xref: /linux-6.15/include/linux/hyperv.h (revision e756bc56)
1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <[email protected]>
20  *   Hank Janssen  <[email protected]>
21  *   K. Y. Srinivasan <[email protected]>
22  *
23  */
24 
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27 
28 #include <linux/types.h>
29 
30 /*
31  * Framework version for util services.
32  */
33 #define UTIL_FW_MINOR  0
34 
35 #define UTIL_WS2K8_FW_MAJOR  1
36 #define UTIL_WS2K8_FW_VERSION     (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
37 
38 #define UTIL_FW_MAJOR  3
39 #define UTIL_FW_VERSION     (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
40 
41 
42 /*
43  * Implementation of host controlled snapshot of the guest.
44  */
45 
46 #define VSS_OP_REGISTER 128
47 
48 enum hv_vss_op {
49 	VSS_OP_CREATE = 0,
50 	VSS_OP_DELETE,
51 	VSS_OP_HOT_BACKUP,
52 	VSS_OP_GET_DM_INFO,
53 	VSS_OP_BU_COMPLETE,
54 	/*
55 	 * Following operations are only supported with IC version >= 5.0
56 	 */
57 	VSS_OP_FREEZE, /* Freeze the file systems in the VM */
58 	VSS_OP_THAW, /* Unfreeze the file systems */
59 	VSS_OP_AUTO_RECOVER,
60 	VSS_OP_COUNT /* Number of operations, must be last */
61 };
62 
63 
64 /*
65  * Header for all VSS messages.
66  */
67 struct hv_vss_hdr {
68 	__u8 operation;
69 	__u8 reserved[7];
70 } __attribute__((packed));
71 
72 
73 /*
74  * Flag values for the hv_vss_check_feature. Linux supports only
75  * one value.
76  */
77 #define VSS_HBU_NO_AUTO_RECOVERY	0x00000005
78 
79 struct hv_vss_check_feature {
80 	__u32 flags;
81 } __attribute__((packed));
82 
83 struct hv_vss_check_dm_info {
84 	__u32 flags;
85 } __attribute__((packed));
86 
87 struct hv_vss_msg {
88 	union {
89 		struct hv_vss_hdr vss_hdr;
90 		int error;
91 	};
92 	union {
93 		struct hv_vss_check_feature vss_cf;
94 		struct hv_vss_check_dm_info dm_info;
95 	};
96 } __attribute__((packed));
97 
98 /*
99  * An implementation of HyperV key value pair (KVP) functionality for Linux.
100  *
101  *
102  * Copyright (C) 2010, Novell, Inc.
103  * Author : K. Y. Srinivasan <[email protected]>
104  *
105  */
106 
107 /*
108  * Maximum value size - used for both key names and value data, and includes
109  * any applicable NULL terminators.
110  *
111  * Note:  This limit is somewhat arbitrary, but falls easily within what is
112  * supported for all native guests (back to Win 2000) and what is reasonable
113  * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
114  * limited to 255 character key names.
115  *
116  * MSDN recommends not storing data values larger than 2048 bytes in the
117  * registry.
118  *
119  * Note:  This value is used in defining the KVP exchange message - this value
120  * cannot be modified without affecting the message size and compatibility.
121  */
122 
123 /*
124  * bytes, including any null terminators
125  */
126 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
127 
128 
129 /*
130  * Maximum key size - the registry limit for the length of an entry name
131  * is 256 characters, including the null terminator
132  */
133 
134 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
135 
136 /*
137  * In Linux, we implement the KVP functionality in two components:
138  * 1) The kernel component which is packaged as part of the hv_utils driver
139  * is responsible for communicating with the host and responsible for
140  * implementing the host/guest protocol. 2) A user level daemon that is
141  * responsible for data gathering.
142  *
143  * Host/Guest Protocol: The host iterates over an index and expects the guest
144  * to assign a key name to the index and also return the value corresponding to
145  * the key. The host will have atmost one KVP transaction outstanding at any
146  * given point in time. The host side iteration stops when the guest returns
147  * an error. Microsoft has specified the following mapping of key names to
148  * host specified index:
149  *
150  *	Index		Key Name
151  *	0		FullyQualifiedDomainName
152  *	1		IntegrationServicesVersion
153  *	2		NetworkAddressIPv4
154  *	3		NetworkAddressIPv6
155  *	4		OSBuildNumber
156  *	5		OSName
157  *	6		OSMajorVersion
158  *	7		OSMinorVersion
159  *	8		OSVersion
160  *	9		ProcessorArchitecture
161  *
162  * The Windows host expects the Key Name and Key Value to be encoded in utf16.
163  *
164  * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
165  * data gathering functionality in a user mode daemon. The user level daemon
166  * is also responsible for binding the key name to the index as well. The
167  * kernel and user-level daemon communicate using a connector channel.
168  *
169  * The user mode component first registers with the
170  * the kernel component. Subsequently, the kernel component requests, data
171  * for the specified keys. In response to this message the user mode component
172  * fills in the value corresponding to the specified key. We overload the
173  * sequence field in the cn_msg header to define our KVP message types.
174  *
175  *
176  * The kernel component simply acts as a conduit for communication between the
177  * Windows host and the user-level daemon. The kernel component passes up the
178  * index received from the Host to the user-level daemon. If the index is
179  * valid (supported), the corresponding key as well as its
180  * value (both are strings) is returned. If the index is invalid
181  * (not supported), a NULL key string is returned.
182  */
183 
184 
185 /*
186  * Registry value types.
187  */
188 
189 #define REG_SZ 1
190 #define REG_U32 4
191 #define REG_U64 8
192 
193 /*
194  * As we look at expanding the KVP functionality to include
195  * IP injection functionality, we need to maintain binary
196  * compatibility with older daemons.
197  *
198  * The KVP opcodes are defined by the host and it was unfortunate
199  * that I chose to treat the registration operation as part of the
200  * KVP operations defined by the host.
201  * Here is the level of compatibility
202  * (between the user level daemon and the kernel KVP driver) that we
203  * will implement:
204  *
205  * An older daemon will always be supported on a newer driver.
206  * A given user level daemon will require a minimal version of the
207  * kernel driver.
208  * If we cannot handle the version differences, we will fail gracefully
209  * (this can happen when we have a user level daemon that is more
210  * advanced than the KVP driver.
211  *
212  * We will use values used in this handshake for determining if we have
213  * workable user level daemon and the kernel driver. We begin by taking the
214  * registration opcode out of the KVP opcode namespace. We will however,
215  * maintain compatibility with the existing user-level daemon code.
216  */
217 
218 /*
219  * Daemon code not supporting IP injection (legacy daemon).
220  */
221 
222 #define KVP_OP_REGISTER	4
223 
224 /*
225  * Daemon code supporting IP injection.
226  * The KVP opcode field is used to communicate the
227  * registration information; so define a namespace that
228  * will be distinct from the host defined KVP opcode.
229  */
230 
231 #define KVP_OP_REGISTER1 100
232 
233 enum hv_kvp_exchg_op {
234 	KVP_OP_GET = 0,
235 	KVP_OP_SET,
236 	KVP_OP_DELETE,
237 	KVP_OP_ENUMERATE,
238 	KVP_OP_GET_IP_INFO,
239 	KVP_OP_SET_IP_INFO,
240 	KVP_OP_COUNT /* Number of operations, must be last. */
241 };
242 
243 enum hv_kvp_exchg_pool {
244 	KVP_POOL_EXTERNAL = 0,
245 	KVP_POOL_GUEST,
246 	KVP_POOL_AUTO,
247 	KVP_POOL_AUTO_EXTERNAL,
248 	KVP_POOL_AUTO_INTERNAL,
249 	KVP_POOL_COUNT /* Number of pools, must be last. */
250 };
251 
252 /*
253  * Some Hyper-V status codes.
254  */
255 
256 #define HV_S_OK				0x00000000
257 #define HV_E_FAIL			0x80004005
258 #define HV_S_CONT			0x80070103
259 #define HV_ERROR_NOT_SUPPORTED		0x80070032
260 #define HV_ERROR_MACHINE_LOCKED		0x800704F7
261 #define HV_ERROR_DEVICE_NOT_CONNECTED	0x8007048F
262 #define HV_INVALIDARG			0x80070057
263 #define HV_GUID_NOTFOUND		0x80041002
264 
265 #define ADDR_FAMILY_NONE	0x00
266 #define ADDR_FAMILY_IPV4	0x01
267 #define ADDR_FAMILY_IPV6	0x02
268 
269 #define MAX_ADAPTER_ID_SIZE	128
270 #define MAX_IP_ADDR_SIZE	1024
271 #define MAX_GATEWAY_SIZE	512
272 
273 
274 struct hv_kvp_ipaddr_value {
275 	__u16	adapter_id[MAX_ADAPTER_ID_SIZE];
276 	__u8	addr_family;
277 	__u8	dhcp_enabled;
278 	__u16	ip_addr[MAX_IP_ADDR_SIZE];
279 	__u16	sub_net[MAX_IP_ADDR_SIZE];
280 	__u16	gate_way[MAX_GATEWAY_SIZE];
281 	__u16	dns_addr[MAX_IP_ADDR_SIZE];
282 } __attribute__((packed));
283 
284 
285 struct hv_kvp_hdr {
286 	__u8 operation;
287 	__u8 pool;
288 	__u16 pad;
289 } __attribute__((packed));
290 
291 struct hv_kvp_exchg_msg_value {
292 	__u32 value_type;
293 	__u32 key_size;
294 	__u32 value_size;
295 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
296 	union {
297 		__u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
298 		__u32 value_u32;
299 		__u64 value_u64;
300 	};
301 } __attribute__((packed));
302 
303 struct hv_kvp_msg_enumerate {
304 	__u32 index;
305 	struct hv_kvp_exchg_msg_value data;
306 } __attribute__((packed));
307 
308 struct hv_kvp_msg_get {
309 	struct hv_kvp_exchg_msg_value data;
310 };
311 
312 struct hv_kvp_msg_set {
313 	struct hv_kvp_exchg_msg_value data;
314 };
315 
316 struct hv_kvp_msg_delete {
317 	__u32 key_size;
318 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
319 };
320 
321 struct hv_kvp_register {
322 	__u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
323 };
324 
325 struct hv_kvp_msg {
326 	union {
327 		struct hv_kvp_hdr	kvp_hdr;
328 		int error;
329 	};
330 	union {
331 		struct hv_kvp_msg_get		kvp_get;
332 		struct hv_kvp_msg_set		kvp_set;
333 		struct hv_kvp_msg_delete	kvp_delete;
334 		struct hv_kvp_msg_enumerate	kvp_enum_data;
335 		struct hv_kvp_ipaddr_value      kvp_ip_val;
336 		struct hv_kvp_register		kvp_register;
337 	} body;
338 } __attribute__((packed));
339 
340 struct hv_kvp_ip_msg {
341 	__u8 operation;
342 	__u8 pool;
343 	struct hv_kvp_ipaddr_value      kvp_ip_val;
344 } __attribute__((packed));
345 
346 #ifdef __KERNEL__
347 #include <linux/scatterlist.h>
348 #include <linux/list.h>
349 #include <linux/uuid.h>
350 #include <linux/timer.h>
351 #include <linux/workqueue.h>
352 #include <linux/completion.h>
353 #include <linux/device.h>
354 #include <linux/mod_devicetable.h>
355 
356 
357 #define MAX_PAGE_BUFFER_COUNT				19
358 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
359 
360 #pragma pack(push, 1)
361 
362 /* Single-page buffer */
363 struct hv_page_buffer {
364 	u32 len;
365 	u32 offset;
366 	u64 pfn;
367 };
368 
369 /* Multiple-page buffer */
370 struct hv_multipage_buffer {
371 	/* Length and Offset determines the # of pfns in the array */
372 	u32 len;
373 	u32 offset;
374 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
375 };
376 
377 /* 0x18 includes the proprietary packet header */
378 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
379 					(sizeof(struct hv_page_buffer) * \
380 					 MAX_PAGE_BUFFER_COUNT))
381 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
382 					 sizeof(struct hv_multipage_buffer))
383 
384 
385 #pragma pack(pop)
386 
387 struct hv_ring_buffer {
388 	/* Offset in bytes from the start of ring data below */
389 	u32 write_index;
390 
391 	/* Offset in bytes from the start of ring data below */
392 	u32 read_index;
393 
394 	u32 interrupt_mask;
395 
396 	/*
397 	 * Win8 uses some of the reserved bits to implement
398 	 * interrupt driven flow management. On the send side
399 	 * we can request that the receiver interrupt the sender
400 	 * when the ring transitions from being full to being able
401 	 * to handle a message of size "pending_send_sz".
402 	 *
403 	 * Add necessary state for this enhancement.
404 	 */
405 	u32 pending_send_sz;
406 
407 	u32 reserved1[12];
408 
409 	union {
410 		struct {
411 			u32 feat_pending_send_sz:1;
412 		};
413 		u32 value;
414 	} feature_bits;
415 
416 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
417 	u8	reserved2[4028];
418 
419 	/*
420 	 * Ring data starts here + RingDataStartOffset
421 	 * !!! DO NOT place any fields below this !!!
422 	 */
423 	u8 buffer[0];
424 } __packed;
425 
426 struct hv_ring_buffer_info {
427 	struct hv_ring_buffer *ring_buffer;
428 	u32 ring_size;			/* Include the shared header */
429 	spinlock_t ring_lock;
430 
431 	u32 ring_datasize;		/* < ring_size */
432 	u32 ring_data_startoffset;
433 };
434 
435 /*
436  *
437  * hv_get_ringbuffer_availbytes()
438  *
439  * Get number of bytes available to read and to write to
440  * for the specified ring buffer
441  */
442 static inline void
443 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
444 			  u32 *read, u32 *write)
445 {
446 	u32 read_loc, write_loc, dsize;
447 
448 	smp_read_barrier_depends();
449 
450 	/* Capture the read/write indices before they changed */
451 	read_loc = rbi->ring_buffer->read_index;
452 	write_loc = rbi->ring_buffer->write_index;
453 	dsize = rbi->ring_datasize;
454 
455 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
456 		read_loc - write_loc;
457 	*read = dsize - *write;
458 }
459 
460 /*
461  * VMBUS version is 32 bit entity broken up into
462  * two 16 bit quantities: major_number. minor_number.
463  *
464  * 0 . 13 (Windows Server 2008)
465  * 1 . 1  (Windows 7)
466  * 2 . 4  (Windows 8)
467  */
468 
469 #define VERSION_WS2008  ((0 << 16) | (13))
470 #define VERSION_WIN7    ((1 << 16) | (1))
471 #define VERSION_WIN8    ((2 << 16) | (4))
472 
473 #define VERSION_INVAL -1
474 
475 #define VERSION_CURRENT VERSION_WIN8
476 
477 /* Make maximum size of pipe payload of 16K */
478 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
479 
480 /* Define PipeMode values. */
481 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
482 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
483 
484 /* The size of the user defined data buffer for non-pipe offers. */
485 #define MAX_USER_DEFINED_BYTES		120
486 
487 /* The size of the user defined data buffer for pipe offers. */
488 #define MAX_PIPE_USER_DEFINED_BYTES	116
489 
490 /*
491  * At the center of the Channel Management library is the Channel Offer. This
492  * struct contains the fundamental information about an offer.
493  */
494 struct vmbus_channel_offer {
495 	uuid_le if_type;
496 	uuid_le if_instance;
497 
498 	/*
499 	 * These two fields are not currently used.
500 	 */
501 	u64 reserved1;
502 	u64 reserved2;
503 
504 	u16 chn_flags;
505 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
506 
507 	union {
508 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
509 		struct {
510 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
511 		} std;
512 
513 		/*
514 		 * Pipes:
515 		 * The following sructure is an integrated pipe protocol, which
516 		 * is implemented on top of standard user-defined data. Pipe
517 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
518 		 * use.
519 		 */
520 		struct {
521 			u32  pipe_mode;
522 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
523 		} pipe;
524 	} u;
525 	/*
526 	 * The sub_channel_index is defined in win8.
527 	 */
528 	u16 sub_channel_index;
529 	u16 reserved3;
530 } __packed;
531 
532 /* Server Flags */
533 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
534 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
535 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
536 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
537 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
538 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
539 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
540 
541 struct vmpacket_descriptor {
542 	u16 type;
543 	u16 offset8;
544 	u16 len8;
545 	u16 flags;
546 	u64 trans_id;
547 } __packed;
548 
549 struct vmpacket_header {
550 	u32 prev_pkt_start_offset;
551 	struct vmpacket_descriptor descriptor;
552 } __packed;
553 
554 struct vmtransfer_page_range {
555 	u32 byte_count;
556 	u32 byte_offset;
557 } __packed;
558 
559 struct vmtransfer_page_packet_header {
560 	struct vmpacket_descriptor d;
561 	u16 xfer_pageset_id;
562 	u8  sender_owns_set;
563 	u8 reserved;
564 	u32 range_cnt;
565 	struct vmtransfer_page_range ranges[1];
566 } __packed;
567 
568 struct vmgpadl_packet_header {
569 	struct vmpacket_descriptor d;
570 	u32 gpadl;
571 	u32 reserved;
572 } __packed;
573 
574 struct vmadd_remove_transfer_page_set {
575 	struct vmpacket_descriptor d;
576 	u32 gpadl;
577 	u16 xfer_pageset_id;
578 	u16 reserved;
579 } __packed;
580 
581 /*
582  * This structure defines a range in guest physical space that can be made to
583  * look virtually contiguous.
584  */
585 struct gpa_range {
586 	u32 byte_count;
587 	u32 byte_offset;
588 	u64 pfn_array[0];
589 };
590 
591 /*
592  * This is the format for an Establish Gpadl packet, which contains a handle by
593  * which this GPADL will be known and a set of GPA ranges associated with it.
594  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
595  * ranges, then the resulting MDL will be "chained," representing multiple VA
596  * ranges.
597  */
598 struct vmestablish_gpadl {
599 	struct vmpacket_descriptor d;
600 	u32 gpadl;
601 	u32 range_cnt;
602 	struct gpa_range range[1];
603 } __packed;
604 
605 /*
606  * This is the format for a Teardown Gpadl packet, which indicates that the
607  * GPADL handle in the Establish Gpadl packet will never be referenced again.
608  */
609 struct vmteardown_gpadl {
610 	struct vmpacket_descriptor d;
611 	u32 gpadl;
612 	u32 reserved;	/* for alignment to a 8-byte boundary */
613 } __packed;
614 
615 /*
616  * This is the format for a GPA-Direct packet, which contains a set of GPA
617  * ranges, in addition to commands and/or data.
618  */
619 struct vmdata_gpa_direct {
620 	struct vmpacket_descriptor d;
621 	u32 reserved;
622 	u32 range_cnt;
623 	struct gpa_range range[1];
624 } __packed;
625 
626 /* This is the format for a Additional Data Packet. */
627 struct vmadditional_data {
628 	struct vmpacket_descriptor d;
629 	u64 total_bytes;
630 	u32 offset;
631 	u32 byte_cnt;
632 	unsigned char data[1];
633 } __packed;
634 
635 union vmpacket_largest_possible_header {
636 	struct vmpacket_descriptor simple_hdr;
637 	struct vmtransfer_page_packet_header xfer_page_hdr;
638 	struct vmgpadl_packet_header gpadl_hdr;
639 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
640 	struct vmestablish_gpadl establish_gpadl_hdr;
641 	struct vmteardown_gpadl teardown_gpadl_hdr;
642 	struct vmdata_gpa_direct data_gpa_direct_hdr;
643 };
644 
645 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
646 	(void *)(((unsigned char *)__packet) +	\
647 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
648 
649 #define VMPACKET_DATA_LENGTH(__packet)		\
650 	((((struct vmpacket_descriptor)__packet)->len8 -	\
651 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
652 
653 #define VMPACKET_TRANSFER_MODE(__packet)	\
654 	(((struct IMPACT)__packet)->type)
655 
656 enum vmbus_packet_type {
657 	VM_PKT_INVALID				= 0x0,
658 	VM_PKT_SYNCH				= 0x1,
659 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
660 	VM_PKT_RM_XFER_PAGESET			= 0x3,
661 	VM_PKT_ESTABLISH_GPADL			= 0x4,
662 	VM_PKT_TEARDOWN_GPADL			= 0x5,
663 	VM_PKT_DATA_INBAND			= 0x6,
664 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
665 	VM_PKT_DATA_USING_GPADL			= 0x8,
666 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
667 	VM_PKT_CANCEL_REQUEST			= 0xa,
668 	VM_PKT_COMP				= 0xb,
669 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
670 	VM_PKT_ADDITIONAL_DATA			= 0xd
671 };
672 
673 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
674 
675 
676 /* Version 1 messages */
677 enum vmbus_channel_message_type {
678 	CHANNELMSG_INVALID			=  0,
679 	CHANNELMSG_OFFERCHANNEL		=  1,
680 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
681 	CHANNELMSG_REQUESTOFFERS		=  3,
682 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
683 	CHANNELMSG_OPENCHANNEL		=  5,
684 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
685 	CHANNELMSG_CLOSECHANNEL		=  7,
686 	CHANNELMSG_GPADL_HEADER		=  8,
687 	CHANNELMSG_GPADL_BODY			=  9,
688 	CHANNELMSG_GPADL_CREATED		= 10,
689 	CHANNELMSG_GPADL_TEARDOWN		= 11,
690 	CHANNELMSG_GPADL_TORNDOWN		= 12,
691 	CHANNELMSG_RELID_RELEASED		= 13,
692 	CHANNELMSG_INITIATE_CONTACT		= 14,
693 	CHANNELMSG_VERSION_RESPONSE		= 15,
694 	CHANNELMSG_UNLOAD			= 16,
695 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
696 	CHANNELMSG_VIEWRANGE_ADD		= 17,
697 	CHANNELMSG_VIEWRANGE_REMOVE		= 18,
698 #endif
699 	CHANNELMSG_COUNT
700 };
701 
702 struct vmbus_channel_message_header {
703 	enum vmbus_channel_message_type msgtype;
704 	u32 padding;
705 } __packed;
706 
707 /* Query VMBus Version parameters */
708 struct vmbus_channel_query_vmbus_version {
709 	struct vmbus_channel_message_header header;
710 	u32 version;
711 } __packed;
712 
713 /* VMBus Version Supported parameters */
714 struct vmbus_channel_version_supported {
715 	struct vmbus_channel_message_header header;
716 	u8 version_supported;
717 } __packed;
718 
719 /* Offer Channel parameters */
720 struct vmbus_channel_offer_channel {
721 	struct vmbus_channel_message_header header;
722 	struct vmbus_channel_offer offer;
723 	u32 child_relid;
724 	u8 monitorid;
725 	/*
726 	 * win7 and beyond splits this field into a bit field.
727 	 */
728 	u8 monitor_allocated:1;
729 	u8 reserved:7;
730 	/*
731 	 * These are new fields added in win7 and later.
732 	 * Do not access these fields without checking the
733 	 * negotiated protocol.
734 	 *
735 	 * If "is_dedicated_interrupt" is set, we must not set the
736 	 * associated bit in the channel bitmap while sending the
737 	 * interrupt to the host.
738 	 *
739 	 * connection_id is to be used in signaling the host.
740 	 */
741 	u16 is_dedicated_interrupt:1;
742 	u16 reserved1:15;
743 	u32 connection_id;
744 } __packed;
745 
746 /* Rescind Offer parameters */
747 struct vmbus_channel_rescind_offer {
748 	struct vmbus_channel_message_header header;
749 	u32 child_relid;
750 } __packed;
751 
752 /*
753  * Request Offer -- no parameters, SynIC message contains the partition ID
754  * Set Snoop -- no parameters, SynIC message contains the partition ID
755  * Clear Snoop -- no parameters, SynIC message contains the partition ID
756  * All Offers Delivered -- no parameters, SynIC message contains the partition
757  *		           ID
758  * Flush Client -- no parameters, SynIC message contains the partition ID
759  */
760 
761 /* Open Channel parameters */
762 struct vmbus_channel_open_channel {
763 	struct vmbus_channel_message_header header;
764 
765 	/* Identifies the specific VMBus channel that is being opened. */
766 	u32 child_relid;
767 
768 	/* ID making a particular open request at a channel offer unique. */
769 	u32 openid;
770 
771 	/* GPADL for the channel's ring buffer. */
772 	u32 ringbuffer_gpadlhandle;
773 
774 	/*
775 	 * Starting with win8, this field will be used to specify
776 	 * the target virtual processor on which to deliver the interrupt for
777 	 * the host to guest communication.
778 	 * Prior to win8, incoming channel interrupts would only
779 	 * be delivered on cpu 0. Setting this value to 0 would
780 	 * preserve the earlier behavior.
781 	 */
782 	u32 target_vp;
783 
784 	/*
785 	* The upstream ring buffer begins at offset zero in the memory
786 	* described by RingBufferGpadlHandle. The downstream ring buffer
787 	* follows it at this offset (in pages).
788 	*/
789 	u32 downstream_ringbuffer_pageoffset;
790 
791 	/* User-specific data to be passed along to the server endpoint. */
792 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
793 } __packed;
794 
795 /* Open Channel Result parameters */
796 struct vmbus_channel_open_result {
797 	struct vmbus_channel_message_header header;
798 	u32 child_relid;
799 	u32 openid;
800 	u32 status;
801 } __packed;
802 
803 /* Close channel parameters; */
804 struct vmbus_channel_close_channel {
805 	struct vmbus_channel_message_header header;
806 	u32 child_relid;
807 } __packed;
808 
809 /* Channel Message GPADL */
810 #define GPADL_TYPE_RING_BUFFER		1
811 #define GPADL_TYPE_SERVER_SAVE_AREA	2
812 #define GPADL_TYPE_TRANSACTION		8
813 
814 /*
815  * The number of PFNs in a GPADL message is defined by the number of
816  * pages that would be spanned by ByteCount and ByteOffset.  If the
817  * implied number of PFNs won't fit in this packet, there will be a
818  * follow-up packet that contains more.
819  */
820 struct vmbus_channel_gpadl_header {
821 	struct vmbus_channel_message_header header;
822 	u32 child_relid;
823 	u32 gpadl;
824 	u16 range_buflen;
825 	u16 rangecount;
826 	struct gpa_range range[0];
827 } __packed;
828 
829 /* This is the followup packet that contains more PFNs. */
830 struct vmbus_channel_gpadl_body {
831 	struct vmbus_channel_message_header header;
832 	u32 msgnumber;
833 	u32 gpadl;
834 	u64 pfn[0];
835 } __packed;
836 
837 struct vmbus_channel_gpadl_created {
838 	struct vmbus_channel_message_header header;
839 	u32 child_relid;
840 	u32 gpadl;
841 	u32 creation_status;
842 } __packed;
843 
844 struct vmbus_channel_gpadl_teardown {
845 	struct vmbus_channel_message_header header;
846 	u32 child_relid;
847 	u32 gpadl;
848 } __packed;
849 
850 struct vmbus_channel_gpadl_torndown {
851 	struct vmbus_channel_message_header header;
852 	u32 gpadl;
853 } __packed;
854 
855 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
856 struct vmbus_channel_view_range_add {
857 	struct vmbus_channel_message_header header;
858 	PHYSICAL_ADDRESS viewrange_base;
859 	u64 viewrange_length;
860 	u32 child_relid;
861 } __packed;
862 
863 struct vmbus_channel_view_range_remove {
864 	struct vmbus_channel_message_header header;
865 	PHYSICAL_ADDRESS viewrange_base;
866 	u32 child_relid;
867 } __packed;
868 #endif
869 
870 struct vmbus_channel_relid_released {
871 	struct vmbus_channel_message_header header;
872 	u32 child_relid;
873 } __packed;
874 
875 struct vmbus_channel_initiate_contact {
876 	struct vmbus_channel_message_header header;
877 	u32 vmbus_version_requested;
878 	u32 padding2;
879 	u64 interrupt_page;
880 	u64 monitor_page1;
881 	u64 monitor_page2;
882 } __packed;
883 
884 struct vmbus_channel_version_response {
885 	struct vmbus_channel_message_header header;
886 	u8 version_supported;
887 } __packed;
888 
889 enum vmbus_channel_state {
890 	CHANNEL_OFFER_STATE,
891 	CHANNEL_OPENING_STATE,
892 	CHANNEL_OPEN_STATE,
893 	CHANNEL_OPENED_STATE,
894 };
895 
896 /*
897  * Represents each channel msg on the vmbus connection This is a
898  * variable-size data structure depending on the msg type itself
899  */
900 struct vmbus_channel_msginfo {
901 	/* Bookkeeping stuff */
902 	struct list_head msglistentry;
903 
904 	/* So far, this is only used to handle gpadl body message */
905 	struct list_head submsglist;
906 
907 	/* Synchronize the request/response if needed */
908 	struct completion  waitevent;
909 	union {
910 		struct vmbus_channel_version_supported version_supported;
911 		struct vmbus_channel_open_result open_result;
912 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
913 		struct vmbus_channel_gpadl_created gpadl_created;
914 		struct vmbus_channel_version_response version_response;
915 	} response;
916 
917 	u32 msgsize;
918 	/*
919 	 * The channel message that goes out on the "wire".
920 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
921 	 */
922 	unsigned char msg[0];
923 };
924 
925 struct vmbus_close_msg {
926 	struct vmbus_channel_msginfo info;
927 	struct vmbus_channel_close_channel msg;
928 };
929 
930 /* Define connection identifier type. */
931 union hv_connection_id {
932 	u32 asu32;
933 	struct {
934 		u32 id:24;
935 		u32 reserved:8;
936 	} u;
937 };
938 
939 /* Definition of the hv_signal_event hypercall input structure. */
940 struct hv_input_signal_event {
941 	union hv_connection_id connectionid;
942 	u16 flag_number;
943 	u16 rsvdz;
944 };
945 
946 struct hv_input_signal_event_buffer {
947 	u64 align8;
948 	struct hv_input_signal_event event;
949 };
950 
951 struct vmbus_channel {
952 	struct list_head listentry;
953 
954 	struct hv_device *device_obj;
955 
956 	struct work_struct work;
957 
958 	enum vmbus_channel_state state;
959 
960 	struct vmbus_channel_offer_channel offermsg;
961 	/*
962 	 * These are based on the OfferMsg.MonitorId.
963 	 * Save it here for easy access.
964 	 */
965 	u8 monitor_grp;
966 	u8 monitor_bit;
967 
968 	u32 ringbuffer_gpadlhandle;
969 
970 	/* Allocated memory for ring buffer */
971 	void *ringbuffer_pages;
972 	u32 ringbuffer_pagecount;
973 	struct hv_ring_buffer_info outbound;	/* send to parent */
974 	struct hv_ring_buffer_info inbound;	/* receive from parent */
975 	spinlock_t inbound_lock;
976 	struct workqueue_struct *controlwq;
977 
978 	struct vmbus_close_msg close_msg;
979 
980 	/* Channel callback are invoked in this workqueue context */
981 	/* HANDLE dataWorkQueue; */
982 
983 	void (*onchannel_callback)(void *context);
984 	void *channel_callback_context;
985 
986 	/*
987 	 * A channel can be marked for efficient (batched)
988 	 * reading:
989 	 * If batched_reading is set to "true", we read until the
990 	 * channel is empty and hold off interrupts from the host
991 	 * during the entire read process.
992 	 * If batched_reading is set to "false", the client is not
993 	 * going to perform batched reading.
994 	 *
995 	 * By default we will enable batched reading; specific
996 	 * drivers that don't want this behavior can turn it off.
997 	 */
998 
999 	bool batched_reading;
1000 
1001 	bool is_dedicated_interrupt;
1002 	struct hv_input_signal_event_buffer sig_buf;
1003 	struct hv_input_signal_event *sig_event;
1004 
1005 	/*
1006 	 * Starting with win8, this field will be used to specify
1007 	 * the target virtual processor on which to deliver the interrupt for
1008 	 * the host to guest communication.
1009 	 * Prior to win8, incoming channel interrupts would only
1010 	 * be delivered on cpu 0. Setting this value to 0 would
1011 	 * preserve the earlier behavior.
1012 	 */
1013 	u32 target_vp;
1014 	/*
1015 	 * Support for sub-channels. For high performance devices,
1016 	 * it will be useful to have multiple sub-channels to support
1017 	 * a scalable communication infrastructure with the host.
1018 	 * The support for sub-channels is implemented as an extention
1019 	 * to the current infrastructure.
1020 	 * The initial offer is considered the primary channel and this
1021 	 * offer message will indicate if the host supports sub-channels.
1022 	 * The guest is free to ask for sub-channels to be offerred and can
1023 	 * open these sub-channels as a normal "primary" channel. However,
1024 	 * all sub-channels will have the same type and instance guids as the
1025 	 * primary channel. Requests sent on a given channel will result in a
1026 	 * response on the same channel.
1027 	 */
1028 
1029 	/*
1030 	 * Sub-channel creation callback. This callback will be called in
1031 	 * process context when a sub-channel offer is received from the host.
1032 	 * The guest can open the sub-channel in the context of this callback.
1033 	 */
1034 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
1035 
1036 	spinlock_t sc_lock;
1037 	/*
1038 	 * All Sub-channels of a primary channel are linked here.
1039 	 */
1040 	struct list_head sc_list;
1041 	/*
1042 	 * The primary channel this sub-channel belongs to.
1043 	 * This will be NULL for the primary channel.
1044 	 */
1045 	struct vmbus_channel *primary_channel;
1046 };
1047 
1048 static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
1049 {
1050 	c->batched_reading = state;
1051 }
1052 
1053 void vmbus_onmessage(void *context);
1054 
1055 int vmbus_request_offers(void);
1056 
1057 /*
1058  * APIs for managing sub-channels.
1059  */
1060 
1061 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1062 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1063 
1064 /*
1065  * Retrieve the (sub) channel on which to send an outgoing request.
1066  * When a primary channel has multiple sub-channels, we choose a
1067  * channel whose VCPU binding is closest to the VCPU on which
1068  * this call is being made.
1069  */
1070 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
1071 
1072 /*
1073  * Check if sub-channels have already been offerred. This API will be useful
1074  * when the driver is unloaded after establishing sub-channels. In this case,
1075  * when the driver is re-loaded, the driver would have to check if the
1076  * subchannels have already been established before attempting to request
1077  * the creation of sub-channels.
1078  * This function returns TRUE to indicate that subchannels have already been
1079  * created.
1080  * This function should be invoked after setting the callback function for
1081  * sub-channel creation.
1082  */
1083 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1084 
1085 /* The format must be the same as struct vmdata_gpa_direct */
1086 struct vmbus_channel_packet_page_buffer {
1087 	u16 type;
1088 	u16 dataoffset8;
1089 	u16 length8;
1090 	u16 flags;
1091 	u64 transactionid;
1092 	u32 reserved;
1093 	u32 rangecount;
1094 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1095 } __packed;
1096 
1097 /* The format must be the same as struct vmdata_gpa_direct */
1098 struct vmbus_channel_packet_multipage_buffer {
1099 	u16 type;
1100 	u16 dataoffset8;
1101 	u16 length8;
1102 	u16 flags;
1103 	u64 transactionid;
1104 	u32 reserved;
1105 	u32 rangecount;		/* Always 1 in this case */
1106 	struct hv_multipage_buffer range;
1107 } __packed;
1108 
1109 
1110 extern int vmbus_open(struct vmbus_channel *channel,
1111 			    u32 send_ringbuffersize,
1112 			    u32 recv_ringbuffersize,
1113 			    void *userdata,
1114 			    u32 userdatalen,
1115 			    void(*onchannel_callback)(void *context),
1116 			    void *context);
1117 
1118 extern void vmbus_close(struct vmbus_channel *channel);
1119 
1120 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1121 				  const void *buffer,
1122 				  u32 bufferLen,
1123 				  u64 requestid,
1124 				  enum vmbus_packet_type type,
1125 				  u32 flags);
1126 
1127 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1128 					    struct hv_page_buffer pagebuffers[],
1129 					    u32 pagecount,
1130 					    void *buffer,
1131 					    u32 bufferlen,
1132 					    u64 requestid);
1133 
1134 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1135 					struct hv_multipage_buffer *mpb,
1136 					void *buffer,
1137 					u32 bufferlen,
1138 					u64 requestid);
1139 
1140 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1141 				      void *kbuffer,
1142 				      u32 size,
1143 				      u32 *gpadl_handle);
1144 
1145 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1146 				     u32 gpadl_handle);
1147 
1148 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1149 				  void *buffer,
1150 				  u32 bufferlen,
1151 				  u32 *buffer_actual_len,
1152 				  u64 *requestid);
1153 
1154 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1155 				     void *buffer,
1156 				     u32 bufferlen,
1157 				     u32 *buffer_actual_len,
1158 				     u64 *requestid);
1159 
1160 
1161 extern void vmbus_ontimer(unsigned long data);
1162 
1163 /* Base driver object */
1164 struct hv_driver {
1165 	const char *name;
1166 
1167 	/* the device type supported by this driver */
1168 	uuid_le dev_type;
1169 	const struct hv_vmbus_device_id *id_table;
1170 
1171 	struct device_driver driver;
1172 
1173 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1174 	int (*remove)(struct hv_device *);
1175 	void (*shutdown)(struct hv_device *);
1176 
1177 };
1178 
1179 /* Base device object */
1180 struct hv_device {
1181 	/* the device type id of this device */
1182 	uuid_le dev_type;
1183 
1184 	/* the device instance id of this device */
1185 	uuid_le dev_instance;
1186 
1187 	struct device device;
1188 
1189 	struct vmbus_channel *channel;
1190 };
1191 
1192 
1193 static inline struct hv_device *device_to_hv_device(struct device *d)
1194 {
1195 	return container_of(d, struct hv_device, device);
1196 }
1197 
1198 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1199 {
1200 	return container_of(d, struct hv_driver, driver);
1201 }
1202 
1203 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1204 {
1205 	dev_set_drvdata(&dev->device, data);
1206 }
1207 
1208 static inline void *hv_get_drvdata(struct hv_device *dev)
1209 {
1210 	return dev_get_drvdata(&dev->device);
1211 }
1212 
1213 /* Vmbus interface */
1214 #define vmbus_driver_register(driver)	\
1215 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1216 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1217 					 struct module *owner,
1218 					 const char *mod_name);
1219 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1220 
1221 /**
1222  * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device
1223  *
1224  * This macro is used to create a struct hv_vmbus_device_id that matches a
1225  * specific device.
1226  */
1227 #define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7,	\
1228 		     g8, g9, ga, gb, gc, gd, ge, gf)	\
1229 	.guid = { g0, g1, g2, g3, g4, g5, g6, g7,	\
1230 		  g8, g9, ga, gb, gc, gd, ge, gf },
1231 
1232 /*
1233  * GUID definitions of various offer types - services offered to the guest.
1234  */
1235 
1236 /*
1237  * Network GUID
1238  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1239  */
1240 #define HV_NIC_GUID \
1241 	.guid = { \
1242 			0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46, \
1243 			0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e \
1244 		}
1245 
1246 /*
1247  * IDE GUID
1248  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1249  */
1250 #define HV_IDE_GUID \
1251 	.guid = { \
1252 			0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44, \
1253 			0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5 \
1254 		}
1255 
1256 /*
1257  * SCSI GUID
1258  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1259  */
1260 #define HV_SCSI_GUID \
1261 	.guid = { \
1262 			0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d, \
1263 			0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f \
1264 		}
1265 
1266 /*
1267  * Shutdown GUID
1268  * {0e0b6031-5213-4934-818b-38d90ced39db}
1269  */
1270 #define HV_SHUTDOWN_GUID \
1271 	.guid = { \
1272 			0x31, 0x60, 0x0b, 0x0e, 0x13, 0x52, 0x34, 0x49, \
1273 			0x81, 0x8b, 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb \
1274 		}
1275 
1276 /*
1277  * Time Synch GUID
1278  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1279  */
1280 #define HV_TS_GUID \
1281 	.guid = { \
1282 			0x30, 0xe6, 0x27, 0x95, 0xae, 0xd0, 0x7b, 0x49, \
1283 			0xad, 0xce, 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf \
1284 		}
1285 
1286 /*
1287  * Heartbeat GUID
1288  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1289  */
1290 #define HV_HEART_BEAT_GUID \
1291 	.guid = { \
1292 			0x39, 0x4f, 0x16, 0x57, 0x15, 0x91, 0x78, 0x4e, \
1293 			0xab, 0x55, 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d \
1294 		}
1295 
1296 /*
1297  * KVP GUID
1298  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1299  */
1300 #define HV_KVP_GUID \
1301 	.guid = { \
1302 			0xe7, 0xf4, 0xa0, 0xa9, 0x45, 0x5a, 0x96, 0x4d, \
1303 			0xb8, 0x27, 0x8a, 0x84, 0x1e, 0x8c, 0x3,  0xe6 \
1304 		}
1305 
1306 /*
1307  * Dynamic memory GUID
1308  * {525074dc-8985-46e2-8057-a307dc18a502}
1309  */
1310 #define HV_DM_GUID \
1311 	.guid = { \
1312 			0xdc, 0x74, 0x50, 0X52, 0x85, 0x89, 0xe2, 0x46, \
1313 			0x80, 0x57, 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02 \
1314 		}
1315 
1316 /*
1317  * Mouse GUID
1318  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1319  */
1320 #define HV_MOUSE_GUID \
1321 	.guid = { \
1322 			0x9e, 0xb6, 0xa8, 0xcf, 0x4a, 0x5b, 0xc0, 0x4c, \
1323 			0xb9, 0x8b, 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a \
1324 		}
1325 
1326 /*
1327  * VSS (Backup/Restore) GUID
1328  */
1329 #define HV_VSS_GUID \
1330 	.guid = { \
1331 			0x29, 0x2e, 0xfa, 0x35, 0x23, 0xea, 0x36, 0x42, \
1332 			0x96, 0xae, 0x3a, 0x6e, 0xba, 0xcb, 0xa4,  0x40 \
1333 		}
1334 /*
1335  * Synthetic Video GUID
1336  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1337  */
1338 #define HV_SYNTHVID_GUID \
1339 	.guid = { \
1340 			0x02, 0x78, 0x0a, 0xda, 0x77, 0xe3, 0xac, 0x4a, \
1341 			0x8e, 0x77, 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8 \
1342 		}
1343 
1344 /*
1345  * Synthetic FC GUID
1346  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1347  */
1348 #define HV_SYNTHFC_GUID \
1349 	.guid = { \
1350 			0x4A, 0xCC, 0x9B, 0x2F, 0x69, 0x00, 0xF3, 0x4A, \
1351 			0xB7, 0x6B, 0x6F, 0xD0, 0xBE, 0x52, 0x8C, 0xDA \
1352 		}
1353 
1354 /*
1355  * Common header for Hyper-V ICs
1356  */
1357 
1358 #define ICMSGTYPE_NEGOTIATE		0
1359 #define ICMSGTYPE_HEARTBEAT		1
1360 #define ICMSGTYPE_KVPEXCHANGE		2
1361 #define ICMSGTYPE_SHUTDOWN		3
1362 #define ICMSGTYPE_TIMESYNC		4
1363 #define ICMSGTYPE_VSS			5
1364 
1365 #define ICMSGHDRFLAG_TRANSACTION	1
1366 #define ICMSGHDRFLAG_REQUEST		2
1367 #define ICMSGHDRFLAG_RESPONSE		4
1368 
1369 
1370 /*
1371  * While we want to handle util services as regular devices,
1372  * there is only one instance of each of these services; so
1373  * we statically allocate the service specific state.
1374  */
1375 
1376 struct hv_util_service {
1377 	u8 *recv_buffer;
1378 	void (*util_cb)(void *);
1379 	int (*util_init)(struct hv_util_service *);
1380 	void (*util_deinit)(void);
1381 };
1382 
1383 struct vmbuspipe_hdr {
1384 	u32 flags;
1385 	u32 msgsize;
1386 } __packed;
1387 
1388 struct ic_version {
1389 	u16 major;
1390 	u16 minor;
1391 } __packed;
1392 
1393 struct icmsg_hdr {
1394 	struct ic_version icverframe;
1395 	u16 icmsgtype;
1396 	struct ic_version icvermsg;
1397 	u16 icmsgsize;
1398 	u32 status;
1399 	u8 ictransaction_id;
1400 	u8 icflags;
1401 	u8 reserved[2];
1402 } __packed;
1403 
1404 struct icmsg_negotiate {
1405 	u16 icframe_vercnt;
1406 	u16 icmsg_vercnt;
1407 	u32 reserved;
1408 	struct ic_version icversion_data[1]; /* any size array */
1409 } __packed;
1410 
1411 struct shutdown_msg_data {
1412 	u32 reason_code;
1413 	u32 timeout_seconds;
1414 	u32 flags;
1415 	u8  display_message[2048];
1416 } __packed;
1417 
1418 struct heartbeat_msg_data {
1419 	u64 seq_num;
1420 	u32 reserved[8];
1421 } __packed;
1422 
1423 /* Time Sync IC defs */
1424 #define ICTIMESYNCFLAG_PROBE	0
1425 #define ICTIMESYNCFLAG_SYNC	1
1426 #define ICTIMESYNCFLAG_SAMPLE	2
1427 
1428 #ifdef __x86_64__
1429 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1430 #else
1431 #define WLTIMEDELTA	116444736000000000LL
1432 #endif
1433 
1434 struct ictimesync_data {
1435 	u64 parenttime;
1436 	u64 childtime;
1437 	u64 roundtriptime;
1438 	u8 flags;
1439 } __packed;
1440 
1441 struct hyperv_service_callback {
1442 	u8 msg_type;
1443 	char *log_msg;
1444 	uuid_le data;
1445 	struct vmbus_channel *channel;
1446 	void (*callback) (void *context);
1447 };
1448 
1449 #define MAX_SRV_VER	0x7ffffff
1450 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1451 					struct icmsg_negotiate *, u8 *, int,
1452 					int);
1453 
1454 int hv_kvp_init(struct hv_util_service *);
1455 void hv_kvp_deinit(void);
1456 void hv_kvp_onchannelcallback(void *);
1457 
1458 int hv_vss_init(struct hv_util_service *);
1459 void hv_vss_deinit(void);
1460 void hv_vss_onchannelcallback(void *);
1461 
1462 /*
1463  * Negotiated version with the Host.
1464  */
1465 
1466 extern __u32 vmbus_proto_version;
1467 
1468 #endif /* __KERNEL__ */
1469 #endif /* _HYPERV_H */
1470