xref: /linux-6.15/include/linux/hyperv.h (revision df616d7a)
1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <[email protected]>
20  *   Hank Janssen  <[email protected]>
21  *   K. Y. Srinivasan <[email protected]>
22  *
23  */
24 
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27 
28 #include <uapi/linux/hyperv.h>
29 
30 #include <linux/types.h>
31 #include <linux/scatterlist.h>
32 #include <linux/list.h>
33 #include <linux/timer.h>
34 #include <linux/completion.h>
35 #include <linux/device.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/interrupt.h>
38 #include <linux/reciprocal_div.h>
39 
40 #define MAX_PAGE_BUFFER_COUNT				32
41 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
42 
43 #pragma pack(push, 1)
44 
45 /* Single-page buffer */
46 struct hv_page_buffer {
47 	u32 len;
48 	u32 offset;
49 	u64 pfn;
50 };
51 
52 /* Multiple-page buffer */
53 struct hv_multipage_buffer {
54 	/* Length and Offset determines the # of pfns in the array */
55 	u32 len;
56 	u32 offset;
57 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
58 };
59 
60 /*
61  * Multiple-page buffer array; the pfn array is variable size:
62  * The number of entries in the PFN array is determined by
63  * "len" and "offset".
64  */
65 struct hv_mpb_array {
66 	/* Length and Offset determines the # of pfns in the array */
67 	u32 len;
68 	u32 offset;
69 	u64 pfn_array[];
70 };
71 
72 /* 0x18 includes the proprietary packet header */
73 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
74 					(sizeof(struct hv_page_buffer) * \
75 					 MAX_PAGE_BUFFER_COUNT))
76 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
77 					 sizeof(struct hv_multipage_buffer))
78 
79 
80 #pragma pack(pop)
81 
82 struct hv_ring_buffer {
83 	/* Offset in bytes from the start of ring data below */
84 	u32 write_index;
85 
86 	/* Offset in bytes from the start of ring data below */
87 	u32 read_index;
88 
89 	u32 interrupt_mask;
90 
91 	/*
92 	 * WS2012/Win8 and later versions of Hyper-V implement interrupt
93 	 * driven flow management. The feature bit feat_pending_send_sz
94 	 * is set by the host on the host->guest ring buffer, and by the
95 	 * guest on the guest->host ring buffer.
96 	 *
97 	 * The meaning of the feature bit is a bit complex in that it has
98 	 * semantics that apply to both ring buffers.  If the guest sets
99 	 * the feature bit in the guest->host ring buffer, the guest is
100 	 * telling the host that:
101 	 * 1) It will set the pending_send_sz field in the guest->host ring
102 	 *    buffer when it is waiting for space to become available, and
103 	 * 2) It will read the pending_send_sz field in the host->guest
104 	 *    ring buffer and interrupt the host when it frees enough space
105 	 *
106 	 * Similarly, if the host sets the feature bit in the host->guest
107 	 * ring buffer, the host is telling the guest that:
108 	 * 1) It will set the pending_send_sz field in the host->guest ring
109 	 *    buffer when it is waiting for space to become available, and
110 	 * 2) It will read the pending_send_sz field in the guest->host
111 	 *    ring buffer and interrupt the guest when it frees enough space
112 	 *
113 	 * If either the guest or host does not set the feature bit that it
114 	 * owns, that guest or host must do polling if it encounters a full
115 	 * ring buffer, and not signal the other end with an interrupt.
116 	 */
117 	u32 pending_send_sz;
118 	u32 reserved1[12];
119 	union {
120 		struct {
121 			u32 feat_pending_send_sz:1;
122 		};
123 		u32 value;
124 	} feature_bits;
125 
126 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
127 	u8	reserved2[4028];
128 
129 	/*
130 	 * Ring data starts here + RingDataStartOffset
131 	 * !!! DO NOT place any fields below this !!!
132 	 */
133 	u8 buffer[0];
134 } __packed;
135 
136 struct hv_ring_buffer_info {
137 	struct hv_ring_buffer *ring_buffer;
138 	u32 ring_size;			/* Include the shared header */
139 	struct reciprocal_value ring_size_div10_reciprocal;
140 	spinlock_t ring_lock;
141 
142 	u32 ring_datasize;		/* < ring_size */
143 	u32 priv_read_index;
144 	/*
145 	 * The ring buffer mutex lock. This lock prevents the ring buffer from
146 	 * being freed while the ring buffer is being accessed.
147 	 */
148 	struct mutex ring_buffer_mutex;
149 };
150 
151 
152 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
153 {
154 	u32 read_loc, write_loc, dsize, read;
155 
156 	dsize = rbi->ring_datasize;
157 	read_loc = rbi->ring_buffer->read_index;
158 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
159 
160 	read = write_loc >= read_loc ? (write_loc - read_loc) :
161 		(dsize - read_loc) + write_loc;
162 
163 	return read;
164 }
165 
166 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
167 {
168 	u32 read_loc, write_loc, dsize, write;
169 
170 	dsize = rbi->ring_datasize;
171 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
172 	write_loc = rbi->ring_buffer->write_index;
173 
174 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
175 		read_loc - write_loc;
176 	return write;
177 }
178 
179 static inline u32 hv_get_avail_to_write_percent(
180 		const struct hv_ring_buffer_info *rbi)
181 {
182 	u32 avail_write = hv_get_bytes_to_write(rbi);
183 
184 	return reciprocal_divide(
185 			(avail_write  << 3) + (avail_write << 1),
186 			rbi->ring_size_div10_reciprocal);
187 }
188 
189 /*
190  * VMBUS version is 32 bit entity broken up into
191  * two 16 bit quantities: major_number. minor_number.
192  *
193  * 0 . 13 (Windows Server 2008)
194  * 1 . 1  (Windows 7)
195  * 2 . 4  (Windows 8)
196  * 3 . 0  (Windows 8 R2)
197  * 4 . 0  (Windows 10)
198  * 5 . 0  (Newer Windows 10)
199  */
200 
201 #define VERSION_WS2008  ((0 << 16) | (13))
202 #define VERSION_WIN7    ((1 << 16) | (1))
203 #define VERSION_WIN8    ((2 << 16) | (4))
204 #define VERSION_WIN8_1    ((3 << 16) | (0))
205 #define VERSION_WIN10	((4 << 16) | (0))
206 #define VERSION_WIN10_V5 ((5 << 16) | (0))
207 
208 #define VERSION_INVAL -1
209 
210 #define VERSION_CURRENT VERSION_WIN10_V5
211 
212 /* Make maximum size of pipe payload of 16K */
213 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
214 
215 /* Define PipeMode values. */
216 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
217 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
218 
219 /* The size of the user defined data buffer for non-pipe offers. */
220 #define MAX_USER_DEFINED_BYTES		120
221 
222 /* The size of the user defined data buffer for pipe offers. */
223 #define MAX_PIPE_USER_DEFINED_BYTES	116
224 
225 /*
226  * At the center of the Channel Management library is the Channel Offer. This
227  * struct contains the fundamental information about an offer.
228  */
229 struct vmbus_channel_offer {
230 	guid_t if_type;
231 	guid_t if_instance;
232 
233 	/*
234 	 * These two fields are not currently used.
235 	 */
236 	u64 reserved1;
237 	u64 reserved2;
238 
239 	u16 chn_flags;
240 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
241 
242 	union {
243 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
244 		struct {
245 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
246 		} std;
247 
248 		/*
249 		 * Pipes:
250 		 * The following sructure is an integrated pipe protocol, which
251 		 * is implemented on top of standard user-defined data. Pipe
252 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
253 		 * use.
254 		 */
255 		struct {
256 			u32  pipe_mode;
257 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
258 		} pipe;
259 	} u;
260 	/*
261 	 * The sub_channel_index is defined in win8.
262 	 */
263 	u16 sub_channel_index;
264 	u16 reserved3;
265 } __packed;
266 
267 /* Server Flags */
268 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
269 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
270 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
271 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
272 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
273 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
274 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
275 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER		0x2000
276 
277 struct vmpacket_descriptor {
278 	u16 type;
279 	u16 offset8;
280 	u16 len8;
281 	u16 flags;
282 	u64 trans_id;
283 } __packed;
284 
285 struct vmpacket_header {
286 	u32 prev_pkt_start_offset;
287 	struct vmpacket_descriptor descriptor;
288 } __packed;
289 
290 struct vmtransfer_page_range {
291 	u32 byte_count;
292 	u32 byte_offset;
293 } __packed;
294 
295 struct vmtransfer_page_packet_header {
296 	struct vmpacket_descriptor d;
297 	u16 xfer_pageset_id;
298 	u8  sender_owns_set;
299 	u8 reserved;
300 	u32 range_cnt;
301 	struct vmtransfer_page_range ranges[1];
302 } __packed;
303 
304 struct vmgpadl_packet_header {
305 	struct vmpacket_descriptor d;
306 	u32 gpadl;
307 	u32 reserved;
308 } __packed;
309 
310 struct vmadd_remove_transfer_page_set {
311 	struct vmpacket_descriptor d;
312 	u32 gpadl;
313 	u16 xfer_pageset_id;
314 	u16 reserved;
315 } __packed;
316 
317 /*
318  * This structure defines a range in guest physical space that can be made to
319  * look virtually contiguous.
320  */
321 struct gpa_range {
322 	u32 byte_count;
323 	u32 byte_offset;
324 	u64 pfn_array[0];
325 };
326 
327 /*
328  * This is the format for an Establish Gpadl packet, which contains a handle by
329  * which this GPADL will be known and a set of GPA ranges associated with it.
330  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
331  * ranges, then the resulting MDL will be "chained," representing multiple VA
332  * ranges.
333  */
334 struct vmestablish_gpadl {
335 	struct vmpacket_descriptor d;
336 	u32 gpadl;
337 	u32 range_cnt;
338 	struct gpa_range range[1];
339 } __packed;
340 
341 /*
342  * This is the format for a Teardown Gpadl packet, which indicates that the
343  * GPADL handle in the Establish Gpadl packet will never be referenced again.
344  */
345 struct vmteardown_gpadl {
346 	struct vmpacket_descriptor d;
347 	u32 gpadl;
348 	u32 reserved;	/* for alignment to a 8-byte boundary */
349 } __packed;
350 
351 /*
352  * This is the format for a GPA-Direct packet, which contains a set of GPA
353  * ranges, in addition to commands and/or data.
354  */
355 struct vmdata_gpa_direct {
356 	struct vmpacket_descriptor d;
357 	u32 reserved;
358 	u32 range_cnt;
359 	struct gpa_range range[1];
360 } __packed;
361 
362 /* This is the format for a Additional Data Packet. */
363 struct vmadditional_data {
364 	struct vmpacket_descriptor d;
365 	u64 total_bytes;
366 	u32 offset;
367 	u32 byte_cnt;
368 	unsigned char data[1];
369 } __packed;
370 
371 union vmpacket_largest_possible_header {
372 	struct vmpacket_descriptor simple_hdr;
373 	struct vmtransfer_page_packet_header xfer_page_hdr;
374 	struct vmgpadl_packet_header gpadl_hdr;
375 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
376 	struct vmestablish_gpadl establish_gpadl_hdr;
377 	struct vmteardown_gpadl teardown_gpadl_hdr;
378 	struct vmdata_gpa_direct data_gpa_direct_hdr;
379 };
380 
381 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
382 	(void *)(((unsigned char *)__packet) +	\
383 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
384 
385 #define VMPACKET_DATA_LENGTH(__packet)		\
386 	((((struct vmpacket_descriptor)__packet)->len8 -	\
387 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
388 
389 #define VMPACKET_TRANSFER_MODE(__packet)	\
390 	(((struct IMPACT)__packet)->type)
391 
392 enum vmbus_packet_type {
393 	VM_PKT_INVALID				= 0x0,
394 	VM_PKT_SYNCH				= 0x1,
395 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
396 	VM_PKT_RM_XFER_PAGESET			= 0x3,
397 	VM_PKT_ESTABLISH_GPADL			= 0x4,
398 	VM_PKT_TEARDOWN_GPADL			= 0x5,
399 	VM_PKT_DATA_INBAND			= 0x6,
400 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
401 	VM_PKT_DATA_USING_GPADL			= 0x8,
402 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
403 	VM_PKT_CANCEL_REQUEST			= 0xa,
404 	VM_PKT_COMP				= 0xb,
405 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
406 	VM_PKT_ADDITIONAL_DATA			= 0xd
407 };
408 
409 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
410 
411 
412 /* Version 1 messages */
413 enum vmbus_channel_message_type {
414 	CHANNELMSG_INVALID			=  0,
415 	CHANNELMSG_OFFERCHANNEL		=  1,
416 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
417 	CHANNELMSG_REQUESTOFFERS		=  3,
418 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
419 	CHANNELMSG_OPENCHANNEL		=  5,
420 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
421 	CHANNELMSG_CLOSECHANNEL		=  7,
422 	CHANNELMSG_GPADL_HEADER		=  8,
423 	CHANNELMSG_GPADL_BODY			=  9,
424 	CHANNELMSG_GPADL_CREATED		= 10,
425 	CHANNELMSG_GPADL_TEARDOWN		= 11,
426 	CHANNELMSG_GPADL_TORNDOWN		= 12,
427 	CHANNELMSG_RELID_RELEASED		= 13,
428 	CHANNELMSG_INITIATE_CONTACT		= 14,
429 	CHANNELMSG_VERSION_RESPONSE		= 15,
430 	CHANNELMSG_UNLOAD			= 16,
431 	CHANNELMSG_UNLOAD_RESPONSE		= 17,
432 	CHANNELMSG_18				= 18,
433 	CHANNELMSG_19				= 19,
434 	CHANNELMSG_20				= 20,
435 	CHANNELMSG_TL_CONNECT_REQUEST		= 21,
436 	CHANNELMSG_COUNT
437 };
438 
439 struct vmbus_channel_message_header {
440 	enum vmbus_channel_message_type msgtype;
441 	u32 padding;
442 } __packed;
443 
444 /* Query VMBus Version parameters */
445 struct vmbus_channel_query_vmbus_version {
446 	struct vmbus_channel_message_header header;
447 	u32 version;
448 } __packed;
449 
450 /* VMBus Version Supported parameters */
451 struct vmbus_channel_version_supported {
452 	struct vmbus_channel_message_header header;
453 	u8 version_supported;
454 } __packed;
455 
456 /* Offer Channel parameters */
457 struct vmbus_channel_offer_channel {
458 	struct vmbus_channel_message_header header;
459 	struct vmbus_channel_offer offer;
460 	u32 child_relid;
461 	u8 monitorid;
462 	/*
463 	 * win7 and beyond splits this field into a bit field.
464 	 */
465 	u8 monitor_allocated:1;
466 	u8 reserved:7;
467 	/*
468 	 * These are new fields added in win7 and later.
469 	 * Do not access these fields without checking the
470 	 * negotiated protocol.
471 	 *
472 	 * If "is_dedicated_interrupt" is set, we must not set the
473 	 * associated bit in the channel bitmap while sending the
474 	 * interrupt to the host.
475 	 *
476 	 * connection_id is to be used in signaling the host.
477 	 */
478 	u16 is_dedicated_interrupt:1;
479 	u16 reserved1:15;
480 	u32 connection_id;
481 } __packed;
482 
483 /* Rescind Offer parameters */
484 struct vmbus_channel_rescind_offer {
485 	struct vmbus_channel_message_header header;
486 	u32 child_relid;
487 } __packed;
488 
489 static inline u32
490 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
491 {
492 	return rbi->ring_buffer->pending_send_sz;
493 }
494 
495 /*
496  * Request Offer -- no parameters, SynIC message contains the partition ID
497  * Set Snoop -- no parameters, SynIC message contains the partition ID
498  * Clear Snoop -- no parameters, SynIC message contains the partition ID
499  * All Offers Delivered -- no parameters, SynIC message contains the partition
500  *		           ID
501  * Flush Client -- no parameters, SynIC message contains the partition ID
502  */
503 
504 /* Open Channel parameters */
505 struct vmbus_channel_open_channel {
506 	struct vmbus_channel_message_header header;
507 
508 	/* Identifies the specific VMBus channel that is being opened. */
509 	u32 child_relid;
510 
511 	/* ID making a particular open request at a channel offer unique. */
512 	u32 openid;
513 
514 	/* GPADL for the channel's ring buffer. */
515 	u32 ringbuffer_gpadlhandle;
516 
517 	/*
518 	 * Starting with win8, this field will be used to specify
519 	 * the target virtual processor on which to deliver the interrupt for
520 	 * the host to guest communication.
521 	 * Prior to win8, incoming channel interrupts would only
522 	 * be delivered on cpu 0. Setting this value to 0 would
523 	 * preserve the earlier behavior.
524 	 */
525 	u32 target_vp;
526 
527 	/*
528 	 * The upstream ring buffer begins at offset zero in the memory
529 	 * described by RingBufferGpadlHandle. The downstream ring buffer
530 	 * follows it at this offset (in pages).
531 	 */
532 	u32 downstream_ringbuffer_pageoffset;
533 
534 	/* User-specific data to be passed along to the server endpoint. */
535 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
536 } __packed;
537 
538 /* Open Channel Result parameters */
539 struct vmbus_channel_open_result {
540 	struct vmbus_channel_message_header header;
541 	u32 child_relid;
542 	u32 openid;
543 	u32 status;
544 } __packed;
545 
546 /* Close channel parameters; */
547 struct vmbus_channel_close_channel {
548 	struct vmbus_channel_message_header header;
549 	u32 child_relid;
550 } __packed;
551 
552 /* Channel Message GPADL */
553 #define GPADL_TYPE_RING_BUFFER		1
554 #define GPADL_TYPE_SERVER_SAVE_AREA	2
555 #define GPADL_TYPE_TRANSACTION		8
556 
557 /*
558  * The number of PFNs in a GPADL message is defined by the number of
559  * pages that would be spanned by ByteCount and ByteOffset.  If the
560  * implied number of PFNs won't fit in this packet, there will be a
561  * follow-up packet that contains more.
562  */
563 struct vmbus_channel_gpadl_header {
564 	struct vmbus_channel_message_header header;
565 	u32 child_relid;
566 	u32 gpadl;
567 	u16 range_buflen;
568 	u16 rangecount;
569 	struct gpa_range range[0];
570 } __packed;
571 
572 /* This is the followup packet that contains more PFNs. */
573 struct vmbus_channel_gpadl_body {
574 	struct vmbus_channel_message_header header;
575 	u32 msgnumber;
576 	u32 gpadl;
577 	u64 pfn[0];
578 } __packed;
579 
580 struct vmbus_channel_gpadl_created {
581 	struct vmbus_channel_message_header header;
582 	u32 child_relid;
583 	u32 gpadl;
584 	u32 creation_status;
585 } __packed;
586 
587 struct vmbus_channel_gpadl_teardown {
588 	struct vmbus_channel_message_header header;
589 	u32 child_relid;
590 	u32 gpadl;
591 } __packed;
592 
593 struct vmbus_channel_gpadl_torndown {
594 	struct vmbus_channel_message_header header;
595 	u32 gpadl;
596 } __packed;
597 
598 struct vmbus_channel_relid_released {
599 	struct vmbus_channel_message_header header;
600 	u32 child_relid;
601 } __packed;
602 
603 struct vmbus_channel_initiate_contact {
604 	struct vmbus_channel_message_header header;
605 	u32 vmbus_version_requested;
606 	u32 target_vcpu; /* The VCPU the host should respond to */
607 	union {
608 		u64 interrupt_page;
609 		struct {
610 			u8	msg_sint;
611 			u8	padding1[3];
612 			u32	padding2;
613 		};
614 	};
615 	u64 monitor_page1;
616 	u64 monitor_page2;
617 } __packed;
618 
619 /* Hyper-V socket: guest's connect()-ing to host */
620 struct vmbus_channel_tl_connect_request {
621 	struct vmbus_channel_message_header header;
622 	guid_t guest_endpoint_id;
623 	guid_t host_service_id;
624 } __packed;
625 
626 struct vmbus_channel_version_response {
627 	struct vmbus_channel_message_header header;
628 	u8 version_supported;
629 
630 	u8 connection_state;
631 	u16 padding;
632 
633 	/*
634 	 * On new hosts that support VMBus protocol 5.0, we must use
635 	 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
636 	 * and for subsequent messages, we must use the Message Connection ID
637 	 * field in the host-returned Version Response Message.
638 	 *
639 	 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
640 	 */
641 	u32 msg_conn_id;
642 } __packed;
643 
644 enum vmbus_channel_state {
645 	CHANNEL_OFFER_STATE,
646 	CHANNEL_OPENING_STATE,
647 	CHANNEL_OPEN_STATE,
648 	CHANNEL_OPENED_STATE,
649 };
650 
651 /*
652  * Represents each channel msg on the vmbus connection This is a
653  * variable-size data structure depending on the msg type itself
654  */
655 struct vmbus_channel_msginfo {
656 	/* Bookkeeping stuff */
657 	struct list_head msglistentry;
658 
659 	/* So far, this is only used to handle gpadl body message */
660 	struct list_head submsglist;
661 
662 	/* Synchronize the request/response if needed */
663 	struct completion  waitevent;
664 	struct vmbus_channel *waiting_channel;
665 	union {
666 		struct vmbus_channel_version_supported version_supported;
667 		struct vmbus_channel_open_result open_result;
668 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
669 		struct vmbus_channel_gpadl_created gpadl_created;
670 		struct vmbus_channel_version_response version_response;
671 	} response;
672 
673 	u32 msgsize;
674 	/*
675 	 * The channel message that goes out on the "wire".
676 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
677 	 */
678 	unsigned char msg[0];
679 };
680 
681 struct vmbus_close_msg {
682 	struct vmbus_channel_msginfo info;
683 	struct vmbus_channel_close_channel msg;
684 };
685 
686 /* Define connection identifier type. */
687 union hv_connection_id {
688 	u32 asu32;
689 	struct {
690 		u32 id:24;
691 		u32 reserved:8;
692 	} u;
693 };
694 
695 enum hv_numa_policy {
696 	HV_BALANCED = 0,
697 	HV_LOCALIZED,
698 };
699 
700 enum vmbus_device_type {
701 	HV_IDE = 0,
702 	HV_SCSI,
703 	HV_FC,
704 	HV_NIC,
705 	HV_ND,
706 	HV_PCIE,
707 	HV_FB,
708 	HV_KBD,
709 	HV_MOUSE,
710 	HV_KVP,
711 	HV_TS,
712 	HV_HB,
713 	HV_SHUTDOWN,
714 	HV_FCOPY,
715 	HV_BACKUP,
716 	HV_DM,
717 	HV_UNKNOWN,
718 };
719 
720 struct vmbus_device {
721 	u16  dev_type;
722 	guid_t guid;
723 	bool perf_device;
724 };
725 
726 struct vmbus_channel {
727 	struct list_head listentry;
728 
729 	struct hv_device *device_obj;
730 
731 	enum vmbus_channel_state state;
732 
733 	struct vmbus_channel_offer_channel offermsg;
734 	/*
735 	 * These are based on the OfferMsg.MonitorId.
736 	 * Save it here for easy access.
737 	 */
738 	u8 monitor_grp;
739 	u8 monitor_bit;
740 
741 	bool rescind; /* got rescind msg */
742 	struct completion rescind_event;
743 
744 	u32 ringbuffer_gpadlhandle;
745 
746 	/* Allocated memory for ring buffer */
747 	struct page *ringbuffer_page;
748 	u32 ringbuffer_pagecount;
749 	u32 ringbuffer_send_offset;
750 	struct hv_ring_buffer_info outbound;	/* send to parent */
751 	struct hv_ring_buffer_info inbound;	/* receive from parent */
752 
753 	struct vmbus_close_msg close_msg;
754 
755 	/* Statistics */
756 	u64	interrupts;	/* Host to Guest interrupts */
757 	u64	sig_events;	/* Guest to Host events */
758 
759 	/*
760 	 * Guest to host interrupts caused by the outbound ring buffer changing
761 	 * from empty to not empty.
762 	 */
763 	u64 intr_out_empty;
764 
765 	/*
766 	 * Indicates that a full outbound ring buffer was encountered. The flag
767 	 * is set to true when a full outbound ring buffer is encountered and
768 	 * set to false when a write to the outbound ring buffer is completed.
769 	 */
770 	bool out_full_flag;
771 
772 	/* Channel callback's invoked in softirq context */
773 	struct tasklet_struct callback_event;
774 	void (*onchannel_callback)(void *context);
775 	void *channel_callback_context;
776 
777 	/*
778 	 * A channel can be marked for one of three modes of reading:
779 	 *   BATCHED - callback called from taslket and should read
780 	 *            channel until empty. Interrupts from the host
781 	 *            are masked while read is in process (default).
782 	 *   DIRECT - callback called from tasklet (softirq).
783 	 *   ISR - callback called in interrupt context and must
784 	 *         invoke its own deferred processing.
785 	 *         Host interrupts are disabled and must be re-enabled
786 	 *         when ring is empty.
787 	 */
788 	enum hv_callback_mode {
789 		HV_CALL_BATCHED,
790 		HV_CALL_DIRECT,
791 		HV_CALL_ISR
792 	} callback_mode;
793 
794 	bool is_dedicated_interrupt;
795 	u64 sig_event;
796 
797 	/*
798 	 * Starting with win8, this field will be used to specify
799 	 * the target virtual processor on which to deliver the interrupt for
800 	 * the host to guest communication.
801 	 * Prior to win8, incoming channel interrupts would only
802 	 * be delivered on cpu 0. Setting this value to 0 would
803 	 * preserve the earlier behavior.
804 	 */
805 	u32 target_vp;
806 	/* The corresponding CPUID in the guest */
807 	u32 target_cpu;
808 	/*
809 	 * State to manage the CPU affiliation of channels.
810 	 */
811 	struct cpumask alloced_cpus_in_node;
812 	int numa_node;
813 	/*
814 	 * Support for sub-channels. For high performance devices,
815 	 * it will be useful to have multiple sub-channels to support
816 	 * a scalable communication infrastructure with the host.
817 	 * The support for sub-channels is implemented as an extention
818 	 * to the current infrastructure.
819 	 * The initial offer is considered the primary channel and this
820 	 * offer message will indicate if the host supports sub-channels.
821 	 * The guest is free to ask for sub-channels to be offerred and can
822 	 * open these sub-channels as a normal "primary" channel. However,
823 	 * all sub-channels will have the same type and instance guids as the
824 	 * primary channel. Requests sent on a given channel will result in a
825 	 * response on the same channel.
826 	 */
827 
828 	/*
829 	 * Sub-channel creation callback. This callback will be called in
830 	 * process context when a sub-channel offer is received from the host.
831 	 * The guest can open the sub-channel in the context of this callback.
832 	 */
833 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
834 
835 	/*
836 	 * Channel rescind callback. Some channels (the hvsock ones), need to
837 	 * register a callback which is invoked in vmbus_onoffer_rescind().
838 	 */
839 	void (*chn_rescind_callback)(struct vmbus_channel *channel);
840 
841 	/*
842 	 * The spinlock to protect the structure. It is being used to protect
843 	 * test-and-set access to various attributes of the structure as well
844 	 * as all sc_list operations.
845 	 */
846 	spinlock_t lock;
847 	/*
848 	 * All Sub-channels of a primary channel are linked here.
849 	 */
850 	struct list_head sc_list;
851 	/*
852 	 * The primary channel this sub-channel belongs to.
853 	 * This will be NULL for the primary channel.
854 	 */
855 	struct vmbus_channel *primary_channel;
856 	/*
857 	 * Support per-channel state for use by vmbus drivers.
858 	 */
859 	void *per_channel_state;
860 	/*
861 	 * To support per-cpu lookup mapping of relid to channel,
862 	 * link up channels based on their CPU affinity.
863 	 */
864 	struct list_head percpu_list;
865 
866 	/*
867 	 * Defer freeing channel until after all cpu's have
868 	 * gone through grace period.
869 	 */
870 	struct rcu_head rcu;
871 
872 	/*
873 	 * For sysfs per-channel properties.
874 	 */
875 	struct kobject			kobj;
876 
877 	/*
878 	 * For performance critical channels (storage, networking
879 	 * etc,), Hyper-V has a mechanism to enhance the throughput
880 	 * at the expense of latency:
881 	 * When the host is to be signaled, we just set a bit in a shared page
882 	 * and this bit will be inspected by the hypervisor within a certain
883 	 * window and if the bit is set, the host will be signaled. The window
884 	 * of time is the monitor latency - currently around 100 usecs. This
885 	 * mechanism improves throughput by:
886 	 *
887 	 * A) Making the host more efficient - each time it wakes up,
888 	 *    potentially it will process morev number of packets. The
889 	 *    monitor latency allows a batch to build up.
890 	 * B) By deferring the hypercall to signal, we will also minimize
891 	 *    the interrupts.
892 	 *
893 	 * Clearly, these optimizations improve throughput at the expense of
894 	 * latency. Furthermore, since the channel is shared for both
895 	 * control and data messages, control messages currently suffer
896 	 * unnecessary latency adversley impacting performance and boot
897 	 * time. To fix this issue, permit tagging the channel as being
898 	 * in "low latency" mode. In this mode, we will bypass the monitor
899 	 * mechanism.
900 	 */
901 	bool low_latency;
902 
903 	/*
904 	 * NUMA distribution policy:
905 	 * We support two policies:
906 	 * 1) Balanced: Here all performance critical channels are
907 	 *    distributed evenly amongst all the NUMA nodes.
908 	 *    This policy will be the default policy.
909 	 * 2) Localized: All channels of a given instance of a
910 	 *    performance critical service will be assigned CPUs
911 	 *    within a selected NUMA node.
912 	 */
913 	enum hv_numa_policy affinity_policy;
914 
915 	bool probe_done;
916 
917 	/*
918 	 * We must offload the handling of the primary/sub channels
919 	 * from the single-threaded vmbus_connection.work_queue to
920 	 * two different workqueue, otherwise we can block
921 	 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
922 	 */
923 	struct work_struct add_channel_work;
924 
925 	/*
926 	 * Guest to host interrupts caused by the inbound ring buffer changing
927 	 * from full to not full while a packet is waiting.
928 	 */
929 	u64 intr_in_full;
930 
931 	/*
932 	 * The total number of write operations that encountered a full
933 	 * outbound ring buffer.
934 	 */
935 	u64 out_full_total;
936 
937 	/*
938 	 * The number of write operations that were the first to encounter a
939 	 * full outbound ring buffer.
940 	 */
941 	u64 out_full_first;
942 };
943 
944 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
945 {
946 	return !!(c->offermsg.offer.chn_flags &
947 		  VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
948 }
949 
950 static inline void set_channel_affinity_state(struct vmbus_channel *c,
951 					      enum hv_numa_policy policy)
952 {
953 	c->affinity_policy = policy;
954 }
955 
956 static inline void set_channel_read_mode(struct vmbus_channel *c,
957 					enum hv_callback_mode mode)
958 {
959 	c->callback_mode = mode;
960 }
961 
962 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
963 {
964 	c->per_channel_state = s;
965 }
966 
967 static inline void *get_per_channel_state(struct vmbus_channel *c)
968 {
969 	return c->per_channel_state;
970 }
971 
972 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
973 						 u32 size)
974 {
975 	unsigned long flags;
976 
977 	if (size) {
978 		spin_lock_irqsave(&c->outbound.ring_lock, flags);
979 		++c->out_full_total;
980 
981 		if (!c->out_full_flag) {
982 			++c->out_full_first;
983 			c->out_full_flag = true;
984 		}
985 		spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
986 	} else {
987 		c->out_full_flag = false;
988 	}
989 
990 	c->outbound.ring_buffer->pending_send_sz = size;
991 }
992 
993 static inline void set_low_latency_mode(struct vmbus_channel *c)
994 {
995 	c->low_latency = true;
996 }
997 
998 static inline void clear_low_latency_mode(struct vmbus_channel *c)
999 {
1000 	c->low_latency = false;
1001 }
1002 
1003 void vmbus_onmessage(void *context);
1004 
1005 int vmbus_request_offers(void);
1006 
1007 /*
1008  * APIs for managing sub-channels.
1009  */
1010 
1011 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1012 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1013 
1014 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1015 		void (*chn_rescind_cb)(struct vmbus_channel *));
1016 
1017 /*
1018  * Check if sub-channels have already been offerred. This API will be useful
1019  * when the driver is unloaded after establishing sub-channels. In this case,
1020  * when the driver is re-loaded, the driver would have to check if the
1021  * subchannels have already been established before attempting to request
1022  * the creation of sub-channels.
1023  * This function returns TRUE to indicate that subchannels have already been
1024  * created.
1025  * This function should be invoked after setting the callback function for
1026  * sub-channel creation.
1027  */
1028 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1029 
1030 /* The format must be the same as struct vmdata_gpa_direct */
1031 struct vmbus_channel_packet_page_buffer {
1032 	u16 type;
1033 	u16 dataoffset8;
1034 	u16 length8;
1035 	u16 flags;
1036 	u64 transactionid;
1037 	u32 reserved;
1038 	u32 rangecount;
1039 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1040 } __packed;
1041 
1042 /* The format must be the same as struct vmdata_gpa_direct */
1043 struct vmbus_channel_packet_multipage_buffer {
1044 	u16 type;
1045 	u16 dataoffset8;
1046 	u16 length8;
1047 	u16 flags;
1048 	u64 transactionid;
1049 	u32 reserved;
1050 	u32 rangecount;		/* Always 1 in this case */
1051 	struct hv_multipage_buffer range;
1052 } __packed;
1053 
1054 /* The format must be the same as struct vmdata_gpa_direct */
1055 struct vmbus_packet_mpb_array {
1056 	u16 type;
1057 	u16 dataoffset8;
1058 	u16 length8;
1059 	u16 flags;
1060 	u64 transactionid;
1061 	u32 reserved;
1062 	u32 rangecount;         /* Always 1 in this case */
1063 	struct hv_mpb_array range;
1064 } __packed;
1065 
1066 int vmbus_alloc_ring(struct vmbus_channel *channel,
1067 		     u32 send_size, u32 recv_size);
1068 void vmbus_free_ring(struct vmbus_channel *channel);
1069 
1070 int vmbus_connect_ring(struct vmbus_channel *channel,
1071 		       void (*onchannel_callback)(void *context),
1072 		       void *context);
1073 int vmbus_disconnect_ring(struct vmbus_channel *channel);
1074 
1075 extern int vmbus_open(struct vmbus_channel *channel,
1076 			    u32 send_ringbuffersize,
1077 			    u32 recv_ringbuffersize,
1078 			    void *userdata,
1079 			    u32 userdatalen,
1080 			    void (*onchannel_callback)(void *context),
1081 			    void *context);
1082 
1083 extern void vmbus_close(struct vmbus_channel *channel);
1084 
1085 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1086 				  void *buffer,
1087 				  u32 bufferLen,
1088 				  u64 requestid,
1089 				  enum vmbus_packet_type type,
1090 				  u32 flags);
1091 
1092 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1093 					    struct hv_page_buffer pagebuffers[],
1094 					    u32 pagecount,
1095 					    void *buffer,
1096 					    u32 bufferlen,
1097 					    u64 requestid);
1098 
1099 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1100 				     struct vmbus_packet_mpb_array *mpb,
1101 				     u32 desc_size,
1102 				     void *buffer,
1103 				     u32 bufferlen,
1104 				     u64 requestid);
1105 
1106 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1107 				      void *kbuffer,
1108 				      u32 size,
1109 				      u32 *gpadl_handle);
1110 
1111 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1112 				     u32 gpadl_handle);
1113 
1114 void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1115 
1116 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1117 				  void *buffer,
1118 				  u32 bufferlen,
1119 				  u32 *buffer_actual_len,
1120 				  u64 *requestid);
1121 
1122 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1123 				     void *buffer,
1124 				     u32 bufferlen,
1125 				     u32 *buffer_actual_len,
1126 				     u64 *requestid);
1127 
1128 
1129 extern void vmbus_ontimer(unsigned long data);
1130 
1131 /* Base driver object */
1132 struct hv_driver {
1133 	const char *name;
1134 
1135 	/*
1136 	 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1137 	 * channel flag, actually doesn't mean a synthetic device because the
1138 	 * offer's if_type/if_instance can change for every new hvsock
1139 	 * connection.
1140 	 *
1141 	 * However, to facilitate the notification of new-offer/rescind-offer
1142 	 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1143 	 * a special vmbus device, and hence we need the below flag to
1144 	 * indicate if the driver is the hvsock driver or not: we need to
1145 	 * specially treat the hvosck offer & driver in vmbus_match().
1146 	 */
1147 	bool hvsock;
1148 
1149 	/* the device type supported by this driver */
1150 	guid_t dev_type;
1151 	const struct hv_vmbus_device_id *id_table;
1152 
1153 	struct device_driver driver;
1154 
1155 	/* dynamic device GUID's */
1156 	struct  {
1157 		spinlock_t lock;
1158 		struct list_head list;
1159 	} dynids;
1160 
1161 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1162 	int (*remove)(struct hv_device *);
1163 	void (*shutdown)(struct hv_device *);
1164 
1165 };
1166 
1167 /* Base device object */
1168 struct hv_device {
1169 	/* the device type id of this device */
1170 	guid_t dev_type;
1171 
1172 	/* the device instance id of this device */
1173 	guid_t dev_instance;
1174 	u16 vendor_id;
1175 	u16 device_id;
1176 
1177 	struct device device;
1178 	char *driver_override; /* Driver name to force a match */
1179 
1180 	struct vmbus_channel *channel;
1181 	struct kset	     *channels_kset;
1182 };
1183 
1184 
1185 static inline struct hv_device *device_to_hv_device(struct device *d)
1186 {
1187 	return container_of(d, struct hv_device, device);
1188 }
1189 
1190 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1191 {
1192 	return container_of(d, struct hv_driver, driver);
1193 }
1194 
1195 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1196 {
1197 	dev_set_drvdata(&dev->device, data);
1198 }
1199 
1200 static inline void *hv_get_drvdata(struct hv_device *dev)
1201 {
1202 	return dev_get_drvdata(&dev->device);
1203 }
1204 
1205 struct hv_ring_buffer_debug_info {
1206 	u32 current_interrupt_mask;
1207 	u32 current_read_index;
1208 	u32 current_write_index;
1209 	u32 bytes_avail_toread;
1210 	u32 bytes_avail_towrite;
1211 };
1212 
1213 
1214 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1215 				struct hv_ring_buffer_debug_info *debug_info);
1216 
1217 /* Vmbus interface */
1218 #define vmbus_driver_register(driver)	\
1219 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1220 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1221 					 struct module *owner,
1222 					 const char *mod_name);
1223 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1224 
1225 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1226 
1227 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1228 			resource_size_t min, resource_size_t max,
1229 			resource_size_t size, resource_size_t align,
1230 			bool fb_overlap_ok);
1231 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1232 
1233 /*
1234  * GUID definitions of various offer types - services offered to the guest.
1235  */
1236 
1237 /*
1238  * Network GUID
1239  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1240  */
1241 #define HV_NIC_GUID \
1242 	.guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1243 			  0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1244 
1245 /*
1246  * IDE GUID
1247  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1248  */
1249 #define HV_IDE_GUID \
1250 	.guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1251 			  0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1252 
1253 /*
1254  * SCSI GUID
1255  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1256  */
1257 #define HV_SCSI_GUID \
1258 	.guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1259 			  0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1260 
1261 /*
1262  * Shutdown GUID
1263  * {0e0b6031-5213-4934-818b-38d90ced39db}
1264  */
1265 #define HV_SHUTDOWN_GUID \
1266 	.guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1267 			  0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1268 
1269 /*
1270  * Time Synch GUID
1271  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1272  */
1273 #define HV_TS_GUID \
1274 	.guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1275 			  0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1276 
1277 /*
1278  * Heartbeat GUID
1279  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1280  */
1281 #define HV_HEART_BEAT_GUID \
1282 	.guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1283 			  0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1284 
1285 /*
1286  * KVP GUID
1287  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1288  */
1289 #define HV_KVP_GUID \
1290 	.guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1291 			  0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1292 
1293 /*
1294  * Dynamic memory GUID
1295  * {525074dc-8985-46e2-8057-a307dc18a502}
1296  */
1297 #define HV_DM_GUID \
1298 	.guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1299 			  0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1300 
1301 /*
1302  * Mouse GUID
1303  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1304  */
1305 #define HV_MOUSE_GUID \
1306 	.guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1307 			  0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1308 
1309 /*
1310  * Keyboard GUID
1311  * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1312  */
1313 #define HV_KBD_GUID \
1314 	.guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1315 			  0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1316 
1317 /*
1318  * VSS (Backup/Restore) GUID
1319  */
1320 #define HV_VSS_GUID \
1321 	.guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1322 			  0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1323 /*
1324  * Synthetic Video GUID
1325  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1326  */
1327 #define HV_SYNTHVID_GUID \
1328 	.guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1329 			  0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1330 
1331 /*
1332  * Synthetic FC GUID
1333  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1334  */
1335 #define HV_SYNTHFC_GUID \
1336 	.guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1337 			  0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1338 
1339 /*
1340  * Guest File Copy Service
1341  * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1342  */
1343 
1344 #define HV_FCOPY_GUID \
1345 	.guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1346 			  0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1347 
1348 /*
1349  * NetworkDirect. This is the guest RDMA service.
1350  * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1351  */
1352 #define HV_ND_GUID \
1353 	.guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1354 			  0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1355 
1356 /*
1357  * PCI Express Pass Through
1358  * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1359  */
1360 
1361 #define HV_PCIE_GUID \
1362 	.guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1363 			  0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1364 
1365 /*
1366  * Linux doesn't support the 3 devices: the first two are for
1367  * Automatic Virtual Machine Activation, and the third is for
1368  * Remote Desktop Virtualization.
1369  * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1370  * {3375baf4-9e15-4b30-b765-67acb10d607b}
1371  * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1372  */
1373 
1374 #define HV_AVMA1_GUID \
1375 	.guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1376 			  0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1377 
1378 #define HV_AVMA2_GUID \
1379 	.guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1380 			  0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1381 
1382 #define HV_RDV_GUID \
1383 	.guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1384 			  0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1385 
1386 /*
1387  * Common header for Hyper-V ICs
1388  */
1389 
1390 #define ICMSGTYPE_NEGOTIATE		0
1391 #define ICMSGTYPE_HEARTBEAT		1
1392 #define ICMSGTYPE_KVPEXCHANGE		2
1393 #define ICMSGTYPE_SHUTDOWN		3
1394 #define ICMSGTYPE_TIMESYNC		4
1395 #define ICMSGTYPE_VSS			5
1396 
1397 #define ICMSGHDRFLAG_TRANSACTION	1
1398 #define ICMSGHDRFLAG_REQUEST		2
1399 #define ICMSGHDRFLAG_RESPONSE		4
1400 
1401 
1402 /*
1403  * While we want to handle util services as regular devices,
1404  * there is only one instance of each of these services; so
1405  * we statically allocate the service specific state.
1406  */
1407 
1408 struct hv_util_service {
1409 	u8 *recv_buffer;
1410 	void *channel;
1411 	void (*util_cb)(void *);
1412 	int (*util_init)(struct hv_util_service *);
1413 	void (*util_deinit)(void);
1414 };
1415 
1416 struct vmbuspipe_hdr {
1417 	u32 flags;
1418 	u32 msgsize;
1419 } __packed;
1420 
1421 struct ic_version {
1422 	u16 major;
1423 	u16 minor;
1424 } __packed;
1425 
1426 struct icmsg_hdr {
1427 	struct ic_version icverframe;
1428 	u16 icmsgtype;
1429 	struct ic_version icvermsg;
1430 	u16 icmsgsize;
1431 	u32 status;
1432 	u8 ictransaction_id;
1433 	u8 icflags;
1434 	u8 reserved[2];
1435 } __packed;
1436 
1437 struct icmsg_negotiate {
1438 	u16 icframe_vercnt;
1439 	u16 icmsg_vercnt;
1440 	u32 reserved;
1441 	struct ic_version icversion_data[1]; /* any size array */
1442 } __packed;
1443 
1444 struct shutdown_msg_data {
1445 	u32 reason_code;
1446 	u32 timeout_seconds;
1447 	u32 flags;
1448 	u8  display_message[2048];
1449 } __packed;
1450 
1451 struct heartbeat_msg_data {
1452 	u64 seq_num;
1453 	u32 reserved[8];
1454 } __packed;
1455 
1456 /* Time Sync IC defs */
1457 #define ICTIMESYNCFLAG_PROBE	0
1458 #define ICTIMESYNCFLAG_SYNC	1
1459 #define ICTIMESYNCFLAG_SAMPLE	2
1460 
1461 #ifdef __x86_64__
1462 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1463 #else
1464 #define WLTIMEDELTA	116444736000000000LL
1465 #endif
1466 
1467 struct ictimesync_data {
1468 	u64 parenttime;
1469 	u64 childtime;
1470 	u64 roundtriptime;
1471 	u8 flags;
1472 } __packed;
1473 
1474 struct ictimesync_ref_data {
1475 	u64 parenttime;
1476 	u64 vmreferencetime;
1477 	u8 flags;
1478 	char leapflags;
1479 	char stratum;
1480 	u8 reserved[3];
1481 } __packed;
1482 
1483 struct hyperv_service_callback {
1484 	u8 msg_type;
1485 	char *log_msg;
1486 	guid_t data;
1487 	struct vmbus_channel *channel;
1488 	void (*callback)(void *context);
1489 };
1490 
1491 #define MAX_SRV_VER	0x7ffffff
1492 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1493 				const int *fw_version, int fw_vercnt,
1494 				const int *srv_version, int srv_vercnt,
1495 				int *nego_fw_version, int *nego_srv_version);
1496 
1497 void hv_process_channel_removal(struct vmbus_channel *channel);
1498 
1499 void vmbus_setevent(struct vmbus_channel *channel);
1500 /*
1501  * Negotiated version with the Host.
1502  */
1503 
1504 extern __u32 vmbus_proto_version;
1505 
1506 int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1507 				  const guid_t *shv_host_servie_id);
1508 void vmbus_set_event(struct vmbus_channel *channel);
1509 
1510 /* Get the start of the ring buffer. */
1511 static inline void *
1512 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1513 {
1514 	return ring_info->ring_buffer->buffer;
1515 }
1516 
1517 /*
1518  * Mask off host interrupt callback notifications
1519  */
1520 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1521 {
1522 	rbi->ring_buffer->interrupt_mask = 1;
1523 
1524 	/* make sure mask update is not reordered */
1525 	virt_mb();
1526 }
1527 
1528 /*
1529  * Re-enable host callback and return number of outstanding bytes
1530  */
1531 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1532 {
1533 
1534 	rbi->ring_buffer->interrupt_mask = 0;
1535 
1536 	/* make sure mask update is not reordered */
1537 	virt_mb();
1538 
1539 	/*
1540 	 * Now check to see if the ring buffer is still empty.
1541 	 * If it is not, we raced and we need to process new
1542 	 * incoming messages.
1543 	 */
1544 	return hv_get_bytes_to_read(rbi);
1545 }
1546 
1547 /*
1548  * An API to support in-place processing of incoming VMBUS packets.
1549  */
1550 
1551 /* Get data payload associated with descriptor */
1552 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1553 {
1554 	return (void *)((unsigned long)desc + (desc->offset8 << 3));
1555 }
1556 
1557 /* Get data size associated with descriptor */
1558 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1559 {
1560 	return (desc->len8 << 3) - (desc->offset8 << 3);
1561 }
1562 
1563 
1564 struct vmpacket_descriptor *
1565 hv_pkt_iter_first(struct vmbus_channel *channel);
1566 
1567 struct vmpacket_descriptor *
1568 __hv_pkt_iter_next(struct vmbus_channel *channel,
1569 		   const struct vmpacket_descriptor *pkt);
1570 
1571 void hv_pkt_iter_close(struct vmbus_channel *channel);
1572 
1573 /*
1574  * Get next packet descriptor from iterator
1575  * If at end of list, return NULL and update host.
1576  */
1577 static inline struct vmpacket_descriptor *
1578 hv_pkt_iter_next(struct vmbus_channel *channel,
1579 		 const struct vmpacket_descriptor *pkt)
1580 {
1581 	struct vmpacket_descriptor *nxt;
1582 
1583 	nxt = __hv_pkt_iter_next(channel, pkt);
1584 	if (!nxt)
1585 		hv_pkt_iter_close(channel);
1586 
1587 	return nxt;
1588 }
1589 
1590 #define foreach_vmbus_pkt(pkt, channel) \
1591 	for (pkt = hv_pkt_iter_first(channel); pkt; \
1592 	    pkt = hv_pkt_iter_next(channel, pkt))
1593 
1594 #endif /* _HYPERV_H */
1595