC_BA BIT(4) 3067 #define S1G_CAP5_FLOW_CONTROL BIT(5) 3068 #define S1G_CAP5_SECTORIZED_BEAM GENMASK(7, 6) 3069 3070 #define S1G_CAP6_OBSS_MITIGATION BIT(0) 3071 #define S1G_CAP6_FRAGMENT_BA BIT(1) 3072 #define S1G_CAP6_NDP_PS_POLL BIT(2) 3073 #define S1G_CAP6_RAW_OPERATION BIT(3) 3074 #define S1G_CAP6_PAGE_SLICING BIT(4) 3075 #define S1G_CAP6_TXOP_SHARING_IMP_ACK BIT(5) 3076 #define S1G_CAP6_VHT_LINK_ADAPT GENMASK(7, 6) 3077 3078 #define S1G_CAP7_TACK_AS_PS_POLL BIT(0) 3079 #define S1G_CAP7_DUP_1MHZ BIT(1) 3080 #define S1G_CAP7_MCS_NEGOTIATION BIT(2) 3081 #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE BIT(3) 3082 #define S1G_CAP7_NDP_BFING_REPORT_POLL BIT(4) 3083 #define S1G_CAP7_UNSOLICITED_DYN_AID BIT(5) 3084 #define S1G_CAP7_SECTOR_TRAINING_OPERATION BIT(6) 3085 #define S1G_CAP7_TEMP_PS_MODE_SWITCH BIT(7) 3086 3087 #define S1G_CAP8_TWT_GROUPING BIT(0) 3088 #define S1G_CAP8_BDT BIT(1) 3089 #define S1G_CAP8_COLOR GENMASK(4, 2) 3090 #define S1G_CAP8_TWT_REQUEST BIT(5) 3091 #define S1G_CAP8_TWT_RESPOND BIT(6) 3092 #define S1G_CAP8_PV1_FRAME BIT(7) 3093 3094 #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0) 3095 3096 #define S1G_OPER_CH_WIDTH_PRIMARY_1MHZ BIT(0) 3097 #define S1G_OPER_CH_WIDTH_OPER GENMASK(4, 1) 3098 3099 /* EHT MAC capabilities as defined in P802.11be_D2.0 section 9.4.2.313.2 */ 3100 #define IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS 0x01 3101 #define IEEE80211_EHT_MAC_CAP0_OM_CONTROL 0x02 3102 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 0x04 3103 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 0x08 3104 #define IEEE80211_EHT_MAC_CAP0_RESTRICTED_TWT 0x10 3105 #define IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC 0x20 3106 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK 0xc0 3107 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895 0 3108 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991 1 3109 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454 2 3110 3111 #define IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK 0x01 3112 3113 /* EHT PHY capabilities as defined in P802.11be_D2.0 section 9.4.2.313.3 */ 3114 #define IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ 0x02 3115 #define IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ 0x04 3116 #define IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI 0x08 3117 #define IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO 0x10 3118 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER 0x20 3119 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE 0x40 3120 3121 /* EHT beamformee number of spatial streams <= 80MHz is split */ 3122 #define IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK 0x80 3123 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK 0x03 3124 3125 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK 0x1c 3126 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK 0xe0 3127 3128 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK 0x07 3129 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK 0x38 3130 3131 /* EHT number of sounding dimensions for 320MHz is split */ 3132 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK 0xc0 3133 #define IEEE80211_EHT_PHY_CAP3_SOUNDING_DIM_320MHZ_MASK 0x01 3134 #define IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK 0x02 3135 #define IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK 0x04 3136 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK 0x08 3137 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK 0x10 3138 #define IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK 0x20 3139 #define IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK 0x40 3140 #define IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK 0x80 3141 3142 #define IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO 0x01 3143 #define IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP 0x02 3144 #define IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP 0x04 3145 #define IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI 0x08 3146 #define IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK 0xf0 3147 3148 #define IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK 0x01 3149 #define IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP 0x02 3150 #define IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP 0x04 3151 #define IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT 0x08 3152 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK 0x30 3153 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US 0 3154 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US 1 3155 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US 2 3156 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US 3 3157 3158 /* Maximum number of supported EHT LTF is split */ 3159 #define IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK 0xc0 3160 #define IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF 0x40 3161 #define IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK 0x07 3162 3163 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ 0x08 3164 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ 0x30 3165 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ 0x40 3166 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK 0x78 3167 #define IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP 0x80 3168 3169 #define IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW 0x01 3170 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ 0x02 3171 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ 0x04 3172 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ 0x08 3173 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ 0x10 3174 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ 0x20 3175 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ 0x40 3176 #define IEEE80211_EHT_PHY_CAP7_TB_SOUNDING_FDBK_RATE_LIMIT 0x80 3177 3178 #define IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA 0x01 3179 #define IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA 0x02 3180 3181 /* 3182 * EHT operation channel width as defined in P802.11be_D2.0 section 9.4.2.311 3183 */ 3184 #define IEEE80211_EHT_OPER_CHAN_WIDTH 0x7 3185 #define IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ 0 3186 #define IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ 1 3187 #define IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ 2 3188 #define IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ 3 3189 #define IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ 4 3190 3191 /* Calculate 802.11be EHT capabilities IE Tx/Rx EHT MCS NSS Support Field size */ 3192 static inline u8 3193 ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap, 3194 const struct ieee80211_eht_cap_elem_fixed *eht_cap, 3195 bool from_ap) 3196 { 3197 u8 count = 0; 3198 3199 /* on 2.4 GHz, if it supports 40 MHz, the result is 3 */ 3200 if (he_cap->phy_cap_info[0] & 3201 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G) 3202 return 3; 3203 3204 /* on 2.4 GHz, these three bits are reserved, so should be 0 */ 3205 if (he_cap->phy_cap_info[0] & 3206 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G) 3207 count += 3; 3208 3209 if (he_cap->phy_cap_info[0] & 3210 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) 3211 count += 3; 3212 3213 if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) 3214 count += 3; 3215 3216 if (count) 3217 return count; 3218 3219 return from_ap ? 3 : 4; 3220 } 3221 3222 /* 802.11be EHT PPE Thresholds */ 3223 #define IEEE80211_EHT_PPE_THRES_NSS_POS 0 3224 #define IEEE80211_EHT_PPE_THRES_NSS_MASK 0xf 3225 #define IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK 0x1f0 3226 #define IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE 3 3227 #define IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE 9 3228 3229 /* 3230 * Calculate 802.11be EHT capabilities IE EHT field size 3231 */ 3232 static inline u8 3233 ieee80211_eht_ppe_size(u16 ppe_thres_hdr, const u8 *phy_cap_info) 3234 { 3235 u32 n; 3236 3237 if (!(phy_cap_info[5] & 3238 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT)) 3239 return 0; 3240 3241 n = hweight16(ppe_thres_hdr & 3242 IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK); 3243 n *= 1 + u16_get_bits(ppe_thres_hdr, IEEE80211_EHT_PPE_THRES_NSS_MASK); 3244 3245 /* 3246 * Each pair is 6 bits, and we need to add the 9 "header" bits to the 3247 * total size. 3248 */ 3249 n = n * IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2 + 3250 IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE; 3251 return DIV_ROUND_UP(n, 8); 3252 } 3253 3254 static inline bool 3255 ieee80211_eht_capa_size_ok(const u8 *he_capa, const u8 *data, u8 len, 3256 bool from_ap) 3257 { 3258 const struct ieee80211_eht_cap_elem_fixed *elem = (const void *)data; 3259 u8 needed = sizeof(struct ieee80211_eht_cap_elem_fixed); 3260 3261 if (len < needed || !he_capa) 3262 return false; 3263 3264 needed += ieee80211_eht_mcs_nss_size((const void *)he_capa, 3265 (const void *)data, 3266 from_ap); 3267 if (len < needed) 3268 return false; 3269 3270 if (elem->phy_cap_info[5] & 3271 IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) { 3272 u16 ppe_thres_hdr; 3273 3274 if (len < needed + sizeof(ppe_thres_hdr)) 3275 return false; 3276 3277 ppe_thres_hdr = get_unaligned_le16(data + needed); 3278 needed += ieee80211_eht_ppe_size(ppe_thres_hdr, 3279 elem->phy_cap_info); 3280 } 3281 3282 return len >= needed; 3283 } 3284 3285 static inline bool 3286 ieee80211_eht_oper_size_ok(const u8 *data, u8 len) 3287 { 3288 const struct ieee80211_eht_operation *elem = (const void *)data; 3289 u8 needed = sizeof(*elem); 3290 3291 if (len < needed) 3292 return false; 3293 3294 if (elem->params & IEEE80211_EHT_OPER_INFO_PRESENT) { 3295 needed += 3; 3296 3297 if (elem->params & 3298 IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT) 3299 needed += 2; 3300 } 3301 3302 return len >= needed; 3303 } 3304 3305 /* must validate ieee80211_eht_oper_size_ok() first */ 3306 static inline u16 3307 ieee80211_eht_oper_dis_subchan_bitmap(const struct ieee80211_eht_operation *eht_oper) 3308 { 3309 const struct ieee80211_eht_operation_info *info = 3310 (const void *)eht_oper->optional; 3311 3312 if (!(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) 3313 return 0; 3314 3315 if (!(eht_oper->params & IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)) 3316 return 0; 3317 3318 return get_unaligned_le16(info->optional); 3319 } 3320 3321 #define IEEE80211_BW_IND_DIS_SUBCH_PRESENT BIT(1) 3322 3323 struct ieee80211_bandwidth_indication { 3324 u8 params; 3325 struct ieee80211_eht_operation_info info; 3326 } __packed; 3327 3328 static inline bool 3329 ieee80211_bandwidth_indication_size_ok(const u8 *data, u8 len) 3330 { 3331 const struct ieee80211_bandwidth_indication *bwi = (const void *)data; 3332 3333 if (len < sizeof(*bwi)) 3334 return false; 3335 3336 if (bwi->params & IEEE80211_BW_IND_DIS_SUBCH_PRESENT && 3337 len < sizeof(*bwi) + 2) 3338 return false; 3339 3340 return true; 3341 } 3342 3343 #define LISTEN_INT_USF GENMASK(15, 14) 3344 #define LISTEN_INT_UI GENMASK(13, 0) 3345 3346 #define IEEE80211_MAX_USF FIELD_MAX(LISTEN_INT_USF) 3347 #define IEEE80211_MAX_UI FIELD_MAX(LISTEN_INT_UI) 3348 3349 /* Authentication algorithms */ 3350 #define WLAN_AUTH_OPEN 0 3351 #define WLAN_AUTH_SHARED_KEY 1 3352 #define WLAN_AUTH_FT 2 3353 #define WLAN_AUTH_SAE 3 3354 #define WLAN_AUTH_FILS_SK 4 3355 #define WLAN_AUTH_FILS_SK_PFS 5 3356 #define WLAN_AUTH_FILS_PK 6 3357 #define WLAN_AUTH_LEAP 128 3358 3359 #define WLAN_AUTH_CHALLENGE_LEN 128 3360 3361 #define WLAN_CAPABILITY_ESS (1<<0) 3362 #define WLAN_CAPABILITY_IBSS (1<<1) 3363 3364 /* 3365 * A mesh STA sets the ESS and IBSS capability bits to zero. 3366 * however, this holds true for p2p probe responses (in the p2p_find 3367 * phase) as well. 3368 */ 3369 #define WLAN_CAPABILITY_IS_STA_BSS(cap) \ 3370 (!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS))) 3371 3372 #define WLAN_CAPABILITY_CF_POLLABLE (1<<2) 3373 #define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3) 3374 #define WLAN_CAPABILITY_PRIVACY (1<<4) 3375 #define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5) 3376 #define WLAN_CAPABILITY_PBCC (1<<6) 3377 #define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7) 3378 3379 /* 802.11h */ 3380 #define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8) 3381 #define WLAN_CAPABILITY_QOS (1<<9) 3382 #define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10) 3383 #define WLAN_CAPABILITY_APSD (1<<11) 3384 #define WLAN_CAPABILITY_RADIO_MEASURE (1<<12) 3385 #define WLAN_CAPABILITY_DSSS_OFDM (1<<13) 3386 #define WLAN_CAPABILITY_DEL_BACK (1<<14) 3387 #define WLAN_CAPABILITY_IMM_BACK (1<<15) 3388 3389 /* DMG (60gHz) 802.11ad */ 3390 /* type - bits 0..1 */ 3391 #define WLAN_CAPABILITY_DMG_TYPE_MASK (3<<0) 3392 #define WLAN_CAPABILITY_DMG_TYPE_IBSS (1<<0) /* Tx by: STA */ 3393 #define WLAN_CAPABILITY_DMG_TYPE_PBSS (2<<0) /* Tx by: PCP */ 3394 #define WLAN_CAPABILITY_DMG_TYPE_AP (3<<0) /* Tx by: AP */ 3395 3396 #define WLAN_CAPABILITY_DMG_CBAP_ONLY (1<<2) 3397 #define WLAN_CAPABILITY_DMG_CBAP_SOURCE (1<<3) 3398 #define WLAN_CAPABILITY_DMG_PRIVACY (1<<4) 3399 #define WLAN_CAPABILITY_DMG_ECPAC (1<<5) 3400 3401 #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT (1<<8) 3402 #define WLAN_CAPABILITY_DMG_RADIO_MEASURE (1<<12) 3403 3404 /* measurement */ 3405 #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE (1<<0) 3406 #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE (1<<1) 3407 #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED (1<<2) 3408 3409 #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC 0 3410 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA 1 3411 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI 2 3412 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI 8 3413 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC 11 3414 3415 /* 802.11g ERP information element */ 3416 #define WLAN_ERP_NON_ERP_PRESENT (1<<0) 3417 #define WLAN_ERP_USE_PROTECTION (1<<1) 3418 #define WLAN_ERP_BARKER_PREAMBLE (1<<2) 3419 3420 /* WLAN_ERP_BARKER_PREAMBLE values */ 3421 enum { 3422 WLAN_ERP_PREAMBLE_SHORT = 0, 3423 WLAN_ERP_PREAMBLE_LONG = 1, 3424 }; 3425 3426 /* Band ID, 802.11ad #8.4.1.45 */ 3427 enum { 3428 IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */ 3429 IEEE80211_BANDID_SUB1 = 1, /* Sub-1 GHz (excluding TV white spaces) */ 3430 IEEE80211_BANDID_2G = 2, /* 2.4 GHz */ 3431 IEEE80211_BANDID_3G = 3, /* 3.6 GHz */ 3432 IEEE80211_BANDID_5G = 4, /* 4.9 and 5 GHz */ 3433 IEEE80211_BANDID_60G = 5, /* 60 GHz */ 3434 }; 3435 3436 /* Status codes */ 3437 enum ieee80211_statuscode { 3438 WLAN_STATUS_SUCCESS = 0, 3439 WLAN_STATUS_UNSPECIFIED_FAILURE = 1, 3440 WLAN_STATUS_CAPS_UNSUPPORTED = 10, 3441 WLAN_STATUS_REASSOC_NO_ASSOC = 11, 3442 WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12, 3443 WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13, 3444 WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14, 3445 WLAN_STATUS_CHALLENGE_FAIL = 15, 3446 WLAN_STATUS_AUTH_TIMEOUT = 16, 3447 WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17, 3448 WLAN_STATUS_ASSOC_DENIED_RATES = 18, 3449 /* 802.11b */ 3450 WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19, 3451 WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20, 3452 WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21, 3453 /* 802.11h */ 3454 WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22, 3455 WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23, 3456 WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24, 3457 /* 802.11g */ 3458 WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25, 3459 WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26, 3460 /* 802.11w */ 3461 WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30, 3462 WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31, 3463 /* 802.11i */ 3464 WLAN_STATUS_INVALID_IE = 40, 3465 WLAN_STATUS_INVALID_GROUP_CIPHER = 41, 3466 WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42, 3467 WLAN_STATUS_INVALID_AKMP = 43, 3468 WLAN_STATUS_UNSUPP_RSN_VERSION = 44, 3469 WLAN_STATUS_INVALID_RSN_IE_CAP = 45, 3470 WLAN_STATUS_CIPHER_SUITE_REJECTED = 46, 3471 /* 802.11e */ 3472 WLAN_STATUS_UNSPECIFIED_QOS = 32, 3473 WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33, 3474 WLAN_STATUS_ASSOC_DENIED_LOWACK = 34, 3475 WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35, 3476 WLAN_STATUS_REQUEST_DECLINED = 37, 3477 WLAN_STATUS_INVALID_QOS_PARAM = 38, 3478 WLAN_STATUS_CHANGE_TSPEC = 39, 3479 WLAN_STATUS_WAIT_TS_DELAY = 47, 3480 WLAN_STATUS_NO_DIRECT_LINK = 48, 3481 WLAN_STATUS_STA_NOT_PRESENT = 49, 3482 WLAN_STATUS_STA_NOT_QSTA = 50, 3483 /* 802.11s */ 3484 WLAN_STATUS_ANTI_CLOG_REQUIRED = 76, 3485 WLAN_STATUS_FCG_NOT_SUPP = 78, 3486 WLAN_STATUS_STA_NO_TBTT = 78, 3487 /* 802.11ad */ 3488 WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39, 3489 WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47, 3490 WLAN_STATUS_REJECT_WITH_SCHEDULE = 83, 3491 WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86, 3492 WLAN_STATUS_PERFORMING_FST_NOW = 87, 3493 WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88, 3494 WLAN_STATUS_REJECT_U_PID_SETTING = 89, 3495 WLAN_STATUS_REJECT_DSE_BAND = 96, 3496 WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99, 3497 WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103, 3498 /* 802.11ai */ 3499 WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108, 3500 WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109, 3501 WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126, 3502 WLAN_STATUS_SAE_PK = 127, 3503 WLAN_STATUS_DENIED_TID_TO_LINK_MAPPING = 133, 3504 WLAN_STATUS_PREF_TID_TO_LINK_MAPPING_SUGGESTED = 134, 3505 }; 3506 3507 3508 /* Reason codes */ 3509 enum ieee80211_reasoncode { 3510 WLAN_REASON_UNSPECIFIED = 1, 3511 WLAN_REASON_PREV_AUTH_NOT_VALID = 2, 3512 WLAN_REASON_DEAUTH_LEAVING = 3, 3513 WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4, 3514 WLAN_REASON_DISASSOC_AP_BUSY = 5, 3515 WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6, 3516 WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7, 3517 WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8, 3518 WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9, 3519 /* 802.11h */ 3520 WLAN_REASON_DISASSOC_BAD_POWER = 10, 3521 WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11, 3522 /* 802.11i */ 3523 WLAN_REASON_INVALID_IE = 13, 3524 WLAN_REASON_MIC_FAILURE = 14, 3525 WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15, 3526 WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16, 3527 WLAN_REASON_IE_DIFFERENT = 17, 3528 WLAN_REASON_INVALID_GROUP_CIPHER = 18, 3529 WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19, 3530 WLAN_REASON_INVALID_AKMP = 20, 3531 WLAN_REASON_UNSUPP_RSN_VERSION = 21, 3532 WLAN_REASON_INVALID_RSN_IE_CAP = 22, 3533 WLAN_REASON_IEEE8021X_FAILED = 23, 3534 WLAN_REASON_CIPHER_SUITE_REJECTED = 24, 3535 /* TDLS (802.11z) */ 3536 WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25, 3537 WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26, 3538 /* 802.11e */ 3539 WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32, 3540 WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33, 3541 WLAN_REASON_DISASSOC_LOW_ACK = 34, 3542 WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35, 3543 WLAN_REASON_QSTA_LEAVE_QBSS = 36, 3544 WLAN_REASON_QSTA_NOT_USE = 37, 3545 WLAN_REASON_QSTA_REQUIRE_SETUP = 38, 3546 WLAN_REASON_QSTA_TIMEOUT = 39, 3547 WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45, 3548 /* 802.11s */ 3549 WLAN_REASON_MESH_PEER_CANCELED = 52, 3550 WLAN_REASON_MESH_MAX_PEERS = 53, 3551 WLAN_REASON_MESH_CONFIG = 54, 3552 WLAN_REASON_MESH_CLOSE = 55, 3553 WLAN_REASON_MESH_MAX_RETRIES = 56, 3554 WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57, 3555 WLAN_REASON_MESH_INVALID_GTK = 58, 3556 WLAN_REASON_MESH_INCONSISTENT_PARAM = 59, 3557 WLAN_REASON_MESH_INVALID_SECURITY = 60, 3558 WLAN_REASON_MESH_PATH_ERROR = 61, 3559 WLAN_REASON_MESH_PATH_NOFORWARD = 62, 3560 WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63, 3561 WLAN_REASON_MAC_EXISTS_IN_MBSS = 64, 3562 WLAN_REASON_MESH_CHAN_REGULATORY = 65, 3563 WLAN_REASON_MESH_CHAN = 66, 3564 }; 3565 3566 3567 /* Information Element IDs */ 3568 enum ieee80211_eid { 3569 WLAN_EID_SSID = 0, 3570 WLAN_EID_SUPP_RATES = 1, 3571 WLAN_EID_FH_PARAMS = 2, /* reserved now */ 3572 WLAN_EID_DS_PARAMS = 3, 3573 WLAN_EID_CF_PARAMS = 4, 3574 WLAN_EID_TIM = 5, 3575 WLAN_EID_IBSS_PARAMS = 6, 3576 WLAN_EID_COUNTRY = 7, 3577 /* 8, 9 reserved */ 3578 WLAN_EID_REQUEST = 10, 3579 WLAN_EID_QBSS_LOAD = 11, 3580 WLAN_EID_EDCA_PARAM_SET = 12, 3581 WLAN_EID_TSPEC = 13, 3582 WLAN_EID_TCLAS = 14, 3583 WLAN_EID_SCHEDULE = 15, 3584 WLAN_EID_CHALLENGE = 16, 3585 /* 17-31 reserved for challenge text extension */ 3586 WLAN_EID_PWR_CONSTRAINT = 32, 3587 WLAN_EID_PWR_CAPABILITY = 33, 3588 WLAN_EID_TPC_REQUEST = 34, 3589 WLAN_EID_TPC_REPORT = 35, 3590 WLAN_EID_SUPPORTED_CHANNELS = 36, 3591 WLAN_EID_CHANNEL_SWITCH = 37, 3592 WLAN_EID_MEASURE_REQUEST = 38, 3593 WLAN_EID_MEASURE_REPORT = 39, 3594 WLAN_EID_QUIET = 40, 3595 WLAN_EID_IBSS_DFS = 41, 3596 WLAN_EID_ERP_INFO = 42, 3597 WLAN_EID_TS_DELAY = 43, 3598 WLAN_EID_TCLAS_PROCESSING = 44, 3599 WLAN_EID_HT_CAPABILITY = 45, 3600 WLAN_EID_QOS_CAPA = 46, 3601 /* 47 reserved for Broadcom */ 3602 WLAN_EID_RSN = 48, 3603 WLAN_EID_802_15_COEX = 49, 3604 WLAN_EID_EXT_SUPP_RATES = 50, 3605 WLAN_EID_AP_CHAN_REPORT = 51, 3606 WLAN_EID_NEIGHBOR_REPORT = 52, 3607 WLAN_EID_RCPI = 53, 3608 WLAN_EID_MOBILITY_DOMAIN = 54, 3609 WLAN_EID_FAST_BSS_TRANSITION = 55, 3610 WLAN_EID_TIMEOUT_INTERVAL = 56, 3611 WLAN_EID_RIC_DATA = 57, 3612 WLAN_EID_DSE_REGISTERED_LOCATION = 58, 3613 WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59, 3614 WLAN_EID_EXT_CHANSWITCH_ANN = 60, 3615 WLAN_EID_HT_OPERATION = 61, 3616 WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62, 3617 WLAN_EID_BSS_AVG_ACCESS_DELAY = 63, 3618 WLAN_EID_ANTENNA_INFO = 64, 3619 WLAN_EID_RSNI = 65, 3620 WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66, 3621 WLAN_EID_BSS_AVAILABLE_CAPACITY = 67, 3622 WLAN_EID_BSS_AC_ACCESS_DELAY = 68, 3623 WLAN_EID_TIME_ADVERTISEMENT = 69, 3624 WLAN_EID_RRM_ENABLED_CAPABILITIES = 70, 3625 WLAN_EID_MULTIPLE_BSSID = 71, 3626 WLAN_EID_BSS_COEX_2040 = 72, 3627 WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73, 3628 WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74, 3629 WLAN_EID_RIC_DESCRIPTOR = 75, 3630 WLAN_EID_MMIE = 76, 3631 WLAN_EID_ASSOC_COMEBACK_TIME = 77, 3632 WLAN_EID_EVENT_REQUEST = 78, 3633 WLAN_EID_EVENT_REPORT = 79, 3634 WLAN_EID_DIAGNOSTIC_REQUEST = 80, 3635 WLAN_EID_DIAGNOSTIC_REPORT = 81, 3636 WLAN_EID_LOCATION_PARAMS = 82, 3637 WLAN_EID_NON_TX_BSSID_CAP = 83, 3638 WLAN_EID_SSID_LIST = 84, 3639 WLAN_EID_MULTI_BSSID_IDX = 85, 3640 WLAN_EID_FMS_DESCRIPTOR = 86, 3641 WLAN_EID_FMS_REQUEST = 87, 3642 WLAN_EID_FMS_RESPONSE = 88, 3643 WLAN_EID_QOS_TRAFFIC_CAPA = 89, 3644 WLAN_EID_BSS_MAX_IDLE_PERIOD = 90, 3645 WLAN_EID_TSF_REQUEST = 91, 3646 WLAN_EID_TSF_RESPOSNE = 92, 3647 WLAN_EID_WNM_SLEEP_MODE = 93, 3648 WLAN_EID_TIM_BCAST_REQ = 94, 3649 WLAN_EID_TIM_BCAST_RESP = 95, 3650 WLAN_EID_COLL_IF_REPORT = 96, 3651 WLAN_EID_CHANNEL_USAGE = 97, 3652 WLAN_EID_TIME_ZONE = 98, 3653 WLAN_EID_DMS_REQUEST = 99, 3654 WLAN_EID_DMS_RESPONSE = 100, 3655 WLAN_EID_LINK_ID = 101, 3656 WLAN_EID_WAKEUP_SCHEDUL = 102, 3657 /* 103 reserved */ 3658 WLAN_EID_CHAN_SWITCH_TIMING = 104, 3659 WLAN_EID_PTI_CONTROL = 105, 3660 WLAN_EID_PU_BUFFER_STATUS = 106, 3661 WLAN_EID_INTERWORKING = 107, 3662 WLAN_EID_ADVERTISEMENT_PROTOCOL = 108, 3663 WLAN_EID_EXPEDITED_BW_REQ = 109, 3664 WLAN_EID_QOS_MAP_SET = 110, 3665 WLAN_EID_ROAMING_CONSORTIUM = 111, 3666 WLAN_EID_EMERGENCY_ALERT = 112, 3667 WLAN_EID_MESH_CONFIG = 113, 3668 WLAN_EID_MESH_ID = 114, 3669 WLAN_EID_LINK_METRIC_REPORT = 115, 3670 WLAN_EID_CONGESTION_NOTIFICATION = 116, 3671 WLAN_EID_PEER_MGMT = 117, 3672 WLAN_EID_CHAN_SWITCH_PARAM = 118, 3673 WLAN_EID_MESH_AWAKE_WINDOW = 119, 3674 WLAN_EID_BEACON_TIMING = 120, 3675 WLAN_EID_MCCAOP_SETUP_REQ = 121, 3676 WLAN_EID_MCCAOP_SETUP_RESP = 122, 3677 WLAN_EID_MCCAOP_ADVERT = 123, 3678 WLAN_EID_MCCAOP_TEARDOWN = 124, 3679 WLAN_EID_GANN = 125, 3680 WLAN_EID_RANN = 126, 3681 WLAN_EID_EXT_CAPABILITY = 127, 3682 /* 128, 129 reserved for Agere */ 3683 WLAN_EID_PREQ = 130, 3684 WLAN_EID_PREP = 131, 3685 WLAN_EID_PERR = 132, 3686 /* 133-136 reserved for Cisco */ 3687 WLAN_EID_PXU = 137, 3688 WLAN_EID_PXUC = 138, 3689 WLAN_EID_AUTH_MESH_PEER_EXCH = 139, 3690 WLAN_EID_MIC = 140, 3691 WLAN_EID_DESTINATION_URI = 141, 3692 WLAN_EID_UAPSD_COEX = 142, 3693 WLAN_EID_WAKEUP_SCHEDULE = 143, 3694 WLAN_EID_EXT_SCHEDULE = 144, 3695 WLAN_EID_STA_AVAILABILITY = 145, 3696 WLAN_EID_DMG_TSPEC = 146, 3697 WLAN_EID_DMG_AT = 147, 3698 WLAN_EID_DMG_CAP = 148, 3699 /* 149 reserved for Cisco */ 3700 WLAN_EID_CISCO_VENDOR_SPECIFIC = 150, 3701 WLAN_EID_DMG_OPERATION = 151, 3702 WLAN_EID_DMG_BSS_PARAM_CHANGE = 152, 3703 WLAN_EID_DMG_BEAM_REFINEMENT = 153, 3704 WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154, 3705 /* 155-156 reserved for Cisco */ 3706 WLAN_EID_AWAKE_WINDOW = 157, 3707 WLAN_EID_MULTI_BAND = 158, 3708 WLAN_EID_ADDBA_EXT = 159, 3709 WLAN_EID_NEXT_PCP_LIST = 160, 3710 WLAN_EID_PCP_HANDOVER = 161, 3711 WLAN_EID_DMG_LINK_MARGIN = 162, 3712 WLAN_EID_SWITCHING_STREAM = 163, 3713 WLAN_EID_SESSION_TRANSITION = 164, 3714 WLAN_EID_DYN_TONE_PAIRING_REPORT = 165, 3715 WLAN_EID_CLUSTER_REPORT = 166, 3716 WLAN_EID_RELAY_CAP = 167, 3717 WLAN_EID_RELAY_XFER_PARAM_SET = 168, 3718 WLAN_EID_BEAM_LINK_MAINT = 169, 3719 WLAN_EID_MULTIPLE_MAC_ADDR = 170, 3720 WLAN_EID_U_PID = 171, 3721 WLAN_EID_DMG_LINK_ADAPT_ACK = 172, 3722 /* 173 reserved for Symbol */ 3723 WLAN_EID_MCCAOP_ADV_OVERVIEW = 174, 3724 WLAN_EID_QUIET_PERIOD_REQ = 175, 3725 /* 176 reserved for Symbol */ 3726 WLAN_EID_QUIET_PERIOD_RESP = 177, 3727 /* 178-179 reserved for Symbol */ 3728 /* 180 reserved for ISO/IEC 20011 */ 3729 WLAN_EID_EPAC_POLICY = 182, 3730 WLAN_EID_CLISTER_TIME_OFF = 183, 3731 WLAN_EID_INTER_AC_PRIO = 184, 3732 WLAN_EID_SCS_DESCRIPTOR = 185, 3733 WLAN_EID_QLOAD_REPORT = 186, 3734 WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187, 3735 WLAN_EID_HL_STREAM_ID = 188, 3736 WLAN_EID_GCR_GROUP_ADDR = 189, 3737 WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190, 3738 WLAN_EID_VHT_CAPABILITY = 191, 3739 WLAN_EID_VHT_OPERATION = 192, 3740 WLAN_EID_EXTENDED_BSS_LOAD = 193, 3741 WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194, 3742 WLAN_EID_TX_POWER_ENVELOPE = 195, 3743 WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196, 3744 WLAN_EID_AID = 197, 3745 WLAN_EID_QUIET_CHANNEL = 198, 3746 WLAN_EID_OPMODE_NOTIF = 199, 3747 3748 WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201, 3749 3750 WLAN_EID_AID_REQUEST = 210, 3751 WLAN_EID_AID_RESPONSE = 211, 3752 WLAN_EID_S1G_BCN_COMPAT = 213, 3753 WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214, 3754 WLAN_EID_S1G_TWT = 216, 3755 WLAN_EID_S1G_CAPABILITIES = 217, 3756 WLAN_EID_VENDOR_SPECIFIC = 221, 3757 WLAN_EID_QOS_PARAMETER = 222, 3758 WLAN_EID_S1G_OPERATION = 232, 3759 WLAN_EID_CAG_NUMBER = 237, 3760 WLAN_EID_AP_CSN = 239, 3761 WLAN_EID_FILS_INDICATION = 240, 3762 WLAN_EID_DILS = 241, 3763 WLAN_EID_FRAGMENT = 242, 3764 WLAN_EID_RSNX = 244, 3765 WLAN_EID_EXTENSION = 255 3766 }; 3767 3768 /* Element ID Extensions for Element ID 255 */ 3769 enum ieee80211_eid_ext { 3770 WLAN_EID_EXT_ASSOC_DELAY_INFO = 1, 3771 WLAN_EID_EXT_FILS_REQ_PARAMS = 2, 3772 WLAN_EID_EXT_FILS_KEY_CONFIRM = 3, 3773 WLAN_EID_EXT_FILS_SESSION = 4, 3774 WLAN_EID_EXT_FILS_HLP_CONTAINER = 5, 3775 WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6, 3776 WLAN_EID_EXT_KEY_DELIVERY = 7, 3777 WLAN_EID_EXT_FILS_WRAPPED_DATA = 8, 3778 WLAN_EID_EXT_FILS_PUBLIC_KEY = 12, 3779 WLAN_EID_EXT_FILS_NONCE = 13, 3780 WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14, 3781 WLAN_EID_EXT_HE_CAPABILITY = 35, 3782 WLAN_EID_EXT_HE_OPERATION = 36, 3783 WLAN_EID_EXT_UORA = 37, 3784 WLAN_EID_EXT_HE_MU_EDCA = 38, 3785 WLAN_EID_EXT_HE_SPR = 39, 3786 WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41, 3787 WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42, 3788 WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43, 3789 WLAN_EID_EXT_ESS_REPORT = 45, 3790 WLAN_EID_EXT_OPS = 46, 3791 WLAN_EID_EXT_HE_BSS_LOAD = 47, 3792 WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52, 3793 WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55, 3794 WLAN_EID_EXT_NON_INHERITANCE = 56, 3795 WLAN_EID_EXT_KNOWN_BSSID = 57, 3796 WLAN_EID_EXT_SHORT_SSID_LIST = 58, 3797 WLAN_EID_EXT_HE_6GHZ_CAPA = 59, 3798 WLAN_EID_EXT_UL_MU_POWER_CAPA = 60, 3799 WLAN_EID_EXT_EHT_OPERATION = 106, 3800 WLAN_EID_EXT_EHT_MULTI_LINK = 107, 3801 WLAN_EID_EXT_EHT_CAPABILITY = 108, 3802 WLAN_EID_EXT_TID_TO_LINK_MAPPING = 109, 3803 WLAN_EID_EXT_BANDWIDTH_INDICATION = 135, 3804 }; 3805 3806 /* Action category code */ 3807 enum ieee80211_category { 3808 WLAN_CATEGORY_SPECTRUM_MGMT = 0, 3809 WLAN_CATEGORY_QOS = 1, 3810 WLAN_CATEGORY_DLS = 2, 3811 WLAN_CATEGORY_BACK = 3, 3812 WLAN_CATEGORY_PUBLIC = 4, 3813 WLAN_CATEGORY_RADIO_MEASUREMENT = 5, 3814 WLAN_CATEGORY_FAST_BBS_TRANSITION = 6, 3815 WLAN_CATEGORY_HT = 7, 3816 WLAN_CATEGORY_SA_QUERY = 8, 3817 WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9, 3818 WLAN_CATEGORY_WNM = 10, 3819 WLAN_CATEGORY_WNM_UNPROTECTED = 11, 3820 WLAN_CATEGORY_TDLS = 12, 3821 WLAN_CATEGORY_MESH_ACTION = 13, 3822 WLAN_CATEGORY_MULTIHOP_ACTION = 14, 3823 WLAN_CATEGORY_SELF_PROTECTED = 15, 3824 WLAN_CATEGORY_DMG = 16, 3825 WLAN_CATEGORY_WMM = 17, 3826 WLAN_CATEGORY_FST = 18, 3827 WLAN_CATEGORY_UNPROT_DMG = 20, 3828 WLAN_CATEGORY_VHT = 21, 3829 WLAN_CATEGORY_S1G = 22, 3830 WLAN_CATEGORY_PROTECTED_EHT = 37, 3831 WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126, 3832 WLAN_CATEGORY_VENDOR_SPECIFIC = 127, 3833 }; 3834 3835 /* SPECTRUM_MGMT action code */ 3836 enum ieee80211_spectrum_mgmt_actioncode { 3837 WLAN_ACTION_SPCT_MSR_REQ = 0, 3838 WLAN_ACTION_SPCT_MSR_RPRT = 1, 3839 WLAN_ACTION_SPCT_TPC_REQ = 2, 3840 WLAN_ACTION_SPCT_TPC_RPRT = 3, 3841 WLAN_ACTION_SPCT_CHL_SWITCH = 4, 3842 }; 3843 3844 /* HT action codes */ 3845 enum ieee80211_ht_actioncode { 3846 WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0, 3847 WLAN_HT_ACTION_SMPS = 1, 3848 WLAN_HT_ACTION_PSMP = 2, 3849 WLAN_HT_ACTION_PCO_PHASE = 3, 3850 WLAN_HT_ACTION_CSI = 4, 3851 WLAN_HT_ACTION_NONCOMPRESSED_BF = 5, 3852 WLAN_HT_ACTION_COMPRESSED_BF = 6, 3853 WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7, 3854 }; 3855 3856 /* VHT action codes */ 3857 enum ieee80211_vht_actioncode { 3858 WLAN_VHT_ACTION_COMPRESSED_BF = 0, 3859 WLAN_VHT_ACTION_GROUPID_MGMT = 1, 3860 WLAN_VHT_ACTION_OPMODE_NOTIF = 2, 3861 }; 3862 3863 /* Self Protected Action codes */ 3864 enum ieee80211_self_protected_actioncode { 3865 WLAN_SP_RESERVED = 0, 3866 WLAN_SP_MESH_PEERING_OPEN = 1, 3867 WLAN_SP_MESH_PEERING_CONFIRM = 2, 3868 WLAN_SP_MESH_PEERING_CLOSE = 3, 3869 WLAN_SP_MGK_INFORM = 4, 3870 WLAN_SP_MGK_ACK = 5, 3871 }; 3872 3873 /* Mesh action codes */ 3874 enum ieee80211_mesh_actioncode { 3875 WLAN_MESH_ACTION_LINK_METRIC_REPORT, 3876 WLAN_MESH_ACTION_HWMP_PATH_SELECTION, 3877 WLAN_MESH_ACTION_GATE_ANNOUNCEMENT, 3878 WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION, 3879 WLAN_MESH_ACTION_MCCA_SETUP_REQUEST, 3880 WLAN_MESH_ACTION_MCCA_SETUP_REPLY, 3881 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST, 3882 WLAN_MESH_ACTION_MCCA_ADVERTISEMENT, 3883 WLAN_MESH_ACTION_MCCA_TEARDOWN, 3884 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST, 3885 WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE, 3886 }; 3887 3888 /* Unprotected WNM action codes */ 3889 enum ieee80211_unprotected_wnm_actioncode { 3890 WLAN_UNPROTECTED_WNM_ACTION_TIM = 0, 3891 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE = 1, 3892 }; 3893 3894 /* Protected EHT action codes */ 3895 enum ieee80211_protected_eht_actioncode { 3896 WLAN_PROTECTED_EHT_ACTION_TTLM_REQ = 0, 3897 WLAN_PROTECTED_EHT_ACTION_TTLM_RES = 1, 3898 WLAN_PROTECTED_EHT_ACTION_TTLM_TEARDOWN = 2, 3899 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_REQ = 3, 3900 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_RESP = 4, 3901 WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_TEARDOWN = 5, 3902 WLAN_PROTECTED_EHT_ACTION_EML_OP_MODE_NOTIF = 6, 3903 WLAN_PROTECTED_EHT_ACTION_LINK_RECOMMEND = 7, 3904 WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_REQ = 8, 3905 WLAN_PROTECTED_EHT_ACTION_ML_OP_UPDATE_RESP = 9, 3906 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_NOTIF = 10, 3907 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_REQ = 11, 3908 WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_RESP = 12, 3909 }; 3910 3911 /* Security key length */ 3912 enum ieee80211_key_len { 3913 WLAN_KEY_LEN_WEP40 = 5, 3914 WLAN_KEY_LEN_WEP104 = 13, 3915 WLAN_KEY_LEN_CCMP = 16, 3916 WLAN_KEY_LEN_CCMP_256 = 32, 3917 WLAN_KEY_LEN_TKIP = 32, 3918 WLAN_KEY_LEN_AES_CMAC = 16, 3919 WLAN_KEY_LEN_SMS4 = 32, 3920 WLAN_KEY_LEN_GCMP = 16, 3921 WLAN_KEY_LEN_GCMP_256 = 32, 3922 WLAN_KEY_LEN_BIP_CMAC_256 = 32, 3923 WLAN_KEY_LEN_BIP_GMAC_128 = 16, 3924 WLAN_KEY_LEN_BIP_GMAC_256 = 32, 3925 }; 3926 3927 enum ieee80211_s1g_actioncode { 3928 WLAN_S1G_AID_SWITCH_REQUEST, 3929 WLAN_S1G_AID_SWITCH_RESPONSE, 3930 WLAN_S1G_SYNC_CONTROL, 3931 WLAN_S1G_STA_INFO_ANNOUNCE, 3932 WLAN_S1G_EDCA_PARAM_SET, 3933 WLAN_S1G_EL_OPERATION, 3934 WLAN_S1G_TWT_SETUP, 3935 WLAN_S1G_TWT_TEARDOWN, 3936 WLAN_S1G_SECT_GROUP_ID_LIST, 3937 WLAN_S1G_SECT_ID_FEEDBACK, 3938 WLAN_S1G_TWT_INFORMATION = 11, 3939 }; 3940 3941 #define IEEE80211_WEP_IV_LEN 4 3942 #define IEEE80211_WEP_ICV_LEN 4 3943 #define IEEE80211_CCMP_HDR_LEN 8 3944 #define IEEE80211_CCMP_MIC_LEN 8 3945 #define IEEE80211_CCMP_PN_LEN 6 3946 #define IEEE80211_CCMP_256_HDR_LEN 8 3947 #define IEEE80211_CCMP_256_MIC_LEN 16 3948 #define IEEE80211_CCMP_256_PN_LEN 6 3949 #define IEEE80211_TKIP_IV_LEN 8 3950 #define IEEE80211_TKIP_ICV_LEN 4 3951 #define IEEE80211_CMAC_PN_LEN 6 3952 #define IEEE80211_GMAC_PN_LEN 6 3953 #define IEEE80211_GCMP_HDR_LEN 8 3954 #define IEEE80211_GCMP_MIC_LEN 16 3955 #define IEEE80211_GCMP_PN_LEN 6 3956 3957 #define FILS_NONCE_LEN 16 3958 #define FILS_MAX_KEK_LEN 64 3959 3960 #define FILS_ERP_MAX_USERNAME_LEN 16 3961 #define FILS_ERP_MAX_REALM_LEN 253 3962 #define FILS_ERP_MAX_RRK_LEN 64 3963 3964 #define PMK_MAX_LEN 64 3965 #define SAE_PASSWORD_MAX_LEN 128 3966 3967 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */ 3968 enum ieee80211_pub_actioncode { 3969 WLAN_PUB_ACTION_20_40_BSS_COEX = 0, 3970 WLAN_PUB_ACTION_DSE_ENABLEMENT = 1, 3971 WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2, 3972 WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3, 3973 WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4, 3974 WLAN_PUB_ACTION_DSE_MSMT_REQ = 5, 3975 WLAN_PUB_ACTION_DSE_MSMT_RESP = 6, 3976 WLAN_PUB_ACTION_MSMT_PILOT = 7, 3977 WLAN_PUB_ACTION_DSE_PC = 8, 3978 WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9, 3979 WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10, 3980 WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11, 3981 WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12, 3982 WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13, 3983 WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14, 3984 WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15, 3985 WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16, 3986 WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17, 3987 WLAN_PUB_ACTION_QMF_POLICY = 18, 3988 WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19, 3989 WLAN_PUB_ACTION_QLOAD_REQUEST = 20, 3990 WLAN_PUB_ACTION_QLOAD_REPORT = 21, 3991 WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22, 3992 WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23, 3993 WLAN_PUB_ACTION_PUBLIC_KEY = 24, 3994 WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25, 3995 WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26, 3996 WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27, 3997 WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28, 3998 WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29, 3999 WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30, 4000 WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31, 4001 WLAN_PUB_ACTION_FTM_REQUEST = 32, 4002 WLAN_PUB_ACTION_FTM_RESPONSE = 33, 4003 WLAN_PUB_ACTION_FILS_DISCOVERY = 34, 4004 }; 4005 4006 /* TDLS action codes */ 4007 enum ieee80211_tdls_actioncode { 4008 WLAN_TDLS_SETUP_REQUEST = 0, 4009 WLAN_TDLS_SETUP_RESPONSE = 1, 4010 WLAN_TDLS_SETUP_CONFIRM = 2, 4011 WLAN_TDLS_TEARDOWN = 3, 4012 WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4, 4013 WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5, 4014 WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6, 4015 WLAN_TDLS_PEER_PSM_REQUEST = 7, 4016 WLAN_TDLS_PEER_PSM_RESPONSE = 8, 4017 WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9, 4018 WLAN_TDLS_DISCOVERY_REQUEST = 10, 4019 }; 4020 4021 /* Extended Channel Switching capability to be set in the 1st byte of 4022 * the @WLAN_EID_EXT_CAPABILITY information element 4023 */ 4024 #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING BIT(2) 4025 4026 /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the 4027 * @WLAN_EID_EXT_CAPABILITY information element 4028 */ 4029 #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT BIT(6) 4030 4031 /* Timing Measurement protocol for time sync is set in the 7th bit of 3rd byte 4032 * of the @WLAN_EID_EXT_CAPABILITY information element 4033 */ 4034 #define WLAN_EXT_CAPA3_TIMING_MEASUREMENT_SUPPORT BIT(7) 4035 4036 /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */ 4037 #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA BIT(4) 4038 #define WLAN_EXT_CAPA4_TDLS_PEER_PSM BIT(5) 4039 #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH BIT(6) 4040 4041 /* Interworking capabilities are set in 7th bit of 4th byte of the 4042 * @WLAN_EID_EXT_CAPABILITY information element 4043 */ 4044 #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED BIT(7) 4045 4046 /* 4047 * TDLS capabililites to be enabled in the 5th byte of the 4048 * @WLAN_EID_EXT_CAPABILITY information element 4049 */ 4050 #define WLAN_EXT_CAPA5_TDLS_ENABLED BIT(5) 4051 #define WLAN_EXT_CAPA5_TDLS_PROHIBITED BIT(6) 4052 #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED BIT(7) 4053 4054 #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED BIT(5) 4055 #define WLAN_EXT_CAPA8_OPMODE_NOTIF BIT(6) 4056 4057 /* Defines the maximal number of MSDUs in an A-MSDU. */ 4058 #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB BIT(7) 4059 #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB BIT(0) 4060 4061 /* 4062 * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY 4063 * information element 4064 */ 4065 #define WLAN_EXT_CAPA9_FTM_INITIATOR BIT(7) 4066 4067 /* Defines support for TWT Requester and TWT Responder */ 4068 #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT BIT(5) 4069 #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT BIT(6) 4070 4071 /* 4072 * When set, indicates that the AP is able to tolerate 26-tone RU UL 4073 * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the 4074 * 26-tone RU UL OFDMA transmissions as radar pulses). 4075 */ 4076 #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7) 4077 4078 /* Defines support for enhanced multi-bssid advertisement*/ 4079 #define WLAN_EXT_CAPA11_EMA_SUPPORT BIT(3) 4080 4081 /* TDLS specific payload type in the LLC/SNAP header */ 4082 #define WLAN_TDLS_SNAP_RFTYPE 0x2 4083 4084 /* BSS Coex IE information field bits */ 4085 #define WLAN_BSS_COEX_INFORMATION_REQUEST BIT(0) 4086 4087 /** 4088 * enum ieee80211_mesh_sync_method - mesh synchronization method identifier 4089 * 4090 * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method 4091 * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method 4092 * that will be specified in a vendor specific information element 4093 */ 4094 enum ieee80211_mesh_sync_method { 4095 IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1, 4096 IEEE80211_SYNC_METHOD_VENDOR = 255, 4097 }; 4098 4099 /** 4100 * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier 4101 * 4102 * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol 4103 * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will 4104 * be specified in a vendor specific information element 4105 */ 4106 enum ieee80211_mesh_path_protocol { 4107 IEEE80211_PATH_PROTOCOL_HWMP = 1, 4108 IEEE80211_PATH_PROTOCOL_VENDOR = 255, 4109 }; 4110 4111 /** 4112 * enum ieee80211_mesh_path_metric - mesh path selection metric identifier 4113 * 4114 * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric 4115 * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be 4116 * specified in a vendor specific information element 4117 */ 4118 enum ieee80211_mesh_path_metric { 4119 IEEE80211_PATH_METRIC_AIRTIME = 1, 4120 IEEE80211_PATH_METRIC_VENDOR = 255, 4121 }; 4122 4123 /** 4124 * enum ieee80211_root_mode_identifier - root mesh STA mode identifier 4125 * 4126 * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode 4127 * 4128 * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default) 4129 * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than 4130 * this value 4131 * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports 4132 * the proactive PREQ with proactive PREP subfield set to 0 4133 * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA 4134 * supports the proactive PREQ with proactive PREP subfield set to 1 4135 * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports 4136 * the proactive RANN 4137 */ 4138 enum ieee80211_root_mode_identifier { 4139 IEEE80211_ROOTMODE_NO_ROOT = 0, 4140 IEEE80211_ROOTMODE_ROOT = 1, 4141 IEEE80211_PROACTIVE_PREQ_NO_PREP = 2, 4142 IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3, 4143 IEEE80211_PROACTIVE_RANN = 4, 4144 }; 4145 4146 /* 4147 * IEEE 802.11-2007 7.3.2.9 Country information element 4148 * 4149 * Minimum length is 8 octets, ie len must be evenly 4150 * divisible by 2 4151 */ 4152 4153 /* Although the spec says 8 I'm seeing 6 in practice */ 4154 #define IEEE80211_COUNTRY_IE_MIN_LEN 6 4155 4156 /* The Country String field of the element shall be 3 octets in length */ 4157 #define IEEE80211_COUNTRY_STRING_LEN 3 4158 4159 /* 4160 * For regulatory extension stuff see IEEE 802.11-2007 4161 * Annex I (page 1141) and Annex J (page 1147). Also 4162 * review 7.3.2.9. 4163 * 4164 * When dot11RegulatoryClassesRequired is true and the 4165 * first_channel/reg_extension_id is >= 201 then the IE 4166 * compromises of the 'ext' struct represented below: 4167 * 4168 * - Regulatory extension ID - when generating IE this just needs 4169 * to be monotonically increasing for each triplet passed in 4170 * the IE 4171 * - Regulatory class - index into set of rules 4172 * - Coverage class - index into air propagation time (Table 7-27), 4173 * in microseconds, you can compute the air propagation time from 4174 * the index by multiplying by 3, so index 10 yields a propagation 4175 * of 10 us. Valid values are 0-31, values 32-255 are not defined 4176 * yet. A value of 0 inicates air propagation of <= 1 us. 4177 * 4178 * See also Table I.2 for Emission limit sets and table 4179 * I.3 for Behavior limit sets. Table J.1 indicates how to map 4180 * a reg_class to an emission limit set and behavior limit set. 4181 */ 4182 #define IEEE80211_COUNTRY_EXTENSION_ID 201 4183 4184 /* 4185 * Channels numbers in the IE must be monotonically increasing 4186 * if dot11RegulatoryClassesRequired is not true. 4187 * 4188 * If dot11RegulatoryClassesRequired is true consecutive 4189 * subband triplets following a regulatory triplet shall 4190 * have monotonically increasing first_channel number fields. 4191 * 4192 * Channel numbers shall not overlap. 4193 * 4194 * Note that max_power is signed. 4195 */ 4196 struct ieee80211_country_ie_triplet { 4197 union { 4198 struct { 4199 u8 first_channel; 4200 u8 num_channels; 4201 s8 max_power; 4202 } __packed chans; 4203 struct { 4204 u8 reg_extension_id; 4205 u8 reg_class; 4206 u8 coverage_class; 4207 } __packed ext; 4208 }; 4209 } __packed; 4210 4211 enum ieee80211_timeout_interval_type { 4212 WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */, 4213 WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */, 4214 WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */, 4215 }; 4216 4217 /** 4218 * struct ieee80211_timeout_interval_ie - Timeout Interval element 4219 * @type: type, see &enum ieee80211_timeout_interval_type 4220 * @value: timeout interval value 4221 */ 4222 struct ieee80211_timeout_interval_ie { 4223 u8 type; 4224 __le32 value; 4225 } __packed; 4226 4227 /** 4228 * enum ieee80211_idle_options - BSS idle options 4229 * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN 4230 * protected frame to the AP to reset the idle timer at the AP for 4231 * the station. 4232 */ 4233 enum ieee80211_idle_options { 4234 WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0), 4235 }; 4236 4237 /** 4238 * struct ieee80211_bss_max_idle_period_ie - BSS max idle period element struct 4239 * 4240 * This structure refers to "BSS Max idle period element" 4241 * 4242 * @max_idle_period: indicates the time period during which a station can 4243 * refrain from transmitting frames to its associated AP without being 4244 * disassociated. In units of 1000 TUs. 4245 * @idle_options: indicates the options associated with the BSS idle capability 4246 * as specified in &enum ieee80211_idle_options. 4247 */ 4248 struct ieee80211_bss_max_idle_period_ie { 4249 __le16 max_idle_period; 4250 u8 idle_options; 4251 } __packed; 4252 4253 /* BACK action code */ 4254 enum ieee80211_back_actioncode { 4255 WLAN_ACTION_ADDBA_REQ = 0, 4256 WLAN_ACTION_ADDBA_RESP = 1, 4257 WLAN_ACTION_DELBA = 2, 4258 }; 4259 4260 /* BACK (block-ack) parties */ 4261 enum ieee80211_back_parties { 4262 WLAN_BACK_RECIPIENT = 0, 4263 WLAN_BACK_INITIATOR = 1, 4264 }; 4265 4266 /* SA Query action */ 4267 enum ieee80211_sa_query_action { 4268 WLAN_ACTION_SA_QUERY_REQUEST = 0, 4269 WLAN_ACTION_SA_QUERY_RESPONSE = 1, 4270 }; 4271 4272 /** 4273 * struct ieee80211_bssid_index - multiple BSSID index element structure 4274 * 4275 * This structure refers to "Multiple BSSID-index element" 4276 * 4277 * @bssid_index: BSSID index 4278 * @dtim_period: optional, overrides transmitted BSS dtim period 4279 * @dtim_count: optional, overrides transmitted BSS dtim count 4280 */ 4281 struct ieee80211_bssid_index { 4282 u8 bssid_index; 4283 u8 dtim_period; 4284 u8 dtim_count; 4285 }; 4286 4287 /** 4288 * struct ieee80211_multiple_bssid_configuration - multiple BSSID configuration 4289 * element structure 4290 * 4291 * This structure refers to "Multiple BSSID Configuration element" 4292 * 4293 * @bssid_count: total number of active BSSIDs in the set 4294 * @profile_periodicity: the least number of beacon frames need to be received 4295 * in order to discover all the nontransmitted BSSIDs in the set. 4296 */ 4297 struct ieee80211_multiple_bssid_configuration { 4298 u8 bssid_count; 4299 u8 profile_periodicity; 4300 }; 4301 4302 #define SUITE(oui, id) (((oui) << 8) | (id)) 4303 4304 /* cipher suite selectors */ 4305 #define WLAN_CIPHER_SUITE_USE_GROUP SUITE(0x000FAC, 0) 4306 #define WLAN_CIPHER_SUITE_WEP40 SUITE(0x000FAC, 1) 4307 #define WLAN_CIPHER_SUITE_TKIP SUITE(0x000FAC, 2) 4308 /* reserved: SUITE(0x000FAC, 3) */ 4309 #define WLAN_CIPHER_SUITE_CCMP SUITE(0x000FAC, 4) 4310 #define WLAN_CIPHER_SUITE_WEP104 SUITE(0x000FAC, 5) 4311 #define WLAN_CIPHER_SUITE_AES_CMAC SUITE(0x000FAC, 6) 4312 #define WLAN_CIPHER_SUITE_GCMP SUITE(0x000FAC, 8) 4313 #define WLAN_CIPHER_SUITE_GCMP_256 SUITE(0x000FAC, 9) 4314 #define WLAN_CIPHER_SUITE_CCMP_256 SUITE(0x000FAC, 10) 4315 #define WLAN_CIPHER_SUITE_BIP_GMAC_128 SUITE(0x000FAC, 11) 4316 #define WLAN_CIPHER_SUITE_BIP_GMAC_256 SUITE(0x000FAC, 12) 4317 #define WLAN_CIPHER_SUITE_BIP_CMAC_256 SUITE(0x000FAC, 13) 4318 4319 #define WLAN_CIPHER_SUITE_SMS4 SUITE(0x001472, 1) 4320 4321 /* AKM suite selectors */ 4322 #define WLAN_AKM_SUITE_8021X SUITE(0x000FAC, 1) 4323 #define WLAN_AKM_SUITE_PSK SUITE(0x000FAC, 2) 4324 #define WLAN_AKM_SUITE_FT_8021X SUITE(0x000FAC, 3) 4325 #define WLAN_AKM_SUITE_FT_PSK SUITE(0x000FAC, 4) 4326 #define WLAN_AKM_SUITE_8021X_SHA256 SUITE(0x000FAC, 5) 4327 #define WLAN_AKM_SUITE_PSK_SHA256 SUITE(0x000FAC, 6) 4328 #define WLAN_AKM_SUITE_TDLS SUITE(0x000FAC, 7) 4329 #define WLAN_AKM_SUITE_SAE SUITE(0x000FAC, 8) 4330 #define WLAN_AKM_SUITE_FT_OVER_SAE SUITE(0x000FAC, 9) 4331 #define WLAN_AKM_SUITE_AP_PEER_KEY SUITE(0x000FAC, 10) 4332 #define WLAN_AKM_SUITE_8021X_SUITE_B SUITE(0x000FAC, 11) 4333 #define WLAN_AKM_SUITE_8021X_SUITE_B_192 SUITE(0x000FAC, 12) 4334 #define WLAN_AKM_SUITE_FT_8021X_SHA384 SUITE(0x000FAC, 13) 4335 #define WLAN_AKM_SUITE_FILS_SHA256 SUITE(0x000FAC, 14) 4336 #define WLAN_AKM_SUITE_FILS_SHA384 SUITE(0x000FAC, 15) 4337 #define WLAN_AKM_SUITE_FT_FILS_SHA256 SUITE(0x000FAC, 16) 4338 #define WLAN_AKM_SUITE_FT_FILS_SHA384 SUITE(0x000FAC, 17) 4339 #define WLAN_AKM_SUITE_OWE SUITE(0x000FAC, 18) 4340 #define WLAN_AKM_SUITE_FT_PSK_SHA384 SUITE(0x000FAC, 19) 4341 #define WLAN_AKM_SUITE_PSK_SHA384 SUITE(0x000FAC, 20) 4342 4343 #define WLAN_AKM_SUITE_WFA_DPP SUITE(WLAN_OUI_WFA, 2) 4344 4345 #define WLAN_MAX_KEY_LEN 32 4346 4347 #define WLAN_PMK_NAME_LEN 16 4348 #define WLAN_PMKID_LEN 16 4349 #define WLAN_PMK_LEN_EAP_LEAP 16 4350 #define WLAN_PMK_LEN 32 4351 #define WLAN_PMK_LEN_SUITE_B_192 48 4352 4353 #define WLAN_OUI_WFA 0x506f9a 4354 #define WLAN_OUI_TYPE_WFA_P2P 9 4355 #define WLAN_OUI_TYPE_WFA_DPP 0x1A 4356 #define WLAN_OUI_MICROSOFT 0x0050f2 4357 #define WLAN_OUI_TYPE_MICROSOFT_WPA 1 4358 #define WLAN_OUI_TYPE_MICROSOFT_WMM 2 4359 #define WLAN_OUI_TYPE_MICROSOFT_WPS 4 4360 #define WLAN_OUI_TYPE_MICROSOFT_TPC 8 4361 4362 /* 4363 * WMM/802.11e Tspec Element 4364 */ 4365 #define IEEE80211_WMM_IE_TSPEC_TID_MASK 0x0F 4366 #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT 1 4367 4368 enum ieee80211_tspec_status_code { 4369 IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0, 4370 IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1, 4371 }; 4372 4373 struct ieee80211_tspec_ie { 4374 u8 element_id; 4375 u8 len; 4376 u8 oui[3]; 4377 u8 oui_type; 4378 u8 oui_subtype; 4379 u8 version; 4380 __le16 tsinfo; 4381 u8 tsinfo_resvd; 4382 __le16 nominal_msdu; 4383 __le16 max_msdu; 4384 __le32 min_service_int; 4385 __le32 max_service_int; 4386 __le32 inactivity_int; 4387 __le32 suspension_int; 4388 __le32 service_start_time; 4389 __le32 min_data_rate; 4390 __le32 mean_data_rate; 4391 __le32 peak_data_rate; 4392 __le32 max_burst_size; 4393 __le32 delay_bound; 4394 __le32 min_phy_rate; 4395 __le16 sba; 4396 __le16 medium_time; 4397 } __packed; 4398 4399 struct ieee80211_he_6ghz_capa { 4400 /* uses IEEE80211_HE_6GHZ_CAP_* below */ 4401 __le16 capa; 4402 } __packed; 4403 4404 /* HE 6 GHz band capabilities */ 4405 /* uses enum ieee80211_min_mpdu_spacing values */ 4406 #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START 0x0007 4407 /* uses enum ieee80211_vht_max_ampdu_length_exp values */ 4408 #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP 0x0038 4409 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */ 4410 #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN 0x00c0 4411 /* WLAN_HT_CAP_SM_PS_* values */ 4412 #define IEEE80211_HE_6GHZ_CAP_SM_PS 0x0600 4413 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER 0x0800 4414 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS 0x1000 4415 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS 0x2000 4416 4417 /** 4418 * ieee80211_get_qos_ctl - get pointer to qos control bytes 4419 * @hdr: the frame 4420 * Return: a pointer to the QoS control field in the frame header 4421 * 4422 * The qos ctrl bytes come after the frame_control, duration, seq_num 4423 * and 3 or 4 addresses of length ETH_ALEN. Checks frame_control to choose 4424 * between struct ieee80211_qos_hdr_4addr and struct ieee80211_qos_hdr. 4425 */ 4426 static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr) 4427 { 4428 union { 4429 struct ieee80211_qos_hdr addr3; 4430 struct ieee80211_qos_hdr_4addr addr4; 4431 } *qos; 4432 4433 qos = (void *)hdr; 4434 if (ieee80211_has_a4(qos->addr3.frame_control)) 4435 return (u8 *)&qos->addr4.qos_ctrl; 4436 else 4437 return (u8 *)&qos->addr3.qos_ctrl; 4438 } 4439 4440 /** 4441 * ieee80211_get_tid - get qos TID 4442 * @hdr: the frame 4443 * Return: the TID from the QoS control field 4444 */ 4445 static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr) 4446 { 4447 u8 *qc = ieee80211_get_qos_ctl(hdr); 4448 4449 return qc[0] & IEEE80211_QOS_CTL_TID_MASK; 4450 } 4451 4452 /** 4453 * ieee80211_get_SA - get pointer to SA 4454 * @hdr: the frame 4455 * Return: a pointer to the source address (SA) 4456 * 4457 * Given an 802.11 frame, this function returns the offset 4458 * to the source address (SA). It does not verify that the 4459 * header is long enough to contain the address, and the 4460 * header must be long enough to contain the frame control 4461 * field. 4462 */ 4463 static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr) 4464 { 4465 if (ieee80211_has_a4(hdr->frame_control)) 4466 return hdr->addr4; 4467 if (ieee80211_has_fromds(hdr->frame_control)) 4468 return hdr->addr3; 4469 return hdr->addr2; 4470 } 4471 4472 /** 4473 * ieee80211_get_DA - get pointer to DA 4474 * @hdr: the frame 4475 * Return: a pointer to the destination address (DA) 4476 * 4477 * Given an 802.11 frame, this function returns the offset 4478 * to the destination address (DA). It does not verify that 4479 * the header is long enough to contain the address, and the 4480 * header must be long enough to contain the frame control 4481 * field. 4482 */ 4483 static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr) 4484 { 4485 if (ieee80211_has_tods(hdr->frame_control)) 4486 return hdr->addr3; 4487 else 4488 return hdr->addr1; 4489 } 4490 4491 /** 4492 * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU 4493 * @skb: the skb to check, starting with the 802.11 header 4494 * Return: whether or not the MMPDU is bufferable 4495 */ 4496 static inline bool ieee80211_is_bufferable_mmpdu(struct sk_buff *skb) 4497 { 4498 struct ieee80211_mgmt *mgmt = (void *)skb->data; 4499 __le16 fc = mgmt->frame_control; 4500 4501 /* 4502 * IEEE 802.11 REVme D2.0 definition of bufferable MMPDU; 4503 * note that this ignores the IBSS special case. 4504 */ 4505 if (!ieee80211_is_mgmt(fc)) 4506 return false; 4507 4508 if (ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc)) 4509 return true; 4510 4511 if (!ieee80211_is_action(fc)) 4512 return false; 4513 4514 if (skb->len < offsetofend(typeof(*mgmt), u.action.u.ftm.action_code)) 4515 return true; 4516 4517 /* action frame - additionally check for non-bufferable FTM */ 4518 4519 if (mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 4520 mgmt->u.action.category != WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION) 4521 return true; 4522 4523 if (mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_REQUEST || 4524 mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_RESPONSE) 4525 return false; 4526 4527 return true; 4528 } 4529 4530 /** 4531 * _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame 4532 * @hdr: the frame (buffer must include at least the first octet of payload) 4533 * Return: whether or not the frame is a robust management frame 4534 */ 4535 static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr) 4536 { 4537 if (ieee80211_is_disassoc(hdr->frame_control) || 4538 ieee80211_is_deauth(hdr->frame_control)) 4539 return true; 4540 4541 if (ieee80211_is_action(hdr->frame_control)) { 4542 u8 *category; 4543 4544 /* 4545 * Action frames, excluding Public Action frames, are Robust 4546 * Management Frames. However, if we are looking at a Protected 4547 * frame, skip the check since the data may be encrypted and 4548 * the frame has already been found to be a Robust Management 4549 * Frame (by the other end). 4550 */ 4551 if (ieee80211_has_protected(hdr->frame_control)) 4552 return true; 4553 category = ((u8 *) hdr) + 24; 4554 return *category != WLAN_CATEGORY_PUBLIC && 4555 *category != WLAN_CATEGORY_HT && 4556 *category != WLAN_CATEGORY_WNM_UNPROTECTED && 4557 *category != WLAN_CATEGORY_SELF_PROTECTED && 4558 *category != WLAN_CATEGORY_UNPROT_DMG && 4559 *category != WLAN_CATEGORY_VHT && 4560 *category != WLAN_CATEGORY_S1G && 4561 *category != WLAN_CATEGORY_VENDOR_SPECIFIC; 4562 } 4563 4564 return false; 4565 } 4566 4567 /** 4568 * ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame 4569 * @skb: the skb containing the frame, length will be checked 4570 * Return: whether or not the frame is a robust management frame 4571 */ 4572 static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb) 4573 { 4574 if (skb->len < IEEE80211_MIN_ACTION_SIZE) 4575 return false; 4576 return _ieee80211_is_robust_mgmt_frame((void *)skb->data); 4577 } 4578 4579 /** 4580 * ieee80211_is_public_action - check if frame is a public action frame 4581 * @hdr: the frame 4582 * @len: length of the frame 4583 * Return: whether or not the frame is a public action frame 4584 */ 4585 static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr, 4586 size_t len) 4587 { 4588 struct ieee80211_mgmt *mgmt = (void *)hdr; 4589 4590 if (len < IEEE80211_MIN_ACTION_SIZE) 4591 return false; 4592 if (!ieee80211_is_action(hdr->frame_control)) 4593 return false; 4594 return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC; 4595 } 4596 4597 /** 4598 * ieee80211_is_protected_dual_of_public_action - check if skb contains a 4599 * protected dual of public action management frame 4600 * @skb: the skb containing the frame, length will be checked 4601 * 4602 * Return: true if the skb contains a protected dual of public action 4603 * management frame, false otherwise. 4604 */ 4605 static inline bool 4606 ieee80211_is_protected_dual_of_public_action(struct sk_buff *skb) 4607 { 4608 u8 action; 4609 4610 if (!ieee80211_is_public_action((void *)skb->data, skb->len) || 4611 skb->len < IEEE80211_MIN_ACTION_SIZE + 1) 4612 return false; 4613 4614 action = *(u8 *)(skb->data + IEEE80211_MIN_ACTION_SIZE); 4615 4616 return action != WLAN_PUB_ACTION_20_40_BSS_COEX && 4617 action != WLAN_PUB_ACTION_DSE_REG_LOC_ANN && 4618 action != WLAN_PUB_ACTION_MSMT_PILOT && 4619 action != WLAN_PUB_ACTION_TDLS_DISCOVER_RES && 4620 action != WLAN_PUB_ACTION_LOC_TRACK_NOTI && 4621 action != WLAN_PUB_ACTION_FTM_REQUEST && 4622 action != WLAN_PUB_ACTION_FTM_RESPONSE && 4623 action != WLAN_PUB_ACTION_FILS_DISCOVERY && 4624 action != WLAN_PUB_ACTION_VENDOR_SPECIFIC; 4625 } 4626 4627 /** 4628 * _ieee80211_is_group_privacy_action - check if frame is a group addressed 4629 * privacy action frame 4630 * @hdr: the frame 4631 * Return: whether or not the frame is a group addressed privacy action frame 4632 */ 4633 static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr) 4634 { 4635 struct ieee80211_mgmt *mgmt = (void *)hdr; 4636 4637 if (!ieee80211_is_action(hdr->frame_control) || 4638 !is_multicast_ether_addr(hdr->addr1)) 4639 return false; 4640 4641 return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION || 4642 mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION; 4643 } 4644 4645 /** 4646 * ieee80211_is_group_privacy_action - check if frame is a group addressed 4647 * privacy action frame 4648 * @skb: the skb containing the frame, length will be checked 4649 * Return: whether or not the frame is a group addressed privacy action frame 4650 */ 4651 static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb) 4652 { 4653 if (skb->len < IEEE80211_MIN_ACTION_SIZE) 4654 return false; 4655 return _ieee80211_is_group_privacy_action((void *)skb->data); 4656 } 4657 4658 /** 4659 * ieee80211_tu_to_usec - convert time units (TU) to microseconds 4660 * @tu: the TUs 4661 * Return: the time value converted to microseconds 4662 */ 4663 static inline unsigned long ieee80211_tu_to_usec(unsigned long tu) 4664 { 4665 return 1024 * tu; 4666 } 4667 4668 /** 4669 * ieee80211_check_tim - check if AID bit is set in TIM 4670 * @tim: the TIM IE 4671 * @tim_len: length of the TIM IE 4672 * @aid: the AID to look for 4673 * Return: whether or not traffic is indicated in the TIM for the given AID 4674 */ 4675 static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim, 4676 u8 tim_len, u16 aid) 4677 { 4678 u8 mask; 4679 u8 index, indexn1, indexn2; 4680 4681 if (unlikely(!tim || tim_len < sizeof(*tim))) 4682 return false; 4683 4684 aid &= 0x3fff; 4685 index = aid / 8; 4686 mask = 1 << (aid & 7); 4687 4688 indexn1 = tim->bitmap_ctrl & 0xfe; 4689 indexn2 = tim_len + indexn1 - 4; 4690 4691 if (index < indexn1 || index > indexn2) 4692 return false; 4693 4694 index -= indexn1; 4695 4696 return !!(tim->virtual_map[index] & mask); 4697 } 4698 4699 /** 4700 * ieee80211_get_tdls_action - get TDLS action code 4701 * @skb: the skb containing the frame, length will not be checked 4702 * Return: the TDLS action code, or -1 if it's not an encapsulated TDLS action 4703 * frame 4704 * 4705 * This function assumes the frame is a data frame, and that the network header 4706 * is in the correct place. 4707 */ 4708 static inline int ieee80211_get_tdls_action(struct sk_buff *skb) 4709 { 4710 if (!skb_is_nonlinear(skb) && 4711 skb->len > (skb_network_offset(skb) + 2)) { 4712 /* Point to where the indication of TDLS should start */ 4713 const u8 *tdls_data = skb_network_header(skb) - 2; 4714 4715 if (get_unaligned_be16(tdls_data) == ETH_P_TDLS && 4716 tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE && 4717 tdls_data[3] == WLAN_CATEGORY_TDLS) 4718 return tdls_data[4]; 4719 } 4720 4721 return -1; 4722 } 4723 4724 /* convert time units */ 4725 #define TU_TO_JIFFIES(x) (usecs_to_jiffies((x) * 1024)) 4726 #define TU_TO_EXP_TIME(x) (jiffies + TU_TO_JIFFIES(x)) 4727 4728 /* convert frequencies */ 4729 #define MHZ_TO_KHZ(freq) ((freq) * 1000) 4730 #define KHZ_TO_MHZ(freq) ((freq) / 1000) 4731 #define PR_KHZ(f) KHZ_TO_MHZ(f), f % 1000 4732 #define KHZ_F "%d.%03d" 4733 4734 /* convert powers */ 4735 #define DBI_TO_MBI(gain) ((gain) * 100) 4736 #define MBI_TO_DBI(gain) ((gain) / 100) 4737 #define DBM_TO_MBM(gain) ((gain) * 100) 4738 #define MBM_TO_DBM(gain) ((gain) / 100) 4739 4740 /** 4741 * ieee80211_action_contains_tpc - checks if the frame contains TPC element 4742 * @skb: the skb containing the frame, length will be checked 4743 * Return: %true if the frame contains a TPC element, %false otherwise 4744 * 4745 * This function checks if it's either TPC report action frame or Link 4746 * Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5 4747 * and 8.5.7.5 accordingly. 4748 */ 4749 static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb) 4750 { 4751 struct ieee80211_mgmt *mgmt = (void *)skb->data; 4752 4753 if (!ieee80211_is_action(mgmt->frame_control)) 4754 return false; 4755 4756 if (skb->len < IEEE80211_MIN_ACTION_SIZE + 4757 sizeof(mgmt->u.action.u.tpc_report)) 4758 return false; 4759 4760 /* 4761 * TPC report - check that: 4762 * category = 0 (Spectrum Management) or 5 (Radio Measurement) 4763 * spectrum management action = 3 (TPC/Link Measurement report) 4764 * TPC report EID = 35 4765 * TPC report element length = 2 4766 * 4767 * The spectrum management's tpc_report struct is used here both for 4768 * parsing tpc_report and radio measurement's link measurement report 4769 * frame, since the relevant part is identical in both frames. 4770 */ 4771 if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT && 4772 mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT) 4773 return false; 4774 4775 /* both spectrum mgmt and link measurement have same action code */ 4776 if (mgmt->u.action.u.tpc_report.action_code != 4777 WLAN_ACTION_SPCT_TPC_RPRT) 4778 return false; 4779 4780 if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT || 4781 mgmt->u.action.u.tpc_report.tpc_elem_length != 4782 sizeof(struct ieee80211_tpc_report_ie)) 4783 return false; 4784 4785 return true; 4786 } 4787 4788 /** 4789 * ieee80211_is_timing_measurement - check if frame is timing measurement response 4790 * @skb: the SKB to check 4791 * Return: whether or not the frame is a valid timing measurement response 4792 */ 4793 static inline bool ieee80211_is_timing_measurement(struct sk_buff *skb) 4794 { 4795 struct ieee80211_mgmt *mgmt = (void *)skb->data; 4796 4797 if (skb->len < IEEE80211_MIN_ACTION_SIZE) 4798 return false; 4799 4800 if (!ieee80211_is_action(mgmt->frame_control)) 4801 return false; 4802 4803 if (mgmt->u.action.category == WLAN_CATEGORY_WNM_UNPROTECTED && 4804 mgmt->u.action.u.wnm_timing_msr.action_code == 4805 WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE && 4806 skb->len >= offsetofend(typeof(*mgmt), u.action.u.wnm_timing_msr)) 4807 return true; 4808 4809 return false; 4810 } 4811 4812 /** 4813 * ieee80211_is_ftm - check if frame is FTM response 4814 * @skb: the SKB to check 4815 * Return: whether or not the frame is a valid FTM response action frame 4816 */ 4817 static inline bool ieee80211_is_ftm(struct sk_buff *skb) 4818 { 4819 struct ieee80211_mgmt *mgmt = (void *)skb->data; 4820 4821 if (!ieee80211_is_public_action((void *)mgmt, skb->len)) 4822 return false; 4823 4824 if (mgmt->u.action.u.ftm.action_code == 4825 WLAN_PUB_ACTION_FTM_RESPONSE && 4826 skb->len >= offsetofend(typeof(*mgmt), u.action.u.ftm)) 4827 return true; 4828 4829 return false; 4830 } 4831 4832 struct element { 4833 u8 id; 4834 u8 datalen; 4835 u8 data[]; 4836 } __packed; 4837 4838 /* element iteration helpers */ 4839 #define for_each_element(_elem, _data, _datalen) \ 4840 for (_elem = (const struct element *)(_data); \ 4841 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \ 4842 (int)sizeof(*_elem) && \ 4843 (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \ 4844 (int)sizeof(*_elem) + _elem->datalen; \ 4845 _elem = (const struct element *)(_elem->data + _elem->datalen)) 4846 4847 #define for_each_element_id(element, _id, data, datalen) \ 4848 for_each_element(element, data, datalen) \ 4849 if (element->id == (_id)) 4850 4851 #define for_each_element_extid(element, extid, _data, _datalen) \ 4852 for_each_element(element, _data, _datalen) \ 4853 if (element->id == WLAN_EID_EXTENSION && \ 4854 element->datalen > 0 && \ 4855 element->data[0] == (extid)) 4856 4857 #define for_each_subelement(sub, element) \ 4858 for_each_element(sub, (element)->data, (element)->datalen) 4859 4860 #define for_each_subelement_id(sub, id, element) \ 4861 for_each_element_id(sub, id, (element)->data, (element)->datalen) 4862 4863 #define for_each_subelement_extid(sub, extid, element) \ 4864 for_each_element_extid(sub, extid, (element)->data, (element)->datalen) 4865 4866 /** 4867 * for_each_element_completed - determine if element parsing consumed all data 4868 * @element: element pointer after for_each_element() or friends 4869 * @data: same data pointer as passed to for_each_element() or friends 4870 * @datalen: same data length as passed to for_each_element() or friends 4871 * Return: %true if all elements were iterated, %false otherwise; see notes 4872 * 4873 * This function returns %true if all the data was parsed or considered 4874 * while walking the elements. Only use this if your for_each_element() 4875 * loop cannot be broken out of, otherwise it always returns %false. 4876 * 4877 * If some data was malformed, this returns %false since the last parsed 4878 * element will not fill the whole remaining data. 4879 */ 4880 static inline bool for_each_element_completed(const struct element *element, 4881 const void *data, size_t datalen) 4882 { 4883 return (const u8 *)element == (const u8 *)data + datalen; 4884 } 4885 4886 /* 4887 * RSNX Capabilities: 4888 * bits 0-3: Field length (n-1) 4889 */ 4890 #define WLAN_RSNX_CAPA_PROTECTED_TWT BIT(4) 4891 #define WLAN_RSNX_CAPA_SAE_H2E BIT(5) 4892 4893 /* 4894 * reduced neighbor report, based on Draft P802.11ax_D6.1, 4895 * section 9.4.2.170 and accepted contributions. 4896 */ 4897 #define IEEE80211_AP_INFO_TBTT_HDR_TYPE 0x03 4898 #define IEEE80211_AP_INFO_TBTT_HDR_FILTERED 0x04 4899 #define IEEE80211_AP_INFO_TBTT_HDR_COLOC 0x08 4900 #define IEEE80211_AP_INFO_TBTT_HDR_COUNT 0xF0 4901 #define IEEE80211_TBTT_INFO_TYPE_TBTT 0 4902 #define IEEE80211_TBTT_INFO_TYPE_MLD 1 4903 4904 #define IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED 0x01 4905 #define IEEE80211_RNR_TBTT_PARAMS_SAME_SSID 0x02 4906 #define IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID 0x04 4907 #define IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID 0x08 4908 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS 0x10 4909 #define IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE 0x20 4910 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_AP 0x40 4911 4912 #define IEEE80211_RNR_TBTT_PARAMS_PSD_NO_LIMIT 127 4913 #define IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED -128 4914 4915 struct ieee80211_neighbor_ap_info { 4916 u8 tbtt_info_hdr; 4917 u8 tbtt_info_len; 4918 u8 op_class; 4919 u8 channel; 4920 } __packed; 4921 4922 enum ieee80211_range_params_max_total_ltf { 4923 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_4 = 0, 4924 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_8, 4925 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_16, 4926 IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_UNSPECIFIED, 4927 }; 4928 4929 /* 4930 * reduced neighbor report, based on Draft P802.11be_D3.0, 4931 * section 9.4.2.170.2. 4932 */ 4933 struct ieee80211_rnr_mld_params { 4934 u8 mld_id; 4935 __le16 params; 4936 } __packed; 4937 4938 #define IEEE80211_RNR_MLD_PARAMS_LINK_ID 0x000F 4939 #define IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT 0x0FF0 4940 #define IEEE80211_RNR_MLD_PARAMS_UPDATES_INCLUDED 0x1000 4941 #define IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK 0x2000 4942 4943 /* Format of the TBTT information element if it has 7, 8 or 9 bytes */ 4944 struct ieee80211_tbtt_info_7_8_9 { 4945 u8 tbtt_offset; 4946 u8 bssid[ETH_ALEN]; 4947 4948 /* The following element is optional, structure may not grow */ 4949 u8 bss_params; 4950 s8 psd_20; 4951 } __packed; 4952 4953 /* Format of the TBTT information element if it has >= 11 bytes */ 4954 struct ieee80211_tbtt_info_ge_11 { 4955 u8 tbtt_offset; 4956 u8 bssid[ETH_ALEN]; 4957 __le32 short_ssid; 4958 4959 /* The following elements are optional, structure may grow */ 4960 u8 bss_params; 4961 s8 psd_20; 4962 struct ieee80211_rnr_mld_params mld_params; 4963 } __packed; 4964 4965 /* multi-link device */ 4966 #define IEEE80211_MLD_MAX_NUM_LINKS 15 4967 4968 #define IEEE80211_ML_CONTROL_TYPE 0x0007 4969 #define IEEE80211_ML_CONTROL_TYPE_BASIC 0 4970 #define IEEE80211_ML_CONTROL_TYPE_PREQ 1 4971 #define IEEE80211_ML_CONTROL_TYPE_RECONF 2 4972 #define IEEE80211_ML_CONTROL_TYPE_TDLS 3 4973 #define IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS 4 4974 #define IEEE80211_ML_CONTROL_PRESENCE_MASK 0xfff0 4975 4976 struct ieee80211_multi_link_elem { 4977 __le16 control; 4978 u8 variable[]; 4979 } __packed; 4980 4981 #define IEEE80211_MLC_BASIC_PRES_LINK_ID 0x0010 4982 #define IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT 0x0020 4983 #define IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY 0x0040 4984 #define IEEE80211_MLC_BASIC_PRES_EML_CAPA 0x0080 4985 #define IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP 0x0100 4986 #define IEEE80211_MLC_BASIC_PRES_MLD_ID 0x0200 4987 #define IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP 0x0400 4988 4989 #define IEEE80211_MED_SYNC_DELAY_DURATION 0x00ff 4990 #define IEEE80211_MED_SYNC_DELAY_SYNC_OFDM_ED_THRESH 0x0f00 4991 #define IEEE80211_MED_SYNC_DELAY_SYNC_MAX_NUM_TXOPS 0xf000 4992 4993 /* 4994 * Described in P802.11be_D3.0 4995 * dot11MSDTimerDuration should default to 5484 (i.e. 171.375) 4996 * dot11MSDOFDMEDthreshold defaults to -72 (i.e. 0) 4997 * dot11MSDTXOPMAX defaults to 1 4998 */ 4999 #define IEEE80211_MED_SYNC_DELAY_DEFAULT 0x10ac 5000 5001 #define IEEE80211_EML_CAP_EMLSR_SUPP 0x0001 5002 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY 0x000e 5003 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_0US 0 5004 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_32US 1 5005 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_64US 2 5006 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_128US 3 5007 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US 4 5008 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY 0x0070 5009 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_0US 0 5010 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_16US 1 5011 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_32US 2 5012 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_64US 3 5013 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_128US 4 5014 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US 5 5015 #define IEEE80211_EML_CAP_EMLMR_SUPPORT 0x0080 5016 #define IEEE80211_EML_CAP_EMLMR_DELAY 0x0700 5017 #define IEEE80211_EML_CAP_EMLMR_DELAY_0US 0 5018 #define IEEE80211_EML_CAP_EMLMR_DELAY_32US 1 5019 #define IEEE80211_EML_CAP_EMLMR_DELAY_64US 2 5020 #define IEEE80211_EML_CAP_EMLMR_DELAY_128US 3 5021 #define IEEE80211_EML_CAP_EMLMR_DELAY_256US 4 5022 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT 0x7800 5023 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_0 0 5024 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128US 1 5025 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_256US 2 5026 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_512US 3 5027 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_1TU 4 5028 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_2TU 5 5029 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_4TU 6 5030 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_8TU 7 5031 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_16TU 8 5032 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_32TU 9 5033 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_64TU 10 5034 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU 11 5035 5036 #define IEEE80211_MLD_CAP_OP_MAX_SIMUL_LINKS 0x000f 5037 #define IEEE80211_MLD_CAP_OP_SRS_SUPPORT 0x0010 5038 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP 0x0060 5039 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_NO_SUPP 0 5040 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_SAME 1 5041 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_RESERVED 2 5042 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP_DIFF 3 5043 #define IEEE80211_MLD_CAP_OP_FREQ_SEP_TYPE_IND 0x0f80 5044 #define IEEE80211_MLD_CAP_OP_AAR_SUPPORT 0x1000 5045 #define IEEE80211_MLD_CAP_OP_LINK_RECONF_SUPPORT 0x2000 5046 #define IEEE80211_MLD_CAP_OP_ALIGNED_TWT_SUPPORT 0x4000 5047 5048 struct ieee80211_mle_basic_common_info { 5049 u8 len; 5050 u8 mld_mac_addr[ETH_ALEN]; 5051 u8 variable[]; 5052 } __packed; 5053 5054 #define IEEE80211_MLC_PREQ_PRES_MLD_ID 0x0010 5055 5056 struct ieee80211_mle_preq_common_info { 5057 u8 len; 5058 u8 variable[]; 5059 } __packed; 5060 5061 #define IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR 0x0010 5062 #define IEEE80211_MLC_RECONF_PRES_EML_CAPA 0x0020 5063 #define IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP 0x0040 5064 #define IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP 0x0080 5065 5066 /* no fixed fields in RECONF */ 5067 5068 struct ieee80211_mle_tdls_common_info { 5069 u8 len; 5070 u8 ap_mld_mac_addr[ETH_ALEN]; 5071 } __packed; 5072 5073 #define IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR 0x0010 5074 5075 /* no fixed fields in PRIO_ACCESS */ 5076 5077 /** 5078 * ieee80211_mle_common_size - check multi-link element common size 5079 * @data: multi-link element, must already be checked for size using 5080 * ieee80211_mle_size_ok() 5081 * Return: the size of the multi-link element's "common" subfield 5082 */ 5083 static inline u8 ieee80211_mle_common_size(const u8 *data) 5084 { 5085 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5086 u16 control = le16_to_cpu(mle->control); 5087 5088 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) { 5089 case IEEE80211_ML_CONTROL_TYPE_BASIC: 5090 case IEEE80211_ML_CONTROL_TYPE_PREQ: 5091 case IEEE80211_ML_CONTROL_TYPE_TDLS: 5092 case IEEE80211_ML_CONTROL_TYPE_RECONF: 5093 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS: 5094 /* 5095 * The length is the first octet pointed by mle->variable so no 5096 * need to add anything 5097 */ 5098 break; 5099 default: 5100 WARN_ON(1); 5101 return 0; 5102 } 5103 5104 return sizeof(*mle) + mle->variable[0]; 5105 } 5106 5107 /** 5108 * ieee80211_mle_get_link_id - returns the link ID 5109 * @data: the basic multi link element 5110 * Return: the link ID, or -1 if not present 5111 * 5112 * The element is assumed to be of the correct type (BASIC) and big enough, 5113 * this must be checked using ieee80211_mle_type_ok(). 5114 */ 5115 static inline int ieee80211_mle_get_link_id(const u8 *data) 5116 { 5117 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5118 u16 control = le16_to_cpu(mle->control); 5119 const u8 *common = mle->variable; 5120 5121 /* common points now at the beginning of ieee80211_mle_basic_common_info */ 5122 common += sizeof(struct ieee80211_mle_basic_common_info); 5123 5124 if (!(control & IEEE80211_MLC_BASIC_PRES_LINK_ID)) 5125 return -1; 5126 5127 return *common; 5128 } 5129 5130 /** 5131 * ieee80211_mle_get_bss_param_ch_cnt - returns the BSS parameter change count 5132 * @data: pointer to the basic multi link element 5133 * Return: the BSS Parameter Change Count field value, or -1 if not present 5134 * 5135 * The element is assumed to be of the correct type (BASIC) and big enough, 5136 * this must be checked using ieee80211_mle_type_ok(). 5137 */ 5138 static inline int 5139 ieee80211_mle_get_bss_param_ch_cnt(const u8 *data) 5140 { 5141 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5142 u16 control = le16_to_cpu(mle->control); 5143 const u8 *common = mle->variable; 5144 5145 /* common points now at the beginning of ieee80211_mle_basic_common_info */ 5146 common += sizeof(struct ieee80211_mle_basic_common_info); 5147 5148 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)) 5149 return -1; 5150 5151 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5152 common += 1; 5153 5154 return *common; 5155 } 5156 5157 /** 5158 * ieee80211_mle_get_eml_med_sync_delay - returns the medium sync delay 5159 * @data: pointer to the multi-link element 5160 * Return: the medium synchronization delay field value from the multi-link 5161 * element, or the default value (%IEEE80211_MED_SYNC_DELAY_DEFAULT) 5162 * if not present 5163 * 5164 * The element is assumed to be of the correct type (BASIC) and big enough, 5165 * this must be checked using ieee80211_mle_type_ok(). 5166 */ 5167 static inline u16 ieee80211_mle_get_eml_med_sync_delay(const u8 *data) 5168 { 5169 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5170 u16 control = le16_to_cpu(mle->control); 5171 const u8 *common = mle->variable; 5172 5173 /* common points now at the beginning of ieee80211_mle_basic_common_info */ 5174 common += sizeof(struct ieee80211_mle_basic_common_info); 5175 5176 if (!(control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)) 5177 return IEEE80211_MED_SYNC_DELAY_DEFAULT; 5178 5179 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5180 common += 1; 5181 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5182 common += 1; 5183 5184 return get_unaligned_le16(common); 5185 } 5186 5187 /** 5188 * ieee80211_mle_get_eml_cap - returns the EML capability 5189 * @data: pointer to the multi-link element 5190 * Return: the EML capability field value from the multi-link element, 5191 * or 0 if not present 5192 * 5193 * The element is assumed to be of the correct type (BASIC) and big enough, 5194 * this must be checked using ieee80211_mle_type_ok(). 5195 */ 5196 static inline u16 ieee80211_mle_get_eml_cap(const u8 *data) 5197 { 5198 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5199 u16 control = le16_to_cpu(mle->control); 5200 const u8 *common = mle->variable; 5201 5202 /* common points now at the beginning of ieee80211_mle_basic_common_info */ 5203 common += sizeof(struct ieee80211_mle_basic_common_info); 5204 5205 if (!(control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)) 5206 return 0; 5207 5208 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5209 common += 1; 5210 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5211 common += 1; 5212 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5213 common += 2; 5214 5215 return get_unaligned_le16(common); 5216 } 5217 5218 /** 5219 * ieee80211_mle_get_mld_capa_op - returns the MLD capabilities and operations. 5220 * @data: pointer to the multi-link element 5221 * Return: the MLD capabilities and operations field value from the multi-link 5222 * element, or 0 if not present 5223 * 5224 * The element is assumed to be of the correct type (BASIC) and big enough, 5225 * this must be checked using ieee80211_mle_type_ok(). 5226 */ 5227 static inline u16 ieee80211_mle_get_mld_capa_op(const u8 *data) 5228 { 5229 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5230 u16 control = le16_to_cpu(mle->control); 5231 const u8 *common = mle->variable; 5232 5233 /* 5234 * common points now at the beginning of 5235 * ieee80211_mle_basic_common_info 5236 */ 5237 common += sizeof(struct ieee80211_mle_basic_common_info); 5238 5239 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) 5240 return 0; 5241 5242 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5243 common += 1; 5244 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5245 common += 1; 5246 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5247 common += 2; 5248 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA) 5249 common += 2; 5250 5251 return get_unaligned_le16(common); 5252 } 5253 5254 /** 5255 * ieee80211_mle_get_ext_mld_capa_op - returns the extended MLD capabilities 5256 * and operations. 5257 * @data: pointer to the multi-link element 5258 * Return: the extended MLD capabilities and operations field value from 5259 * the multi-link element, or 0 if not present 5260 * 5261 * The element is assumed to be of the correct type (BASIC) and big enough, 5262 * this must be checked using ieee80211_mle_type_ok(). 5263 */ 5264 static inline u16 ieee80211_mle_get_ext_mld_capa_op(const u8 *data) 5265 { 5266 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5267 u16 control = le16_to_cpu(mle->control); 5268 const u8 *common = mle->variable; 5269 5270 /* 5271 * common points now at the beginning of 5272 * ieee80211_mle_basic_common_info 5273 */ 5274 common += sizeof(struct ieee80211_mle_basic_common_info); 5275 5276 if (!(control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP)) 5277 return 0; 5278 5279 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5280 common += 1; 5281 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5282 common += 1; 5283 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5284 common += 2; 5285 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA) 5286 common += 2; 5287 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP) 5288 common += 2; 5289 if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID) 5290 common += 1; 5291 5292 return get_unaligned_le16(common); 5293 } 5294 5295 /** 5296 * ieee80211_mle_get_mld_id - returns the MLD ID 5297 * @data: pointer to the multi-link element 5298 * Return: The MLD ID in the given multi-link element, or 0 if not present 5299 * 5300 * The element is assumed to be of the correct type (BASIC) and big enough, 5301 * this must be checked using ieee80211_mle_type_ok(). 5302 */ 5303 static inline u8 ieee80211_mle_get_mld_id(const u8 *data) 5304 { 5305 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5306 u16 control = le16_to_cpu(mle->control); 5307 const u8 *common = mle->variable; 5308 5309 /* 5310 * common points now at the beginning of 5311 * ieee80211_mle_basic_common_info 5312 */ 5313 common += sizeof(struct ieee80211_mle_basic_common_info); 5314 5315 if (!(control & IEEE80211_MLC_BASIC_PRES_MLD_ID)) 5316 return 0; 5317 5318 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5319 common += 1; 5320 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5321 common += 1; 5322 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5323 common += 2; 5324 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA) 5325 common += 2; 5326 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP) 5327 common += 2; 5328 5329 return *common; 5330 } 5331 5332 /** 5333 * ieee80211_mle_size_ok - validate multi-link element size 5334 * @data: pointer to the element data 5335 * @len: length of the containing element 5336 * Return: whether or not the multi-link element size is OK 5337 */ 5338 static inline bool ieee80211_mle_size_ok(const u8 *data, size_t len) 5339 { 5340 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5341 u8 fixed = sizeof(*mle); 5342 u8 common = 0; 5343 bool check_common_len = false; 5344 u16 control; 5345 5346 if (!data || len < fixed) 5347 return false; 5348 5349 control = le16_to_cpu(mle->control); 5350 5351 switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) { 5352 case IEEE80211_ML_CONTROL_TYPE_BASIC: 5353 common += sizeof(struct ieee80211_mle_basic_common_info); 5354 check_common_len = true; 5355 if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) 5356 common += 1; 5357 if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) 5358 common += 1; 5359 if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) 5360 common += 2; 5361 if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA) 5362 common += 2; 5363 if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP) 5364 common += 2; 5365 if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID) 5366 common += 1; 5367 if (control & IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP) 5368 common += 2; 5369 break; 5370 case IEEE80211_ML_CONTROL_TYPE_PREQ: 5371 common += sizeof(struct ieee80211_mle_preq_common_info); 5372 if (control & IEEE80211_MLC_PREQ_PRES_MLD_ID) 5373 common += 1; 5374 check_common_len = true; 5375 break; 5376 case IEEE80211_ML_CONTROL_TYPE_RECONF: 5377 if (control & IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR) 5378 common += ETH_ALEN; 5379 if (control & IEEE80211_MLC_RECONF_PRES_EML_CAPA) 5380 common += 2; 5381 if (control & IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP) 5382 common += 2; 5383 if (control & IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP) 5384 common += 2; 5385 break; 5386 case IEEE80211_ML_CONTROL_TYPE_TDLS: 5387 common += sizeof(struct ieee80211_mle_tdls_common_info); 5388 check_common_len = true; 5389 break; 5390 case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS: 5391 common = ETH_ALEN + 1; 5392 break; 5393 default: 5394 /* we don't know this type */ 5395 return true; 5396 } 5397 5398 if (len < fixed + common) 5399 return false; 5400 5401 if (!check_common_len) 5402 return true; 5403 5404 /* if present, common length is the first octet there */ 5405 return mle->variable[0] >= common; 5406 } 5407 5408 /** 5409 * ieee80211_mle_type_ok - validate multi-link element type and size 5410 * @data: pointer to the element data 5411 * @type: expected type of the element 5412 * @len: length of the containing element 5413 * Return: whether or not the multi-link element type matches and size is OK 5414 */ 5415 static inline bool ieee80211_mle_type_ok(const u8 *data, u8 type, size_t len) 5416 { 5417 const struct ieee80211_multi_link_elem *mle = (const void *)data; 5418 u16 control; 5419 5420 if (!ieee80211_mle_size_ok(data, len)) 5421 return false; 5422 5423 control = le16_to_cpu(mle->control); 5424 5425 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) == type) 5426 return true; 5427 5428 return false; 5429 } 5430 5431 enum ieee80211_mle_subelems { 5432 IEEE80211_MLE_SUBELEM_PER_STA_PROFILE = 0, 5433 IEEE80211_MLE_SUBELEM_FRAGMENT = 254, 5434 }; 5435 5436 #define IEEE80211_MLE_STA_CONTROL_LINK_ID 0x000f 5437 #define IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE 0x0010 5438 #define IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT 0x0020 5439 #define IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT 0x0040 5440 #define IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT 0x0080 5441 #define IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT 0x0100 5442 #define IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT 0x0200 5443 #define IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE 0x0400 5444 #define IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT 0x0800 5445 5446 struct ieee80211_mle_per_sta_profile { 5447 __le16 control; 5448 u8 sta_info_len; 5449 u8 variable[]; 5450 } __packed; 5451 5452 /** 5453 * ieee80211_mle_basic_sta_prof_size_ok - validate basic multi-link element sta 5454 * profile size 5455 * @data: pointer to the sub element data 5456 * @len: length of the containing sub element 5457 * Return: %true if the STA profile is large enough, %false otherwise 5458 */ 5459 static inline bool ieee80211_mle_basic_sta_prof_size_ok(const u8 *data, 5460 size_t len) 5461 { 5462 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data; 5463 u16 control; 5464 u8 fixed = sizeof(*prof); 5465 u8 info_len = 1; 5466 5467 if (len < fixed) 5468 return false; 5469 5470 control = le16_to_cpu(prof->control); 5471 5472 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT) 5473 info_len += 6; 5474 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) 5475 info_len += 2; 5476 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) 5477 info_len += 8; 5478 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT) 5479 info_len += 2; 5480 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE && 5481 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) { 5482 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE) 5483 info_len += 2; 5484 else 5485 info_len += 1; 5486 } 5487 if (control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT) 5488 info_len += 1; 5489 5490 return prof->sta_info_len >= info_len && 5491 fixed + prof->sta_info_len - 1 <= len; 5492 } 5493 5494 /** 5495 * ieee80211_mle_basic_sta_prof_bss_param_ch_cnt - get per-STA profile BSS 5496 * parameter change count 5497 * @prof: the per-STA profile, having been checked with 5498 * ieee80211_mle_basic_sta_prof_size_ok() for the correct length 5499 * 5500 * Return: The BSS parameter change count value if present, 0 otherwise. 5501 */ 5502 static inline u8 5503 ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile *prof) 5504 { 5505 u16 control = le16_to_cpu(prof->control); 5506 const u8 *pos = prof->variable; 5507 5508 if (!(control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT)) 5509 return 0; 5510 5511 if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT) 5512 pos += 6; 5513 if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) 5514 pos += 2; 5515 if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) 5516 pos += 8; 5517 if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT) 5518 pos += 2; 5519 if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE && 5520 control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) { 5521 if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE) 5522 pos += 2; 5523 else 5524 pos += 1; 5525 } 5526 5527 return *pos; 5528 } 5529 5530 #define IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID 0x000f 5531 #define IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE 0x0010 5532 #define IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT 0x0020 5533 #define IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT 0x0040 5534 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE 0x0780 5535 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_AP_REM 0 5536 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_OP_PARAM_UPDATE 1 5537 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_ADD_LINK 2 5538 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_DEL_LINK 3 5539 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_NSTR_STATUS 4 5540 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT 0x0800 5541 5542 /** 5543 * ieee80211_mle_reconf_sta_prof_size_ok - validate reconfiguration multi-link 5544 * element sta profile size. 5545 * @data: pointer to the sub element data 5546 * @len: length of the containing sub element 5547 * Return: %true if the STA profile is large enough, %false otherwise 5548 */ 5549 static inline bool ieee80211_mle_reconf_sta_prof_size_ok(const u8 *data, 5550 size_t len) 5551 { 5552 const struct ieee80211_mle_per_sta_profile *prof = (const void *)data; 5553 u16 control; 5554 u8 fixed = sizeof(*prof); 5555 u8 info_len = 1; 5556 5557 if (len < fixed) 5558 return false; 5559 5560 control = le16_to_cpu(prof->control); 5561 5562 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT) 5563 info_len += ETH_ALEN; 5564 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT) 5565 info_len += 2; 5566 if (control & IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT) 5567 info_len += 2; 5568 5569 return prof->sta_info_len >= info_len && 5570 fixed + prof->sta_info_len - 1 <= len; 5571 } 5572 5573 static inline bool ieee80211_tid_to_link_map_size_ok(const u8 *data, size_t len) 5574 { 5575 const struct ieee80211_ttlm_elem *t2l = (const void *)data; 5576 u8 control, fixed = sizeof(*t2l), elem_len = 0; 5577 5578 if (len < fixed) 5579 return false; 5580 5581 control = t2l->control; 5582 5583 if (control & IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT) 5584 elem_len += 2; 5585 if (control & IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT) 5586 elem_len += 3; 5587 5588 if (!(control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP)) { 5589 u8 bm_size; 5590 5591 elem_len += 1; 5592 if (len < fixed + elem_len) 5593 return false; 5594 5595 if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE) 5596 bm_size = 1; 5597 else 5598 bm_size = 2; 5599 5600 elem_len += hweight8(t2l->optional[0]) * bm_size; 5601 } 5602 5603 return len >= fixed + elem_len; 5604 } 5605 5606 #define for_each_mle_subelement(_elem, _data, _len) \ 5607 if (ieee80211_mle_size_ok(_data, _len)) \ 5608 for_each_element(_elem, \ 5609 _data + ieee80211_mle_common_size(_data),\ 5610 _len - ieee80211_mle_common_size(_data)) 5611 5612 #endif /* LINUX_IEEE80211_H */ 5613