xref: /linux-6.15/include/linux/hyperv.h (revision fda5b0e2)
1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <[email protected]>
20  *   Hank Janssen  <[email protected]>
21  *   K. Y. Srinivasan <[email protected]>
22  *
23  */
24 
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27 
28 #include <linux/types.h>
29 
30 /*
31  * Framework version for util services.
32  */
33 #define UTIL_FW_MINOR  0
34 
35 #define UTIL_WS2K8_FW_MAJOR  1
36 #define UTIL_WS2K8_FW_VERSION     (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
37 
38 #define UTIL_FW_MAJOR  3
39 #define UTIL_FW_VERSION     (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
40 
41 
42 /*
43  * Implementation of host controlled snapshot of the guest.
44  */
45 
46 #define VSS_OP_REGISTER 128
47 
48 enum hv_vss_op {
49 	VSS_OP_CREATE = 0,
50 	VSS_OP_DELETE,
51 	VSS_OP_HOT_BACKUP,
52 	VSS_OP_GET_DM_INFO,
53 	VSS_OP_BU_COMPLETE,
54 	/*
55 	 * Following operations are only supported with IC version >= 5.0
56 	 */
57 	VSS_OP_FREEZE, /* Freeze the file systems in the VM */
58 	VSS_OP_THAW, /* Unfreeze the file systems */
59 	VSS_OP_AUTO_RECOVER,
60 	VSS_OP_COUNT /* Number of operations, must be last */
61 };
62 
63 
64 /*
65  * Header for all VSS messages.
66  */
67 struct hv_vss_hdr {
68 	__u8 operation;
69 	__u8 reserved[7];
70 } __attribute__((packed));
71 
72 
73 /*
74  * Flag values for the hv_vss_check_feature. Linux supports only
75  * one value.
76  */
77 #define VSS_HBU_NO_AUTO_RECOVERY	0x00000005
78 
79 struct hv_vss_check_feature {
80 	__u32 flags;
81 } __attribute__((packed));
82 
83 struct hv_vss_check_dm_info {
84 	__u32 flags;
85 } __attribute__((packed));
86 
87 struct hv_vss_msg {
88 	union {
89 		struct hv_vss_hdr vss_hdr;
90 		int error;
91 	};
92 	union {
93 		struct hv_vss_check_feature vss_cf;
94 		struct hv_vss_check_dm_info dm_info;
95 	};
96 } __attribute__((packed));
97 
98 /*
99  * An implementation of HyperV key value pair (KVP) functionality for Linux.
100  *
101  *
102  * Copyright (C) 2010, Novell, Inc.
103  * Author : K. Y. Srinivasan <[email protected]>
104  *
105  */
106 
107 /*
108  * Maximum value size - used for both key names and value data, and includes
109  * any applicable NULL terminators.
110  *
111  * Note:  This limit is somewhat arbitrary, but falls easily within what is
112  * supported for all native guests (back to Win 2000) and what is reasonable
113  * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
114  * limited to 255 character key names.
115  *
116  * MSDN recommends not storing data values larger than 2048 bytes in the
117  * registry.
118  *
119  * Note:  This value is used in defining the KVP exchange message - this value
120  * cannot be modified without affecting the message size and compatibility.
121  */
122 
123 /*
124  * bytes, including any null terminators
125  */
126 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
127 
128 
129 /*
130  * Maximum key size - the registry limit for the length of an entry name
131  * is 256 characters, including the null terminator
132  */
133 
134 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
135 
136 /*
137  * In Linux, we implement the KVP functionality in two components:
138  * 1) The kernel component which is packaged as part of the hv_utils driver
139  * is responsible for communicating with the host and responsible for
140  * implementing the host/guest protocol. 2) A user level daemon that is
141  * responsible for data gathering.
142  *
143  * Host/Guest Protocol: The host iterates over an index and expects the guest
144  * to assign a key name to the index and also return the value corresponding to
145  * the key. The host will have atmost one KVP transaction outstanding at any
146  * given point in time. The host side iteration stops when the guest returns
147  * an error. Microsoft has specified the following mapping of key names to
148  * host specified index:
149  *
150  *	Index		Key Name
151  *	0		FullyQualifiedDomainName
152  *	1		IntegrationServicesVersion
153  *	2		NetworkAddressIPv4
154  *	3		NetworkAddressIPv6
155  *	4		OSBuildNumber
156  *	5		OSName
157  *	6		OSMajorVersion
158  *	7		OSMinorVersion
159  *	8		OSVersion
160  *	9		ProcessorArchitecture
161  *
162  * The Windows host expects the Key Name and Key Value to be encoded in utf16.
163  *
164  * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
165  * data gathering functionality in a user mode daemon. The user level daemon
166  * is also responsible for binding the key name to the index as well. The
167  * kernel and user-level daemon communicate using a connector channel.
168  *
169  * The user mode component first registers with the
170  * the kernel component. Subsequently, the kernel component requests, data
171  * for the specified keys. In response to this message the user mode component
172  * fills in the value corresponding to the specified key. We overload the
173  * sequence field in the cn_msg header to define our KVP message types.
174  *
175  *
176  * The kernel component simply acts as a conduit for communication between the
177  * Windows host and the user-level daemon. The kernel component passes up the
178  * index received from the Host to the user-level daemon. If the index is
179  * valid (supported), the corresponding key as well as its
180  * value (both are strings) is returned. If the index is invalid
181  * (not supported), a NULL key string is returned.
182  */
183 
184 
185 /*
186  * Registry value types.
187  */
188 
189 #define REG_SZ 1
190 #define REG_U32 4
191 #define REG_U64 8
192 
193 /*
194  * As we look at expanding the KVP functionality to include
195  * IP injection functionality, we need to maintain binary
196  * compatibility with older daemons.
197  *
198  * The KVP opcodes are defined by the host and it was unfortunate
199  * that I chose to treat the registration operation as part of the
200  * KVP operations defined by the host.
201  * Here is the level of compatibility
202  * (between the user level daemon and the kernel KVP driver) that we
203  * will implement:
204  *
205  * An older daemon will always be supported on a newer driver.
206  * A given user level daemon will require a minimal version of the
207  * kernel driver.
208  * If we cannot handle the version differences, we will fail gracefully
209  * (this can happen when we have a user level daemon that is more
210  * advanced than the KVP driver.
211  *
212  * We will use values used in this handshake for determining if we have
213  * workable user level daemon and the kernel driver. We begin by taking the
214  * registration opcode out of the KVP opcode namespace. We will however,
215  * maintain compatibility with the existing user-level daemon code.
216  */
217 
218 /*
219  * Daemon code not supporting IP injection (legacy daemon).
220  */
221 
222 #define KVP_OP_REGISTER	4
223 
224 /*
225  * Daemon code supporting IP injection.
226  * The KVP opcode field is used to communicate the
227  * registration information; so define a namespace that
228  * will be distinct from the host defined KVP opcode.
229  */
230 
231 #define KVP_OP_REGISTER1 100
232 
233 enum hv_kvp_exchg_op {
234 	KVP_OP_GET = 0,
235 	KVP_OP_SET,
236 	KVP_OP_DELETE,
237 	KVP_OP_ENUMERATE,
238 	KVP_OP_GET_IP_INFO,
239 	KVP_OP_SET_IP_INFO,
240 	KVP_OP_COUNT /* Number of operations, must be last. */
241 };
242 
243 enum hv_kvp_exchg_pool {
244 	KVP_POOL_EXTERNAL = 0,
245 	KVP_POOL_GUEST,
246 	KVP_POOL_AUTO,
247 	KVP_POOL_AUTO_EXTERNAL,
248 	KVP_POOL_AUTO_INTERNAL,
249 	KVP_POOL_COUNT /* Number of pools, must be last. */
250 };
251 
252 /*
253  * Some Hyper-V status codes.
254  */
255 
256 #define HV_S_OK				0x00000000
257 #define HV_E_FAIL			0x80004005
258 #define HV_S_CONT			0x80070103
259 #define HV_ERROR_NOT_SUPPORTED		0x80070032
260 #define HV_ERROR_MACHINE_LOCKED		0x800704F7
261 #define HV_ERROR_DEVICE_NOT_CONNECTED	0x8007048F
262 #define HV_INVALIDARG			0x80070057
263 #define HV_GUID_NOTFOUND		0x80041002
264 
265 #define ADDR_FAMILY_NONE	0x00
266 #define ADDR_FAMILY_IPV4	0x01
267 #define ADDR_FAMILY_IPV6	0x02
268 
269 #define MAX_ADAPTER_ID_SIZE	128
270 #define MAX_IP_ADDR_SIZE	1024
271 #define MAX_GATEWAY_SIZE	512
272 
273 
274 struct hv_kvp_ipaddr_value {
275 	__u16	adapter_id[MAX_ADAPTER_ID_SIZE];
276 	__u8	addr_family;
277 	__u8	dhcp_enabled;
278 	__u16	ip_addr[MAX_IP_ADDR_SIZE];
279 	__u16	sub_net[MAX_IP_ADDR_SIZE];
280 	__u16	gate_way[MAX_GATEWAY_SIZE];
281 	__u16	dns_addr[MAX_IP_ADDR_SIZE];
282 } __attribute__((packed));
283 
284 
285 struct hv_kvp_hdr {
286 	__u8 operation;
287 	__u8 pool;
288 	__u16 pad;
289 } __attribute__((packed));
290 
291 struct hv_kvp_exchg_msg_value {
292 	__u32 value_type;
293 	__u32 key_size;
294 	__u32 value_size;
295 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
296 	union {
297 		__u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
298 		__u32 value_u32;
299 		__u64 value_u64;
300 	};
301 } __attribute__((packed));
302 
303 struct hv_kvp_msg_enumerate {
304 	__u32 index;
305 	struct hv_kvp_exchg_msg_value data;
306 } __attribute__((packed));
307 
308 struct hv_kvp_msg_get {
309 	struct hv_kvp_exchg_msg_value data;
310 };
311 
312 struct hv_kvp_msg_set {
313 	struct hv_kvp_exchg_msg_value data;
314 };
315 
316 struct hv_kvp_msg_delete {
317 	__u32 key_size;
318 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
319 };
320 
321 struct hv_kvp_register {
322 	__u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
323 };
324 
325 struct hv_kvp_msg {
326 	union {
327 		struct hv_kvp_hdr	kvp_hdr;
328 		int error;
329 	};
330 	union {
331 		struct hv_kvp_msg_get		kvp_get;
332 		struct hv_kvp_msg_set		kvp_set;
333 		struct hv_kvp_msg_delete	kvp_delete;
334 		struct hv_kvp_msg_enumerate	kvp_enum_data;
335 		struct hv_kvp_ipaddr_value      kvp_ip_val;
336 		struct hv_kvp_register		kvp_register;
337 	} body;
338 } __attribute__((packed));
339 
340 struct hv_kvp_ip_msg {
341 	__u8 operation;
342 	__u8 pool;
343 	struct hv_kvp_ipaddr_value      kvp_ip_val;
344 } __attribute__((packed));
345 
346 #ifdef __KERNEL__
347 #include <linux/scatterlist.h>
348 #include <linux/list.h>
349 #include <linux/uuid.h>
350 #include <linux/timer.h>
351 #include <linux/workqueue.h>
352 #include <linux/completion.h>
353 #include <linux/device.h>
354 #include <linux/mod_devicetable.h>
355 
356 
357 #define MAX_PAGE_BUFFER_COUNT				19
358 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
359 
360 #pragma pack(push, 1)
361 
362 /* Single-page buffer */
363 struct hv_page_buffer {
364 	u32 len;
365 	u32 offset;
366 	u64 pfn;
367 };
368 
369 /* Multiple-page buffer */
370 struct hv_multipage_buffer {
371 	/* Length and Offset determines the # of pfns in the array */
372 	u32 len;
373 	u32 offset;
374 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
375 };
376 
377 /* 0x18 includes the proprietary packet header */
378 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
379 					(sizeof(struct hv_page_buffer) * \
380 					 MAX_PAGE_BUFFER_COUNT))
381 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
382 					 sizeof(struct hv_multipage_buffer))
383 
384 
385 #pragma pack(pop)
386 
387 struct hv_ring_buffer {
388 	/* Offset in bytes from the start of ring data below */
389 	u32 write_index;
390 
391 	/* Offset in bytes from the start of ring data below */
392 	u32 read_index;
393 
394 	u32 interrupt_mask;
395 
396 	/*
397 	 * Win8 uses some of the reserved bits to implement
398 	 * interrupt driven flow management. On the send side
399 	 * we can request that the receiver interrupt the sender
400 	 * when the ring transitions from being full to being able
401 	 * to handle a message of size "pending_send_sz".
402 	 *
403 	 * Add necessary state for this enhancement.
404 	 */
405 	u32 pending_send_sz;
406 
407 	u32 reserved1[12];
408 
409 	union {
410 		struct {
411 			u32 feat_pending_send_sz:1;
412 		};
413 		u32 value;
414 	} feature_bits;
415 
416 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
417 	u8	reserved2[4028];
418 
419 	/*
420 	 * Ring data starts here + RingDataStartOffset
421 	 * !!! DO NOT place any fields below this !!!
422 	 */
423 	u8 buffer[0];
424 } __packed;
425 
426 struct hv_ring_buffer_info {
427 	struct hv_ring_buffer *ring_buffer;
428 	u32 ring_size;			/* Include the shared header */
429 	spinlock_t ring_lock;
430 
431 	u32 ring_datasize;		/* < ring_size */
432 	u32 ring_data_startoffset;
433 };
434 
435 struct hv_ring_buffer_debug_info {
436 	u32 current_interrupt_mask;
437 	u32 current_read_index;
438 	u32 current_write_index;
439 	u32 bytes_avail_toread;
440 	u32 bytes_avail_towrite;
441 };
442 
443 
444 /*
445  *
446  * hv_get_ringbuffer_availbytes()
447  *
448  * Get number of bytes available to read and to write to
449  * for the specified ring buffer
450  */
451 static inline void
452 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
453 			  u32 *read, u32 *write)
454 {
455 	u32 read_loc, write_loc, dsize;
456 
457 	smp_read_barrier_depends();
458 
459 	/* Capture the read/write indices before they changed */
460 	read_loc = rbi->ring_buffer->read_index;
461 	write_loc = rbi->ring_buffer->write_index;
462 	dsize = rbi->ring_datasize;
463 
464 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
465 		read_loc - write_loc;
466 	*read = dsize - *write;
467 }
468 
469 /*
470  * VMBUS version is 32 bit entity broken up into
471  * two 16 bit quantities: major_number. minor_number.
472  *
473  * 0 . 13 (Windows Server 2008)
474  * 1 . 1  (Windows 7)
475  * 2 . 4  (Windows 8)
476  */
477 
478 #define VERSION_WS2008  ((0 << 16) | (13))
479 #define VERSION_WIN7    ((1 << 16) | (1))
480 #define VERSION_WIN8    ((2 << 16) | (4))
481 
482 #define VERSION_INVAL -1
483 
484 #define VERSION_CURRENT VERSION_WIN8
485 
486 /* Make maximum size of pipe payload of 16K */
487 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
488 
489 /* Define PipeMode values. */
490 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
491 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
492 
493 /* The size of the user defined data buffer for non-pipe offers. */
494 #define MAX_USER_DEFINED_BYTES		120
495 
496 /* The size of the user defined data buffer for pipe offers. */
497 #define MAX_PIPE_USER_DEFINED_BYTES	116
498 
499 /*
500  * At the center of the Channel Management library is the Channel Offer. This
501  * struct contains the fundamental information about an offer.
502  */
503 struct vmbus_channel_offer {
504 	uuid_le if_type;
505 	uuid_le if_instance;
506 
507 	/*
508 	 * These two fields are not currently used.
509 	 */
510 	u64 reserved1;
511 	u64 reserved2;
512 
513 	u16 chn_flags;
514 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
515 
516 	union {
517 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
518 		struct {
519 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
520 		} std;
521 
522 		/*
523 		 * Pipes:
524 		 * The following sructure is an integrated pipe protocol, which
525 		 * is implemented on top of standard user-defined data. Pipe
526 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
527 		 * use.
528 		 */
529 		struct {
530 			u32  pipe_mode;
531 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
532 		} pipe;
533 	} u;
534 	/*
535 	 * The sub_channel_index is defined in win8.
536 	 */
537 	u16 sub_channel_index;
538 	u16 reserved3;
539 } __packed;
540 
541 /* Server Flags */
542 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
543 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
544 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
545 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
546 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
547 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
548 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
549 
550 struct vmpacket_descriptor {
551 	u16 type;
552 	u16 offset8;
553 	u16 len8;
554 	u16 flags;
555 	u64 trans_id;
556 } __packed;
557 
558 struct vmpacket_header {
559 	u32 prev_pkt_start_offset;
560 	struct vmpacket_descriptor descriptor;
561 } __packed;
562 
563 struct vmtransfer_page_range {
564 	u32 byte_count;
565 	u32 byte_offset;
566 } __packed;
567 
568 struct vmtransfer_page_packet_header {
569 	struct vmpacket_descriptor d;
570 	u16 xfer_pageset_id;
571 	u8  sender_owns_set;
572 	u8 reserved;
573 	u32 range_cnt;
574 	struct vmtransfer_page_range ranges[1];
575 } __packed;
576 
577 struct vmgpadl_packet_header {
578 	struct vmpacket_descriptor d;
579 	u32 gpadl;
580 	u32 reserved;
581 } __packed;
582 
583 struct vmadd_remove_transfer_page_set {
584 	struct vmpacket_descriptor d;
585 	u32 gpadl;
586 	u16 xfer_pageset_id;
587 	u16 reserved;
588 } __packed;
589 
590 /*
591  * This structure defines a range in guest physical space that can be made to
592  * look virtually contiguous.
593  */
594 struct gpa_range {
595 	u32 byte_count;
596 	u32 byte_offset;
597 	u64 pfn_array[0];
598 };
599 
600 /*
601  * This is the format for an Establish Gpadl packet, which contains a handle by
602  * which this GPADL will be known and a set of GPA ranges associated with it.
603  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
604  * ranges, then the resulting MDL will be "chained," representing multiple VA
605  * ranges.
606  */
607 struct vmestablish_gpadl {
608 	struct vmpacket_descriptor d;
609 	u32 gpadl;
610 	u32 range_cnt;
611 	struct gpa_range range[1];
612 } __packed;
613 
614 /*
615  * This is the format for a Teardown Gpadl packet, which indicates that the
616  * GPADL handle in the Establish Gpadl packet will never be referenced again.
617  */
618 struct vmteardown_gpadl {
619 	struct vmpacket_descriptor d;
620 	u32 gpadl;
621 	u32 reserved;	/* for alignment to a 8-byte boundary */
622 } __packed;
623 
624 /*
625  * This is the format for a GPA-Direct packet, which contains a set of GPA
626  * ranges, in addition to commands and/or data.
627  */
628 struct vmdata_gpa_direct {
629 	struct vmpacket_descriptor d;
630 	u32 reserved;
631 	u32 range_cnt;
632 	struct gpa_range range[1];
633 } __packed;
634 
635 /* This is the format for a Additional Data Packet. */
636 struct vmadditional_data {
637 	struct vmpacket_descriptor d;
638 	u64 total_bytes;
639 	u32 offset;
640 	u32 byte_cnt;
641 	unsigned char data[1];
642 } __packed;
643 
644 union vmpacket_largest_possible_header {
645 	struct vmpacket_descriptor simple_hdr;
646 	struct vmtransfer_page_packet_header xfer_page_hdr;
647 	struct vmgpadl_packet_header gpadl_hdr;
648 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
649 	struct vmestablish_gpadl establish_gpadl_hdr;
650 	struct vmteardown_gpadl teardown_gpadl_hdr;
651 	struct vmdata_gpa_direct data_gpa_direct_hdr;
652 };
653 
654 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
655 	(void *)(((unsigned char *)__packet) +	\
656 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
657 
658 #define VMPACKET_DATA_LENGTH(__packet)		\
659 	((((struct vmpacket_descriptor)__packet)->len8 -	\
660 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
661 
662 #define VMPACKET_TRANSFER_MODE(__packet)	\
663 	(((struct IMPACT)__packet)->type)
664 
665 enum vmbus_packet_type {
666 	VM_PKT_INVALID				= 0x0,
667 	VM_PKT_SYNCH				= 0x1,
668 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
669 	VM_PKT_RM_XFER_PAGESET			= 0x3,
670 	VM_PKT_ESTABLISH_GPADL			= 0x4,
671 	VM_PKT_TEARDOWN_GPADL			= 0x5,
672 	VM_PKT_DATA_INBAND			= 0x6,
673 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
674 	VM_PKT_DATA_USING_GPADL			= 0x8,
675 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
676 	VM_PKT_CANCEL_REQUEST			= 0xa,
677 	VM_PKT_COMP				= 0xb,
678 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
679 	VM_PKT_ADDITIONAL_DATA			= 0xd
680 };
681 
682 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
683 
684 
685 /* Version 1 messages */
686 enum vmbus_channel_message_type {
687 	CHANNELMSG_INVALID			=  0,
688 	CHANNELMSG_OFFERCHANNEL		=  1,
689 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
690 	CHANNELMSG_REQUESTOFFERS		=  3,
691 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
692 	CHANNELMSG_OPENCHANNEL		=  5,
693 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
694 	CHANNELMSG_CLOSECHANNEL		=  7,
695 	CHANNELMSG_GPADL_HEADER		=  8,
696 	CHANNELMSG_GPADL_BODY			=  9,
697 	CHANNELMSG_GPADL_CREATED		= 10,
698 	CHANNELMSG_GPADL_TEARDOWN		= 11,
699 	CHANNELMSG_GPADL_TORNDOWN		= 12,
700 	CHANNELMSG_RELID_RELEASED		= 13,
701 	CHANNELMSG_INITIATE_CONTACT		= 14,
702 	CHANNELMSG_VERSION_RESPONSE		= 15,
703 	CHANNELMSG_UNLOAD			= 16,
704 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
705 	CHANNELMSG_VIEWRANGE_ADD		= 17,
706 	CHANNELMSG_VIEWRANGE_REMOVE		= 18,
707 #endif
708 	CHANNELMSG_COUNT
709 };
710 
711 struct vmbus_channel_message_header {
712 	enum vmbus_channel_message_type msgtype;
713 	u32 padding;
714 } __packed;
715 
716 /* Query VMBus Version parameters */
717 struct vmbus_channel_query_vmbus_version {
718 	struct vmbus_channel_message_header header;
719 	u32 version;
720 } __packed;
721 
722 /* VMBus Version Supported parameters */
723 struct vmbus_channel_version_supported {
724 	struct vmbus_channel_message_header header;
725 	u8 version_supported;
726 } __packed;
727 
728 /* Offer Channel parameters */
729 struct vmbus_channel_offer_channel {
730 	struct vmbus_channel_message_header header;
731 	struct vmbus_channel_offer offer;
732 	u32 child_relid;
733 	u8 monitorid;
734 	/*
735 	 * win7 and beyond splits this field into a bit field.
736 	 */
737 	u8 monitor_allocated:1;
738 	u8 reserved:7;
739 	/*
740 	 * These are new fields added in win7 and later.
741 	 * Do not access these fields without checking the
742 	 * negotiated protocol.
743 	 *
744 	 * If "is_dedicated_interrupt" is set, we must not set the
745 	 * associated bit in the channel bitmap while sending the
746 	 * interrupt to the host.
747 	 *
748 	 * connection_id is to be used in signaling the host.
749 	 */
750 	u16 is_dedicated_interrupt:1;
751 	u16 reserved1:15;
752 	u32 connection_id;
753 } __packed;
754 
755 /* Rescind Offer parameters */
756 struct vmbus_channel_rescind_offer {
757 	struct vmbus_channel_message_header header;
758 	u32 child_relid;
759 } __packed;
760 
761 /*
762  * Request Offer -- no parameters, SynIC message contains the partition ID
763  * Set Snoop -- no parameters, SynIC message contains the partition ID
764  * Clear Snoop -- no parameters, SynIC message contains the partition ID
765  * All Offers Delivered -- no parameters, SynIC message contains the partition
766  *		           ID
767  * Flush Client -- no parameters, SynIC message contains the partition ID
768  */
769 
770 /* Open Channel parameters */
771 struct vmbus_channel_open_channel {
772 	struct vmbus_channel_message_header header;
773 
774 	/* Identifies the specific VMBus channel that is being opened. */
775 	u32 child_relid;
776 
777 	/* ID making a particular open request at a channel offer unique. */
778 	u32 openid;
779 
780 	/* GPADL for the channel's ring buffer. */
781 	u32 ringbuffer_gpadlhandle;
782 
783 	/*
784 	 * Starting with win8, this field will be used to specify
785 	 * the target virtual processor on which to deliver the interrupt for
786 	 * the host to guest communication.
787 	 * Prior to win8, incoming channel interrupts would only
788 	 * be delivered on cpu 0. Setting this value to 0 would
789 	 * preserve the earlier behavior.
790 	 */
791 	u32 target_vp;
792 
793 	/*
794 	* The upstream ring buffer begins at offset zero in the memory
795 	* described by RingBufferGpadlHandle. The downstream ring buffer
796 	* follows it at this offset (in pages).
797 	*/
798 	u32 downstream_ringbuffer_pageoffset;
799 
800 	/* User-specific data to be passed along to the server endpoint. */
801 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
802 } __packed;
803 
804 /* Open Channel Result parameters */
805 struct vmbus_channel_open_result {
806 	struct vmbus_channel_message_header header;
807 	u32 child_relid;
808 	u32 openid;
809 	u32 status;
810 } __packed;
811 
812 /* Close channel parameters; */
813 struct vmbus_channel_close_channel {
814 	struct vmbus_channel_message_header header;
815 	u32 child_relid;
816 } __packed;
817 
818 /* Channel Message GPADL */
819 #define GPADL_TYPE_RING_BUFFER		1
820 #define GPADL_TYPE_SERVER_SAVE_AREA	2
821 #define GPADL_TYPE_TRANSACTION		8
822 
823 /*
824  * The number of PFNs in a GPADL message is defined by the number of
825  * pages that would be spanned by ByteCount and ByteOffset.  If the
826  * implied number of PFNs won't fit in this packet, there will be a
827  * follow-up packet that contains more.
828  */
829 struct vmbus_channel_gpadl_header {
830 	struct vmbus_channel_message_header header;
831 	u32 child_relid;
832 	u32 gpadl;
833 	u16 range_buflen;
834 	u16 rangecount;
835 	struct gpa_range range[0];
836 } __packed;
837 
838 /* This is the followup packet that contains more PFNs. */
839 struct vmbus_channel_gpadl_body {
840 	struct vmbus_channel_message_header header;
841 	u32 msgnumber;
842 	u32 gpadl;
843 	u64 pfn[0];
844 } __packed;
845 
846 struct vmbus_channel_gpadl_created {
847 	struct vmbus_channel_message_header header;
848 	u32 child_relid;
849 	u32 gpadl;
850 	u32 creation_status;
851 } __packed;
852 
853 struct vmbus_channel_gpadl_teardown {
854 	struct vmbus_channel_message_header header;
855 	u32 child_relid;
856 	u32 gpadl;
857 } __packed;
858 
859 struct vmbus_channel_gpadl_torndown {
860 	struct vmbus_channel_message_header header;
861 	u32 gpadl;
862 } __packed;
863 
864 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
865 struct vmbus_channel_view_range_add {
866 	struct vmbus_channel_message_header header;
867 	PHYSICAL_ADDRESS viewrange_base;
868 	u64 viewrange_length;
869 	u32 child_relid;
870 } __packed;
871 
872 struct vmbus_channel_view_range_remove {
873 	struct vmbus_channel_message_header header;
874 	PHYSICAL_ADDRESS viewrange_base;
875 	u32 child_relid;
876 } __packed;
877 #endif
878 
879 struct vmbus_channel_relid_released {
880 	struct vmbus_channel_message_header header;
881 	u32 child_relid;
882 } __packed;
883 
884 struct vmbus_channel_initiate_contact {
885 	struct vmbus_channel_message_header header;
886 	u32 vmbus_version_requested;
887 	u32 padding2;
888 	u64 interrupt_page;
889 	u64 monitor_page1;
890 	u64 monitor_page2;
891 } __packed;
892 
893 struct vmbus_channel_version_response {
894 	struct vmbus_channel_message_header header;
895 	u8 version_supported;
896 } __packed;
897 
898 enum vmbus_channel_state {
899 	CHANNEL_OFFER_STATE,
900 	CHANNEL_OPENING_STATE,
901 	CHANNEL_OPEN_STATE,
902 	CHANNEL_OPENED_STATE,
903 };
904 
905 struct vmbus_channel_debug_info {
906 	u32 relid;
907 	enum vmbus_channel_state state;
908 	uuid_le interfacetype;
909 	uuid_le interface_instance;
910 	u32 monitorid;
911 	u32 servermonitor_pending;
912 	u32 servermonitor_latency;
913 	u32 servermonitor_connectionid;
914 	u32 clientmonitor_pending;
915 	u32 clientmonitor_latency;
916 	u32 clientmonitor_connectionid;
917 
918 	struct hv_ring_buffer_debug_info inbound;
919 	struct hv_ring_buffer_debug_info outbound;
920 };
921 
922 /*
923  * Represents each channel msg on the vmbus connection This is a
924  * variable-size data structure depending on the msg type itself
925  */
926 struct vmbus_channel_msginfo {
927 	/* Bookkeeping stuff */
928 	struct list_head msglistentry;
929 
930 	/* So far, this is only used to handle gpadl body message */
931 	struct list_head submsglist;
932 
933 	/* Synchronize the request/response if needed */
934 	struct completion  waitevent;
935 	union {
936 		struct vmbus_channel_version_supported version_supported;
937 		struct vmbus_channel_open_result open_result;
938 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
939 		struct vmbus_channel_gpadl_created gpadl_created;
940 		struct vmbus_channel_version_response version_response;
941 	} response;
942 
943 	u32 msgsize;
944 	/*
945 	 * The channel message that goes out on the "wire".
946 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
947 	 */
948 	unsigned char msg[0];
949 };
950 
951 struct vmbus_close_msg {
952 	struct vmbus_channel_msginfo info;
953 	struct vmbus_channel_close_channel msg;
954 };
955 
956 /* Define connection identifier type. */
957 union hv_connection_id {
958 	u32 asu32;
959 	struct {
960 		u32 id:24;
961 		u32 reserved:8;
962 	} u;
963 };
964 
965 /* Definition of the hv_signal_event hypercall input structure. */
966 struct hv_input_signal_event {
967 	union hv_connection_id connectionid;
968 	u16 flag_number;
969 	u16 rsvdz;
970 };
971 
972 struct hv_input_signal_event_buffer {
973 	u64 align8;
974 	struct hv_input_signal_event event;
975 };
976 
977 struct vmbus_channel {
978 	struct list_head listentry;
979 
980 	struct hv_device *device_obj;
981 
982 	struct work_struct work;
983 
984 	enum vmbus_channel_state state;
985 
986 	struct vmbus_channel_offer_channel offermsg;
987 	/*
988 	 * These are based on the OfferMsg.MonitorId.
989 	 * Save it here for easy access.
990 	 */
991 	u8 monitor_grp;
992 	u8 monitor_bit;
993 
994 	u32 ringbuffer_gpadlhandle;
995 
996 	/* Allocated memory for ring buffer */
997 	void *ringbuffer_pages;
998 	u32 ringbuffer_pagecount;
999 	struct hv_ring_buffer_info outbound;	/* send to parent */
1000 	struct hv_ring_buffer_info inbound;	/* receive from parent */
1001 	spinlock_t inbound_lock;
1002 	struct workqueue_struct *controlwq;
1003 
1004 	struct vmbus_close_msg close_msg;
1005 
1006 	/* Channel callback are invoked in this workqueue context */
1007 	/* HANDLE dataWorkQueue; */
1008 
1009 	void (*onchannel_callback)(void *context);
1010 	void *channel_callback_context;
1011 
1012 	/*
1013 	 * A channel can be marked for efficient (batched)
1014 	 * reading:
1015 	 * If batched_reading is set to "true", we read until the
1016 	 * channel is empty and hold off interrupts from the host
1017 	 * during the entire read process.
1018 	 * If batched_reading is set to "false", the client is not
1019 	 * going to perform batched reading.
1020 	 *
1021 	 * By default we will enable batched reading; specific
1022 	 * drivers that don't want this behavior can turn it off.
1023 	 */
1024 
1025 	bool batched_reading;
1026 
1027 	bool is_dedicated_interrupt;
1028 	struct hv_input_signal_event_buffer sig_buf;
1029 	struct hv_input_signal_event *sig_event;
1030 
1031 	/*
1032 	 * Starting with win8, this field will be used to specify
1033 	 * the target virtual processor on which to deliver the interrupt for
1034 	 * the host to guest communication.
1035 	 * Prior to win8, incoming channel interrupts would only
1036 	 * be delivered on cpu 0. Setting this value to 0 would
1037 	 * preserve the earlier behavior.
1038 	 */
1039 	u32 target_vp;
1040 	/*
1041 	 * Support for sub-channels. For high performance devices,
1042 	 * it will be useful to have multiple sub-channels to support
1043 	 * a scalable communication infrastructure with the host.
1044 	 * The support for sub-channels is implemented as an extention
1045 	 * to the current infrastructure.
1046 	 * The initial offer is considered the primary channel and this
1047 	 * offer message will indicate if the host supports sub-channels.
1048 	 * The guest is free to ask for sub-channels to be offerred and can
1049 	 * open these sub-channels as a normal "primary" channel. However,
1050 	 * all sub-channels will have the same type and instance guids as the
1051 	 * primary channel. Requests sent on a given channel will result in a
1052 	 * response on the same channel.
1053 	 */
1054 
1055 	/*
1056 	 * Sub-channel creation callback. This callback will be called in
1057 	 * process context when a sub-channel offer is received from the host.
1058 	 * The guest can open the sub-channel in the context of this callback.
1059 	 */
1060 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
1061 
1062 	spinlock_t sc_lock;
1063 	/*
1064 	 * All Sub-channels of a primary channel are linked here.
1065 	 */
1066 	struct list_head sc_list;
1067 	/*
1068 	 * The primary channel this sub-channel belongs to.
1069 	 * This will be NULL for the primary channel.
1070 	 */
1071 	struct vmbus_channel *primary_channel;
1072 };
1073 
1074 static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
1075 {
1076 	c->batched_reading = state;
1077 }
1078 
1079 void vmbus_onmessage(void *context);
1080 
1081 int vmbus_request_offers(void);
1082 
1083 /*
1084  * APIs for managing sub-channels.
1085  */
1086 
1087 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1088 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1089 
1090 /*
1091  * Retrieve the (sub) channel on which to send an outgoing request.
1092  * When a primary channel has multiple sub-channels, we choose a
1093  * channel whose VCPU binding is closest to the VCPU on which
1094  * this call is being made.
1095  */
1096 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
1097 
1098 /*
1099  * Check if sub-channels have already been offerred. This API will be useful
1100  * when the driver is unloaded after establishing sub-channels. In this case,
1101  * when the driver is re-loaded, the driver would have to check if the
1102  * subchannels have already been established before attempting to request
1103  * the creation of sub-channels.
1104  * This function returns TRUE to indicate that subchannels have already been
1105  * created.
1106  * This function should be invoked after setting the callback function for
1107  * sub-channel creation.
1108  */
1109 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1110 
1111 /* The format must be the same as struct vmdata_gpa_direct */
1112 struct vmbus_channel_packet_page_buffer {
1113 	u16 type;
1114 	u16 dataoffset8;
1115 	u16 length8;
1116 	u16 flags;
1117 	u64 transactionid;
1118 	u32 reserved;
1119 	u32 rangecount;
1120 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1121 } __packed;
1122 
1123 /* The format must be the same as struct vmdata_gpa_direct */
1124 struct vmbus_channel_packet_multipage_buffer {
1125 	u16 type;
1126 	u16 dataoffset8;
1127 	u16 length8;
1128 	u16 flags;
1129 	u64 transactionid;
1130 	u32 reserved;
1131 	u32 rangecount;		/* Always 1 in this case */
1132 	struct hv_multipage_buffer range;
1133 } __packed;
1134 
1135 
1136 extern int vmbus_open(struct vmbus_channel *channel,
1137 			    u32 send_ringbuffersize,
1138 			    u32 recv_ringbuffersize,
1139 			    void *userdata,
1140 			    u32 userdatalen,
1141 			    void(*onchannel_callback)(void *context),
1142 			    void *context);
1143 
1144 extern void vmbus_close(struct vmbus_channel *channel);
1145 
1146 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1147 				  const void *buffer,
1148 				  u32 bufferLen,
1149 				  u64 requestid,
1150 				  enum vmbus_packet_type type,
1151 				  u32 flags);
1152 
1153 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1154 					    struct hv_page_buffer pagebuffers[],
1155 					    u32 pagecount,
1156 					    void *buffer,
1157 					    u32 bufferlen,
1158 					    u64 requestid);
1159 
1160 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1161 					struct hv_multipage_buffer *mpb,
1162 					void *buffer,
1163 					u32 bufferlen,
1164 					u64 requestid);
1165 
1166 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1167 				      void *kbuffer,
1168 				      u32 size,
1169 				      u32 *gpadl_handle);
1170 
1171 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1172 				     u32 gpadl_handle);
1173 
1174 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1175 				  void *buffer,
1176 				  u32 bufferlen,
1177 				  u32 *buffer_actual_len,
1178 				  u64 *requestid);
1179 
1180 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1181 				     void *buffer,
1182 				     u32 bufferlen,
1183 				     u32 *buffer_actual_len,
1184 				     u64 *requestid);
1185 
1186 
1187 extern void vmbus_get_debug_info(struct vmbus_channel *channel,
1188 				     struct vmbus_channel_debug_info *debug);
1189 
1190 extern void vmbus_ontimer(unsigned long data);
1191 
1192 struct hv_dev_port_info {
1193 	u32 int_mask;
1194 	u32 read_idx;
1195 	u32 write_idx;
1196 	u32 bytes_avail_toread;
1197 	u32 bytes_avail_towrite;
1198 };
1199 
1200 /* Base driver object */
1201 struct hv_driver {
1202 	const char *name;
1203 
1204 	/* the device type supported by this driver */
1205 	uuid_le dev_type;
1206 	const struct hv_vmbus_device_id *id_table;
1207 
1208 	struct device_driver driver;
1209 
1210 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1211 	int (*remove)(struct hv_device *);
1212 	void (*shutdown)(struct hv_device *);
1213 
1214 };
1215 
1216 /* Base device object */
1217 struct hv_device {
1218 	/* the device type id of this device */
1219 	uuid_le dev_type;
1220 
1221 	/* the device instance id of this device */
1222 	uuid_le dev_instance;
1223 
1224 	struct device device;
1225 
1226 	struct vmbus_channel *channel;
1227 };
1228 
1229 
1230 static inline struct hv_device *device_to_hv_device(struct device *d)
1231 {
1232 	return container_of(d, struct hv_device, device);
1233 }
1234 
1235 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1236 {
1237 	return container_of(d, struct hv_driver, driver);
1238 }
1239 
1240 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1241 {
1242 	dev_set_drvdata(&dev->device, data);
1243 }
1244 
1245 static inline void *hv_get_drvdata(struct hv_device *dev)
1246 {
1247 	return dev_get_drvdata(&dev->device);
1248 }
1249 
1250 /* Vmbus interface */
1251 #define vmbus_driver_register(driver)	\
1252 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1253 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1254 					 struct module *owner,
1255 					 const char *mod_name);
1256 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1257 
1258 /**
1259  * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device
1260  *
1261  * This macro is used to create a struct hv_vmbus_device_id that matches a
1262  * specific device.
1263  */
1264 #define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7,	\
1265 		     g8, g9, ga, gb, gc, gd, ge, gf)	\
1266 	.guid = { g0, g1, g2, g3, g4, g5, g6, g7,	\
1267 		  g8, g9, ga, gb, gc, gd, ge, gf },
1268 
1269 /*
1270  * GUID definitions of various offer types - services offered to the guest.
1271  */
1272 
1273 /*
1274  * Network GUID
1275  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1276  */
1277 #define HV_NIC_GUID \
1278 	.guid = { \
1279 			0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46, \
1280 			0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e \
1281 		}
1282 
1283 /*
1284  * IDE GUID
1285  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1286  */
1287 #define HV_IDE_GUID \
1288 	.guid = { \
1289 			0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44, \
1290 			0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5 \
1291 		}
1292 
1293 /*
1294  * SCSI GUID
1295  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1296  */
1297 #define HV_SCSI_GUID \
1298 	.guid = { \
1299 			0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d, \
1300 			0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f \
1301 		}
1302 
1303 /*
1304  * Shutdown GUID
1305  * {0e0b6031-5213-4934-818b-38d90ced39db}
1306  */
1307 #define HV_SHUTDOWN_GUID \
1308 	.guid = { \
1309 			0x31, 0x60, 0x0b, 0x0e, 0x13, 0x52, 0x34, 0x49, \
1310 			0x81, 0x8b, 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb \
1311 		}
1312 
1313 /*
1314  * Time Synch GUID
1315  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1316  */
1317 #define HV_TS_GUID \
1318 	.guid = { \
1319 			0x30, 0xe6, 0x27, 0x95, 0xae, 0xd0, 0x7b, 0x49, \
1320 			0xad, 0xce, 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf \
1321 		}
1322 
1323 /*
1324  * Heartbeat GUID
1325  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1326  */
1327 #define HV_HEART_BEAT_GUID \
1328 	.guid = { \
1329 			0x39, 0x4f, 0x16, 0x57, 0x15, 0x91, 0x78, 0x4e, \
1330 			0xab, 0x55, 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d \
1331 		}
1332 
1333 /*
1334  * KVP GUID
1335  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1336  */
1337 #define HV_KVP_GUID \
1338 	.guid = { \
1339 			0xe7, 0xf4, 0xa0, 0xa9, 0x45, 0x5a, 0x96, 0x4d, \
1340 			0xb8, 0x27, 0x8a, 0x84, 0x1e, 0x8c, 0x3,  0xe6 \
1341 		}
1342 
1343 /*
1344  * Dynamic memory GUID
1345  * {525074dc-8985-46e2-8057-a307dc18a502}
1346  */
1347 #define HV_DM_GUID \
1348 	.guid = { \
1349 			0xdc, 0x74, 0x50, 0X52, 0x85, 0x89, 0xe2, 0x46, \
1350 			0x80, 0x57, 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02 \
1351 		}
1352 
1353 /*
1354  * Mouse GUID
1355  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1356  */
1357 #define HV_MOUSE_GUID \
1358 	.guid = { \
1359 			0x9e, 0xb6, 0xa8, 0xcf, 0x4a, 0x5b, 0xc0, 0x4c, \
1360 			0xb9, 0x8b, 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a \
1361 		}
1362 
1363 /*
1364  * VSS (Backup/Restore) GUID
1365  */
1366 #define HV_VSS_GUID \
1367 	.guid = { \
1368 			0x29, 0x2e, 0xfa, 0x35, 0x23, 0xea, 0x36, 0x42, \
1369 			0x96, 0xae, 0x3a, 0x6e, 0xba, 0xcb, 0xa4,  0x40 \
1370 		}
1371 /*
1372  * Synthetic Video GUID
1373  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1374  */
1375 #define HV_SYNTHVID_GUID \
1376 	.guid = { \
1377 			0x02, 0x78, 0x0a, 0xda, 0x77, 0xe3, 0xac, 0x4a, \
1378 			0x8e, 0x77, 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8 \
1379 		}
1380 
1381 /*
1382  * Synthetic FC GUID
1383  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1384  */
1385 #define HV_SYNTHFC_GUID \
1386 	.guid = { \
1387 			0x4A, 0xCC, 0x9B, 0x2F, 0x69, 0x00, 0xF3, 0x4A, \
1388 			0xB7, 0x6B, 0x6F, 0xD0, 0xBE, 0x52, 0x8C, 0xDA \
1389 		}
1390 
1391 /*
1392  * Common header for Hyper-V ICs
1393  */
1394 
1395 #define ICMSGTYPE_NEGOTIATE		0
1396 #define ICMSGTYPE_HEARTBEAT		1
1397 #define ICMSGTYPE_KVPEXCHANGE		2
1398 #define ICMSGTYPE_SHUTDOWN		3
1399 #define ICMSGTYPE_TIMESYNC		4
1400 #define ICMSGTYPE_VSS			5
1401 
1402 #define ICMSGHDRFLAG_TRANSACTION	1
1403 #define ICMSGHDRFLAG_REQUEST		2
1404 #define ICMSGHDRFLAG_RESPONSE		4
1405 
1406 
1407 /*
1408  * While we want to handle util services as regular devices,
1409  * there is only one instance of each of these services; so
1410  * we statically allocate the service specific state.
1411  */
1412 
1413 struct hv_util_service {
1414 	u8 *recv_buffer;
1415 	void (*util_cb)(void *);
1416 	int (*util_init)(struct hv_util_service *);
1417 	void (*util_deinit)(void);
1418 };
1419 
1420 struct vmbuspipe_hdr {
1421 	u32 flags;
1422 	u32 msgsize;
1423 } __packed;
1424 
1425 struct ic_version {
1426 	u16 major;
1427 	u16 minor;
1428 } __packed;
1429 
1430 struct icmsg_hdr {
1431 	struct ic_version icverframe;
1432 	u16 icmsgtype;
1433 	struct ic_version icvermsg;
1434 	u16 icmsgsize;
1435 	u32 status;
1436 	u8 ictransaction_id;
1437 	u8 icflags;
1438 	u8 reserved[2];
1439 } __packed;
1440 
1441 struct icmsg_negotiate {
1442 	u16 icframe_vercnt;
1443 	u16 icmsg_vercnt;
1444 	u32 reserved;
1445 	struct ic_version icversion_data[1]; /* any size array */
1446 } __packed;
1447 
1448 struct shutdown_msg_data {
1449 	u32 reason_code;
1450 	u32 timeout_seconds;
1451 	u32 flags;
1452 	u8  display_message[2048];
1453 } __packed;
1454 
1455 struct heartbeat_msg_data {
1456 	u64 seq_num;
1457 	u32 reserved[8];
1458 } __packed;
1459 
1460 /* Time Sync IC defs */
1461 #define ICTIMESYNCFLAG_PROBE	0
1462 #define ICTIMESYNCFLAG_SYNC	1
1463 #define ICTIMESYNCFLAG_SAMPLE	2
1464 
1465 #ifdef __x86_64__
1466 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1467 #else
1468 #define WLTIMEDELTA	116444736000000000LL
1469 #endif
1470 
1471 struct ictimesync_data {
1472 	u64 parenttime;
1473 	u64 childtime;
1474 	u64 roundtriptime;
1475 	u8 flags;
1476 } __packed;
1477 
1478 struct hyperv_service_callback {
1479 	u8 msg_type;
1480 	char *log_msg;
1481 	uuid_le data;
1482 	struct vmbus_channel *channel;
1483 	void (*callback) (void *context);
1484 };
1485 
1486 #define MAX_SRV_VER	0x7ffffff
1487 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1488 					struct icmsg_negotiate *, u8 *, int,
1489 					int);
1490 
1491 int hv_kvp_init(struct hv_util_service *);
1492 void hv_kvp_deinit(void);
1493 void hv_kvp_onchannelcallback(void *);
1494 
1495 int hv_vss_init(struct hv_util_service *);
1496 void hv_vss_deinit(void);
1497 void hv_vss_onchannelcallback(void *);
1498 
1499 /*
1500  * Negotiated version with the Host.
1501  */
1502 
1503 extern __u32 vmbus_proto_version;
1504 
1505 #endif /* __KERNEL__ */
1506 #endif /* _HYPERV_H */
1507