1 /* 2 * IEEE 802.11 defines 3 * 4 * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen 5 * <[email protected]> 6 * Copyright (c) 2002-2003, Jouni Malinen <[email protected]> 7 * Copyright (c) 2005, Devicescape Software, Inc. 8 * Copyright (c) 2006, Michael Wu <[email protected]> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 */ 14 15 #ifndef LINUX_IEEE80211_H 16 #define LINUX_IEEE80211_H 17 18 #include <linux/types.h> 19 #include <asm/byteorder.h> 20 21 /* 22 * DS bit usage 23 * 24 * TA = transmitter address 25 * RA = receiver address 26 * DA = destination address 27 * SA = source address 28 * 29 * ToDS FromDS A1(RA) A2(TA) A3 A4 Use 30 * ----------------------------------------------------------------- 31 * 0 0 DA SA BSSID - IBSS/DLS 32 * 0 1 DA BSSID SA - AP -> STA 33 * 1 0 BSSID SA DA - AP <- STA 34 * 1 1 RA TA DA SA unspecified (WDS) 35 */ 36 37 #define FCS_LEN 4 38 39 #define IEEE80211_FCTL_VERS 0x0003 40 #define IEEE80211_FCTL_FTYPE 0x000c 41 #define IEEE80211_FCTL_STYPE 0x00f0 42 #define IEEE80211_FCTL_TODS 0x0100 43 #define IEEE80211_FCTL_FROMDS 0x0200 44 #define IEEE80211_FCTL_MOREFRAGS 0x0400 45 #define IEEE80211_FCTL_RETRY 0x0800 46 #define IEEE80211_FCTL_PM 0x1000 47 #define IEEE80211_FCTL_MOREDATA 0x2000 48 #define IEEE80211_FCTL_PROTECTED 0x4000 49 #define IEEE80211_FCTL_ORDER 0x8000 50 51 #define IEEE80211_SCTL_FRAG 0x000F 52 #define IEEE80211_SCTL_SEQ 0xFFF0 53 54 #define IEEE80211_FTYPE_MGMT 0x0000 55 #define IEEE80211_FTYPE_CTL 0x0004 56 #define IEEE80211_FTYPE_DATA 0x0008 57 58 /* management */ 59 #define IEEE80211_STYPE_ASSOC_REQ 0x0000 60 #define IEEE80211_STYPE_ASSOC_RESP 0x0010 61 #define IEEE80211_STYPE_REASSOC_REQ 0x0020 62 #define IEEE80211_STYPE_REASSOC_RESP 0x0030 63 #define IEEE80211_STYPE_PROBE_REQ 0x0040 64 #define IEEE80211_STYPE_PROBE_RESP 0x0050 65 #define IEEE80211_STYPE_BEACON 0x0080 66 #define IEEE80211_STYPE_ATIM 0x0090 67 #define IEEE80211_STYPE_DISASSOC 0x00A0 68 #define IEEE80211_STYPE_AUTH 0x00B0 69 #define IEEE80211_STYPE_DEAUTH 0x00C0 70 #define IEEE80211_STYPE_ACTION 0x00D0 71 72 /* control */ 73 #define IEEE80211_STYPE_BACK_REQ 0x0080 74 #define IEEE80211_STYPE_BACK 0x0090 75 #define IEEE80211_STYPE_PSPOLL 0x00A0 76 #define IEEE80211_STYPE_RTS 0x00B0 77 #define IEEE80211_STYPE_CTS 0x00C0 78 #define IEEE80211_STYPE_ACK 0x00D0 79 #define IEEE80211_STYPE_CFEND 0x00E0 80 #define IEEE80211_STYPE_CFENDACK 0x00F0 81 82 /* data */ 83 #define IEEE80211_STYPE_DATA 0x0000 84 #define IEEE80211_STYPE_DATA_CFACK 0x0010 85 #define IEEE80211_STYPE_DATA_CFPOLL 0x0020 86 #define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030 87 #define IEEE80211_STYPE_NULLFUNC 0x0040 88 #define IEEE80211_STYPE_CFACK 0x0050 89 #define IEEE80211_STYPE_CFPOLL 0x0060 90 #define IEEE80211_STYPE_CFACKPOLL 0x0070 91 #define IEEE80211_STYPE_QOS_DATA 0x0080 92 #define IEEE80211_STYPE_QOS_DATA_CFACK 0x0090 93 #define IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0 94 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0 95 #define IEEE80211_STYPE_QOS_NULLFUNC 0x00C0 96 #define IEEE80211_STYPE_QOS_CFACK 0x00D0 97 #define IEEE80211_STYPE_QOS_CFPOLL 0x00E0 98 #define IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0 99 100 101 /* miscellaneous IEEE 802.11 constants */ 102 #define IEEE80211_MAX_FRAG_THRESHOLD 2352 103 #define IEEE80211_MAX_RTS_THRESHOLD 2353 104 #define IEEE80211_MAX_AID 2007 105 #define IEEE80211_MAX_TIM_LEN 251 106 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section 107 6.2.1.1.2. 108 109 802.11e clarifies the figure in section 7.1.2. The frame body is 110 up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */ 111 #define IEEE80211_MAX_DATA_LEN 2304 112 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */ 113 #define IEEE80211_MAX_FRAME_LEN 2352 114 115 #define IEEE80211_MAX_SSID_LEN 32 116 117 #define IEEE80211_MAX_MESH_ID_LEN 32 118 #define IEEE80211_MESH_CONFIG_LEN 24 119 120 #define IEEE80211_QOS_CTL_LEN 2 121 #define IEEE80211_QOS_CTL_TID_MASK 0x000F 122 #define IEEE80211_QOS_CTL_TAG1D_MASK 0x0007 123 124 struct ieee80211_hdr { 125 __le16 frame_control; 126 __le16 duration_id; 127 u8 addr1[6]; 128 u8 addr2[6]; 129 u8 addr3[6]; 130 __le16 seq_ctrl; 131 u8 addr4[6]; 132 } __attribute__ ((packed)); 133 134 /** 135 * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set 136 * @fc: frame control bytes in little-endian byteorder 137 */ 138 static inline int ieee80211_has_tods(__le16 fc) 139 { 140 return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0; 141 } 142 143 /** 144 * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set 145 * @fc: frame control bytes in little-endian byteorder 146 */ 147 static inline int ieee80211_has_fromds(__le16 fc) 148 { 149 return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0; 150 } 151 152 /** 153 * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set 154 * @fc: frame control bytes in little-endian byteorder 155 */ 156 static inline int ieee80211_has_a4(__le16 fc) 157 { 158 __le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS); 159 return (fc & tmp) == tmp; 160 } 161 162 /** 163 * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set 164 * @fc: frame control bytes in little-endian byteorder 165 */ 166 static inline int ieee80211_has_morefrags(__le16 fc) 167 { 168 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0; 169 } 170 171 /** 172 * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set 173 * @fc: frame control bytes in little-endian byteorder 174 */ 175 static inline int ieee80211_has_retry(__le16 fc) 176 { 177 return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0; 178 } 179 180 /** 181 * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set 182 * @fc: frame control bytes in little-endian byteorder 183 */ 184 static inline int ieee80211_has_pm(__le16 fc) 185 { 186 return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0; 187 } 188 189 /** 190 * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set 191 * @fc: frame control bytes in little-endian byteorder 192 */ 193 static inline int ieee80211_has_moredata(__le16 fc) 194 { 195 return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0; 196 } 197 198 /** 199 * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set 200 * @fc: frame control bytes in little-endian byteorder 201 */ 202 static inline int ieee80211_has_protected(__le16 fc) 203 { 204 return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0; 205 } 206 207 /** 208 * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set 209 * @fc: frame control bytes in little-endian byteorder 210 */ 211 static inline int ieee80211_has_order(__le16 fc) 212 { 213 return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0; 214 } 215 216 /** 217 * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT 218 * @fc: frame control bytes in little-endian byteorder 219 */ 220 static inline int ieee80211_is_mgmt(__le16 fc) 221 { 222 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 223 cpu_to_le16(IEEE80211_FTYPE_MGMT); 224 } 225 226 /** 227 * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL 228 * @fc: frame control bytes in little-endian byteorder 229 */ 230 static inline int ieee80211_is_ctl(__le16 fc) 231 { 232 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 233 cpu_to_le16(IEEE80211_FTYPE_CTL); 234 } 235 236 /** 237 * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA 238 * @fc: frame control bytes in little-endian byteorder 239 */ 240 static inline int ieee80211_is_data(__le16 fc) 241 { 242 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == 243 cpu_to_le16(IEEE80211_FTYPE_DATA); 244 } 245 246 /** 247 * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set 248 * @fc: frame control bytes in little-endian byteorder 249 */ 250 static inline int ieee80211_is_data_qos(__le16 fc) 251 { 252 /* 253 * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need 254 * to check the one bit 255 */ 256 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) == 257 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA); 258 } 259 260 /** 261 * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data 262 * @fc: frame control bytes in little-endian byteorder 263 */ 264 static inline int ieee80211_is_data_present(__le16 fc) 265 { 266 /* 267 * mask with 0x40 and test that that bit is clear to only return true 268 * for the data-containing substypes. 269 */ 270 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) == 271 cpu_to_le16(IEEE80211_FTYPE_DATA); 272 } 273 274 /** 275 * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ 276 * @fc: frame control bytes in little-endian byteorder 277 */ 278 static inline int ieee80211_is_assoc_req(__le16 fc) 279 { 280 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 281 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ); 282 } 283 284 /** 285 * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP 286 * @fc: frame control bytes in little-endian byteorder 287 */ 288 static inline int ieee80211_is_assoc_resp(__le16 fc) 289 { 290 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 291 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP); 292 } 293 294 /** 295 * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ 296 * @fc: frame control bytes in little-endian byteorder 297 */ 298 static inline int ieee80211_is_reassoc_req(__le16 fc) 299 { 300 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 301 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ); 302 } 303 304 /** 305 * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP 306 * @fc: frame control bytes in little-endian byteorder 307 */ 308 static inline int ieee80211_is_reassoc_resp(__le16 fc) 309 { 310 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 311 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP); 312 } 313 314 /** 315 * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ 316 * @fc: frame control bytes in little-endian byteorder 317 */ 318 static inline int ieee80211_is_probe_req(__le16 fc) 319 { 320 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 321 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ); 322 } 323 324 /** 325 * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP 326 * @fc: frame control bytes in little-endian byteorder 327 */ 328 static inline int ieee80211_is_probe_resp(__le16 fc) 329 { 330 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 331 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP); 332 } 333 334 /** 335 * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON 336 * @fc: frame control bytes in little-endian byteorder 337 */ 338 static inline int ieee80211_is_beacon(__le16 fc) 339 { 340 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 341 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); 342 } 343 344 /** 345 * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM 346 * @fc: frame control bytes in little-endian byteorder 347 */ 348 static inline int ieee80211_is_atim(__le16 fc) 349 { 350 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 351 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM); 352 } 353 354 /** 355 * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC 356 * @fc: frame control bytes in little-endian byteorder 357 */ 358 static inline int ieee80211_is_disassoc(__le16 fc) 359 { 360 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 361 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC); 362 } 363 364 /** 365 * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH 366 * @fc: frame control bytes in little-endian byteorder 367 */ 368 static inline int ieee80211_is_auth(__le16 fc) 369 { 370 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 371 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH); 372 } 373 374 /** 375 * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH 376 * @fc: frame control bytes in little-endian byteorder 377 */ 378 static inline int ieee80211_is_deauth(__le16 fc) 379 { 380 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 381 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH); 382 } 383 384 /** 385 * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION 386 * @fc: frame control bytes in little-endian byteorder 387 */ 388 static inline int ieee80211_is_action(__le16 fc) 389 { 390 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 391 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); 392 } 393 394 /** 395 * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ 396 * @fc: frame control bytes in little-endian byteorder 397 */ 398 static inline int ieee80211_is_back_req(__le16 fc) 399 { 400 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 401 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ); 402 } 403 404 /** 405 * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK 406 * @fc: frame control bytes in little-endian byteorder 407 */ 408 static inline int ieee80211_is_back(__le16 fc) 409 { 410 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 411 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK); 412 } 413 414 /** 415 * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL 416 * @fc: frame control bytes in little-endian byteorder 417 */ 418 static inline int ieee80211_is_pspoll(__le16 fc) 419 { 420 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 421 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL); 422 } 423 424 /** 425 * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS 426 * @fc: frame control bytes in little-endian byteorder 427 */ 428 static inline int ieee80211_is_rts(__le16 fc) 429 { 430 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 431 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); 432 } 433 434 /** 435 * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS 436 * @fc: frame control bytes in little-endian byteorder 437 */ 438 static inline int ieee80211_is_cts(__le16 fc) 439 { 440 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 441 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); 442 } 443 444 /** 445 * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK 446 * @fc: frame control bytes in little-endian byteorder 447 */ 448 static inline int ieee80211_is_ack(__le16 fc) 449 { 450 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 451 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK); 452 } 453 454 /** 455 * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND 456 * @fc: frame control bytes in little-endian byteorder 457 */ 458 static inline int ieee80211_is_cfend(__le16 fc) 459 { 460 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 461 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND); 462 } 463 464 /** 465 * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK 466 * @fc: frame control bytes in little-endian byteorder 467 */ 468 static inline int ieee80211_is_cfendack(__le16 fc) 469 { 470 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 471 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK); 472 } 473 474 /** 475 * ieee80211_is_nullfunc - check if FTYPE=IEEE80211_FTYPE_DATA and STYPE=IEEE80211_STYPE_NULLFUNC 476 * @fc: frame control bytes in little-endian byteorder 477 */ 478 static inline int ieee80211_is_nullfunc(__le16 fc) 479 { 480 return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == 481 cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC); 482 } 483 484 struct ieee80211s_hdr { 485 u8 flags; 486 u8 ttl; 487 __le32 seqnum; 488 u8 eaddr1[6]; 489 u8 eaddr2[6]; 490 u8 eaddr3[6]; 491 } __attribute__ ((packed)); 492 493 /* Mesh flags */ 494 #define MESH_FLAGS_AE_A4 0x1 495 #define MESH_FLAGS_AE_A5_A6 0x2 496 #define MESH_FLAGS_AE 0x3 497 #define MESH_FLAGS_PS_DEEP 0x4 498 499 /** 500 * struct ieee80211_quiet_ie 501 * 502 * This structure refers to "Quiet information element" 503 */ 504 struct ieee80211_quiet_ie { 505 u8 count; 506 u8 period; 507 __le16 duration; 508 __le16 offset; 509 } __attribute__ ((packed)); 510 511 /** 512 * struct ieee80211_msrment_ie 513 * 514 * This structure refers to "Measurement Request/Report information element" 515 */ 516 struct ieee80211_msrment_ie { 517 u8 token; 518 u8 mode; 519 u8 type; 520 u8 request[0]; 521 } __attribute__ ((packed)); 522 523 /** 524 * struct ieee80211_channel_sw_ie 525 * 526 * This structure refers to "Channel Switch Announcement information element" 527 */ 528 struct ieee80211_channel_sw_ie { 529 u8 mode; 530 u8 new_ch_num; 531 u8 count; 532 } __attribute__ ((packed)); 533 534 /** 535 * struct ieee80211_tim 536 * 537 * This structure refers to "Traffic Indication Map information element" 538 */ 539 struct ieee80211_tim_ie { 540 u8 dtim_count; 541 u8 dtim_period; 542 u8 bitmap_ctrl; 543 /* variable size: 1 - 251 bytes */ 544 u8 virtual_map[1]; 545 } __attribute__ ((packed)); 546 547 #define WLAN_SA_QUERY_TR_ID_LEN 2 548 549 struct ieee80211_mgmt { 550 __le16 frame_control; 551 __le16 duration; 552 u8 da[6]; 553 u8 sa[6]; 554 u8 bssid[6]; 555 __le16 seq_ctrl; 556 union { 557 struct { 558 __le16 auth_alg; 559 __le16 auth_transaction; 560 __le16 status_code; 561 /* possibly followed by Challenge text */ 562 u8 variable[0]; 563 } __attribute__ ((packed)) auth; 564 struct { 565 __le16 reason_code; 566 } __attribute__ ((packed)) deauth; 567 struct { 568 __le16 capab_info; 569 __le16 listen_interval; 570 /* followed by SSID and Supported rates */ 571 u8 variable[0]; 572 } __attribute__ ((packed)) assoc_req; 573 struct { 574 __le16 capab_info; 575 __le16 status_code; 576 __le16 aid; 577 /* followed by Supported rates */ 578 u8 variable[0]; 579 } __attribute__ ((packed)) assoc_resp, reassoc_resp; 580 struct { 581 __le16 capab_info; 582 __le16 listen_interval; 583 u8 current_ap[6]; 584 /* followed by SSID and Supported rates */ 585 u8 variable[0]; 586 } __attribute__ ((packed)) reassoc_req; 587 struct { 588 __le16 reason_code; 589 } __attribute__ ((packed)) disassoc; 590 struct { 591 __le64 timestamp; 592 __le16 beacon_int; 593 __le16 capab_info; 594 /* followed by some of SSID, Supported rates, 595 * FH Params, DS Params, CF Params, IBSS Params, TIM */ 596 u8 variable[0]; 597 } __attribute__ ((packed)) beacon; 598 struct { 599 /* only variable items: SSID, Supported rates */ 600 u8 variable[0]; 601 } __attribute__ ((packed)) probe_req; 602 struct { 603 __le64 timestamp; 604 __le16 beacon_int; 605 __le16 capab_info; 606 /* followed by some of SSID, Supported rates, 607 * FH Params, DS Params, CF Params, IBSS Params */ 608 u8 variable[0]; 609 } __attribute__ ((packed)) probe_resp; 610 struct { 611 u8 category; 612 union { 613 struct { 614 u8 action_code; 615 u8 dialog_token; 616 u8 status_code; 617 u8 variable[0]; 618 } __attribute__ ((packed)) wme_action; 619 struct{ 620 u8 action_code; 621 u8 element_id; 622 u8 length; 623 struct ieee80211_channel_sw_ie sw_elem; 624 } __attribute__((packed)) chan_switch; 625 struct{ 626 u8 action_code; 627 u8 dialog_token; 628 u8 element_id; 629 u8 length; 630 struct ieee80211_msrment_ie msr_elem; 631 } __attribute__((packed)) measurement; 632 struct{ 633 u8 action_code; 634 u8 dialog_token; 635 __le16 capab; 636 __le16 timeout; 637 __le16 start_seq_num; 638 } __attribute__((packed)) addba_req; 639 struct{ 640 u8 action_code; 641 u8 dialog_token; 642 __le16 status; 643 __le16 capab; 644 __le16 timeout; 645 } __attribute__((packed)) addba_resp; 646 struct{ 647 u8 action_code; 648 __le16 params; 649 __le16 reason_code; 650 } __attribute__((packed)) delba; 651 struct{ 652 u8 action_code; 653 /* capab_info for open and confirm, 654 * reason for close 655 */ 656 __le16 aux; 657 /* Followed in plink_confirm by status 658 * code, AID and supported rates, 659 * and directly by supported rates in 660 * plink_open and plink_close 661 */ 662 u8 variable[0]; 663 } __attribute__((packed)) plink_action; 664 struct{ 665 u8 action_code; 666 u8 variable[0]; 667 } __attribute__((packed)) mesh_action; 668 struct { 669 u8 action; 670 u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN]; 671 } __attribute__ ((packed)) sa_query; 672 } u; 673 } __attribute__ ((packed)) action; 674 } u; 675 } __attribute__ ((packed)); 676 677 /* mgmt header + 1 byte category code */ 678 #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u) 679 680 681 /* Management MIC information element (IEEE 802.11w) */ 682 struct ieee80211_mmie { 683 u8 element_id; 684 u8 length; 685 __le16 key_id; 686 u8 sequence_number[6]; 687 u8 mic[8]; 688 } __attribute__ ((packed)); 689 690 /* Control frames */ 691 struct ieee80211_rts { 692 __le16 frame_control; 693 __le16 duration; 694 u8 ra[6]; 695 u8 ta[6]; 696 } __attribute__ ((packed)); 697 698 struct ieee80211_cts { 699 __le16 frame_control; 700 __le16 duration; 701 u8 ra[6]; 702 } __attribute__ ((packed)); 703 704 struct ieee80211_pspoll { 705 __le16 frame_control; 706 __le16 aid; 707 u8 bssid[6]; 708 u8 ta[6]; 709 } __attribute__ ((packed)); 710 711 /** 712 * struct ieee80211_bar - HT Block Ack Request 713 * 714 * This structure refers to "HT BlockAckReq" as 715 * described in 802.11n draft section 7.2.1.7.1 716 */ 717 struct ieee80211_bar { 718 __le16 frame_control; 719 __le16 duration; 720 __u8 ra[6]; 721 __u8 ta[6]; 722 __le16 control; 723 __le16 start_seq_num; 724 } __attribute__((packed)); 725 726 /* 802.11 BAR control masks */ 727 #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL 0x0000 728 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA 0x0004 729 730 731 #define IEEE80211_HT_MCS_MASK_LEN 10 732 733 /** 734 * struct ieee80211_mcs_info - MCS information 735 * @rx_mask: RX mask 736 * @rx_highest: highest supported RX rate 737 * @tx_params: TX parameters 738 */ 739 struct ieee80211_mcs_info { 740 u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN]; 741 __le16 rx_highest; 742 u8 tx_params; 743 u8 reserved[3]; 744 } __attribute__((packed)); 745 746 /* 802.11n HT capability MSC set */ 747 #define IEEE80211_HT_MCS_RX_HIGHEST_MASK 0x3ff 748 #define IEEE80211_HT_MCS_TX_DEFINED 0x01 749 #define IEEE80211_HT_MCS_TX_RX_DIFF 0x02 750 /* value 0 == 1 stream etc */ 751 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK 0x0C 752 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT 2 753 #define IEEE80211_HT_MCS_TX_MAX_STREAMS 4 754 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION 0x10 755 756 /* 757 * 802.11n D5.0 20.3.5 / 20.6 says: 758 * - indices 0 to 7 and 32 are single spatial stream 759 * - 8 to 31 are multiple spatial streams using equal modulation 760 * [8..15 for two streams, 16..23 for three and 24..31 for four] 761 * - remainder are multiple spatial streams using unequal modulation 762 */ 763 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33 764 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \ 765 (IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8) 766 767 /** 768 * struct ieee80211_ht_cap - HT capabilities 769 * 770 * This structure is the "HT capabilities element" as 771 * described in 802.11n D5.0 7.3.2.57 772 */ 773 struct ieee80211_ht_cap { 774 __le16 cap_info; 775 u8 ampdu_params_info; 776 777 /* 16 bytes MCS information */ 778 struct ieee80211_mcs_info mcs; 779 780 __le16 extended_ht_cap_info; 781 __le32 tx_BF_cap_info; 782 u8 antenna_selection_info; 783 } __attribute__ ((packed)); 784 785 /* 802.11n HT capabilities masks (for cap_info) */ 786 #define IEEE80211_HT_CAP_LDPC_CODING 0x0001 787 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40 0x0002 788 #define IEEE80211_HT_CAP_SM_PS 0x000C 789 #define IEEE80211_HT_CAP_GRN_FLD 0x0010 790 #define IEEE80211_HT_CAP_SGI_20 0x0020 791 #define IEEE80211_HT_CAP_SGI_40 0x0040 792 #define IEEE80211_HT_CAP_TX_STBC 0x0080 793 #define IEEE80211_HT_CAP_RX_STBC 0x0300 794 #define IEEE80211_HT_CAP_DELAY_BA 0x0400 795 #define IEEE80211_HT_CAP_MAX_AMSDU 0x0800 796 #define IEEE80211_HT_CAP_DSSSCCK40 0x1000 797 #define IEEE80211_HT_CAP_PSMP_SUPPORT 0x2000 798 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT 0x4000 799 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT 0x8000 800 801 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */ 802 #define IEEE80211_HT_AMPDU_PARM_FACTOR 0x03 803 #define IEEE80211_HT_AMPDU_PARM_DENSITY 0x1C 804 805 /* 806 * Maximum length of AMPDU that the STA can receive. 807 * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) 808 */ 809 enum ieee80211_max_ampdu_length_exp { 810 IEEE80211_HT_MAX_AMPDU_8K = 0, 811 IEEE80211_HT_MAX_AMPDU_16K = 1, 812 IEEE80211_HT_MAX_AMPDU_32K = 2, 813 IEEE80211_HT_MAX_AMPDU_64K = 3 814 }; 815 816 #define IEEE80211_HT_MAX_AMPDU_FACTOR 13 817 818 /* Minimum MPDU start spacing */ 819 enum ieee80211_min_mpdu_spacing { 820 IEEE80211_HT_MPDU_DENSITY_NONE = 0, /* No restriction */ 821 IEEE80211_HT_MPDU_DENSITY_0_25 = 1, /* 1/4 usec */ 822 IEEE80211_HT_MPDU_DENSITY_0_5 = 2, /* 1/2 usec */ 823 IEEE80211_HT_MPDU_DENSITY_1 = 3, /* 1 usec */ 824 IEEE80211_HT_MPDU_DENSITY_2 = 4, /* 2 usec */ 825 IEEE80211_HT_MPDU_DENSITY_4 = 5, /* 4 usec */ 826 IEEE80211_HT_MPDU_DENSITY_8 = 6, /* 8 usec */ 827 IEEE80211_HT_MPDU_DENSITY_16 = 7 /* 16 usec */ 828 }; 829 830 /** 831 * struct ieee80211_ht_info - HT information 832 * 833 * This structure is the "HT information element" as 834 * described in 802.11n D5.0 7.3.2.58 835 */ 836 struct ieee80211_ht_info { 837 u8 control_chan; 838 u8 ht_param; 839 __le16 operation_mode; 840 __le16 stbc_param; 841 u8 basic_set[16]; 842 } __attribute__ ((packed)); 843 844 /* for ht_param */ 845 #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET 0x03 846 #define IEEE80211_HT_PARAM_CHA_SEC_NONE 0x00 847 #define IEEE80211_HT_PARAM_CHA_SEC_ABOVE 0x01 848 #define IEEE80211_HT_PARAM_CHA_SEC_BELOW 0x03 849 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY 0x04 850 #define IEEE80211_HT_PARAM_RIFS_MODE 0x08 851 #define IEEE80211_HT_PARAM_SPSMP_SUPPORT 0x10 852 #define IEEE80211_HT_PARAM_SERV_INTERVAL_GRAN 0xE0 853 854 /* for operation_mode */ 855 #define IEEE80211_HT_OP_MODE_PROTECTION 0x0003 856 #define IEEE80211_HT_OP_MODE_PROTECTION_NONE 0 857 #define IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER 1 858 #define IEEE80211_HT_OP_MODE_PROTECTION_20MHZ 2 859 #define IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED 3 860 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT 0x0004 861 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT 0x0010 862 863 /* for stbc_param */ 864 #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON 0x0040 865 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT 0x0080 866 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON 0x0100 867 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT 0x0200 868 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE 0x0400 869 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE 0x0800 870 871 872 /* block-ack parameters */ 873 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002 874 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C 875 #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0 876 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000 877 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800 878 879 /* 880 * A-PMDU buffer sizes 881 * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) 882 */ 883 #define IEEE80211_MIN_AMPDU_BUF 0x8 884 #define IEEE80211_MAX_AMPDU_BUF 0x40 885 886 887 /* Spatial Multiplexing Power Save Modes */ 888 #define WLAN_HT_CAP_SM_PS_STATIC 0 889 #define WLAN_HT_CAP_SM_PS_DYNAMIC 1 890 #define WLAN_HT_CAP_SM_PS_INVALID 2 891 #define WLAN_HT_CAP_SM_PS_DISABLED 3 892 893 /* Authentication algorithms */ 894 #define WLAN_AUTH_OPEN 0 895 #define WLAN_AUTH_SHARED_KEY 1 896 #define WLAN_AUTH_FT 2 897 #define WLAN_AUTH_LEAP 128 898 899 #define WLAN_AUTH_CHALLENGE_LEN 128 900 901 #define WLAN_CAPABILITY_ESS (1<<0) 902 #define WLAN_CAPABILITY_IBSS (1<<1) 903 #define WLAN_CAPABILITY_CF_POLLABLE (1<<2) 904 #define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3) 905 #define WLAN_CAPABILITY_PRIVACY (1<<4) 906 #define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5) 907 #define WLAN_CAPABILITY_PBCC (1<<6) 908 #define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7) 909 910 /* 802.11h */ 911 #define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8) 912 #define WLAN_CAPABILITY_QOS (1<<9) 913 #define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10) 914 #define WLAN_CAPABILITY_DSSS_OFDM (1<<13) 915 /* measurement */ 916 #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE (1<<0) 917 #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE (1<<1) 918 #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED (1<<2) 919 920 #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC 0 921 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA 1 922 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI 2 923 924 925 /* 802.11g ERP information element */ 926 #define WLAN_ERP_NON_ERP_PRESENT (1<<0) 927 #define WLAN_ERP_USE_PROTECTION (1<<1) 928 #define WLAN_ERP_BARKER_PREAMBLE (1<<2) 929 930 /* WLAN_ERP_BARKER_PREAMBLE values */ 931 enum { 932 WLAN_ERP_PREAMBLE_SHORT = 0, 933 WLAN_ERP_PREAMBLE_LONG = 1, 934 }; 935 936 /* Status codes */ 937 enum ieee80211_statuscode { 938 WLAN_STATUS_SUCCESS = 0, 939 WLAN_STATUS_UNSPECIFIED_FAILURE = 1, 940 WLAN_STATUS_CAPS_UNSUPPORTED = 10, 941 WLAN_STATUS_REASSOC_NO_ASSOC = 11, 942 WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12, 943 WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13, 944 WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14, 945 WLAN_STATUS_CHALLENGE_FAIL = 15, 946 WLAN_STATUS_AUTH_TIMEOUT = 16, 947 WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17, 948 WLAN_STATUS_ASSOC_DENIED_RATES = 18, 949 /* 802.11b */ 950 WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19, 951 WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20, 952 WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21, 953 /* 802.11h */ 954 WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22, 955 WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23, 956 WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24, 957 /* 802.11g */ 958 WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25, 959 WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26, 960 /* 802.11w */ 961 WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30, 962 WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31, 963 /* 802.11i */ 964 WLAN_STATUS_INVALID_IE = 40, 965 WLAN_STATUS_INVALID_GROUP_CIPHER = 41, 966 WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42, 967 WLAN_STATUS_INVALID_AKMP = 43, 968 WLAN_STATUS_UNSUPP_RSN_VERSION = 44, 969 WLAN_STATUS_INVALID_RSN_IE_CAP = 45, 970 WLAN_STATUS_CIPHER_SUITE_REJECTED = 46, 971 /* 802.11e */ 972 WLAN_STATUS_UNSPECIFIED_QOS = 32, 973 WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33, 974 WLAN_STATUS_ASSOC_DENIED_LOWACK = 34, 975 WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35, 976 WLAN_STATUS_REQUEST_DECLINED = 37, 977 WLAN_STATUS_INVALID_QOS_PARAM = 38, 978 WLAN_STATUS_CHANGE_TSPEC = 39, 979 WLAN_STATUS_WAIT_TS_DELAY = 47, 980 WLAN_STATUS_NO_DIRECT_LINK = 48, 981 WLAN_STATUS_STA_NOT_PRESENT = 49, 982 WLAN_STATUS_STA_NOT_QSTA = 50, 983 }; 984 985 986 /* Reason codes */ 987 enum ieee80211_reasoncode { 988 WLAN_REASON_UNSPECIFIED = 1, 989 WLAN_REASON_PREV_AUTH_NOT_VALID = 2, 990 WLAN_REASON_DEAUTH_LEAVING = 3, 991 WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4, 992 WLAN_REASON_DISASSOC_AP_BUSY = 5, 993 WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6, 994 WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7, 995 WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8, 996 WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9, 997 /* 802.11h */ 998 WLAN_REASON_DISASSOC_BAD_POWER = 10, 999 WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11, 1000 /* 802.11i */ 1001 WLAN_REASON_INVALID_IE = 13, 1002 WLAN_REASON_MIC_FAILURE = 14, 1003 WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15, 1004 WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16, 1005 WLAN_REASON_IE_DIFFERENT = 17, 1006 WLAN_REASON_INVALID_GROUP_CIPHER = 18, 1007 WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19, 1008 WLAN_REASON_INVALID_AKMP = 20, 1009 WLAN_REASON_UNSUPP_RSN_VERSION = 21, 1010 WLAN_REASON_INVALID_RSN_IE_CAP = 22, 1011 WLAN_REASON_IEEE8021X_FAILED = 23, 1012 WLAN_REASON_CIPHER_SUITE_REJECTED = 24, 1013 /* 802.11e */ 1014 WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32, 1015 WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33, 1016 WLAN_REASON_DISASSOC_LOW_ACK = 34, 1017 WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35, 1018 WLAN_REASON_QSTA_LEAVE_QBSS = 36, 1019 WLAN_REASON_QSTA_NOT_USE = 37, 1020 WLAN_REASON_QSTA_REQUIRE_SETUP = 38, 1021 WLAN_REASON_QSTA_TIMEOUT = 39, 1022 WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45, 1023 }; 1024 1025 1026 /* Information Element IDs */ 1027 enum ieee80211_eid { 1028 WLAN_EID_SSID = 0, 1029 WLAN_EID_SUPP_RATES = 1, 1030 WLAN_EID_FH_PARAMS = 2, 1031 WLAN_EID_DS_PARAMS = 3, 1032 WLAN_EID_CF_PARAMS = 4, 1033 WLAN_EID_TIM = 5, 1034 WLAN_EID_IBSS_PARAMS = 6, 1035 WLAN_EID_CHALLENGE = 16, 1036 /* 802.11d */ 1037 WLAN_EID_COUNTRY = 7, 1038 WLAN_EID_HP_PARAMS = 8, 1039 WLAN_EID_HP_TABLE = 9, 1040 WLAN_EID_REQUEST = 10, 1041 /* 802.11e */ 1042 WLAN_EID_QBSS_LOAD = 11, 1043 WLAN_EID_EDCA_PARAM_SET = 12, 1044 WLAN_EID_TSPEC = 13, 1045 WLAN_EID_TCLAS = 14, 1046 WLAN_EID_SCHEDULE = 15, 1047 WLAN_EID_TS_DELAY = 43, 1048 WLAN_EID_TCLAS_PROCESSING = 44, 1049 WLAN_EID_QOS_CAPA = 46, 1050 /* 802.11s 1051 * 1052 * All mesh EID numbers are pending IEEE 802.11 ANA approval. 1053 * The numbers have been incremented from those suggested in 1054 * 802.11s/D2.0 so that MESH_CONFIG does not conflict with 1055 * EXT_SUPP_RATES. 1056 */ 1057 WLAN_EID_MESH_CONFIG = 51, 1058 WLAN_EID_MESH_ID = 52, 1059 WLAN_EID_PEER_LINK = 55, 1060 WLAN_EID_PREQ = 68, 1061 WLAN_EID_PREP = 69, 1062 WLAN_EID_PERR = 70, 1063 /* 802.11h */ 1064 WLAN_EID_PWR_CONSTRAINT = 32, 1065 WLAN_EID_PWR_CAPABILITY = 33, 1066 WLAN_EID_TPC_REQUEST = 34, 1067 WLAN_EID_TPC_REPORT = 35, 1068 WLAN_EID_SUPPORTED_CHANNELS = 36, 1069 WLAN_EID_CHANNEL_SWITCH = 37, 1070 WLAN_EID_MEASURE_REQUEST = 38, 1071 WLAN_EID_MEASURE_REPORT = 39, 1072 WLAN_EID_QUIET = 40, 1073 WLAN_EID_IBSS_DFS = 41, 1074 /* 802.11g */ 1075 WLAN_EID_ERP_INFO = 42, 1076 WLAN_EID_EXT_SUPP_RATES = 50, 1077 /* 802.11n */ 1078 WLAN_EID_HT_CAPABILITY = 45, 1079 WLAN_EID_HT_INFORMATION = 61, 1080 /* 802.11i */ 1081 WLAN_EID_RSN = 48, 1082 WLAN_EID_TIMEOUT_INTERVAL = 56, 1083 WLAN_EID_MMIE = 76 /* 802.11w */, 1084 WLAN_EID_WPA = 221, 1085 WLAN_EID_GENERIC = 221, 1086 WLAN_EID_VENDOR_SPECIFIC = 221, 1087 WLAN_EID_QOS_PARAMETER = 222 1088 }; 1089 1090 /* Action category code */ 1091 enum ieee80211_category { 1092 WLAN_CATEGORY_SPECTRUM_MGMT = 0, 1093 WLAN_CATEGORY_QOS = 1, 1094 WLAN_CATEGORY_DLS = 2, 1095 WLAN_CATEGORY_BACK = 3, 1096 WLAN_CATEGORY_PUBLIC = 4, 1097 WLAN_CATEGORY_HT = 7, 1098 WLAN_CATEGORY_SA_QUERY = 8, 1099 WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9, 1100 WLAN_CATEGORY_WMM = 17, 1101 WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126, 1102 WLAN_CATEGORY_VENDOR_SPECIFIC = 127, 1103 }; 1104 1105 /* SPECTRUM_MGMT action code */ 1106 enum ieee80211_spectrum_mgmt_actioncode { 1107 WLAN_ACTION_SPCT_MSR_REQ = 0, 1108 WLAN_ACTION_SPCT_MSR_RPRT = 1, 1109 WLAN_ACTION_SPCT_TPC_REQ = 2, 1110 WLAN_ACTION_SPCT_TPC_RPRT = 3, 1111 WLAN_ACTION_SPCT_CHL_SWITCH = 4, 1112 }; 1113 1114 /* Security key length */ 1115 enum ieee80211_key_len { 1116 WLAN_KEY_LEN_WEP40 = 5, 1117 WLAN_KEY_LEN_WEP104 = 13, 1118 WLAN_KEY_LEN_CCMP = 16, 1119 WLAN_KEY_LEN_TKIP = 32, 1120 WLAN_KEY_LEN_AES_CMAC = 16, 1121 }; 1122 1123 /* 1124 * IEEE 802.11-2007 7.3.2.9 Country information element 1125 * 1126 * Minimum length is 8 octets, ie len must be evenly 1127 * divisible by 2 1128 */ 1129 1130 /* Although the spec says 8 I'm seeing 6 in practice */ 1131 #define IEEE80211_COUNTRY_IE_MIN_LEN 6 1132 1133 /* 1134 * For regulatory extension stuff see IEEE 802.11-2007 1135 * Annex I (page 1141) and Annex J (page 1147). Also 1136 * review 7.3.2.9. 1137 * 1138 * When dot11RegulatoryClassesRequired is true and the 1139 * first_channel/reg_extension_id is >= 201 then the IE 1140 * compromises of the 'ext' struct represented below: 1141 * 1142 * - Regulatory extension ID - when generating IE this just needs 1143 * to be monotonically increasing for each triplet passed in 1144 * the IE 1145 * - Regulatory class - index into set of rules 1146 * - Coverage class - index into air propagation time (Table 7-27), 1147 * in microseconds, you can compute the air propagation time from 1148 * the index by multiplying by 3, so index 10 yields a propagation 1149 * of 10 us. Valid values are 0-31, values 32-255 are not defined 1150 * yet. A value of 0 inicates air propagation of <= 1 us. 1151 * 1152 * See also Table I.2 for Emission limit sets and table 1153 * I.3 for Behavior limit sets. Table J.1 indicates how to map 1154 * a reg_class to an emission limit set and behavior limit set. 1155 */ 1156 #define IEEE80211_COUNTRY_EXTENSION_ID 201 1157 1158 /* 1159 * Channels numbers in the IE must be monotonically increasing 1160 * if dot11RegulatoryClassesRequired is not true. 1161 * 1162 * If dot11RegulatoryClassesRequired is true consecutive 1163 * subband triplets following a regulatory triplet shall 1164 * have monotonically increasing first_channel number fields. 1165 * 1166 * Channel numbers shall not overlap. 1167 * 1168 * Note that max_power is signed. 1169 */ 1170 struct ieee80211_country_ie_triplet { 1171 union { 1172 struct { 1173 u8 first_channel; 1174 u8 num_channels; 1175 s8 max_power; 1176 } __attribute__ ((packed)) chans; 1177 struct { 1178 u8 reg_extension_id; 1179 u8 reg_class; 1180 u8 coverage_class; 1181 } __attribute__ ((packed)) ext; 1182 }; 1183 } __attribute__ ((packed)); 1184 1185 enum ieee80211_timeout_interval_type { 1186 WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */, 1187 WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */, 1188 WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */, 1189 }; 1190 1191 /* BACK action code */ 1192 enum ieee80211_back_actioncode { 1193 WLAN_ACTION_ADDBA_REQ = 0, 1194 WLAN_ACTION_ADDBA_RESP = 1, 1195 WLAN_ACTION_DELBA = 2, 1196 }; 1197 1198 /* BACK (block-ack) parties */ 1199 enum ieee80211_back_parties { 1200 WLAN_BACK_RECIPIENT = 0, 1201 WLAN_BACK_INITIATOR = 1, 1202 WLAN_BACK_TIMER = 2, 1203 }; 1204 1205 /* SA Query action */ 1206 enum ieee80211_sa_query_action { 1207 WLAN_ACTION_SA_QUERY_REQUEST = 0, 1208 WLAN_ACTION_SA_QUERY_RESPONSE = 1, 1209 }; 1210 1211 1212 /* A-MSDU 802.11n */ 1213 #define IEEE80211_QOS_CONTROL_A_MSDU_PRESENT 0x0080 1214 1215 /* cipher suite selectors */ 1216 #define WLAN_CIPHER_SUITE_USE_GROUP 0x000FAC00 1217 #define WLAN_CIPHER_SUITE_WEP40 0x000FAC01 1218 #define WLAN_CIPHER_SUITE_TKIP 0x000FAC02 1219 /* reserved: 0x000FAC03 */ 1220 #define WLAN_CIPHER_SUITE_CCMP 0x000FAC04 1221 #define WLAN_CIPHER_SUITE_WEP104 0x000FAC05 1222 #define WLAN_CIPHER_SUITE_AES_CMAC 0x000FAC06 1223 1224 /* AKM suite selectors */ 1225 #define WLAN_AKM_SUITE_8021X 0x000FAC01 1226 #define WLAN_AKM_SUITE_PSK 0x000FAC02 1227 1228 #define WLAN_MAX_KEY_LEN 32 1229 1230 /** 1231 * ieee80211_get_qos_ctl - get pointer to qos control bytes 1232 * @hdr: the frame 1233 * 1234 * The qos ctrl bytes come after the frame_control, duration, seq_num 1235 * and 3 or 4 addresses of length ETH_ALEN. 1236 * 3 addr: 2 + 2 + 2 + 3*6 = 24 1237 * 4 addr: 2 + 2 + 2 + 4*6 = 30 1238 */ 1239 static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr) 1240 { 1241 if (ieee80211_has_a4(hdr->frame_control)) 1242 return (u8 *)hdr + 30; 1243 else 1244 return (u8 *)hdr + 24; 1245 } 1246 1247 /** 1248 * ieee80211_get_SA - get pointer to SA 1249 * @hdr: the frame 1250 * 1251 * Given an 802.11 frame, this function returns the offset 1252 * to the source address (SA). It does not verify that the 1253 * header is long enough to contain the address, and the 1254 * header must be long enough to contain the frame control 1255 * field. 1256 */ 1257 static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr) 1258 { 1259 if (ieee80211_has_a4(hdr->frame_control)) 1260 return hdr->addr4; 1261 if (ieee80211_has_fromds(hdr->frame_control)) 1262 return hdr->addr3; 1263 return hdr->addr2; 1264 } 1265 1266 /** 1267 * ieee80211_get_DA - get pointer to DA 1268 * @hdr: the frame 1269 * 1270 * Given an 802.11 frame, this function returns the offset 1271 * to the destination address (DA). It does not verify that 1272 * the header is long enough to contain the address, and the 1273 * header must be long enough to contain the frame control 1274 * field. 1275 */ 1276 static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr) 1277 { 1278 if (ieee80211_has_tods(hdr->frame_control)) 1279 return hdr->addr3; 1280 else 1281 return hdr->addr1; 1282 } 1283 1284 /** 1285 * ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame 1286 * @hdr: the frame (buffer must include at least the first octet of payload) 1287 */ 1288 static inline bool ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr) 1289 { 1290 if (ieee80211_is_disassoc(hdr->frame_control) || 1291 ieee80211_is_deauth(hdr->frame_control)) 1292 return true; 1293 1294 if (ieee80211_is_action(hdr->frame_control)) { 1295 u8 *category; 1296 1297 /* 1298 * Action frames, excluding Public Action frames, are Robust 1299 * Management Frames. However, if we are looking at a Protected 1300 * frame, skip the check since the data may be encrypted and 1301 * the frame has already been found to be a Robust Management 1302 * Frame (by the other end). 1303 */ 1304 if (ieee80211_has_protected(hdr->frame_control)) 1305 return true; 1306 category = ((u8 *) hdr) + 24; 1307 return *category != WLAN_CATEGORY_PUBLIC && 1308 *category != WLAN_CATEGORY_HT && 1309 *category != WLAN_CATEGORY_VENDOR_SPECIFIC; 1310 } 1311 1312 return false; 1313 } 1314 1315 /** 1316 * ieee80211_fhss_chan_to_freq - get channel frequency 1317 * @channel: the FHSS channel 1318 * 1319 * Convert IEEE802.11 FHSS channel to frequency (MHz) 1320 * Ref IEEE 802.11-2007 section 14.6 1321 */ 1322 static inline int ieee80211_fhss_chan_to_freq(int channel) 1323 { 1324 if ((channel > 1) && (channel < 96)) 1325 return channel + 2400; 1326 else 1327 return -1; 1328 } 1329 1330 /** 1331 * ieee80211_freq_to_fhss_chan - get channel 1332 * @freq: the channels frequency 1333 * 1334 * Convert frequency (MHz) to IEEE802.11 FHSS channel 1335 * Ref IEEE 802.11-2007 section 14.6 1336 */ 1337 static inline int ieee80211_freq_to_fhss_chan(int freq) 1338 { 1339 if ((freq > 2401) && (freq < 2496)) 1340 return freq - 2400; 1341 else 1342 return -1; 1343 } 1344 1345 /** 1346 * ieee80211_dsss_chan_to_freq - get channel center frequency 1347 * @channel: the DSSS channel 1348 * 1349 * Convert IEEE802.11 DSSS channel to the center frequency (MHz). 1350 * Ref IEEE 802.11-2007 section 15.6 1351 */ 1352 static inline int ieee80211_dsss_chan_to_freq(int channel) 1353 { 1354 if ((channel > 0) && (channel < 14)) 1355 return 2407 + (channel * 5); 1356 else if (channel == 14) 1357 return 2484; 1358 else 1359 return -1; 1360 } 1361 1362 /** 1363 * ieee80211_freq_to_dsss_chan - get channel 1364 * @freq: the frequency 1365 * 1366 * Convert frequency (MHz) to IEEE802.11 DSSS channel 1367 * Ref IEEE 802.11-2007 section 15.6 1368 * 1369 * This routine selects the channel with the closest center frequency. 1370 */ 1371 static inline int ieee80211_freq_to_dsss_chan(int freq) 1372 { 1373 if ((freq >= 2410) && (freq < 2475)) 1374 return (freq - 2405) / 5; 1375 else if ((freq >= 2482) && (freq < 2487)) 1376 return 14; 1377 else 1378 return -1; 1379 } 1380 1381 /* Convert IEEE802.11 HR DSSS channel to frequency (MHz) and back 1382 * Ref IEEE 802.11-2007 section 18.4.6.2 1383 * 1384 * The channels and frequencies are the same as those defined for DSSS 1385 */ 1386 #define ieee80211_hr_chan_to_freq(chan) ieee80211_dsss_chan_to_freq(chan) 1387 #define ieee80211_freq_to_hr_chan(freq) ieee80211_freq_to_dsss_chan(freq) 1388 1389 /* Convert IEEE802.11 ERP channel to frequency (MHz) and back 1390 * Ref IEEE 802.11-2007 section 19.4.2 1391 */ 1392 #define ieee80211_erp_chan_to_freq(chan) ieee80211_hr_chan_to_freq(chan) 1393 #define ieee80211_freq_to_erp_chan(freq) ieee80211_freq_to_hr_chan(freq) 1394 1395 /** 1396 * ieee80211_ofdm_chan_to_freq - get channel center frequency 1397 * @s_freq: starting frequency == (dotChannelStartingFactor/2) MHz 1398 * @channel: the OFDM channel 1399 * 1400 * Convert IEEE802.11 OFDM channel to center frequency (MHz) 1401 * Ref IEEE 802.11-2007 section 17.3.8.3.2 1402 */ 1403 static inline int ieee80211_ofdm_chan_to_freq(int s_freq, int channel) 1404 { 1405 if ((channel > 0) && (channel <= 200) && 1406 (s_freq >= 4000)) 1407 return s_freq + (channel * 5); 1408 else 1409 return -1; 1410 } 1411 1412 /** 1413 * ieee80211_freq_to_ofdm_channel - get channel 1414 * @s_freq: starting frequency == (dotChannelStartingFactor/2) MHz 1415 * @freq: the frequency 1416 * 1417 * Convert frequency (MHz) to IEEE802.11 OFDM channel 1418 * Ref IEEE 802.11-2007 section 17.3.8.3.2 1419 * 1420 * This routine selects the channel with the closest center frequency. 1421 */ 1422 static inline int ieee80211_freq_to_ofdm_chan(int s_freq, int freq) 1423 { 1424 if ((freq > (s_freq + 2)) && (freq <= (s_freq + 1202)) && 1425 (s_freq >= 4000)) 1426 return (freq + 2 - s_freq) / 5; 1427 else 1428 return -1; 1429 } 1430 1431 /** 1432 * ieee80211_tu_to_usec - convert time units (TU) to microseconds 1433 * @tu: the TUs 1434 */ 1435 static inline unsigned long ieee80211_tu_to_usec(unsigned long tu) 1436 { 1437 return 1024 * tu; 1438 } 1439 1440 /** 1441 * ieee80211_check_tim - check if AID bit is set in TIM 1442 * @tim: the TIM IE 1443 * @tim_len: length of the TIM IE 1444 * @aid: the AID to look for 1445 */ 1446 static inline bool ieee80211_check_tim(struct ieee80211_tim_ie *tim, 1447 u8 tim_len, u16 aid) 1448 { 1449 u8 mask; 1450 u8 index, indexn1, indexn2; 1451 1452 if (unlikely(!tim || tim_len < sizeof(*tim))) 1453 return false; 1454 1455 aid &= 0x3fff; 1456 index = aid / 8; 1457 mask = 1 << (aid & 7); 1458 1459 indexn1 = tim->bitmap_ctrl & 0xfe; 1460 indexn2 = tim_len + indexn1 - 4; 1461 1462 if (index < indexn1 || index > indexn2) 1463 return false; 1464 1465 index -= indexn1; 1466 1467 return !!(tim->virtual_map[index] & mask); 1468 } 1469 1470 #endif /* LINUX_IEEE80211_H */ 1471