xref: /linux-6.15/include/linux/hyperv.h (revision bbb03029)
1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <[email protected]>
20  *   Hank Janssen  <[email protected]>
21  *   K. Y. Srinivasan <[email protected]>
22  *
23  */
24 
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27 
28 #include <uapi/linux/hyperv.h>
29 #include <uapi/asm/hyperv.h>
30 
31 #include <linux/types.h>
32 #include <linux/scatterlist.h>
33 #include <linux/list.h>
34 #include <linux/timer.h>
35 #include <linux/completion.h>
36 #include <linux/device.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/interrupt.h>
39 
40 #define MAX_PAGE_BUFFER_COUNT				32
41 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
42 
43 #pragma pack(push, 1)
44 
45 /* Single-page buffer */
46 struct hv_page_buffer {
47 	u32 len;
48 	u32 offset;
49 	u64 pfn;
50 };
51 
52 /* Multiple-page buffer */
53 struct hv_multipage_buffer {
54 	/* Length and Offset determines the # of pfns in the array */
55 	u32 len;
56 	u32 offset;
57 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
58 };
59 
60 /*
61  * Multiple-page buffer array; the pfn array is variable size:
62  * The number of entries in the PFN array is determined by
63  * "len" and "offset".
64  */
65 struct hv_mpb_array {
66 	/* Length and Offset determines the # of pfns in the array */
67 	u32 len;
68 	u32 offset;
69 	u64 pfn_array[];
70 };
71 
72 /* 0x18 includes the proprietary packet header */
73 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
74 					(sizeof(struct hv_page_buffer) * \
75 					 MAX_PAGE_BUFFER_COUNT))
76 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
77 					 sizeof(struct hv_multipage_buffer))
78 
79 
80 #pragma pack(pop)
81 
82 struct hv_ring_buffer {
83 	/* Offset in bytes from the start of ring data below */
84 	u32 write_index;
85 
86 	/* Offset in bytes from the start of ring data below */
87 	u32 read_index;
88 
89 	u32 interrupt_mask;
90 
91 	/*
92 	 * Win8 uses some of the reserved bits to implement
93 	 * interrupt driven flow management. On the send side
94 	 * we can request that the receiver interrupt the sender
95 	 * when the ring transitions from being full to being able
96 	 * to handle a message of size "pending_send_sz".
97 	 *
98 	 * Add necessary state for this enhancement.
99 	 */
100 	u32 pending_send_sz;
101 
102 	u32 reserved1[12];
103 
104 	union {
105 		struct {
106 			u32 feat_pending_send_sz:1;
107 		};
108 		u32 value;
109 	} feature_bits;
110 
111 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
112 	u8	reserved2[4028];
113 
114 	/*
115 	 * Ring data starts here + RingDataStartOffset
116 	 * !!! DO NOT place any fields below this !!!
117 	 */
118 	u8 buffer[0];
119 } __packed;
120 
121 struct hv_ring_buffer_info {
122 	struct hv_ring_buffer *ring_buffer;
123 	u32 ring_size;			/* Include the shared header */
124 	spinlock_t ring_lock;
125 
126 	u32 ring_datasize;		/* < ring_size */
127 	u32 ring_data_startoffset;
128 	u32 priv_write_index;
129 	u32 priv_read_index;
130 	u32 cached_read_index;
131 };
132 
133 /*
134  *
135  * hv_get_ringbuffer_availbytes()
136  *
137  * Get number of bytes available to read and to write to
138  * for the specified ring buffer
139  */
140 static inline void
141 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
142 			     u32 *read, u32 *write)
143 {
144 	u32 read_loc, write_loc, dsize;
145 
146 	/* Capture the read/write indices before they changed */
147 	read_loc = rbi->ring_buffer->read_index;
148 	write_loc = rbi->ring_buffer->write_index;
149 	dsize = rbi->ring_datasize;
150 
151 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
152 		read_loc - write_loc;
153 	*read = dsize - *write;
154 }
155 
156 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
157 {
158 	u32 read_loc, write_loc, dsize, read;
159 
160 	dsize = rbi->ring_datasize;
161 	read_loc = rbi->ring_buffer->read_index;
162 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
163 
164 	read = write_loc >= read_loc ? (write_loc - read_loc) :
165 		(dsize - read_loc) + write_loc;
166 
167 	return read;
168 }
169 
170 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
171 {
172 	u32 read_loc, write_loc, dsize, write;
173 
174 	dsize = rbi->ring_datasize;
175 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
176 	write_loc = rbi->ring_buffer->write_index;
177 
178 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
179 		read_loc - write_loc;
180 	return write;
181 }
182 
183 static inline u32 hv_get_cached_bytes_to_write(
184 	const struct hv_ring_buffer_info *rbi)
185 {
186 	u32 read_loc, write_loc, dsize, write;
187 
188 	dsize = rbi->ring_datasize;
189 	read_loc = rbi->cached_read_index;
190 	write_loc = rbi->ring_buffer->write_index;
191 
192 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
193 		read_loc - write_loc;
194 	return write;
195 }
196 /*
197  * VMBUS version is 32 bit entity broken up into
198  * two 16 bit quantities: major_number. minor_number.
199  *
200  * 0 . 13 (Windows Server 2008)
201  * 1 . 1  (Windows 7)
202  * 2 . 4  (Windows 8)
203  * 3 . 0  (Windows 8 R2)
204  * 4 . 0  (Windows 10)
205  */
206 
207 #define VERSION_WS2008  ((0 << 16) | (13))
208 #define VERSION_WIN7    ((1 << 16) | (1))
209 #define VERSION_WIN8    ((2 << 16) | (4))
210 #define VERSION_WIN8_1    ((3 << 16) | (0))
211 #define VERSION_WIN10	((4 << 16) | (0))
212 
213 #define VERSION_INVAL -1
214 
215 #define VERSION_CURRENT VERSION_WIN10
216 
217 /* Make maximum size of pipe payload of 16K */
218 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
219 
220 /* Define PipeMode values. */
221 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
222 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
223 
224 /* The size of the user defined data buffer for non-pipe offers. */
225 #define MAX_USER_DEFINED_BYTES		120
226 
227 /* The size of the user defined data buffer for pipe offers. */
228 #define MAX_PIPE_USER_DEFINED_BYTES	116
229 
230 /*
231  * At the center of the Channel Management library is the Channel Offer. This
232  * struct contains the fundamental information about an offer.
233  */
234 struct vmbus_channel_offer {
235 	uuid_le if_type;
236 	uuid_le if_instance;
237 
238 	/*
239 	 * These two fields are not currently used.
240 	 */
241 	u64 reserved1;
242 	u64 reserved2;
243 
244 	u16 chn_flags;
245 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
246 
247 	union {
248 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
249 		struct {
250 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
251 		} std;
252 
253 		/*
254 		 * Pipes:
255 		 * The following sructure is an integrated pipe protocol, which
256 		 * is implemented on top of standard user-defined data. Pipe
257 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
258 		 * use.
259 		 */
260 		struct {
261 			u32  pipe_mode;
262 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
263 		} pipe;
264 	} u;
265 	/*
266 	 * The sub_channel_index is defined in win8.
267 	 */
268 	u16 sub_channel_index;
269 	u16 reserved3;
270 } __packed;
271 
272 /* Server Flags */
273 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
274 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
275 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
276 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
277 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
278 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
279 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
280 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER		0x2000
281 
282 struct vmpacket_descriptor {
283 	u16 type;
284 	u16 offset8;
285 	u16 len8;
286 	u16 flags;
287 	u64 trans_id;
288 } __packed;
289 
290 struct vmpacket_header {
291 	u32 prev_pkt_start_offset;
292 	struct vmpacket_descriptor descriptor;
293 } __packed;
294 
295 struct vmtransfer_page_range {
296 	u32 byte_count;
297 	u32 byte_offset;
298 } __packed;
299 
300 struct vmtransfer_page_packet_header {
301 	struct vmpacket_descriptor d;
302 	u16 xfer_pageset_id;
303 	u8  sender_owns_set;
304 	u8 reserved;
305 	u32 range_cnt;
306 	struct vmtransfer_page_range ranges[1];
307 } __packed;
308 
309 struct vmgpadl_packet_header {
310 	struct vmpacket_descriptor d;
311 	u32 gpadl;
312 	u32 reserved;
313 } __packed;
314 
315 struct vmadd_remove_transfer_page_set {
316 	struct vmpacket_descriptor d;
317 	u32 gpadl;
318 	u16 xfer_pageset_id;
319 	u16 reserved;
320 } __packed;
321 
322 /*
323  * This structure defines a range in guest physical space that can be made to
324  * look virtually contiguous.
325  */
326 struct gpa_range {
327 	u32 byte_count;
328 	u32 byte_offset;
329 	u64 pfn_array[0];
330 };
331 
332 /*
333  * This is the format for an Establish Gpadl packet, which contains a handle by
334  * which this GPADL will be known and a set of GPA ranges associated with it.
335  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
336  * ranges, then the resulting MDL will be "chained," representing multiple VA
337  * ranges.
338  */
339 struct vmestablish_gpadl {
340 	struct vmpacket_descriptor d;
341 	u32 gpadl;
342 	u32 range_cnt;
343 	struct gpa_range range[1];
344 } __packed;
345 
346 /*
347  * This is the format for a Teardown Gpadl packet, which indicates that the
348  * GPADL handle in the Establish Gpadl packet will never be referenced again.
349  */
350 struct vmteardown_gpadl {
351 	struct vmpacket_descriptor d;
352 	u32 gpadl;
353 	u32 reserved;	/* for alignment to a 8-byte boundary */
354 } __packed;
355 
356 /*
357  * This is the format for a GPA-Direct packet, which contains a set of GPA
358  * ranges, in addition to commands and/or data.
359  */
360 struct vmdata_gpa_direct {
361 	struct vmpacket_descriptor d;
362 	u32 reserved;
363 	u32 range_cnt;
364 	struct gpa_range range[1];
365 } __packed;
366 
367 /* This is the format for a Additional Data Packet. */
368 struct vmadditional_data {
369 	struct vmpacket_descriptor d;
370 	u64 total_bytes;
371 	u32 offset;
372 	u32 byte_cnt;
373 	unsigned char data[1];
374 } __packed;
375 
376 union vmpacket_largest_possible_header {
377 	struct vmpacket_descriptor simple_hdr;
378 	struct vmtransfer_page_packet_header xfer_page_hdr;
379 	struct vmgpadl_packet_header gpadl_hdr;
380 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
381 	struct vmestablish_gpadl establish_gpadl_hdr;
382 	struct vmteardown_gpadl teardown_gpadl_hdr;
383 	struct vmdata_gpa_direct data_gpa_direct_hdr;
384 };
385 
386 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
387 	(void *)(((unsigned char *)__packet) +	\
388 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
389 
390 #define VMPACKET_DATA_LENGTH(__packet)		\
391 	((((struct vmpacket_descriptor)__packet)->len8 -	\
392 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
393 
394 #define VMPACKET_TRANSFER_MODE(__packet)	\
395 	(((struct IMPACT)__packet)->type)
396 
397 enum vmbus_packet_type {
398 	VM_PKT_INVALID				= 0x0,
399 	VM_PKT_SYNCH				= 0x1,
400 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
401 	VM_PKT_RM_XFER_PAGESET			= 0x3,
402 	VM_PKT_ESTABLISH_GPADL			= 0x4,
403 	VM_PKT_TEARDOWN_GPADL			= 0x5,
404 	VM_PKT_DATA_INBAND			= 0x6,
405 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
406 	VM_PKT_DATA_USING_GPADL			= 0x8,
407 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
408 	VM_PKT_CANCEL_REQUEST			= 0xa,
409 	VM_PKT_COMP				= 0xb,
410 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
411 	VM_PKT_ADDITIONAL_DATA			= 0xd
412 };
413 
414 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
415 
416 
417 /* Version 1 messages */
418 enum vmbus_channel_message_type {
419 	CHANNELMSG_INVALID			=  0,
420 	CHANNELMSG_OFFERCHANNEL		=  1,
421 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
422 	CHANNELMSG_REQUESTOFFERS		=  3,
423 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
424 	CHANNELMSG_OPENCHANNEL		=  5,
425 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
426 	CHANNELMSG_CLOSECHANNEL		=  7,
427 	CHANNELMSG_GPADL_HEADER		=  8,
428 	CHANNELMSG_GPADL_BODY			=  9,
429 	CHANNELMSG_GPADL_CREATED		= 10,
430 	CHANNELMSG_GPADL_TEARDOWN		= 11,
431 	CHANNELMSG_GPADL_TORNDOWN		= 12,
432 	CHANNELMSG_RELID_RELEASED		= 13,
433 	CHANNELMSG_INITIATE_CONTACT		= 14,
434 	CHANNELMSG_VERSION_RESPONSE		= 15,
435 	CHANNELMSG_UNLOAD			= 16,
436 	CHANNELMSG_UNLOAD_RESPONSE		= 17,
437 	CHANNELMSG_18				= 18,
438 	CHANNELMSG_19				= 19,
439 	CHANNELMSG_20				= 20,
440 	CHANNELMSG_TL_CONNECT_REQUEST		= 21,
441 	CHANNELMSG_COUNT
442 };
443 
444 struct vmbus_channel_message_header {
445 	enum vmbus_channel_message_type msgtype;
446 	u32 padding;
447 } __packed;
448 
449 /* Query VMBus Version parameters */
450 struct vmbus_channel_query_vmbus_version {
451 	struct vmbus_channel_message_header header;
452 	u32 version;
453 } __packed;
454 
455 /* VMBus Version Supported parameters */
456 struct vmbus_channel_version_supported {
457 	struct vmbus_channel_message_header header;
458 	u8 version_supported;
459 } __packed;
460 
461 /* Offer Channel parameters */
462 struct vmbus_channel_offer_channel {
463 	struct vmbus_channel_message_header header;
464 	struct vmbus_channel_offer offer;
465 	u32 child_relid;
466 	u8 monitorid;
467 	/*
468 	 * win7 and beyond splits this field into a bit field.
469 	 */
470 	u8 monitor_allocated:1;
471 	u8 reserved:7;
472 	/*
473 	 * These are new fields added in win7 and later.
474 	 * Do not access these fields without checking the
475 	 * negotiated protocol.
476 	 *
477 	 * If "is_dedicated_interrupt" is set, we must not set the
478 	 * associated bit in the channel bitmap while sending the
479 	 * interrupt to the host.
480 	 *
481 	 * connection_id is to be used in signaling the host.
482 	 */
483 	u16 is_dedicated_interrupt:1;
484 	u16 reserved1:15;
485 	u32 connection_id;
486 } __packed;
487 
488 /* Rescind Offer parameters */
489 struct vmbus_channel_rescind_offer {
490 	struct vmbus_channel_message_header header;
491 	u32 child_relid;
492 } __packed;
493 
494 static inline u32
495 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
496 {
497 	return rbi->ring_buffer->pending_send_sz;
498 }
499 
500 /*
501  * Request Offer -- no parameters, SynIC message contains the partition ID
502  * Set Snoop -- no parameters, SynIC message contains the partition ID
503  * Clear Snoop -- no parameters, SynIC message contains the partition ID
504  * All Offers Delivered -- no parameters, SynIC message contains the partition
505  *		           ID
506  * Flush Client -- no parameters, SynIC message contains the partition ID
507  */
508 
509 /* Open Channel parameters */
510 struct vmbus_channel_open_channel {
511 	struct vmbus_channel_message_header header;
512 
513 	/* Identifies the specific VMBus channel that is being opened. */
514 	u32 child_relid;
515 
516 	/* ID making a particular open request at a channel offer unique. */
517 	u32 openid;
518 
519 	/* GPADL for the channel's ring buffer. */
520 	u32 ringbuffer_gpadlhandle;
521 
522 	/*
523 	 * Starting with win8, this field will be used to specify
524 	 * the target virtual processor on which to deliver the interrupt for
525 	 * the host to guest communication.
526 	 * Prior to win8, incoming channel interrupts would only
527 	 * be delivered on cpu 0. Setting this value to 0 would
528 	 * preserve the earlier behavior.
529 	 */
530 	u32 target_vp;
531 
532 	/*
533 	 * The upstream ring buffer begins at offset zero in the memory
534 	 * described by RingBufferGpadlHandle. The downstream ring buffer
535 	 * follows it at this offset (in pages).
536 	 */
537 	u32 downstream_ringbuffer_pageoffset;
538 
539 	/* User-specific data to be passed along to the server endpoint. */
540 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
541 } __packed;
542 
543 /* Open Channel Result parameters */
544 struct vmbus_channel_open_result {
545 	struct vmbus_channel_message_header header;
546 	u32 child_relid;
547 	u32 openid;
548 	u32 status;
549 } __packed;
550 
551 /* Close channel parameters; */
552 struct vmbus_channel_close_channel {
553 	struct vmbus_channel_message_header header;
554 	u32 child_relid;
555 } __packed;
556 
557 /* Channel Message GPADL */
558 #define GPADL_TYPE_RING_BUFFER		1
559 #define GPADL_TYPE_SERVER_SAVE_AREA	2
560 #define GPADL_TYPE_TRANSACTION		8
561 
562 /*
563  * The number of PFNs in a GPADL message is defined by the number of
564  * pages that would be spanned by ByteCount and ByteOffset.  If the
565  * implied number of PFNs won't fit in this packet, there will be a
566  * follow-up packet that contains more.
567  */
568 struct vmbus_channel_gpadl_header {
569 	struct vmbus_channel_message_header header;
570 	u32 child_relid;
571 	u32 gpadl;
572 	u16 range_buflen;
573 	u16 rangecount;
574 	struct gpa_range range[0];
575 } __packed;
576 
577 /* This is the followup packet that contains more PFNs. */
578 struct vmbus_channel_gpadl_body {
579 	struct vmbus_channel_message_header header;
580 	u32 msgnumber;
581 	u32 gpadl;
582 	u64 pfn[0];
583 } __packed;
584 
585 struct vmbus_channel_gpadl_created {
586 	struct vmbus_channel_message_header header;
587 	u32 child_relid;
588 	u32 gpadl;
589 	u32 creation_status;
590 } __packed;
591 
592 struct vmbus_channel_gpadl_teardown {
593 	struct vmbus_channel_message_header header;
594 	u32 child_relid;
595 	u32 gpadl;
596 } __packed;
597 
598 struct vmbus_channel_gpadl_torndown {
599 	struct vmbus_channel_message_header header;
600 	u32 gpadl;
601 } __packed;
602 
603 struct vmbus_channel_relid_released {
604 	struct vmbus_channel_message_header header;
605 	u32 child_relid;
606 } __packed;
607 
608 struct vmbus_channel_initiate_contact {
609 	struct vmbus_channel_message_header header;
610 	u32 vmbus_version_requested;
611 	u32 target_vcpu; /* The VCPU the host should respond to */
612 	u64 interrupt_page;
613 	u64 monitor_page1;
614 	u64 monitor_page2;
615 } __packed;
616 
617 /* Hyper-V socket: guest's connect()-ing to host */
618 struct vmbus_channel_tl_connect_request {
619 	struct vmbus_channel_message_header header;
620 	uuid_le guest_endpoint_id;
621 	uuid_le host_service_id;
622 } __packed;
623 
624 struct vmbus_channel_version_response {
625 	struct vmbus_channel_message_header header;
626 	u8 version_supported;
627 } __packed;
628 
629 enum vmbus_channel_state {
630 	CHANNEL_OFFER_STATE,
631 	CHANNEL_OPENING_STATE,
632 	CHANNEL_OPEN_STATE,
633 	CHANNEL_OPENED_STATE,
634 };
635 
636 /*
637  * Represents each channel msg on the vmbus connection This is a
638  * variable-size data structure depending on the msg type itself
639  */
640 struct vmbus_channel_msginfo {
641 	/* Bookkeeping stuff */
642 	struct list_head msglistentry;
643 
644 	/* So far, this is only used to handle gpadl body message */
645 	struct list_head submsglist;
646 
647 	/* Synchronize the request/response if needed */
648 	struct completion  waitevent;
649 	struct vmbus_channel *waiting_channel;
650 	union {
651 		struct vmbus_channel_version_supported version_supported;
652 		struct vmbus_channel_open_result open_result;
653 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
654 		struct vmbus_channel_gpadl_created gpadl_created;
655 		struct vmbus_channel_version_response version_response;
656 	} response;
657 
658 	u32 msgsize;
659 	/*
660 	 * The channel message that goes out on the "wire".
661 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
662 	 */
663 	unsigned char msg[0];
664 };
665 
666 struct vmbus_close_msg {
667 	struct vmbus_channel_msginfo info;
668 	struct vmbus_channel_close_channel msg;
669 };
670 
671 /* Define connection identifier type. */
672 union hv_connection_id {
673 	u32 asu32;
674 	struct {
675 		u32 id:24;
676 		u32 reserved:8;
677 	} u;
678 };
679 
680 /* Definition of the hv_signal_event hypercall input structure. */
681 struct hv_input_signal_event {
682 	union hv_connection_id connectionid;
683 	u16 flag_number;
684 	u16 rsvdz;
685 };
686 
687 struct hv_input_signal_event_buffer {
688 	u64 align8;
689 	struct hv_input_signal_event event;
690 };
691 
692 enum hv_numa_policy {
693 	HV_BALANCED = 0,
694 	HV_LOCALIZED,
695 };
696 
697 enum vmbus_device_type {
698 	HV_IDE = 0,
699 	HV_SCSI,
700 	HV_FC,
701 	HV_NIC,
702 	HV_ND,
703 	HV_PCIE,
704 	HV_FB,
705 	HV_KBD,
706 	HV_MOUSE,
707 	HV_KVP,
708 	HV_TS,
709 	HV_HB,
710 	HV_SHUTDOWN,
711 	HV_FCOPY,
712 	HV_BACKUP,
713 	HV_DM,
714 	HV_UNKNOWN,
715 };
716 
717 struct vmbus_device {
718 	u16  dev_type;
719 	uuid_le guid;
720 	bool perf_device;
721 };
722 
723 struct vmbus_channel {
724 	struct list_head listentry;
725 
726 	struct hv_device *device_obj;
727 
728 	enum vmbus_channel_state state;
729 
730 	struct vmbus_channel_offer_channel offermsg;
731 	/*
732 	 * These are based on the OfferMsg.MonitorId.
733 	 * Save it here for easy access.
734 	 */
735 	u8 monitor_grp;
736 	u8 monitor_bit;
737 
738 	bool rescind; /* got rescind msg */
739 
740 	u32 ringbuffer_gpadlhandle;
741 
742 	/* Allocated memory for ring buffer */
743 	void *ringbuffer_pages;
744 	u32 ringbuffer_pagecount;
745 	struct hv_ring_buffer_info outbound;	/* send to parent */
746 	struct hv_ring_buffer_info inbound;	/* receive from parent */
747 
748 	struct vmbus_close_msg close_msg;
749 
750 	/* Channel callback's invoked in softirq context */
751 	struct tasklet_struct callback_event;
752 	void (*onchannel_callback)(void *context);
753 	void *channel_callback_context;
754 
755 	/*
756 	 * A channel can be marked for one of three modes of reading:
757 	 *   BATCHED - callback called from taslket and should read
758 	 *            channel until empty. Interrupts from the host
759 	 *            are masked while read is in process (default).
760 	 *   DIRECT - callback called from tasklet (softirq).
761 	 *   ISR - callback called in interrupt context and must
762 	 *         invoke its own deferred processing.
763 	 *         Host interrupts are disabled and must be re-enabled
764 	 *         when ring is empty.
765 	 */
766 	enum hv_callback_mode {
767 		HV_CALL_BATCHED,
768 		HV_CALL_DIRECT,
769 		HV_CALL_ISR
770 	} callback_mode;
771 
772 	bool is_dedicated_interrupt;
773 	struct hv_input_signal_event_buffer sig_buf;
774 	struct hv_input_signal_event *sig_event;
775 
776 	/*
777 	 * Starting with win8, this field will be used to specify
778 	 * the target virtual processor on which to deliver the interrupt for
779 	 * the host to guest communication.
780 	 * Prior to win8, incoming channel interrupts would only
781 	 * be delivered on cpu 0. Setting this value to 0 would
782 	 * preserve the earlier behavior.
783 	 */
784 	u32 target_vp;
785 	/* The corresponding CPUID in the guest */
786 	u32 target_cpu;
787 	/*
788 	 * State to manage the CPU affiliation of channels.
789 	 */
790 	struct cpumask alloced_cpus_in_node;
791 	int numa_node;
792 	/*
793 	 * Support for sub-channels. For high performance devices,
794 	 * it will be useful to have multiple sub-channels to support
795 	 * a scalable communication infrastructure with the host.
796 	 * The support for sub-channels is implemented as an extention
797 	 * to the current infrastructure.
798 	 * The initial offer is considered the primary channel and this
799 	 * offer message will indicate if the host supports sub-channels.
800 	 * The guest is free to ask for sub-channels to be offerred and can
801 	 * open these sub-channels as a normal "primary" channel. However,
802 	 * all sub-channels will have the same type and instance guids as the
803 	 * primary channel. Requests sent on a given channel will result in a
804 	 * response on the same channel.
805 	 */
806 
807 	/*
808 	 * Sub-channel creation callback. This callback will be called in
809 	 * process context when a sub-channel offer is received from the host.
810 	 * The guest can open the sub-channel in the context of this callback.
811 	 */
812 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
813 
814 	/*
815 	 * Channel rescind callback. Some channels (the hvsock ones), need to
816 	 * register a callback which is invoked in vmbus_onoffer_rescind().
817 	 */
818 	void (*chn_rescind_callback)(struct vmbus_channel *channel);
819 
820 	/*
821 	 * The spinlock to protect the structure. It is being used to protect
822 	 * test-and-set access to various attributes of the structure as well
823 	 * as all sc_list operations.
824 	 */
825 	spinlock_t lock;
826 	/*
827 	 * All Sub-channels of a primary channel are linked here.
828 	 */
829 	struct list_head sc_list;
830 	/*
831 	 * Current number of sub-channels.
832 	 */
833 	int num_sc;
834 	/*
835 	 * Number of a sub-channel (position within sc_list) which is supposed
836 	 * to be used as the next outgoing channel.
837 	 */
838 	int next_oc;
839 	/*
840 	 * The primary channel this sub-channel belongs to.
841 	 * This will be NULL for the primary channel.
842 	 */
843 	struct vmbus_channel *primary_channel;
844 	/*
845 	 * Support per-channel state for use by vmbus drivers.
846 	 */
847 	void *per_channel_state;
848 	/*
849 	 * To support per-cpu lookup mapping of relid to channel,
850 	 * link up channels based on their CPU affinity.
851 	 */
852 	struct list_head percpu_list;
853 
854 	/*
855 	 * Defer freeing channel until after all cpu's have
856 	 * gone through grace period.
857 	 */
858 	struct rcu_head rcu;
859 
860 	/*
861 	 * For performance critical channels (storage, networking
862 	 * etc,), Hyper-V has a mechanism to enhance the throughput
863 	 * at the expense of latency:
864 	 * When the host is to be signaled, we just set a bit in a shared page
865 	 * and this bit will be inspected by the hypervisor within a certain
866 	 * window and if the bit is set, the host will be signaled. The window
867 	 * of time is the monitor latency - currently around 100 usecs. This
868 	 * mechanism improves throughput by:
869 	 *
870 	 * A) Making the host more efficient - each time it wakes up,
871 	 *    potentially it will process morev number of packets. The
872 	 *    monitor latency allows a batch to build up.
873 	 * B) By deferring the hypercall to signal, we will also minimize
874 	 *    the interrupts.
875 	 *
876 	 * Clearly, these optimizations improve throughput at the expense of
877 	 * latency. Furthermore, since the channel is shared for both
878 	 * control and data messages, control messages currently suffer
879 	 * unnecessary latency adversley impacting performance and boot
880 	 * time. To fix this issue, permit tagging the channel as being
881 	 * in "low latency" mode. In this mode, we will bypass the monitor
882 	 * mechanism.
883 	 */
884 	bool low_latency;
885 
886 	/*
887 	 * NUMA distribution policy:
888 	 * We support teo policies:
889 	 * 1) Balanced: Here all performance critical channels are
890 	 *    distributed evenly amongst all the NUMA nodes.
891 	 *    This policy will be the default policy.
892 	 * 2) Localized: All channels of a given instance of a
893 	 *    performance critical service will be assigned CPUs
894 	 *    within a selected NUMA node.
895 	 */
896 	enum hv_numa_policy affinity_policy;
897 
898 };
899 
900 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
901 {
902 	return !!(c->offermsg.offer.chn_flags &
903 		  VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
904 }
905 
906 static inline void set_channel_affinity_state(struct vmbus_channel *c,
907 					      enum hv_numa_policy policy)
908 {
909 	c->affinity_policy = policy;
910 }
911 
912 static inline void set_channel_read_mode(struct vmbus_channel *c,
913 					enum hv_callback_mode mode)
914 {
915 	c->callback_mode = mode;
916 }
917 
918 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
919 {
920 	c->per_channel_state = s;
921 }
922 
923 static inline void *get_per_channel_state(struct vmbus_channel *c)
924 {
925 	return c->per_channel_state;
926 }
927 
928 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
929 						 u32 size)
930 {
931 	c->outbound.ring_buffer->pending_send_sz = size;
932 }
933 
934 static inline void set_low_latency_mode(struct vmbus_channel *c)
935 {
936 	c->low_latency = true;
937 }
938 
939 static inline void clear_low_latency_mode(struct vmbus_channel *c)
940 {
941 	c->low_latency = false;
942 }
943 
944 void vmbus_onmessage(void *context);
945 
946 int vmbus_request_offers(void);
947 
948 /*
949  * APIs for managing sub-channels.
950  */
951 
952 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
953 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
954 
955 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
956 		void (*chn_rescind_cb)(struct vmbus_channel *));
957 
958 /*
959  * Retrieve the (sub) channel on which to send an outgoing request.
960  * When a primary channel has multiple sub-channels, we choose a
961  * channel whose VCPU binding is closest to the VCPU on which
962  * this call is being made.
963  */
964 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
965 
966 /*
967  * Check if sub-channels have already been offerred. This API will be useful
968  * when the driver is unloaded after establishing sub-channels. In this case,
969  * when the driver is re-loaded, the driver would have to check if the
970  * subchannels have already been established before attempting to request
971  * the creation of sub-channels.
972  * This function returns TRUE to indicate that subchannels have already been
973  * created.
974  * This function should be invoked after setting the callback function for
975  * sub-channel creation.
976  */
977 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
978 
979 /* The format must be the same as struct vmdata_gpa_direct */
980 struct vmbus_channel_packet_page_buffer {
981 	u16 type;
982 	u16 dataoffset8;
983 	u16 length8;
984 	u16 flags;
985 	u64 transactionid;
986 	u32 reserved;
987 	u32 rangecount;
988 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
989 } __packed;
990 
991 /* The format must be the same as struct vmdata_gpa_direct */
992 struct vmbus_channel_packet_multipage_buffer {
993 	u16 type;
994 	u16 dataoffset8;
995 	u16 length8;
996 	u16 flags;
997 	u64 transactionid;
998 	u32 reserved;
999 	u32 rangecount;		/* Always 1 in this case */
1000 	struct hv_multipage_buffer range;
1001 } __packed;
1002 
1003 /* The format must be the same as struct vmdata_gpa_direct */
1004 struct vmbus_packet_mpb_array {
1005 	u16 type;
1006 	u16 dataoffset8;
1007 	u16 length8;
1008 	u16 flags;
1009 	u64 transactionid;
1010 	u32 reserved;
1011 	u32 rangecount;         /* Always 1 in this case */
1012 	struct hv_mpb_array range;
1013 } __packed;
1014 
1015 
1016 extern int vmbus_open(struct vmbus_channel *channel,
1017 			    u32 send_ringbuffersize,
1018 			    u32 recv_ringbuffersize,
1019 			    void *userdata,
1020 			    u32 userdatalen,
1021 			    void (*onchannel_callback)(void *context),
1022 			    void *context);
1023 
1024 extern void vmbus_close(struct vmbus_channel *channel);
1025 
1026 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1027 				  void *buffer,
1028 				  u32 bufferLen,
1029 				  u64 requestid,
1030 				  enum vmbus_packet_type type,
1031 				  u32 flags);
1032 
1033 extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel,
1034 				  void *buffer,
1035 				  u32 bufferLen,
1036 				  u64 requestid,
1037 				  enum vmbus_packet_type type,
1038 				  u32 flags);
1039 
1040 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1041 					    struct hv_page_buffer pagebuffers[],
1042 					    u32 pagecount,
1043 					    void *buffer,
1044 					    u32 bufferlen,
1045 					    u64 requestid);
1046 
1047 extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel,
1048 					   struct hv_page_buffer pagebuffers[],
1049 					   u32 pagecount,
1050 					   void *buffer,
1051 					   u32 bufferlen,
1052 					   u64 requestid,
1053 					   u32 flags);
1054 
1055 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1056 					struct hv_multipage_buffer *mpb,
1057 					void *buffer,
1058 					u32 bufferlen,
1059 					u64 requestid);
1060 
1061 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1062 				     struct vmbus_packet_mpb_array *mpb,
1063 				     u32 desc_size,
1064 				     void *buffer,
1065 				     u32 bufferlen,
1066 				     u64 requestid);
1067 
1068 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1069 				      void *kbuffer,
1070 				      u32 size,
1071 				      u32 *gpadl_handle);
1072 
1073 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1074 				     u32 gpadl_handle);
1075 
1076 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1077 				  void *buffer,
1078 				  u32 bufferlen,
1079 				  u32 *buffer_actual_len,
1080 				  u64 *requestid);
1081 
1082 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1083 				     void *buffer,
1084 				     u32 bufferlen,
1085 				     u32 *buffer_actual_len,
1086 				     u64 *requestid);
1087 
1088 
1089 extern void vmbus_ontimer(unsigned long data);
1090 
1091 /* Base driver object */
1092 struct hv_driver {
1093 	const char *name;
1094 
1095 	/*
1096 	 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1097 	 * channel flag, actually doesn't mean a synthetic device because the
1098 	 * offer's if_type/if_instance can change for every new hvsock
1099 	 * connection.
1100 	 *
1101 	 * However, to facilitate the notification of new-offer/rescind-offer
1102 	 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1103 	 * a special vmbus device, and hence we need the below flag to
1104 	 * indicate if the driver is the hvsock driver or not: we need to
1105 	 * specially treat the hvosck offer & driver in vmbus_match().
1106 	 */
1107 	bool hvsock;
1108 
1109 	/* the device type supported by this driver */
1110 	uuid_le dev_type;
1111 	const struct hv_vmbus_device_id *id_table;
1112 
1113 	struct device_driver driver;
1114 
1115 	/* dynamic device GUID's */
1116 	struct  {
1117 		spinlock_t lock;
1118 		struct list_head list;
1119 	} dynids;
1120 
1121 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1122 	int (*remove)(struct hv_device *);
1123 	void (*shutdown)(struct hv_device *);
1124 
1125 };
1126 
1127 /* Base device object */
1128 struct hv_device {
1129 	/* the device type id of this device */
1130 	uuid_le dev_type;
1131 
1132 	/* the device instance id of this device */
1133 	uuid_le dev_instance;
1134 	u16 vendor_id;
1135 	u16 device_id;
1136 
1137 	struct device device;
1138 
1139 	struct vmbus_channel *channel;
1140 };
1141 
1142 
1143 static inline struct hv_device *device_to_hv_device(struct device *d)
1144 {
1145 	return container_of(d, struct hv_device, device);
1146 }
1147 
1148 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1149 {
1150 	return container_of(d, struct hv_driver, driver);
1151 }
1152 
1153 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1154 {
1155 	dev_set_drvdata(&dev->device, data);
1156 }
1157 
1158 static inline void *hv_get_drvdata(struct hv_device *dev)
1159 {
1160 	return dev_get_drvdata(&dev->device);
1161 }
1162 
1163 struct hv_ring_buffer_debug_info {
1164 	u32 current_interrupt_mask;
1165 	u32 current_read_index;
1166 	u32 current_write_index;
1167 	u32 bytes_avail_toread;
1168 	u32 bytes_avail_towrite;
1169 };
1170 
1171 void hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info,
1172 			    struct hv_ring_buffer_debug_info *debug_info);
1173 
1174 /* Vmbus interface */
1175 #define vmbus_driver_register(driver)	\
1176 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1177 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1178 					 struct module *owner,
1179 					 const char *mod_name);
1180 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1181 
1182 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1183 
1184 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1185 			resource_size_t min, resource_size_t max,
1186 			resource_size_t size, resource_size_t align,
1187 			bool fb_overlap_ok);
1188 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1189 int vmbus_cpu_number_to_vp_number(int cpu_number);
1190 u64 hv_do_hypercall(u64 control, void *input, void *output);
1191 
1192 /*
1193  * GUID definitions of various offer types - services offered to the guest.
1194  */
1195 
1196 /*
1197  * Network GUID
1198  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1199  */
1200 #define HV_NIC_GUID \
1201 	.guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1202 			0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1203 
1204 /*
1205  * IDE GUID
1206  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1207  */
1208 #define HV_IDE_GUID \
1209 	.guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1210 			0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1211 
1212 /*
1213  * SCSI GUID
1214  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1215  */
1216 #define HV_SCSI_GUID \
1217 	.guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1218 			0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1219 
1220 /*
1221  * Shutdown GUID
1222  * {0e0b6031-5213-4934-818b-38d90ced39db}
1223  */
1224 #define HV_SHUTDOWN_GUID \
1225 	.guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1226 			0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1227 
1228 /*
1229  * Time Synch GUID
1230  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1231  */
1232 #define HV_TS_GUID \
1233 	.guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1234 			0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1235 
1236 /*
1237  * Heartbeat GUID
1238  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1239  */
1240 #define HV_HEART_BEAT_GUID \
1241 	.guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1242 			0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1243 
1244 /*
1245  * KVP GUID
1246  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1247  */
1248 #define HV_KVP_GUID \
1249 	.guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1250 			0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1251 
1252 /*
1253  * Dynamic memory GUID
1254  * {525074dc-8985-46e2-8057-a307dc18a502}
1255  */
1256 #define HV_DM_GUID \
1257 	.guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1258 			0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1259 
1260 /*
1261  * Mouse GUID
1262  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1263  */
1264 #define HV_MOUSE_GUID \
1265 	.guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1266 			0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1267 
1268 /*
1269  * Keyboard GUID
1270  * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1271  */
1272 #define HV_KBD_GUID \
1273 	.guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1274 			0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1275 
1276 /*
1277  * VSS (Backup/Restore) GUID
1278  */
1279 #define HV_VSS_GUID \
1280 	.guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1281 			0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1282 /*
1283  * Synthetic Video GUID
1284  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1285  */
1286 #define HV_SYNTHVID_GUID \
1287 	.guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1288 			0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1289 
1290 /*
1291  * Synthetic FC GUID
1292  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1293  */
1294 #define HV_SYNTHFC_GUID \
1295 	.guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1296 			0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1297 
1298 /*
1299  * Guest File Copy Service
1300  * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1301  */
1302 
1303 #define HV_FCOPY_GUID \
1304 	.guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1305 			0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1306 
1307 /*
1308  * NetworkDirect. This is the guest RDMA service.
1309  * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1310  */
1311 #define HV_ND_GUID \
1312 	.guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1313 			0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1314 
1315 /*
1316  * PCI Express Pass Through
1317  * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1318  */
1319 
1320 #define HV_PCIE_GUID \
1321 	.guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1322 			0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1323 
1324 /*
1325  * Linux doesn't support the 3 devices: the first two are for
1326  * Automatic Virtual Machine Activation, and the third is for
1327  * Remote Desktop Virtualization.
1328  * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1329  * {3375baf4-9e15-4b30-b765-67acb10d607b}
1330  * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1331  */
1332 
1333 #define HV_AVMA1_GUID \
1334 	.guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1335 			0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1336 
1337 #define HV_AVMA2_GUID \
1338 	.guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1339 			0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1340 
1341 #define HV_RDV_GUID \
1342 	.guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1343 			0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1344 
1345 /*
1346  * Common header for Hyper-V ICs
1347  */
1348 
1349 #define ICMSGTYPE_NEGOTIATE		0
1350 #define ICMSGTYPE_HEARTBEAT		1
1351 #define ICMSGTYPE_KVPEXCHANGE		2
1352 #define ICMSGTYPE_SHUTDOWN		3
1353 #define ICMSGTYPE_TIMESYNC		4
1354 #define ICMSGTYPE_VSS			5
1355 
1356 #define ICMSGHDRFLAG_TRANSACTION	1
1357 #define ICMSGHDRFLAG_REQUEST		2
1358 #define ICMSGHDRFLAG_RESPONSE		4
1359 
1360 
1361 /*
1362  * While we want to handle util services as regular devices,
1363  * there is only one instance of each of these services; so
1364  * we statically allocate the service specific state.
1365  */
1366 
1367 struct hv_util_service {
1368 	u8 *recv_buffer;
1369 	void *channel;
1370 	void (*util_cb)(void *);
1371 	int (*util_init)(struct hv_util_service *);
1372 	void (*util_deinit)(void);
1373 };
1374 
1375 struct vmbuspipe_hdr {
1376 	u32 flags;
1377 	u32 msgsize;
1378 } __packed;
1379 
1380 struct ic_version {
1381 	u16 major;
1382 	u16 minor;
1383 } __packed;
1384 
1385 struct icmsg_hdr {
1386 	struct ic_version icverframe;
1387 	u16 icmsgtype;
1388 	struct ic_version icvermsg;
1389 	u16 icmsgsize;
1390 	u32 status;
1391 	u8 ictransaction_id;
1392 	u8 icflags;
1393 	u8 reserved[2];
1394 } __packed;
1395 
1396 struct icmsg_negotiate {
1397 	u16 icframe_vercnt;
1398 	u16 icmsg_vercnt;
1399 	u32 reserved;
1400 	struct ic_version icversion_data[1]; /* any size array */
1401 } __packed;
1402 
1403 struct shutdown_msg_data {
1404 	u32 reason_code;
1405 	u32 timeout_seconds;
1406 	u32 flags;
1407 	u8  display_message[2048];
1408 } __packed;
1409 
1410 struct heartbeat_msg_data {
1411 	u64 seq_num;
1412 	u32 reserved[8];
1413 } __packed;
1414 
1415 /* Time Sync IC defs */
1416 #define ICTIMESYNCFLAG_PROBE	0
1417 #define ICTIMESYNCFLAG_SYNC	1
1418 #define ICTIMESYNCFLAG_SAMPLE	2
1419 
1420 #ifdef __x86_64__
1421 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1422 #else
1423 #define WLTIMEDELTA	116444736000000000LL
1424 #endif
1425 
1426 struct ictimesync_data {
1427 	u64 parenttime;
1428 	u64 childtime;
1429 	u64 roundtriptime;
1430 	u8 flags;
1431 } __packed;
1432 
1433 struct ictimesync_ref_data {
1434 	u64 parenttime;
1435 	u64 vmreferencetime;
1436 	u8 flags;
1437 	char leapflags;
1438 	char stratum;
1439 	u8 reserved[3];
1440 } __packed;
1441 
1442 struct hyperv_service_callback {
1443 	u8 msg_type;
1444 	char *log_msg;
1445 	uuid_le data;
1446 	struct vmbus_channel *channel;
1447 	void (*callback)(void *context);
1448 };
1449 
1450 #define MAX_SRV_VER	0x7ffffff
1451 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1452 				const int *fw_version, int fw_vercnt,
1453 				const int *srv_version, int srv_vercnt,
1454 				int *nego_fw_version, int *nego_srv_version);
1455 
1456 void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid);
1457 
1458 void vmbus_setevent(struct vmbus_channel *channel);
1459 /*
1460  * Negotiated version with the Host.
1461  */
1462 
1463 extern __u32 vmbus_proto_version;
1464 
1465 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1466 				  const uuid_le *shv_host_servie_id);
1467 void vmbus_set_event(struct vmbus_channel *channel);
1468 
1469 /* Get the start of the ring buffer. */
1470 static inline void *
1471 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1472 {
1473 	return ring_info->ring_buffer->buffer;
1474 }
1475 
1476 /*
1477  * To optimize the flow management on the send-side,
1478  * when the sender is blocked because of lack of
1479  * sufficient space in the ring buffer, potential the
1480  * consumer of the ring buffer can signal the producer.
1481  * This is controlled by the following parameters:
1482  *
1483  * 1. pending_send_sz: This is the size in bytes that the
1484  *    producer is trying to send.
1485  * 2. The feature bit feat_pending_send_sz set to indicate if
1486  *    the consumer of the ring will signal when the ring
1487  *    state transitions from being full to a state where
1488  *    there is room for the producer to send the pending packet.
1489  */
1490 
1491 static inline  void hv_signal_on_read(struct vmbus_channel *channel)
1492 {
1493 	u32 cur_write_sz, cached_write_sz;
1494 	u32 pending_sz;
1495 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1496 
1497 	/*
1498 	 * Issue a full memory barrier before making the signaling decision.
1499 	 * Here is the reason for having this barrier:
1500 	 * If the reading of the pend_sz (in this function)
1501 	 * were to be reordered and read before we commit the new read
1502 	 * index (in the calling function)  we could
1503 	 * have a problem. If the host were to set the pending_sz after we
1504 	 * have sampled pending_sz and go to sleep before we commit the
1505 	 * read index, we could miss sending the interrupt. Issue a full
1506 	 * memory barrier to address this.
1507 	 */
1508 	virt_mb();
1509 
1510 	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
1511 	/* If the other end is not blocked on write don't bother. */
1512 	if (pending_sz == 0)
1513 		return;
1514 
1515 	cur_write_sz = hv_get_bytes_to_write(rbi);
1516 
1517 	if (cur_write_sz < pending_sz)
1518 		return;
1519 
1520 	cached_write_sz = hv_get_cached_bytes_to_write(rbi);
1521 	if (cached_write_sz < pending_sz)
1522 		vmbus_setevent(channel);
1523 }
1524 
1525 /*
1526  * Mask off host interrupt callback notifications
1527  */
1528 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1529 {
1530 	rbi->ring_buffer->interrupt_mask = 1;
1531 
1532 	/* make sure mask update is not reordered */
1533 	virt_mb();
1534 }
1535 
1536 /*
1537  * Re-enable host callback and return number of outstanding bytes
1538  */
1539 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1540 {
1541 
1542 	rbi->ring_buffer->interrupt_mask = 0;
1543 
1544 	/* make sure mask update is not reordered */
1545 	virt_mb();
1546 
1547 	/*
1548 	 * Now check to see if the ring buffer is still empty.
1549 	 * If it is not, we raced and we need to process new
1550 	 * incoming messages.
1551 	 */
1552 	return hv_get_bytes_to_read(rbi);
1553 }
1554 
1555 /*
1556  * An API to support in-place processing of incoming VMBUS packets.
1557  */
1558 
1559 /* Get data payload associated with descriptor */
1560 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1561 {
1562 	return (void *)((unsigned long)desc + (desc->offset8 << 3));
1563 }
1564 
1565 /* Get data size associated with descriptor */
1566 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1567 {
1568 	return (desc->len8 << 3) - (desc->offset8 << 3);
1569 }
1570 
1571 
1572 struct vmpacket_descriptor *
1573 hv_pkt_iter_first(struct vmbus_channel *channel);
1574 
1575 struct vmpacket_descriptor *
1576 __hv_pkt_iter_next(struct vmbus_channel *channel,
1577 		   const struct vmpacket_descriptor *pkt);
1578 
1579 void hv_pkt_iter_close(struct vmbus_channel *channel);
1580 
1581 /*
1582  * Get next packet descriptor from iterator
1583  * If at end of list, return NULL and update host.
1584  */
1585 static inline struct vmpacket_descriptor *
1586 hv_pkt_iter_next(struct vmbus_channel *channel,
1587 		 const struct vmpacket_descriptor *pkt)
1588 {
1589 	struct vmpacket_descriptor *nxt;
1590 
1591 	nxt = __hv_pkt_iter_next(channel, pkt);
1592 	if (!nxt)
1593 		hv_pkt_iter_close(channel);
1594 
1595 	return nxt;
1596 }
1597 
1598 #define foreach_vmbus_pkt(pkt, channel) \
1599 	for (pkt = hv_pkt_iter_first(channel); pkt; \
1600 	    pkt = hv_pkt_iter_next(channel, pkt))
1601 
1602 #endif /* _HYPERV_H */
1603