xref: /linux-6.15/include/linux/hyperv.h (revision bf070bb0)
1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <[email protected]>
20  *   Hank Janssen  <[email protected]>
21  *   K. Y. Srinivasan <[email protected]>
22  *
23  */
24 
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27 
28 #include <uapi/linux/hyperv.h>
29 #include <uapi/asm/hyperv.h>
30 
31 #include <linux/types.h>
32 #include <linux/scatterlist.h>
33 #include <linux/list.h>
34 #include <linux/timer.h>
35 #include <linux/completion.h>
36 #include <linux/device.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/interrupt.h>
39 
40 #define MAX_PAGE_BUFFER_COUNT				32
41 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
42 
43 #pragma pack(push, 1)
44 
45 /* Single-page buffer */
46 struct hv_page_buffer {
47 	u32 len;
48 	u32 offset;
49 	u64 pfn;
50 };
51 
52 /* Multiple-page buffer */
53 struct hv_multipage_buffer {
54 	/* Length and Offset determines the # of pfns in the array */
55 	u32 len;
56 	u32 offset;
57 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
58 };
59 
60 /*
61  * Multiple-page buffer array; the pfn array is variable size:
62  * The number of entries in the PFN array is determined by
63  * "len" and "offset".
64  */
65 struct hv_mpb_array {
66 	/* Length and Offset determines the # of pfns in the array */
67 	u32 len;
68 	u32 offset;
69 	u64 pfn_array[];
70 };
71 
72 /* 0x18 includes the proprietary packet header */
73 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
74 					(sizeof(struct hv_page_buffer) * \
75 					 MAX_PAGE_BUFFER_COUNT))
76 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
77 					 sizeof(struct hv_multipage_buffer))
78 
79 
80 #pragma pack(pop)
81 
82 struct hv_ring_buffer {
83 	/* Offset in bytes from the start of ring data below */
84 	u32 write_index;
85 
86 	/* Offset in bytes from the start of ring data below */
87 	u32 read_index;
88 
89 	u32 interrupt_mask;
90 
91 	/*
92 	 * Win8 uses some of the reserved bits to implement
93 	 * interrupt driven flow management. On the send side
94 	 * we can request that the receiver interrupt the sender
95 	 * when the ring transitions from being full to being able
96 	 * to handle a message of size "pending_send_sz".
97 	 *
98 	 * Add necessary state for this enhancement.
99 	 */
100 	u32 pending_send_sz;
101 
102 	u32 reserved1[12];
103 
104 	union {
105 		struct {
106 			u32 feat_pending_send_sz:1;
107 		};
108 		u32 value;
109 	} feature_bits;
110 
111 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
112 	u8	reserved2[4028];
113 
114 	/*
115 	 * Ring data starts here + RingDataStartOffset
116 	 * !!! DO NOT place any fields below this !!!
117 	 */
118 	u8 buffer[0];
119 } __packed;
120 
121 struct hv_ring_buffer_info {
122 	struct hv_ring_buffer *ring_buffer;
123 	u32 ring_size;			/* Include the shared header */
124 	spinlock_t ring_lock;
125 
126 	u32 ring_datasize;		/* < ring_size */
127 	u32 priv_read_index;
128 };
129 
130 /*
131  *
132  * hv_get_ringbuffer_availbytes()
133  *
134  * Get number of bytes available to read and to write to
135  * for the specified ring buffer
136  */
137 static inline void
138 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
139 			     u32 *read, u32 *write)
140 {
141 	u32 read_loc, write_loc, dsize;
142 
143 	/* Capture the read/write indices before they changed */
144 	read_loc = rbi->ring_buffer->read_index;
145 	write_loc = rbi->ring_buffer->write_index;
146 	dsize = rbi->ring_datasize;
147 
148 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
149 		read_loc - write_loc;
150 	*read = dsize - *write;
151 }
152 
153 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
154 {
155 	u32 read_loc, write_loc, dsize, read;
156 
157 	dsize = rbi->ring_datasize;
158 	read_loc = rbi->ring_buffer->read_index;
159 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
160 
161 	read = write_loc >= read_loc ? (write_loc - read_loc) :
162 		(dsize - read_loc) + write_loc;
163 
164 	return read;
165 }
166 
167 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
168 {
169 	u32 read_loc, write_loc, dsize, write;
170 
171 	dsize = rbi->ring_datasize;
172 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
173 	write_loc = rbi->ring_buffer->write_index;
174 
175 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
176 		read_loc - write_loc;
177 	return write;
178 }
179 
180 /*
181  * VMBUS version is 32 bit entity broken up into
182  * two 16 bit quantities: major_number. minor_number.
183  *
184  * 0 . 13 (Windows Server 2008)
185  * 1 . 1  (Windows 7)
186  * 2 . 4  (Windows 8)
187  * 3 . 0  (Windows 8 R2)
188  * 4 . 0  (Windows 10)
189  */
190 
191 #define VERSION_WS2008  ((0 << 16) | (13))
192 #define VERSION_WIN7    ((1 << 16) | (1))
193 #define VERSION_WIN8    ((2 << 16) | (4))
194 #define VERSION_WIN8_1    ((3 << 16) | (0))
195 #define VERSION_WIN10	((4 << 16) | (0))
196 
197 #define VERSION_INVAL -1
198 
199 #define VERSION_CURRENT VERSION_WIN10
200 
201 /* Make maximum size of pipe payload of 16K */
202 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
203 
204 /* Define PipeMode values. */
205 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
206 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
207 
208 /* The size of the user defined data buffer for non-pipe offers. */
209 #define MAX_USER_DEFINED_BYTES		120
210 
211 /* The size of the user defined data buffer for pipe offers. */
212 #define MAX_PIPE_USER_DEFINED_BYTES	116
213 
214 /*
215  * At the center of the Channel Management library is the Channel Offer. This
216  * struct contains the fundamental information about an offer.
217  */
218 struct vmbus_channel_offer {
219 	uuid_le if_type;
220 	uuid_le if_instance;
221 
222 	/*
223 	 * These two fields are not currently used.
224 	 */
225 	u64 reserved1;
226 	u64 reserved2;
227 
228 	u16 chn_flags;
229 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
230 
231 	union {
232 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
233 		struct {
234 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
235 		} std;
236 
237 		/*
238 		 * Pipes:
239 		 * The following sructure is an integrated pipe protocol, which
240 		 * is implemented on top of standard user-defined data. Pipe
241 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
242 		 * use.
243 		 */
244 		struct {
245 			u32  pipe_mode;
246 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
247 		} pipe;
248 	} u;
249 	/*
250 	 * The sub_channel_index is defined in win8.
251 	 */
252 	u16 sub_channel_index;
253 	u16 reserved3;
254 } __packed;
255 
256 /* Server Flags */
257 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
258 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
259 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
260 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
261 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
262 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
263 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
264 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER		0x2000
265 
266 struct vmpacket_descriptor {
267 	u16 type;
268 	u16 offset8;
269 	u16 len8;
270 	u16 flags;
271 	u64 trans_id;
272 } __packed;
273 
274 struct vmpacket_header {
275 	u32 prev_pkt_start_offset;
276 	struct vmpacket_descriptor descriptor;
277 } __packed;
278 
279 struct vmtransfer_page_range {
280 	u32 byte_count;
281 	u32 byte_offset;
282 } __packed;
283 
284 struct vmtransfer_page_packet_header {
285 	struct vmpacket_descriptor d;
286 	u16 xfer_pageset_id;
287 	u8  sender_owns_set;
288 	u8 reserved;
289 	u32 range_cnt;
290 	struct vmtransfer_page_range ranges[1];
291 } __packed;
292 
293 struct vmgpadl_packet_header {
294 	struct vmpacket_descriptor d;
295 	u32 gpadl;
296 	u32 reserved;
297 } __packed;
298 
299 struct vmadd_remove_transfer_page_set {
300 	struct vmpacket_descriptor d;
301 	u32 gpadl;
302 	u16 xfer_pageset_id;
303 	u16 reserved;
304 } __packed;
305 
306 /*
307  * This structure defines a range in guest physical space that can be made to
308  * look virtually contiguous.
309  */
310 struct gpa_range {
311 	u32 byte_count;
312 	u32 byte_offset;
313 	u64 pfn_array[0];
314 };
315 
316 /*
317  * This is the format for an Establish Gpadl packet, which contains a handle by
318  * which this GPADL will be known and a set of GPA ranges associated with it.
319  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
320  * ranges, then the resulting MDL will be "chained," representing multiple VA
321  * ranges.
322  */
323 struct vmestablish_gpadl {
324 	struct vmpacket_descriptor d;
325 	u32 gpadl;
326 	u32 range_cnt;
327 	struct gpa_range range[1];
328 } __packed;
329 
330 /*
331  * This is the format for a Teardown Gpadl packet, which indicates that the
332  * GPADL handle in the Establish Gpadl packet will never be referenced again.
333  */
334 struct vmteardown_gpadl {
335 	struct vmpacket_descriptor d;
336 	u32 gpadl;
337 	u32 reserved;	/* for alignment to a 8-byte boundary */
338 } __packed;
339 
340 /*
341  * This is the format for a GPA-Direct packet, which contains a set of GPA
342  * ranges, in addition to commands and/or data.
343  */
344 struct vmdata_gpa_direct {
345 	struct vmpacket_descriptor d;
346 	u32 reserved;
347 	u32 range_cnt;
348 	struct gpa_range range[1];
349 } __packed;
350 
351 /* This is the format for a Additional Data Packet. */
352 struct vmadditional_data {
353 	struct vmpacket_descriptor d;
354 	u64 total_bytes;
355 	u32 offset;
356 	u32 byte_cnt;
357 	unsigned char data[1];
358 } __packed;
359 
360 union vmpacket_largest_possible_header {
361 	struct vmpacket_descriptor simple_hdr;
362 	struct vmtransfer_page_packet_header xfer_page_hdr;
363 	struct vmgpadl_packet_header gpadl_hdr;
364 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
365 	struct vmestablish_gpadl establish_gpadl_hdr;
366 	struct vmteardown_gpadl teardown_gpadl_hdr;
367 	struct vmdata_gpa_direct data_gpa_direct_hdr;
368 };
369 
370 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
371 	(void *)(((unsigned char *)__packet) +	\
372 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
373 
374 #define VMPACKET_DATA_LENGTH(__packet)		\
375 	((((struct vmpacket_descriptor)__packet)->len8 -	\
376 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
377 
378 #define VMPACKET_TRANSFER_MODE(__packet)	\
379 	(((struct IMPACT)__packet)->type)
380 
381 enum vmbus_packet_type {
382 	VM_PKT_INVALID				= 0x0,
383 	VM_PKT_SYNCH				= 0x1,
384 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
385 	VM_PKT_RM_XFER_PAGESET			= 0x3,
386 	VM_PKT_ESTABLISH_GPADL			= 0x4,
387 	VM_PKT_TEARDOWN_GPADL			= 0x5,
388 	VM_PKT_DATA_INBAND			= 0x6,
389 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
390 	VM_PKT_DATA_USING_GPADL			= 0x8,
391 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
392 	VM_PKT_CANCEL_REQUEST			= 0xa,
393 	VM_PKT_COMP				= 0xb,
394 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
395 	VM_PKT_ADDITIONAL_DATA			= 0xd
396 };
397 
398 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
399 
400 
401 /* Version 1 messages */
402 enum vmbus_channel_message_type {
403 	CHANNELMSG_INVALID			=  0,
404 	CHANNELMSG_OFFERCHANNEL		=  1,
405 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
406 	CHANNELMSG_REQUESTOFFERS		=  3,
407 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
408 	CHANNELMSG_OPENCHANNEL		=  5,
409 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
410 	CHANNELMSG_CLOSECHANNEL		=  7,
411 	CHANNELMSG_GPADL_HEADER		=  8,
412 	CHANNELMSG_GPADL_BODY			=  9,
413 	CHANNELMSG_GPADL_CREATED		= 10,
414 	CHANNELMSG_GPADL_TEARDOWN		= 11,
415 	CHANNELMSG_GPADL_TORNDOWN		= 12,
416 	CHANNELMSG_RELID_RELEASED		= 13,
417 	CHANNELMSG_INITIATE_CONTACT		= 14,
418 	CHANNELMSG_VERSION_RESPONSE		= 15,
419 	CHANNELMSG_UNLOAD			= 16,
420 	CHANNELMSG_UNLOAD_RESPONSE		= 17,
421 	CHANNELMSG_18				= 18,
422 	CHANNELMSG_19				= 19,
423 	CHANNELMSG_20				= 20,
424 	CHANNELMSG_TL_CONNECT_REQUEST		= 21,
425 	CHANNELMSG_COUNT
426 };
427 
428 struct vmbus_channel_message_header {
429 	enum vmbus_channel_message_type msgtype;
430 	u32 padding;
431 } __packed;
432 
433 /* Query VMBus Version parameters */
434 struct vmbus_channel_query_vmbus_version {
435 	struct vmbus_channel_message_header header;
436 	u32 version;
437 } __packed;
438 
439 /* VMBus Version Supported parameters */
440 struct vmbus_channel_version_supported {
441 	struct vmbus_channel_message_header header;
442 	u8 version_supported;
443 } __packed;
444 
445 /* Offer Channel parameters */
446 struct vmbus_channel_offer_channel {
447 	struct vmbus_channel_message_header header;
448 	struct vmbus_channel_offer offer;
449 	u32 child_relid;
450 	u8 monitorid;
451 	/*
452 	 * win7 and beyond splits this field into a bit field.
453 	 */
454 	u8 monitor_allocated:1;
455 	u8 reserved:7;
456 	/*
457 	 * These are new fields added in win7 and later.
458 	 * Do not access these fields without checking the
459 	 * negotiated protocol.
460 	 *
461 	 * If "is_dedicated_interrupt" is set, we must not set the
462 	 * associated bit in the channel bitmap while sending the
463 	 * interrupt to the host.
464 	 *
465 	 * connection_id is to be used in signaling the host.
466 	 */
467 	u16 is_dedicated_interrupt:1;
468 	u16 reserved1:15;
469 	u32 connection_id;
470 } __packed;
471 
472 /* Rescind Offer parameters */
473 struct vmbus_channel_rescind_offer {
474 	struct vmbus_channel_message_header header;
475 	u32 child_relid;
476 } __packed;
477 
478 static inline u32
479 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
480 {
481 	return rbi->ring_buffer->pending_send_sz;
482 }
483 
484 /*
485  * Request Offer -- no parameters, SynIC message contains the partition ID
486  * Set Snoop -- no parameters, SynIC message contains the partition ID
487  * Clear Snoop -- no parameters, SynIC message contains the partition ID
488  * All Offers Delivered -- no parameters, SynIC message contains the partition
489  *		           ID
490  * Flush Client -- no parameters, SynIC message contains the partition ID
491  */
492 
493 /* Open Channel parameters */
494 struct vmbus_channel_open_channel {
495 	struct vmbus_channel_message_header header;
496 
497 	/* Identifies the specific VMBus channel that is being opened. */
498 	u32 child_relid;
499 
500 	/* ID making a particular open request at a channel offer unique. */
501 	u32 openid;
502 
503 	/* GPADL for the channel's ring buffer. */
504 	u32 ringbuffer_gpadlhandle;
505 
506 	/*
507 	 * Starting with win8, this field will be used to specify
508 	 * the target virtual processor on which to deliver the interrupt for
509 	 * the host to guest communication.
510 	 * Prior to win8, incoming channel interrupts would only
511 	 * be delivered on cpu 0. Setting this value to 0 would
512 	 * preserve the earlier behavior.
513 	 */
514 	u32 target_vp;
515 
516 	/*
517 	 * The upstream ring buffer begins at offset zero in the memory
518 	 * described by RingBufferGpadlHandle. The downstream ring buffer
519 	 * follows it at this offset (in pages).
520 	 */
521 	u32 downstream_ringbuffer_pageoffset;
522 
523 	/* User-specific data to be passed along to the server endpoint. */
524 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
525 } __packed;
526 
527 /* Open Channel Result parameters */
528 struct vmbus_channel_open_result {
529 	struct vmbus_channel_message_header header;
530 	u32 child_relid;
531 	u32 openid;
532 	u32 status;
533 } __packed;
534 
535 /* Close channel parameters; */
536 struct vmbus_channel_close_channel {
537 	struct vmbus_channel_message_header header;
538 	u32 child_relid;
539 } __packed;
540 
541 /* Channel Message GPADL */
542 #define GPADL_TYPE_RING_BUFFER		1
543 #define GPADL_TYPE_SERVER_SAVE_AREA	2
544 #define GPADL_TYPE_TRANSACTION		8
545 
546 /*
547  * The number of PFNs in a GPADL message is defined by the number of
548  * pages that would be spanned by ByteCount and ByteOffset.  If the
549  * implied number of PFNs won't fit in this packet, there will be a
550  * follow-up packet that contains more.
551  */
552 struct vmbus_channel_gpadl_header {
553 	struct vmbus_channel_message_header header;
554 	u32 child_relid;
555 	u32 gpadl;
556 	u16 range_buflen;
557 	u16 rangecount;
558 	struct gpa_range range[0];
559 } __packed;
560 
561 /* This is the followup packet that contains more PFNs. */
562 struct vmbus_channel_gpadl_body {
563 	struct vmbus_channel_message_header header;
564 	u32 msgnumber;
565 	u32 gpadl;
566 	u64 pfn[0];
567 } __packed;
568 
569 struct vmbus_channel_gpadl_created {
570 	struct vmbus_channel_message_header header;
571 	u32 child_relid;
572 	u32 gpadl;
573 	u32 creation_status;
574 } __packed;
575 
576 struct vmbus_channel_gpadl_teardown {
577 	struct vmbus_channel_message_header header;
578 	u32 child_relid;
579 	u32 gpadl;
580 } __packed;
581 
582 struct vmbus_channel_gpadl_torndown {
583 	struct vmbus_channel_message_header header;
584 	u32 gpadl;
585 } __packed;
586 
587 struct vmbus_channel_relid_released {
588 	struct vmbus_channel_message_header header;
589 	u32 child_relid;
590 } __packed;
591 
592 struct vmbus_channel_initiate_contact {
593 	struct vmbus_channel_message_header header;
594 	u32 vmbus_version_requested;
595 	u32 target_vcpu; /* The VCPU the host should respond to */
596 	u64 interrupt_page;
597 	u64 monitor_page1;
598 	u64 monitor_page2;
599 } __packed;
600 
601 /* Hyper-V socket: guest's connect()-ing to host */
602 struct vmbus_channel_tl_connect_request {
603 	struct vmbus_channel_message_header header;
604 	uuid_le guest_endpoint_id;
605 	uuid_le host_service_id;
606 } __packed;
607 
608 struct vmbus_channel_version_response {
609 	struct vmbus_channel_message_header header;
610 	u8 version_supported;
611 } __packed;
612 
613 enum vmbus_channel_state {
614 	CHANNEL_OFFER_STATE,
615 	CHANNEL_OPENING_STATE,
616 	CHANNEL_OPEN_STATE,
617 	CHANNEL_OPENED_STATE,
618 };
619 
620 /*
621  * Represents each channel msg on the vmbus connection This is a
622  * variable-size data structure depending on the msg type itself
623  */
624 struct vmbus_channel_msginfo {
625 	/* Bookkeeping stuff */
626 	struct list_head msglistentry;
627 
628 	/* So far, this is only used to handle gpadl body message */
629 	struct list_head submsglist;
630 
631 	/* Synchronize the request/response if needed */
632 	struct completion  waitevent;
633 	struct vmbus_channel *waiting_channel;
634 	union {
635 		struct vmbus_channel_version_supported version_supported;
636 		struct vmbus_channel_open_result open_result;
637 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
638 		struct vmbus_channel_gpadl_created gpadl_created;
639 		struct vmbus_channel_version_response version_response;
640 	} response;
641 
642 	u32 msgsize;
643 	/*
644 	 * The channel message that goes out on the "wire".
645 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
646 	 */
647 	unsigned char msg[0];
648 };
649 
650 struct vmbus_close_msg {
651 	struct vmbus_channel_msginfo info;
652 	struct vmbus_channel_close_channel msg;
653 };
654 
655 /* Define connection identifier type. */
656 union hv_connection_id {
657 	u32 asu32;
658 	struct {
659 		u32 id:24;
660 		u32 reserved:8;
661 	} u;
662 };
663 
664 enum hv_numa_policy {
665 	HV_BALANCED = 0,
666 	HV_LOCALIZED,
667 };
668 
669 enum vmbus_device_type {
670 	HV_IDE = 0,
671 	HV_SCSI,
672 	HV_FC,
673 	HV_NIC,
674 	HV_ND,
675 	HV_PCIE,
676 	HV_FB,
677 	HV_KBD,
678 	HV_MOUSE,
679 	HV_KVP,
680 	HV_TS,
681 	HV_HB,
682 	HV_SHUTDOWN,
683 	HV_FCOPY,
684 	HV_BACKUP,
685 	HV_DM,
686 	HV_UNKNOWN,
687 };
688 
689 struct vmbus_device {
690 	u16  dev_type;
691 	uuid_le guid;
692 	bool perf_device;
693 };
694 
695 struct vmbus_channel {
696 	struct list_head listentry;
697 
698 	struct hv_device *device_obj;
699 
700 	enum vmbus_channel_state state;
701 
702 	struct vmbus_channel_offer_channel offermsg;
703 	/*
704 	 * These are based on the OfferMsg.MonitorId.
705 	 * Save it here for easy access.
706 	 */
707 	u8 monitor_grp;
708 	u8 monitor_bit;
709 
710 	bool rescind; /* got rescind msg */
711 
712 	u32 ringbuffer_gpadlhandle;
713 
714 	/* Allocated memory for ring buffer */
715 	void *ringbuffer_pages;
716 	u32 ringbuffer_pagecount;
717 	struct hv_ring_buffer_info outbound;	/* send to parent */
718 	struct hv_ring_buffer_info inbound;	/* receive from parent */
719 
720 	struct vmbus_close_msg close_msg;
721 
722 	/* Statistics */
723 	u64	interrupts;	/* Host to Guest interrupts */
724 	u64	sig_events;	/* Guest to Host events */
725 
726 	/* Channel callback's invoked in softirq context */
727 	struct tasklet_struct callback_event;
728 	void (*onchannel_callback)(void *context);
729 	void *channel_callback_context;
730 
731 	/*
732 	 * A channel can be marked for one of three modes of reading:
733 	 *   BATCHED - callback called from taslket and should read
734 	 *            channel until empty. Interrupts from the host
735 	 *            are masked while read is in process (default).
736 	 *   DIRECT - callback called from tasklet (softirq).
737 	 *   ISR - callback called in interrupt context and must
738 	 *         invoke its own deferred processing.
739 	 *         Host interrupts are disabled and must be re-enabled
740 	 *         when ring is empty.
741 	 */
742 	enum hv_callback_mode {
743 		HV_CALL_BATCHED,
744 		HV_CALL_DIRECT,
745 		HV_CALL_ISR
746 	} callback_mode;
747 
748 	bool is_dedicated_interrupt;
749 	u64 sig_event;
750 
751 	/*
752 	 * Starting with win8, this field will be used to specify
753 	 * the target virtual processor on which to deliver the interrupt for
754 	 * the host to guest communication.
755 	 * Prior to win8, incoming channel interrupts would only
756 	 * be delivered on cpu 0. Setting this value to 0 would
757 	 * preserve the earlier behavior.
758 	 */
759 	u32 target_vp;
760 	/* The corresponding CPUID in the guest */
761 	u32 target_cpu;
762 	/*
763 	 * State to manage the CPU affiliation of channels.
764 	 */
765 	struct cpumask alloced_cpus_in_node;
766 	int numa_node;
767 	/*
768 	 * Support for sub-channels. For high performance devices,
769 	 * it will be useful to have multiple sub-channels to support
770 	 * a scalable communication infrastructure with the host.
771 	 * The support for sub-channels is implemented as an extention
772 	 * to the current infrastructure.
773 	 * The initial offer is considered the primary channel and this
774 	 * offer message will indicate if the host supports sub-channels.
775 	 * The guest is free to ask for sub-channels to be offerred and can
776 	 * open these sub-channels as a normal "primary" channel. However,
777 	 * all sub-channels will have the same type and instance guids as the
778 	 * primary channel. Requests sent on a given channel will result in a
779 	 * response on the same channel.
780 	 */
781 
782 	/*
783 	 * Sub-channel creation callback. This callback will be called in
784 	 * process context when a sub-channel offer is received from the host.
785 	 * The guest can open the sub-channel in the context of this callback.
786 	 */
787 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
788 
789 	/*
790 	 * Channel rescind callback. Some channels (the hvsock ones), need to
791 	 * register a callback which is invoked in vmbus_onoffer_rescind().
792 	 */
793 	void (*chn_rescind_callback)(struct vmbus_channel *channel);
794 
795 	/*
796 	 * The spinlock to protect the structure. It is being used to protect
797 	 * test-and-set access to various attributes of the structure as well
798 	 * as all sc_list operations.
799 	 */
800 	spinlock_t lock;
801 	/*
802 	 * All Sub-channels of a primary channel are linked here.
803 	 */
804 	struct list_head sc_list;
805 	/*
806 	 * Current number of sub-channels.
807 	 */
808 	int num_sc;
809 	/*
810 	 * Number of a sub-channel (position within sc_list) which is supposed
811 	 * to be used as the next outgoing channel.
812 	 */
813 	int next_oc;
814 	/*
815 	 * The primary channel this sub-channel belongs to.
816 	 * This will be NULL for the primary channel.
817 	 */
818 	struct vmbus_channel *primary_channel;
819 	/*
820 	 * Support per-channel state for use by vmbus drivers.
821 	 */
822 	void *per_channel_state;
823 	/*
824 	 * To support per-cpu lookup mapping of relid to channel,
825 	 * link up channels based on their CPU affinity.
826 	 */
827 	struct list_head percpu_list;
828 
829 	/*
830 	 * Defer freeing channel until after all cpu's have
831 	 * gone through grace period.
832 	 */
833 	struct rcu_head rcu;
834 
835 	/*
836 	 * For sysfs per-channel properties.
837 	 */
838 	struct kobject			kobj;
839 
840 	/*
841 	 * For performance critical channels (storage, networking
842 	 * etc,), Hyper-V has a mechanism to enhance the throughput
843 	 * at the expense of latency:
844 	 * When the host is to be signaled, we just set a bit in a shared page
845 	 * and this bit will be inspected by the hypervisor within a certain
846 	 * window and if the bit is set, the host will be signaled. The window
847 	 * of time is the monitor latency - currently around 100 usecs. This
848 	 * mechanism improves throughput by:
849 	 *
850 	 * A) Making the host more efficient - each time it wakes up,
851 	 *    potentially it will process morev number of packets. The
852 	 *    monitor latency allows a batch to build up.
853 	 * B) By deferring the hypercall to signal, we will also minimize
854 	 *    the interrupts.
855 	 *
856 	 * Clearly, these optimizations improve throughput at the expense of
857 	 * latency. Furthermore, since the channel is shared for both
858 	 * control and data messages, control messages currently suffer
859 	 * unnecessary latency adversley impacting performance and boot
860 	 * time. To fix this issue, permit tagging the channel as being
861 	 * in "low latency" mode. In this mode, we will bypass the monitor
862 	 * mechanism.
863 	 */
864 	bool low_latency;
865 
866 	/*
867 	 * NUMA distribution policy:
868 	 * We support teo policies:
869 	 * 1) Balanced: Here all performance critical channels are
870 	 *    distributed evenly amongst all the NUMA nodes.
871 	 *    This policy will be the default policy.
872 	 * 2) Localized: All channels of a given instance of a
873 	 *    performance critical service will be assigned CPUs
874 	 *    within a selected NUMA node.
875 	 */
876 	enum hv_numa_policy affinity_policy;
877 
878 	bool probe_done;
879 
880 };
881 
882 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
883 {
884 	return !!(c->offermsg.offer.chn_flags &
885 		  VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
886 }
887 
888 static inline void set_channel_affinity_state(struct vmbus_channel *c,
889 					      enum hv_numa_policy policy)
890 {
891 	c->affinity_policy = policy;
892 }
893 
894 static inline void set_channel_read_mode(struct vmbus_channel *c,
895 					enum hv_callback_mode mode)
896 {
897 	c->callback_mode = mode;
898 }
899 
900 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
901 {
902 	c->per_channel_state = s;
903 }
904 
905 static inline void *get_per_channel_state(struct vmbus_channel *c)
906 {
907 	return c->per_channel_state;
908 }
909 
910 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
911 						 u32 size)
912 {
913 	c->outbound.ring_buffer->pending_send_sz = size;
914 }
915 
916 static inline void set_low_latency_mode(struct vmbus_channel *c)
917 {
918 	c->low_latency = true;
919 }
920 
921 static inline void clear_low_latency_mode(struct vmbus_channel *c)
922 {
923 	c->low_latency = false;
924 }
925 
926 void vmbus_onmessage(void *context);
927 
928 int vmbus_request_offers(void);
929 
930 /*
931  * APIs for managing sub-channels.
932  */
933 
934 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
935 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
936 
937 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
938 		void (*chn_rescind_cb)(struct vmbus_channel *));
939 
940 /*
941  * Retrieve the (sub) channel on which to send an outgoing request.
942  * When a primary channel has multiple sub-channels, we choose a
943  * channel whose VCPU binding is closest to the VCPU on which
944  * this call is being made.
945  */
946 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
947 
948 /*
949  * Check if sub-channels have already been offerred. This API will be useful
950  * when the driver is unloaded after establishing sub-channels. In this case,
951  * when the driver is re-loaded, the driver would have to check if the
952  * subchannels have already been established before attempting to request
953  * the creation of sub-channels.
954  * This function returns TRUE to indicate that subchannels have already been
955  * created.
956  * This function should be invoked after setting the callback function for
957  * sub-channel creation.
958  */
959 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
960 
961 /* The format must be the same as struct vmdata_gpa_direct */
962 struct vmbus_channel_packet_page_buffer {
963 	u16 type;
964 	u16 dataoffset8;
965 	u16 length8;
966 	u16 flags;
967 	u64 transactionid;
968 	u32 reserved;
969 	u32 rangecount;
970 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
971 } __packed;
972 
973 /* The format must be the same as struct vmdata_gpa_direct */
974 struct vmbus_channel_packet_multipage_buffer {
975 	u16 type;
976 	u16 dataoffset8;
977 	u16 length8;
978 	u16 flags;
979 	u64 transactionid;
980 	u32 reserved;
981 	u32 rangecount;		/* Always 1 in this case */
982 	struct hv_multipage_buffer range;
983 } __packed;
984 
985 /* The format must be the same as struct vmdata_gpa_direct */
986 struct vmbus_packet_mpb_array {
987 	u16 type;
988 	u16 dataoffset8;
989 	u16 length8;
990 	u16 flags;
991 	u64 transactionid;
992 	u32 reserved;
993 	u32 rangecount;         /* Always 1 in this case */
994 	struct hv_mpb_array range;
995 } __packed;
996 
997 
998 extern int vmbus_open(struct vmbus_channel *channel,
999 			    u32 send_ringbuffersize,
1000 			    u32 recv_ringbuffersize,
1001 			    void *userdata,
1002 			    u32 userdatalen,
1003 			    void (*onchannel_callback)(void *context),
1004 			    void *context);
1005 
1006 extern void vmbus_close(struct vmbus_channel *channel);
1007 
1008 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1009 				  void *buffer,
1010 				  u32 bufferLen,
1011 				  u64 requestid,
1012 				  enum vmbus_packet_type type,
1013 				  u32 flags);
1014 
1015 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1016 					    struct hv_page_buffer pagebuffers[],
1017 					    u32 pagecount,
1018 					    void *buffer,
1019 					    u32 bufferlen,
1020 					    u64 requestid);
1021 
1022 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1023 				     struct vmbus_packet_mpb_array *mpb,
1024 				     u32 desc_size,
1025 				     void *buffer,
1026 				     u32 bufferlen,
1027 				     u64 requestid);
1028 
1029 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1030 				      void *kbuffer,
1031 				      u32 size,
1032 				      u32 *gpadl_handle);
1033 
1034 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1035 				     u32 gpadl_handle);
1036 
1037 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1038 				  void *buffer,
1039 				  u32 bufferlen,
1040 				  u32 *buffer_actual_len,
1041 				  u64 *requestid);
1042 
1043 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1044 				     void *buffer,
1045 				     u32 bufferlen,
1046 				     u32 *buffer_actual_len,
1047 				     u64 *requestid);
1048 
1049 
1050 extern void vmbus_ontimer(unsigned long data);
1051 
1052 /* Base driver object */
1053 struct hv_driver {
1054 	const char *name;
1055 
1056 	/*
1057 	 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1058 	 * channel flag, actually doesn't mean a synthetic device because the
1059 	 * offer's if_type/if_instance can change for every new hvsock
1060 	 * connection.
1061 	 *
1062 	 * However, to facilitate the notification of new-offer/rescind-offer
1063 	 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1064 	 * a special vmbus device, and hence we need the below flag to
1065 	 * indicate if the driver is the hvsock driver or not: we need to
1066 	 * specially treat the hvosck offer & driver in vmbus_match().
1067 	 */
1068 	bool hvsock;
1069 
1070 	/* the device type supported by this driver */
1071 	uuid_le dev_type;
1072 	const struct hv_vmbus_device_id *id_table;
1073 
1074 	struct device_driver driver;
1075 
1076 	/* dynamic device GUID's */
1077 	struct  {
1078 		spinlock_t lock;
1079 		struct list_head list;
1080 	} dynids;
1081 
1082 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1083 	int (*remove)(struct hv_device *);
1084 	void (*shutdown)(struct hv_device *);
1085 
1086 };
1087 
1088 /* Base device object */
1089 struct hv_device {
1090 	/* the device type id of this device */
1091 	uuid_le dev_type;
1092 
1093 	/* the device instance id of this device */
1094 	uuid_le dev_instance;
1095 	u16 vendor_id;
1096 	u16 device_id;
1097 
1098 	struct device device;
1099 
1100 	struct vmbus_channel *channel;
1101 	struct kset	     *channels_kset;
1102 };
1103 
1104 
1105 static inline struct hv_device *device_to_hv_device(struct device *d)
1106 {
1107 	return container_of(d, struct hv_device, device);
1108 }
1109 
1110 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1111 {
1112 	return container_of(d, struct hv_driver, driver);
1113 }
1114 
1115 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1116 {
1117 	dev_set_drvdata(&dev->device, data);
1118 }
1119 
1120 static inline void *hv_get_drvdata(struct hv_device *dev)
1121 {
1122 	return dev_get_drvdata(&dev->device);
1123 }
1124 
1125 struct hv_ring_buffer_debug_info {
1126 	u32 current_interrupt_mask;
1127 	u32 current_read_index;
1128 	u32 current_write_index;
1129 	u32 bytes_avail_toread;
1130 	u32 bytes_avail_towrite;
1131 };
1132 
1133 void hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info,
1134 			    struct hv_ring_buffer_debug_info *debug_info);
1135 
1136 /* Vmbus interface */
1137 #define vmbus_driver_register(driver)	\
1138 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1139 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1140 					 struct module *owner,
1141 					 const char *mod_name);
1142 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1143 
1144 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1145 
1146 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1147 			resource_size_t min, resource_size_t max,
1148 			resource_size_t size, resource_size_t align,
1149 			bool fb_overlap_ok);
1150 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1151 
1152 /*
1153  * GUID definitions of various offer types - services offered to the guest.
1154  */
1155 
1156 /*
1157  * Network GUID
1158  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1159  */
1160 #define HV_NIC_GUID \
1161 	.guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1162 			0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1163 
1164 /*
1165  * IDE GUID
1166  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1167  */
1168 #define HV_IDE_GUID \
1169 	.guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1170 			0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1171 
1172 /*
1173  * SCSI GUID
1174  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1175  */
1176 #define HV_SCSI_GUID \
1177 	.guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1178 			0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1179 
1180 /*
1181  * Shutdown GUID
1182  * {0e0b6031-5213-4934-818b-38d90ced39db}
1183  */
1184 #define HV_SHUTDOWN_GUID \
1185 	.guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1186 			0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1187 
1188 /*
1189  * Time Synch GUID
1190  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1191  */
1192 #define HV_TS_GUID \
1193 	.guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1194 			0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1195 
1196 /*
1197  * Heartbeat GUID
1198  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1199  */
1200 #define HV_HEART_BEAT_GUID \
1201 	.guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1202 			0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1203 
1204 /*
1205  * KVP GUID
1206  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1207  */
1208 #define HV_KVP_GUID \
1209 	.guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1210 			0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1211 
1212 /*
1213  * Dynamic memory GUID
1214  * {525074dc-8985-46e2-8057-a307dc18a502}
1215  */
1216 #define HV_DM_GUID \
1217 	.guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1218 			0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1219 
1220 /*
1221  * Mouse GUID
1222  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1223  */
1224 #define HV_MOUSE_GUID \
1225 	.guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1226 			0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1227 
1228 /*
1229  * Keyboard GUID
1230  * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1231  */
1232 #define HV_KBD_GUID \
1233 	.guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1234 			0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1235 
1236 /*
1237  * VSS (Backup/Restore) GUID
1238  */
1239 #define HV_VSS_GUID \
1240 	.guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1241 			0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1242 /*
1243  * Synthetic Video GUID
1244  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1245  */
1246 #define HV_SYNTHVID_GUID \
1247 	.guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1248 			0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1249 
1250 /*
1251  * Synthetic FC GUID
1252  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1253  */
1254 #define HV_SYNTHFC_GUID \
1255 	.guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1256 			0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1257 
1258 /*
1259  * Guest File Copy Service
1260  * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1261  */
1262 
1263 #define HV_FCOPY_GUID \
1264 	.guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1265 			0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1266 
1267 /*
1268  * NetworkDirect. This is the guest RDMA service.
1269  * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1270  */
1271 #define HV_ND_GUID \
1272 	.guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1273 			0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1274 
1275 /*
1276  * PCI Express Pass Through
1277  * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1278  */
1279 
1280 #define HV_PCIE_GUID \
1281 	.guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1282 			0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1283 
1284 /*
1285  * Linux doesn't support the 3 devices: the first two are for
1286  * Automatic Virtual Machine Activation, and the third is for
1287  * Remote Desktop Virtualization.
1288  * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1289  * {3375baf4-9e15-4b30-b765-67acb10d607b}
1290  * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1291  */
1292 
1293 #define HV_AVMA1_GUID \
1294 	.guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1295 			0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1296 
1297 #define HV_AVMA2_GUID \
1298 	.guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1299 			0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1300 
1301 #define HV_RDV_GUID \
1302 	.guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1303 			0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1304 
1305 /*
1306  * Common header for Hyper-V ICs
1307  */
1308 
1309 #define ICMSGTYPE_NEGOTIATE		0
1310 #define ICMSGTYPE_HEARTBEAT		1
1311 #define ICMSGTYPE_KVPEXCHANGE		2
1312 #define ICMSGTYPE_SHUTDOWN		3
1313 #define ICMSGTYPE_TIMESYNC		4
1314 #define ICMSGTYPE_VSS			5
1315 
1316 #define ICMSGHDRFLAG_TRANSACTION	1
1317 #define ICMSGHDRFLAG_REQUEST		2
1318 #define ICMSGHDRFLAG_RESPONSE		4
1319 
1320 
1321 /*
1322  * While we want to handle util services as regular devices,
1323  * there is only one instance of each of these services; so
1324  * we statically allocate the service specific state.
1325  */
1326 
1327 struct hv_util_service {
1328 	u8 *recv_buffer;
1329 	void *channel;
1330 	void (*util_cb)(void *);
1331 	int (*util_init)(struct hv_util_service *);
1332 	void (*util_deinit)(void);
1333 };
1334 
1335 struct vmbuspipe_hdr {
1336 	u32 flags;
1337 	u32 msgsize;
1338 } __packed;
1339 
1340 struct ic_version {
1341 	u16 major;
1342 	u16 minor;
1343 } __packed;
1344 
1345 struct icmsg_hdr {
1346 	struct ic_version icverframe;
1347 	u16 icmsgtype;
1348 	struct ic_version icvermsg;
1349 	u16 icmsgsize;
1350 	u32 status;
1351 	u8 ictransaction_id;
1352 	u8 icflags;
1353 	u8 reserved[2];
1354 } __packed;
1355 
1356 struct icmsg_negotiate {
1357 	u16 icframe_vercnt;
1358 	u16 icmsg_vercnt;
1359 	u32 reserved;
1360 	struct ic_version icversion_data[1]; /* any size array */
1361 } __packed;
1362 
1363 struct shutdown_msg_data {
1364 	u32 reason_code;
1365 	u32 timeout_seconds;
1366 	u32 flags;
1367 	u8  display_message[2048];
1368 } __packed;
1369 
1370 struct heartbeat_msg_data {
1371 	u64 seq_num;
1372 	u32 reserved[8];
1373 } __packed;
1374 
1375 /* Time Sync IC defs */
1376 #define ICTIMESYNCFLAG_PROBE	0
1377 #define ICTIMESYNCFLAG_SYNC	1
1378 #define ICTIMESYNCFLAG_SAMPLE	2
1379 
1380 #ifdef __x86_64__
1381 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1382 #else
1383 #define WLTIMEDELTA	116444736000000000LL
1384 #endif
1385 
1386 struct ictimesync_data {
1387 	u64 parenttime;
1388 	u64 childtime;
1389 	u64 roundtriptime;
1390 	u8 flags;
1391 } __packed;
1392 
1393 struct ictimesync_ref_data {
1394 	u64 parenttime;
1395 	u64 vmreferencetime;
1396 	u8 flags;
1397 	char leapflags;
1398 	char stratum;
1399 	u8 reserved[3];
1400 } __packed;
1401 
1402 struct hyperv_service_callback {
1403 	u8 msg_type;
1404 	char *log_msg;
1405 	uuid_le data;
1406 	struct vmbus_channel *channel;
1407 	void (*callback)(void *context);
1408 };
1409 
1410 #define MAX_SRV_VER	0x7ffffff
1411 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1412 				const int *fw_version, int fw_vercnt,
1413 				const int *srv_version, int srv_vercnt,
1414 				int *nego_fw_version, int *nego_srv_version);
1415 
1416 void hv_process_channel_removal(u32 relid);
1417 
1418 void vmbus_setevent(struct vmbus_channel *channel);
1419 /*
1420  * Negotiated version with the Host.
1421  */
1422 
1423 extern __u32 vmbus_proto_version;
1424 
1425 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1426 				  const uuid_le *shv_host_servie_id);
1427 void vmbus_set_event(struct vmbus_channel *channel);
1428 
1429 /* Get the start of the ring buffer. */
1430 static inline void *
1431 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1432 {
1433 	return ring_info->ring_buffer->buffer;
1434 }
1435 
1436 /*
1437  * Mask off host interrupt callback notifications
1438  */
1439 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1440 {
1441 	rbi->ring_buffer->interrupt_mask = 1;
1442 
1443 	/* make sure mask update is not reordered */
1444 	virt_mb();
1445 }
1446 
1447 /*
1448  * Re-enable host callback and return number of outstanding bytes
1449  */
1450 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1451 {
1452 
1453 	rbi->ring_buffer->interrupt_mask = 0;
1454 
1455 	/* make sure mask update is not reordered */
1456 	virt_mb();
1457 
1458 	/*
1459 	 * Now check to see if the ring buffer is still empty.
1460 	 * If it is not, we raced and we need to process new
1461 	 * incoming messages.
1462 	 */
1463 	return hv_get_bytes_to_read(rbi);
1464 }
1465 
1466 /*
1467  * An API to support in-place processing of incoming VMBUS packets.
1468  */
1469 
1470 /* Get data payload associated with descriptor */
1471 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1472 {
1473 	return (void *)((unsigned long)desc + (desc->offset8 << 3));
1474 }
1475 
1476 /* Get data size associated with descriptor */
1477 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1478 {
1479 	return (desc->len8 << 3) - (desc->offset8 << 3);
1480 }
1481 
1482 
1483 struct vmpacket_descriptor *
1484 hv_pkt_iter_first(struct vmbus_channel *channel);
1485 
1486 struct vmpacket_descriptor *
1487 __hv_pkt_iter_next(struct vmbus_channel *channel,
1488 		   const struct vmpacket_descriptor *pkt);
1489 
1490 void hv_pkt_iter_close(struct vmbus_channel *channel);
1491 
1492 /*
1493  * Get next packet descriptor from iterator
1494  * If at end of list, return NULL and update host.
1495  */
1496 static inline struct vmpacket_descriptor *
1497 hv_pkt_iter_next(struct vmbus_channel *channel,
1498 		 const struct vmpacket_descriptor *pkt)
1499 {
1500 	struct vmpacket_descriptor *nxt;
1501 
1502 	nxt = __hv_pkt_iter_next(channel, pkt);
1503 	if (!nxt)
1504 		hv_pkt_iter_close(channel);
1505 
1506 	return nxt;
1507 }
1508 
1509 #define foreach_vmbus_pkt(pkt, channel) \
1510 	for (pkt = hv_pkt_iter_first(channel); pkt; \
1511 	    pkt = hv_pkt_iter_next(channel, pkt))
1512 
1513 #endif /* _HYPERV_H */
1514