xref: /linux-6.15/include/linux/hyperv.h (revision bb970707)
1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <[email protected]>
20  *   Hank Janssen  <[email protected]>
21  *   K. Y. Srinivasan <[email protected]>
22  *
23  */
24 
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27 
28 #include <uapi/linux/hyperv.h>
29 #include <uapi/asm/hyperv.h>
30 
31 #include <linux/types.h>
32 #include <linux/scatterlist.h>
33 #include <linux/list.h>
34 #include <linux/timer.h>
35 #include <linux/workqueue.h>
36 #include <linux/completion.h>
37 #include <linux/device.h>
38 #include <linux/mod_devicetable.h>
39 
40 
41 #define MAX_PAGE_BUFFER_COUNT				32
42 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
43 
44 #pragma pack(push, 1)
45 
46 /* Single-page buffer */
47 struct hv_page_buffer {
48 	u32 len;
49 	u32 offset;
50 	u64 pfn;
51 };
52 
53 /* Multiple-page buffer */
54 struct hv_multipage_buffer {
55 	/* Length and Offset determines the # of pfns in the array */
56 	u32 len;
57 	u32 offset;
58 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
59 };
60 
61 /*
62  * Multiple-page buffer array; the pfn array is variable size:
63  * The number of entries in the PFN array is determined by
64  * "len" and "offset".
65  */
66 struct hv_mpb_array {
67 	/* Length and Offset determines the # of pfns in the array */
68 	u32 len;
69 	u32 offset;
70 	u64 pfn_array[];
71 };
72 
73 /* 0x18 includes the proprietary packet header */
74 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
75 					(sizeof(struct hv_page_buffer) * \
76 					 MAX_PAGE_BUFFER_COUNT))
77 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
78 					 sizeof(struct hv_multipage_buffer))
79 
80 
81 #pragma pack(pop)
82 
83 struct hv_ring_buffer {
84 	/* Offset in bytes from the start of ring data below */
85 	u32 write_index;
86 
87 	/* Offset in bytes from the start of ring data below */
88 	u32 read_index;
89 
90 	u32 interrupt_mask;
91 
92 	/*
93 	 * Win8 uses some of the reserved bits to implement
94 	 * interrupt driven flow management. On the send side
95 	 * we can request that the receiver interrupt the sender
96 	 * when the ring transitions from being full to being able
97 	 * to handle a message of size "pending_send_sz".
98 	 *
99 	 * Add necessary state for this enhancement.
100 	 */
101 	u32 pending_send_sz;
102 
103 	u32 reserved1[12];
104 
105 	union {
106 		struct {
107 			u32 feat_pending_send_sz:1;
108 		};
109 		u32 value;
110 	} feature_bits;
111 
112 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
113 	u8	reserved2[4028];
114 
115 	/*
116 	 * Ring data starts here + RingDataStartOffset
117 	 * !!! DO NOT place any fields below this !!!
118 	 */
119 	u8 buffer[0];
120 } __packed;
121 
122 struct hv_ring_buffer_info {
123 	struct hv_ring_buffer *ring_buffer;
124 	u32 ring_size;			/* Include the shared header */
125 	spinlock_t ring_lock;
126 
127 	u32 ring_datasize;		/* < ring_size */
128 	u32 ring_data_startoffset;
129 	u32 priv_write_index;
130 	u32 priv_read_index;
131 };
132 
133 /*
134  *
135  * hv_get_ringbuffer_availbytes()
136  *
137  * Get number of bytes available to read and to write to
138  * for the specified ring buffer
139  */
140 static inline void
141 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
142 			  u32 *read, u32 *write)
143 {
144 	u32 read_loc, write_loc, dsize;
145 
146 	/* Capture the read/write indices before they changed */
147 	read_loc = rbi->ring_buffer->read_index;
148 	write_loc = rbi->ring_buffer->write_index;
149 	dsize = rbi->ring_datasize;
150 
151 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
152 		read_loc - write_loc;
153 	*read = dsize - *write;
154 }
155 
156 static inline u32 hv_get_bytes_to_read(struct hv_ring_buffer_info *rbi)
157 {
158 	u32 read_loc, write_loc, dsize, read;
159 
160 	dsize = rbi->ring_datasize;
161 	read_loc = rbi->ring_buffer->read_index;
162 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
163 
164 	read = write_loc >= read_loc ? (write_loc - read_loc) :
165 		(dsize - read_loc) + write_loc;
166 
167 	return read;
168 }
169 
170 static inline u32 hv_get_bytes_to_write(struct hv_ring_buffer_info *rbi)
171 {
172 	u32 read_loc, write_loc, dsize, write;
173 
174 	dsize = rbi->ring_datasize;
175 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
176 	write_loc = rbi->ring_buffer->write_index;
177 
178 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
179 		read_loc - write_loc;
180 	return write;
181 }
182 
183 /*
184  * VMBUS version is 32 bit entity broken up into
185  * two 16 bit quantities: major_number. minor_number.
186  *
187  * 0 . 13 (Windows Server 2008)
188  * 1 . 1  (Windows 7)
189  * 2 . 4  (Windows 8)
190  * 3 . 0  (Windows 8 R2)
191  * 4 . 0  (Windows 10)
192  */
193 
194 #define VERSION_WS2008  ((0 << 16) | (13))
195 #define VERSION_WIN7    ((1 << 16) | (1))
196 #define VERSION_WIN8    ((2 << 16) | (4))
197 #define VERSION_WIN8_1    ((3 << 16) | (0))
198 #define VERSION_WIN10	((4 << 16) | (0))
199 
200 #define VERSION_INVAL -1
201 
202 #define VERSION_CURRENT VERSION_WIN10
203 
204 /* Make maximum size of pipe payload of 16K */
205 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
206 
207 /* Define PipeMode values. */
208 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
209 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
210 
211 /* The size of the user defined data buffer for non-pipe offers. */
212 #define MAX_USER_DEFINED_BYTES		120
213 
214 /* The size of the user defined data buffer for pipe offers. */
215 #define MAX_PIPE_USER_DEFINED_BYTES	116
216 
217 /*
218  * At the center of the Channel Management library is the Channel Offer. This
219  * struct contains the fundamental information about an offer.
220  */
221 struct vmbus_channel_offer {
222 	uuid_le if_type;
223 	uuid_le if_instance;
224 
225 	/*
226 	 * These two fields are not currently used.
227 	 */
228 	u64 reserved1;
229 	u64 reserved2;
230 
231 	u16 chn_flags;
232 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
233 
234 	union {
235 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
236 		struct {
237 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
238 		} std;
239 
240 		/*
241 		 * Pipes:
242 		 * The following sructure is an integrated pipe protocol, which
243 		 * is implemented on top of standard user-defined data. Pipe
244 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
245 		 * use.
246 		 */
247 		struct {
248 			u32  pipe_mode;
249 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
250 		} pipe;
251 	} u;
252 	/*
253 	 * The sub_channel_index is defined in win8.
254 	 */
255 	u16 sub_channel_index;
256 	u16 reserved3;
257 } __packed;
258 
259 /* Server Flags */
260 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
261 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
262 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
263 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
264 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
265 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
266 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
267 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER		0x2000
268 
269 struct vmpacket_descriptor {
270 	u16 type;
271 	u16 offset8;
272 	u16 len8;
273 	u16 flags;
274 	u64 trans_id;
275 } __packed;
276 
277 struct vmpacket_header {
278 	u32 prev_pkt_start_offset;
279 	struct vmpacket_descriptor descriptor;
280 } __packed;
281 
282 struct vmtransfer_page_range {
283 	u32 byte_count;
284 	u32 byte_offset;
285 } __packed;
286 
287 struct vmtransfer_page_packet_header {
288 	struct vmpacket_descriptor d;
289 	u16 xfer_pageset_id;
290 	u8  sender_owns_set;
291 	u8 reserved;
292 	u32 range_cnt;
293 	struct vmtransfer_page_range ranges[1];
294 } __packed;
295 
296 struct vmgpadl_packet_header {
297 	struct vmpacket_descriptor d;
298 	u32 gpadl;
299 	u32 reserved;
300 } __packed;
301 
302 struct vmadd_remove_transfer_page_set {
303 	struct vmpacket_descriptor d;
304 	u32 gpadl;
305 	u16 xfer_pageset_id;
306 	u16 reserved;
307 } __packed;
308 
309 /*
310  * This structure defines a range in guest physical space that can be made to
311  * look virtually contiguous.
312  */
313 struct gpa_range {
314 	u32 byte_count;
315 	u32 byte_offset;
316 	u64 pfn_array[0];
317 };
318 
319 /*
320  * This is the format for an Establish Gpadl packet, which contains a handle by
321  * which this GPADL will be known and a set of GPA ranges associated with it.
322  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
323  * ranges, then the resulting MDL will be "chained," representing multiple VA
324  * ranges.
325  */
326 struct vmestablish_gpadl {
327 	struct vmpacket_descriptor d;
328 	u32 gpadl;
329 	u32 range_cnt;
330 	struct gpa_range range[1];
331 } __packed;
332 
333 /*
334  * This is the format for a Teardown Gpadl packet, which indicates that the
335  * GPADL handle in the Establish Gpadl packet will never be referenced again.
336  */
337 struct vmteardown_gpadl {
338 	struct vmpacket_descriptor d;
339 	u32 gpadl;
340 	u32 reserved;	/* for alignment to a 8-byte boundary */
341 } __packed;
342 
343 /*
344  * This is the format for a GPA-Direct packet, which contains a set of GPA
345  * ranges, in addition to commands and/or data.
346  */
347 struct vmdata_gpa_direct {
348 	struct vmpacket_descriptor d;
349 	u32 reserved;
350 	u32 range_cnt;
351 	struct gpa_range range[1];
352 } __packed;
353 
354 /* This is the format for a Additional Data Packet. */
355 struct vmadditional_data {
356 	struct vmpacket_descriptor d;
357 	u64 total_bytes;
358 	u32 offset;
359 	u32 byte_cnt;
360 	unsigned char data[1];
361 } __packed;
362 
363 union vmpacket_largest_possible_header {
364 	struct vmpacket_descriptor simple_hdr;
365 	struct vmtransfer_page_packet_header xfer_page_hdr;
366 	struct vmgpadl_packet_header gpadl_hdr;
367 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
368 	struct vmestablish_gpadl establish_gpadl_hdr;
369 	struct vmteardown_gpadl teardown_gpadl_hdr;
370 	struct vmdata_gpa_direct data_gpa_direct_hdr;
371 };
372 
373 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
374 	(void *)(((unsigned char *)__packet) +	\
375 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
376 
377 #define VMPACKET_DATA_LENGTH(__packet)		\
378 	((((struct vmpacket_descriptor)__packet)->len8 -	\
379 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
380 
381 #define VMPACKET_TRANSFER_MODE(__packet)	\
382 	(((struct IMPACT)__packet)->type)
383 
384 enum vmbus_packet_type {
385 	VM_PKT_INVALID				= 0x0,
386 	VM_PKT_SYNCH				= 0x1,
387 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
388 	VM_PKT_RM_XFER_PAGESET			= 0x3,
389 	VM_PKT_ESTABLISH_GPADL			= 0x4,
390 	VM_PKT_TEARDOWN_GPADL			= 0x5,
391 	VM_PKT_DATA_INBAND			= 0x6,
392 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
393 	VM_PKT_DATA_USING_GPADL			= 0x8,
394 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
395 	VM_PKT_CANCEL_REQUEST			= 0xa,
396 	VM_PKT_COMP				= 0xb,
397 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
398 	VM_PKT_ADDITIONAL_DATA			= 0xd
399 };
400 
401 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
402 
403 
404 /* Version 1 messages */
405 enum vmbus_channel_message_type {
406 	CHANNELMSG_INVALID			=  0,
407 	CHANNELMSG_OFFERCHANNEL		=  1,
408 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
409 	CHANNELMSG_REQUESTOFFERS		=  3,
410 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
411 	CHANNELMSG_OPENCHANNEL		=  5,
412 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
413 	CHANNELMSG_CLOSECHANNEL		=  7,
414 	CHANNELMSG_GPADL_HEADER		=  8,
415 	CHANNELMSG_GPADL_BODY			=  9,
416 	CHANNELMSG_GPADL_CREATED		= 10,
417 	CHANNELMSG_GPADL_TEARDOWN		= 11,
418 	CHANNELMSG_GPADL_TORNDOWN		= 12,
419 	CHANNELMSG_RELID_RELEASED		= 13,
420 	CHANNELMSG_INITIATE_CONTACT		= 14,
421 	CHANNELMSG_VERSION_RESPONSE		= 15,
422 	CHANNELMSG_UNLOAD			= 16,
423 	CHANNELMSG_UNLOAD_RESPONSE		= 17,
424 	CHANNELMSG_18				= 18,
425 	CHANNELMSG_19				= 19,
426 	CHANNELMSG_20				= 20,
427 	CHANNELMSG_TL_CONNECT_REQUEST		= 21,
428 	CHANNELMSG_COUNT
429 };
430 
431 struct vmbus_channel_message_header {
432 	enum vmbus_channel_message_type msgtype;
433 	u32 padding;
434 } __packed;
435 
436 /* Query VMBus Version parameters */
437 struct vmbus_channel_query_vmbus_version {
438 	struct vmbus_channel_message_header header;
439 	u32 version;
440 } __packed;
441 
442 /* VMBus Version Supported parameters */
443 struct vmbus_channel_version_supported {
444 	struct vmbus_channel_message_header header;
445 	u8 version_supported;
446 } __packed;
447 
448 /* Offer Channel parameters */
449 struct vmbus_channel_offer_channel {
450 	struct vmbus_channel_message_header header;
451 	struct vmbus_channel_offer offer;
452 	u32 child_relid;
453 	u8 monitorid;
454 	/*
455 	 * win7 and beyond splits this field into a bit field.
456 	 */
457 	u8 monitor_allocated:1;
458 	u8 reserved:7;
459 	/*
460 	 * These are new fields added in win7 and later.
461 	 * Do not access these fields without checking the
462 	 * negotiated protocol.
463 	 *
464 	 * If "is_dedicated_interrupt" is set, we must not set the
465 	 * associated bit in the channel bitmap while sending the
466 	 * interrupt to the host.
467 	 *
468 	 * connection_id is to be used in signaling the host.
469 	 */
470 	u16 is_dedicated_interrupt:1;
471 	u16 reserved1:15;
472 	u32 connection_id;
473 } __packed;
474 
475 /* Rescind Offer parameters */
476 struct vmbus_channel_rescind_offer {
477 	struct vmbus_channel_message_header header;
478 	u32 child_relid;
479 } __packed;
480 
481 /*
482  * Request Offer -- no parameters, SynIC message contains the partition ID
483  * Set Snoop -- no parameters, SynIC message contains the partition ID
484  * Clear Snoop -- no parameters, SynIC message contains the partition ID
485  * All Offers Delivered -- no parameters, SynIC message contains the partition
486  *		           ID
487  * Flush Client -- no parameters, SynIC message contains the partition ID
488  */
489 
490 /* Open Channel parameters */
491 struct vmbus_channel_open_channel {
492 	struct vmbus_channel_message_header header;
493 
494 	/* Identifies the specific VMBus channel that is being opened. */
495 	u32 child_relid;
496 
497 	/* ID making a particular open request at a channel offer unique. */
498 	u32 openid;
499 
500 	/* GPADL for the channel's ring buffer. */
501 	u32 ringbuffer_gpadlhandle;
502 
503 	/*
504 	 * Starting with win8, this field will be used to specify
505 	 * the target virtual processor on which to deliver the interrupt for
506 	 * the host to guest communication.
507 	 * Prior to win8, incoming channel interrupts would only
508 	 * be delivered on cpu 0. Setting this value to 0 would
509 	 * preserve the earlier behavior.
510 	 */
511 	u32 target_vp;
512 
513 	/*
514 	* The upstream ring buffer begins at offset zero in the memory
515 	* described by RingBufferGpadlHandle. The downstream ring buffer
516 	* follows it at this offset (in pages).
517 	*/
518 	u32 downstream_ringbuffer_pageoffset;
519 
520 	/* User-specific data to be passed along to the server endpoint. */
521 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
522 } __packed;
523 
524 /* Open Channel Result parameters */
525 struct vmbus_channel_open_result {
526 	struct vmbus_channel_message_header header;
527 	u32 child_relid;
528 	u32 openid;
529 	u32 status;
530 } __packed;
531 
532 /* Close channel parameters; */
533 struct vmbus_channel_close_channel {
534 	struct vmbus_channel_message_header header;
535 	u32 child_relid;
536 } __packed;
537 
538 /* Channel Message GPADL */
539 #define GPADL_TYPE_RING_BUFFER		1
540 #define GPADL_TYPE_SERVER_SAVE_AREA	2
541 #define GPADL_TYPE_TRANSACTION		8
542 
543 /*
544  * The number of PFNs in a GPADL message is defined by the number of
545  * pages that would be spanned by ByteCount and ByteOffset.  If the
546  * implied number of PFNs won't fit in this packet, there will be a
547  * follow-up packet that contains more.
548  */
549 struct vmbus_channel_gpadl_header {
550 	struct vmbus_channel_message_header header;
551 	u32 child_relid;
552 	u32 gpadl;
553 	u16 range_buflen;
554 	u16 rangecount;
555 	struct gpa_range range[0];
556 } __packed;
557 
558 /* This is the followup packet that contains more PFNs. */
559 struct vmbus_channel_gpadl_body {
560 	struct vmbus_channel_message_header header;
561 	u32 msgnumber;
562 	u32 gpadl;
563 	u64 pfn[0];
564 } __packed;
565 
566 struct vmbus_channel_gpadl_created {
567 	struct vmbus_channel_message_header header;
568 	u32 child_relid;
569 	u32 gpadl;
570 	u32 creation_status;
571 } __packed;
572 
573 struct vmbus_channel_gpadl_teardown {
574 	struct vmbus_channel_message_header header;
575 	u32 child_relid;
576 	u32 gpadl;
577 } __packed;
578 
579 struct vmbus_channel_gpadl_torndown {
580 	struct vmbus_channel_message_header header;
581 	u32 gpadl;
582 } __packed;
583 
584 struct vmbus_channel_relid_released {
585 	struct vmbus_channel_message_header header;
586 	u32 child_relid;
587 } __packed;
588 
589 struct vmbus_channel_initiate_contact {
590 	struct vmbus_channel_message_header header;
591 	u32 vmbus_version_requested;
592 	u32 target_vcpu; /* The VCPU the host should respond to */
593 	u64 interrupt_page;
594 	u64 monitor_page1;
595 	u64 monitor_page2;
596 } __packed;
597 
598 /* Hyper-V socket: guest's connect()-ing to host */
599 struct vmbus_channel_tl_connect_request {
600 	struct vmbus_channel_message_header header;
601 	uuid_le guest_endpoint_id;
602 	uuid_le host_service_id;
603 } __packed;
604 
605 struct vmbus_channel_version_response {
606 	struct vmbus_channel_message_header header;
607 	u8 version_supported;
608 } __packed;
609 
610 enum vmbus_channel_state {
611 	CHANNEL_OFFER_STATE,
612 	CHANNEL_OPENING_STATE,
613 	CHANNEL_OPEN_STATE,
614 	CHANNEL_OPENED_STATE,
615 };
616 
617 /*
618  * Represents each channel msg on the vmbus connection This is a
619  * variable-size data structure depending on the msg type itself
620  */
621 struct vmbus_channel_msginfo {
622 	/* Bookkeeping stuff */
623 	struct list_head msglistentry;
624 
625 	/* So far, this is only used to handle gpadl body message */
626 	struct list_head submsglist;
627 
628 	/* Synchronize the request/response if needed */
629 	struct completion  waitevent;
630 	union {
631 		struct vmbus_channel_version_supported version_supported;
632 		struct vmbus_channel_open_result open_result;
633 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
634 		struct vmbus_channel_gpadl_created gpadl_created;
635 		struct vmbus_channel_version_response version_response;
636 	} response;
637 
638 	u32 msgsize;
639 	/*
640 	 * The channel message that goes out on the "wire".
641 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
642 	 */
643 	unsigned char msg[0];
644 };
645 
646 struct vmbus_close_msg {
647 	struct vmbus_channel_msginfo info;
648 	struct vmbus_channel_close_channel msg;
649 };
650 
651 /* Define connection identifier type. */
652 union hv_connection_id {
653 	u32 asu32;
654 	struct {
655 		u32 id:24;
656 		u32 reserved:8;
657 	} u;
658 };
659 
660 /* Definition of the hv_signal_event hypercall input structure. */
661 struct hv_input_signal_event {
662 	union hv_connection_id connectionid;
663 	u16 flag_number;
664 	u16 rsvdz;
665 };
666 
667 struct hv_input_signal_event_buffer {
668 	u64 align8;
669 	struct hv_input_signal_event event;
670 };
671 
672 enum hv_signal_policy {
673 	HV_SIGNAL_POLICY_DEFAULT = 0,
674 	HV_SIGNAL_POLICY_EXPLICIT,
675 };
676 
677 enum vmbus_device_type {
678 	HV_IDE = 0,
679 	HV_SCSI,
680 	HV_FC,
681 	HV_NIC,
682 	HV_ND,
683 	HV_PCIE,
684 	HV_FB,
685 	HV_KBD,
686 	HV_MOUSE,
687 	HV_KVP,
688 	HV_TS,
689 	HV_HB,
690 	HV_SHUTDOWN,
691 	HV_FCOPY,
692 	HV_BACKUP,
693 	HV_DM,
694 	HV_UNKOWN,
695 };
696 
697 struct vmbus_device {
698 	u16  dev_type;
699 	uuid_le guid;
700 	bool perf_device;
701 };
702 
703 struct vmbus_channel {
704 	/* Unique channel id */
705 	int id;
706 
707 	struct list_head listentry;
708 
709 	struct hv_device *device_obj;
710 
711 	enum vmbus_channel_state state;
712 
713 	struct vmbus_channel_offer_channel offermsg;
714 	/*
715 	 * These are based on the OfferMsg.MonitorId.
716 	 * Save it here for easy access.
717 	 */
718 	u8 monitor_grp;
719 	u8 monitor_bit;
720 
721 	bool rescind; /* got rescind msg */
722 
723 	u32 ringbuffer_gpadlhandle;
724 
725 	/* Allocated memory for ring buffer */
726 	void *ringbuffer_pages;
727 	u32 ringbuffer_pagecount;
728 	struct hv_ring_buffer_info outbound;	/* send to parent */
729 	struct hv_ring_buffer_info inbound;	/* receive from parent */
730 	spinlock_t inbound_lock;
731 
732 	struct vmbus_close_msg close_msg;
733 
734 	/* Channel callback are invoked in this workqueue context */
735 	/* HANDLE dataWorkQueue; */
736 
737 	void (*onchannel_callback)(void *context);
738 	void *channel_callback_context;
739 
740 	/*
741 	 * A channel can be marked for efficient (batched)
742 	 * reading:
743 	 * If batched_reading is set to "true", we read until the
744 	 * channel is empty and hold off interrupts from the host
745 	 * during the entire read process.
746 	 * If batched_reading is set to "false", the client is not
747 	 * going to perform batched reading.
748 	 *
749 	 * By default we will enable batched reading; specific
750 	 * drivers that don't want this behavior can turn it off.
751 	 */
752 
753 	bool batched_reading;
754 
755 	bool is_dedicated_interrupt;
756 	struct hv_input_signal_event_buffer sig_buf;
757 	struct hv_input_signal_event *sig_event;
758 
759 	/*
760 	 * Starting with win8, this field will be used to specify
761 	 * the target virtual processor on which to deliver the interrupt for
762 	 * the host to guest communication.
763 	 * Prior to win8, incoming channel interrupts would only
764 	 * be delivered on cpu 0. Setting this value to 0 would
765 	 * preserve the earlier behavior.
766 	 */
767 	u32 target_vp;
768 	/* The corresponding CPUID in the guest */
769 	u32 target_cpu;
770 	/*
771 	 * State to manage the CPU affiliation of channels.
772 	 */
773 	struct cpumask alloced_cpus_in_node;
774 	int numa_node;
775 	/*
776 	 * Support for sub-channels. For high performance devices,
777 	 * it will be useful to have multiple sub-channels to support
778 	 * a scalable communication infrastructure with the host.
779 	 * The support for sub-channels is implemented as an extention
780 	 * to the current infrastructure.
781 	 * The initial offer is considered the primary channel and this
782 	 * offer message will indicate if the host supports sub-channels.
783 	 * The guest is free to ask for sub-channels to be offerred and can
784 	 * open these sub-channels as a normal "primary" channel. However,
785 	 * all sub-channels will have the same type and instance guids as the
786 	 * primary channel. Requests sent on a given channel will result in a
787 	 * response on the same channel.
788 	 */
789 
790 	/*
791 	 * Sub-channel creation callback. This callback will be called in
792 	 * process context when a sub-channel offer is received from the host.
793 	 * The guest can open the sub-channel in the context of this callback.
794 	 */
795 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
796 
797 	/*
798 	 * Channel rescind callback. Some channels (the hvsock ones), need to
799 	 * register a callback which is invoked in vmbus_onoffer_rescind().
800 	 */
801 	void (*chn_rescind_callback)(struct vmbus_channel *channel);
802 
803 	/*
804 	 * The spinlock to protect the structure. It is being used to protect
805 	 * test-and-set access to various attributes of the structure as well
806 	 * as all sc_list operations.
807 	 */
808 	spinlock_t lock;
809 	/*
810 	 * All Sub-channels of a primary channel are linked here.
811 	 */
812 	struct list_head sc_list;
813 	/*
814 	 * Current number of sub-channels.
815 	 */
816 	int num_sc;
817 	/*
818 	 * Number of a sub-channel (position within sc_list) which is supposed
819 	 * to be used as the next outgoing channel.
820 	 */
821 	int next_oc;
822 	/*
823 	 * The primary channel this sub-channel belongs to.
824 	 * This will be NULL for the primary channel.
825 	 */
826 	struct vmbus_channel *primary_channel;
827 	/*
828 	 * Support per-channel state for use by vmbus drivers.
829 	 */
830 	void *per_channel_state;
831 	/*
832 	 * To support per-cpu lookup mapping of relid to channel,
833 	 * link up channels based on their CPU affinity.
834 	 */
835 	struct list_head percpu_list;
836 	/*
837 	 * Host signaling policy: The default policy will be
838 	 * based on the ring buffer state. We will also support
839 	 * a policy where the client driver can have explicit
840 	 * signaling control.
841 	 */
842 	enum hv_signal_policy  signal_policy;
843 	/*
844 	 * On the channel send side, many of the VMBUS
845 	 * device drivers explicity serialize access to the
846 	 * outgoing ring buffer. Give more control to the
847 	 * VMBUS device drivers in terms how to serialize
848 	 * accesss to the outgoing ring buffer.
849 	 * The default behavior will be to aquire the
850 	 * ring lock to preserve the current behavior.
851 	 */
852 	bool acquire_ring_lock;
853 
854 };
855 
856 static inline void set_channel_lock_state(struct vmbus_channel *c, bool state)
857 {
858 	c->acquire_ring_lock = state;
859 }
860 
861 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
862 {
863 	return !!(c->offermsg.offer.chn_flags &
864 		  VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
865 }
866 
867 static inline void set_channel_signal_state(struct vmbus_channel *c,
868 					    enum hv_signal_policy policy)
869 {
870 	c->signal_policy = policy;
871 }
872 
873 static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
874 {
875 	c->batched_reading = state;
876 }
877 
878 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
879 {
880 	c->per_channel_state = s;
881 }
882 
883 static inline void *get_per_channel_state(struct vmbus_channel *c)
884 {
885 	return c->per_channel_state;
886 }
887 
888 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
889 						 u32 size)
890 {
891 	c->outbound.ring_buffer->pending_send_sz = size;
892 }
893 
894 void vmbus_onmessage(void *context);
895 
896 int vmbus_request_offers(void);
897 
898 /*
899  * APIs for managing sub-channels.
900  */
901 
902 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
903 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
904 
905 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
906 		void (*chn_rescind_cb)(struct vmbus_channel *));
907 
908 /*
909  * Retrieve the (sub) channel on which to send an outgoing request.
910  * When a primary channel has multiple sub-channels, we choose a
911  * channel whose VCPU binding is closest to the VCPU on which
912  * this call is being made.
913  */
914 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
915 
916 /*
917  * Check if sub-channels have already been offerred. This API will be useful
918  * when the driver is unloaded after establishing sub-channels. In this case,
919  * when the driver is re-loaded, the driver would have to check if the
920  * subchannels have already been established before attempting to request
921  * the creation of sub-channels.
922  * This function returns TRUE to indicate that subchannels have already been
923  * created.
924  * This function should be invoked after setting the callback function for
925  * sub-channel creation.
926  */
927 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
928 
929 /* The format must be the same as struct vmdata_gpa_direct */
930 struct vmbus_channel_packet_page_buffer {
931 	u16 type;
932 	u16 dataoffset8;
933 	u16 length8;
934 	u16 flags;
935 	u64 transactionid;
936 	u32 reserved;
937 	u32 rangecount;
938 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
939 } __packed;
940 
941 /* The format must be the same as struct vmdata_gpa_direct */
942 struct vmbus_channel_packet_multipage_buffer {
943 	u16 type;
944 	u16 dataoffset8;
945 	u16 length8;
946 	u16 flags;
947 	u64 transactionid;
948 	u32 reserved;
949 	u32 rangecount;		/* Always 1 in this case */
950 	struct hv_multipage_buffer range;
951 } __packed;
952 
953 /* The format must be the same as struct vmdata_gpa_direct */
954 struct vmbus_packet_mpb_array {
955 	u16 type;
956 	u16 dataoffset8;
957 	u16 length8;
958 	u16 flags;
959 	u64 transactionid;
960 	u32 reserved;
961 	u32 rangecount;         /* Always 1 in this case */
962 	struct hv_mpb_array range;
963 } __packed;
964 
965 
966 extern int vmbus_open(struct vmbus_channel *channel,
967 			    u32 send_ringbuffersize,
968 			    u32 recv_ringbuffersize,
969 			    void *userdata,
970 			    u32 userdatalen,
971 			    void(*onchannel_callback)(void *context),
972 			    void *context);
973 
974 extern void vmbus_close(struct vmbus_channel *channel);
975 
976 extern int vmbus_sendpacket(struct vmbus_channel *channel,
977 				  void *buffer,
978 				  u32 bufferLen,
979 				  u64 requestid,
980 				  enum vmbus_packet_type type,
981 				  u32 flags);
982 
983 extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel,
984 				  void *buffer,
985 				  u32 bufferLen,
986 				  u64 requestid,
987 				  enum vmbus_packet_type type,
988 				  u32 flags,
989 				  bool kick_q);
990 
991 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
992 					    struct hv_page_buffer pagebuffers[],
993 					    u32 pagecount,
994 					    void *buffer,
995 					    u32 bufferlen,
996 					    u64 requestid);
997 
998 extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel,
999 					   struct hv_page_buffer pagebuffers[],
1000 					   u32 pagecount,
1001 					   void *buffer,
1002 					   u32 bufferlen,
1003 					   u64 requestid,
1004 					   u32 flags,
1005 					   bool kick_q);
1006 
1007 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1008 					struct hv_multipage_buffer *mpb,
1009 					void *buffer,
1010 					u32 bufferlen,
1011 					u64 requestid);
1012 
1013 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1014 				     struct vmbus_packet_mpb_array *mpb,
1015 				     u32 desc_size,
1016 				     void *buffer,
1017 				     u32 bufferlen,
1018 				     u64 requestid);
1019 
1020 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1021 				      void *kbuffer,
1022 				      u32 size,
1023 				      u32 *gpadl_handle);
1024 
1025 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1026 				     u32 gpadl_handle);
1027 
1028 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1029 				  void *buffer,
1030 				  u32 bufferlen,
1031 				  u32 *buffer_actual_len,
1032 				  u64 *requestid);
1033 
1034 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1035 				     void *buffer,
1036 				     u32 bufferlen,
1037 				     u32 *buffer_actual_len,
1038 				     u64 *requestid);
1039 
1040 
1041 extern void vmbus_ontimer(unsigned long data);
1042 
1043 /* Base driver object */
1044 struct hv_driver {
1045 	const char *name;
1046 
1047 	/*
1048 	 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1049 	 * channel flag, actually doesn't mean a synthetic device because the
1050 	 * offer's if_type/if_instance can change for every new hvsock
1051 	 * connection.
1052 	 *
1053 	 * However, to facilitate the notification of new-offer/rescind-offer
1054 	 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1055 	 * a special vmbus device, and hence we need the below flag to
1056 	 * indicate if the driver is the hvsock driver or not: we need to
1057 	 * specially treat the hvosck offer & driver in vmbus_match().
1058 	 */
1059 	bool hvsock;
1060 
1061 	/* the device type supported by this driver */
1062 	uuid_le dev_type;
1063 	const struct hv_vmbus_device_id *id_table;
1064 
1065 	struct device_driver driver;
1066 
1067 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1068 	int (*remove)(struct hv_device *);
1069 	void (*shutdown)(struct hv_device *);
1070 
1071 };
1072 
1073 /* Base device object */
1074 struct hv_device {
1075 	/* the device type id of this device */
1076 	uuid_le dev_type;
1077 
1078 	/* the device instance id of this device */
1079 	uuid_le dev_instance;
1080 	u16 vendor_id;
1081 	u16 device_id;
1082 
1083 	struct device device;
1084 
1085 	struct vmbus_channel *channel;
1086 };
1087 
1088 
1089 static inline struct hv_device *device_to_hv_device(struct device *d)
1090 {
1091 	return container_of(d, struct hv_device, device);
1092 }
1093 
1094 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1095 {
1096 	return container_of(d, struct hv_driver, driver);
1097 }
1098 
1099 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1100 {
1101 	dev_set_drvdata(&dev->device, data);
1102 }
1103 
1104 static inline void *hv_get_drvdata(struct hv_device *dev)
1105 {
1106 	return dev_get_drvdata(&dev->device);
1107 }
1108 
1109 /* Vmbus interface */
1110 #define vmbus_driver_register(driver)	\
1111 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1112 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1113 					 struct module *owner,
1114 					 const char *mod_name);
1115 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1116 
1117 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1118 
1119 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1120 			resource_size_t min, resource_size_t max,
1121 			resource_size_t size, resource_size_t align,
1122 			bool fb_overlap_ok);
1123 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1124 int vmbus_cpu_number_to_vp_number(int cpu_number);
1125 u64 hv_do_hypercall(u64 control, void *input, void *output);
1126 
1127 /*
1128  * GUID definitions of various offer types - services offered to the guest.
1129  */
1130 
1131 /*
1132  * Network GUID
1133  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1134  */
1135 #define HV_NIC_GUID \
1136 	.guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1137 			0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1138 
1139 /*
1140  * IDE GUID
1141  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1142  */
1143 #define HV_IDE_GUID \
1144 	.guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1145 			0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1146 
1147 /*
1148  * SCSI GUID
1149  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1150  */
1151 #define HV_SCSI_GUID \
1152 	.guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1153 			0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1154 
1155 /*
1156  * Shutdown GUID
1157  * {0e0b6031-5213-4934-818b-38d90ced39db}
1158  */
1159 #define HV_SHUTDOWN_GUID \
1160 	.guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1161 			0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1162 
1163 /*
1164  * Time Synch GUID
1165  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1166  */
1167 #define HV_TS_GUID \
1168 	.guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1169 			0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1170 
1171 /*
1172  * Heartbeat GUID
1173  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1174  */
1175 #define HV_HEART_BEAT_GUID \
1176 	.guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1177 			0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1178 
1179 /*
1180  * KVP GUID
1181  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1182  */
1183 #define HV_KVP_GUID \
1184 	.guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1185 			0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1186 
1187 /*
1188  * Dynamic memory GUID
1189  * {525074dc-8985-46e2-8057-a307dc18a502}
1190  */
1191 #define HV_DM_GUID \
1192 	.guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1193 			0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1194 
1195 /*
1196  * Mouse GUID
1197  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1198  */
1199 #define HV_MOUSE_GUID \
1200 	.guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1201 			0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1202 
1203 /*
1204  * Keyboard GUID
1205  * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1206  */
1207 #define HV_KBD_GUID \
1208 	.guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1209 			0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1210 
1211 /*
1212  * VSS (Backup/Restore) GUID
1213  */
1214 #define HV_VSS_GUID \
1215 	.guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1216 			0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1217 /*
1218  * Synthetic Video GUID
1219  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1220  */
1221 #define HV_SYNTHVID_GUID \
1222 	.guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1223 			0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1224 
1225 /*
1226  * Synthetic FC GUID
1227  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1228  */
1229 #define HV_SYNTHFC_GUID \
1230 	.guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1231 			0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1232 
1233 /*
1234  * Guest File Copy Service
1235  * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1236  */
1237 
1238 #define HV_FCOPY_GUID \
1239 	.guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1240 			0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1241 
1242 /*
1243  * NetworkDirect. This is the guest RDMA service.
1244  * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1245  */
1246 #define HV_ND_GUID \
1247 	.guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1248 			0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1249 
1250 /*
1251  * PCI Express Pass Through
1252  * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1253  */
1254 
1255 #define HV_PCIE_GUID \
1256 	.guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1257 			0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1258 
1259 /*
1260  * Common header for Hyper-V ICs
1261  */
1262 
1263 #define ICMSGTYPE_NEGOTIATE		0
1264 #define ICMSGTYPE_HEARTBEAT		1
1265 #define ICMSGTYPE_KVPEXCHANGE		2
1266 #define ICMSGTYPE_SHUTDOWN		3
1267 #define ICMSGTYPE_TIMESYNC		4
1268 #define ICMSGTYPE_VSS			5
1269 
1270 #define ICMSGHDRFLAG_TRANSACTION	1
1271 #define ICMSGHDRFLAG_REQUEST		2
1272 #define ICMSGHDRFLAG_RESPONSE		4
1273 
1274 
1275 /*
1276  * While we want to handle util services as regular devices,
1277  * there is only one instance of each of these services; so
1278  * we statically allocate the service specific state.
1279  */
1280 
1281 struct hv_util_service {
1282 	u8 *recv_buffer;
1283 	void *channel;
1284 	void (*util_cb)(void *);
1285 	int (*util_init)(struct hv_util_service *);
1286 	void (*util_deinit)(void);
1287 };
1288 
1289 struct vmbuspipe_hdr {
1290 	u32 flags;
1291 	u32 msgsize;
1292 } __packed;
1293 
1294 struct ic_version {
1295 	u16 major;
1296 	u16 minor;
1297 } __packed;
1298 
1299 struct icmsg_hdr {
1300 	struct ic_version icverframe;
1301 	u16 icmsgtype;
1302 	struct ic_version icvermsg;
1303 	u16 icmsgsize;
1304 	u32 status;
1305 	u8 ictransaction_id;
1306 	u8 icflags;
1307 	u8 reserved[2];
1308 } __packed;
1309 
1310 struct icmsg_negotiate {
1311 	u16 icframe_vercnt;
1312 	u16 icmsg_vercnt;
1313 	u32 reserved;
1314 	struct ic_version icversion_data[1]; /* any size array */
1315 } __packed;
1316 
1317 struct shutdown_msg_data {
1318 	u32 reason_code;
1319 	u32 timeout_seconds;
1320 	u32 flags;
1321 	u8  display_message[2048];
1322 } __packed;
1323 
1324 struct heartbeat_msg_data {
1325 	u64 seq_num;
1326 	u32 reserved[8];
1327 } __packed;
1328 
1329 /* Time Sync IC defs */
1330 #define ICTIMESYNCFLAG_PROBE	0
1331 #define ICTIMESYNCFLAG_SYNC	1
1332 #define ICTIMESYNCFLAG_SAMPLE	2
1333 
1334 #ifdef __x86_64__
1335 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1336 #else
1337 #define WLTIMEDELTA	116444736000000000LL
1338 #endif
1339 
1340 struct ictimesync_data {
1341 	u64 parenttime;
1342 	u64 childtime;
1343 	u64 roundtriptime;
1344 	u8 flags;
1345 } __packed;
1346 
1347 struct hyperv_service_callback {
1348 	u8 msg_type;
1349 	char *log_msg;
1350 	uuid_le data;
1351 	struct vmbus_channel *channel;
1352 	void (*callback) (void *context);
1353 };
1354 
1355 #define MAX_SRV_VER	0x7ffffff
1356 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1357 					struct icmsg_negotiate *, u8 *, int,
1358 					int);
1359 
1360 void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid);
1361 
1362 /*
1363  * Negotiated version with the Host.
1364  */
1365 
1366 extern __u32 vmbus_proto_version;
1367 
1368 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1369 				  const uuid_le *shv_host_servie_id);
1370 void vmbus_set_event(struct vmbus_channel *channel);
1371 
1372 /* Get the start of the ring buffer. */
1373 static inline void *
1374 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
1375 {
1376 	return (void *)ring_info->ring_buffer->buffer;
1377 }
1378 
1379 /*
1380  * To optimize the flow management on the send-side,
1381  * when the sender is blocked because of lack of
1382  * sufficient space in the ring buffer, potential the
1383  * consumer of the ring buffer can signal the producer.
1384  * This is controlled by the following parameters:
1385  *
1386  * 1. pending_send_sz: This is the size in bytes that the
1387  *    producer is trying to send.
1388  * 2. The feature bit feat_pending_send_sz set to indicate if
1389  *    the consumer of the ring will signal when the ring
1390  *    state transitions from being full to a state where
1391  *    there is room for the producer to send the pending packet.
1392  */
1393 
1394 static inline  bool hv_need_to_signal_on_read(struct hv_ring_buffer_info *rbi)
1395 {
1396 	u32 cur_write_sz;
1397 	u32 pending_sz;
1398 
1399 	/*
1400 	 * Issue a full memory barrier before making the signaling decision.
1401 	 * Here is the reason for having this barrier:
1402 	 * If the reading of the pend_sz (in this function)
1403 	 * were to be reordered and read before we commit the new read
1404 	 * index (in the calling function)  we could
1405 	 * have a problem. If the host were to set the pending_sz after we
1406 	 * have sampled pending_sz and go to sleep before we commit the
1407 	 * read index, we could miss sending the interrupt. Issue a full
1408 	 * memory barrier to address this.
1409 	 */
1410 	virt_mb();
1411 
1412 	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
1413 	/* If the other end is not blocked on write don't bother. */
1414 	if (pending_sz == 0)
1415 		return false;
1416 
1417 	cur_write_sz = hv_get_bytes_to_write(rbi);
1418 
1419 	if (cur_write_sz >= pending_sz)
1420 		return true;
1421 
1422 	return false;
1423 }
1424 
1425 /*
1426  * An API to support in-place processing of incoming VMBUS packets.
1427  */
1428 #define VMBUS_PKT_TRAILER	8
1429 
1430 static inline struct vmpacket_descriptor *
1431 get_next_pkt_raw(struct vmbus_channel *channel)
1432 {
1433 	struct hv_ring_buffer_info *ring_info = &channel->inbound;
1434 	u32 read_loc = ring_info->priv_read_index;
1435 	void *ring_buffer = hv_get_ring_buffer(ring_info);
1436 	struct vmpacket_descriptor *cur_desc;
1437 	u32 packetlen;
1438 	u32 dsize = ring_info->ring_datasize;
1439 	u32 delta = read_loc - ring_info->ring_buffer->read_index;
1440 	u32 bytes_avail_toread = (hv_get_bytes_to_read(ring_info) - delta);
1441 
1442 	if (bytes_avail_toread < sizeof(struct vmpacket_descriptor))
1443 		return NULL;
1444 
1445 	if ((read_loc + sizeof(*cur_desc)) > dsize)
1446 		return NULL;
1447 
1448 	cur_desc = ring_buffer + read_loc;
1449 	packetlen = cur_desc->len8 << 3;
1450 
1451 	/*
1452 	 * If the packet under consideration is wrapping around,
1453 	 * return failure.
1454 	 */
1455 	if ((read_loc + packetlen + VMBUS_PKT_TRAILER) > (dsize - 1))
1456 		return NULL;
1457 
1458 	return cur_desc;
1459 }
1460 
1461 /*
1462  * A helper function to step through packets "in-place"
1463  * This API is to be called after each successful call
1464  * get_next_pkt_raw().
1465  */
1466 static inline void put_pkt_raw(struct vmbus_channel *channel,
1467 				struct vmpacket_descriptor *desc)
1468 {
1469 	struct hv_ring_buffer_info *ring_info = &channel->inbound;
1470 	u32 read_loc = ring_info->priv_read_index;
1471 	u32 packetlen = desc->len8 << 3;
1472 	u32 dsize = ring_info->ring_datasize;
1473 
1474 	if ((read_loc + packetlen + VMBUS_PKT_TRAILER) > dsize)
1475 		BUG();
1476 	/*
1477 	 * Include the packet trailer.
1478 	 */
1479 	ring_info->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
1480 }
1481 
1482 /*
1483  * This call commits the read index and potentially signals the host.
1484  * Here is the pattern for using the "in-place" consumption APIs:
1485  *
1486  * while (get_next_pkt_raw() {
1487  *	process the packet "in-place";
1488  *	put_pkt_raw();
1489  * }
1490  * if (packets processed in place)
1491  *	commit_rd_index();
1492  */
1493 static inline void commit_rd_index(struct vmbus_channel *channel)
1494 {
1495 	struct hv_ring_buffer_info *ring_info = &channel->inbound;
1496 	/*
1497 	 * Make sure all reads are done before we update the read index since
1498 	 * the writer may start writing to the read area once the read index
1499 	 * is updated.
1500 	 */
1501 	virt_rmb();
1502 	ring_info->ring_buffer->read_index = ring_info->priv_read_index;
1503 
1504 	if (hv_need_to_signal_on_read(ring_info))
1505 		vmbus_set_event(channel);
1506 }
1507 
1508 
1509 #endif /* _HYPERV_H */
1510