1 /* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <[email protected]> 20 * Hank Janssen <[email protected]> 21 * K. Y. Srinivasan <[email protected]> 22 * 23 */ 24 25 #ifndef _HYPERV_H 26 #define _HYPERV_H 27 28 #include <uapi/linux/hyperv.h> 29 #include <uapi/asm/hyperv.h> 30 31 #include <linux/types.h> 32 #include <linux/scatterlist.h> 33 #include <linux/list.h> 34 #include <linux/timer.h> 35 #include <linux/workqueue.h> 36 #include <linux/completion.h> 37 #include <linux/device.h> 38 #include <linux/mod_devicetable.h> 39 40 41 #define MAX_PAGE_BUFFER_COUNT 32 42 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 43 44 #pragma pack(push, 1) 45 46 /* Single-page buffer */ 47 struct hv_page_buffer { 48 u32 len; 49 u32 offset; 50 u64 pfn; 51 }; 52 53 /* Multiple-page buffer */ 54 struct hv_multipage_buffer { 55 /* Length and Offset determines the # of pfns in the array */ 56 u32 len; 57 u32 offset; 58 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 59 }; 60 61 /* 62 * Multiple-page buffer array; the pfn array is variable size: 63 * The number of entries in the PFN array is determined by 64 * "len" and "offset". 65 */ 66 struct hv_mpb_array { 67 /* Length and Offset determines the # of pfns in the array */ 68 u32 len; 69 u32 offset; 70 u64 pfn_array[]; 71 }; 72 73 /* 0x18 includes the proprietary packet header */ 74 #define MAX_PAGE_BUFFER_PACKET (0x18 + \ 75 (sizeof(struct hv_page_buffer) * \ 76 MAX_PAGE_BUFFER_COUNT)) 77 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 78 sizeof(struct hv_multipage_buffer)) 79 80 81 #pragma pack(pop) 82 83 struct hv_ring_buffer { 84 /* Offset in bytes from the start of ring data below */ 85 u32 write_index; 86 87 /* Offset in bytes from the start of ring data below */ 88 u32 read_index; 89 90 u32 interrupt_mask; 91 92 /* 93 * Win8 uses some of the reserved bits to implement 94 * interrupt driven flow management. On the send side 95 * we can request that the receiver interrupt the sender 96 * when the ring transitions from being full to being able 97 * to handle a message of size "pending_send_sz". 98 * 99 * Add necessary state for this enhancement. 100 */ 101 u32 pending_send_sz; 102 103 u32 reserved1[12]; 104 105 union { 106 struct { 107 u32 feat_pending_send_sz:1; 108 }; 109 u32 value; 110 } feature_bits; 111 112 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 113 u8 reserved2[4028]; 114 115 /* 116 * Ring data starts here + RingDataStartOffset 117 * !!! DO NOT place any fields below this !!! 118 */ 119 u8 buffer[0]; 120 } __packed; 121 122 struct hv_ring_buffer_info { 123 struct hv_ring_buffer *ring_buffer; 124 u32 ring_size; /* Include the shared header */ 125 spinlock_t ring_lock; 126 127 u32 ring_datasize; /* < ring_size */ 128 u32 ring_data_startoffset; 129 u32 priv_write_index; 130 u32 priv_read_index; 131 }; 132 133 /* 134 * 135 * hv_get_ringbuffer_availbytes() 136 * 137 * Get number of bytes available to read and to write to 138 * for the specified ring buffer 139 */ 140 static inline void 141 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi, 142 u32 *read, u32 *write) 143 { 144 u32 read_loc, write_loc, dsize; 145 146 /* Capture the read/write indices before they changed */ 147 read_loc = rbi->ring_buffer->read_index; 148 write_loc = rbi->ring_buffer->write_index; 149 dsize = rbi->ring_datasize; 150 151 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 152 read_loc - write_loc; 153 *read = dsize - *write; 154 } 155 156 static inline u32 hv_get_bytes_to_read(struct hv_ring_buffer_info *rbi) 157 { 158 u32 read_loc, write_loc, dsize, read; 159 160 dsize = rbi->ring_datasize; 161 read_loc = rbi->ring_buffer->read_index; 162 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 163 164 read = write_loc >= read_loc ? (write_loc - read_loc) : 165 (dsize - read_loc) + write_loc; 166 167 return read; 168 } 169 170 static inline u32 hv_get_bytes_to_write(struct hv_ring_buffer_info *rbi) 171 { 172 u32 read_loc, write_loc, dsize, write; 173 174 dsize = rbi->ring_datasize; 175 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 176 write_loc = rbi->ring_buffer->write_index; 177 178 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 179 read_loc - write_loc; 180 return write; 181 } 182 183 /* 184 * VMBUS version is 32 bit entity broken up into 185 * two 16 bit quantities: major_number. minor_number. 186 * 187 * 0 . 13 (Windows Server 2008) 188 * 1 . 1 (Windows 7) 189 * 2 . 4 (Windows 8) 190 * 3 . 0 (Windows 8 R2) 191 * 4 . 0 (Windows 10) 192 */ 193 194 #define VERSION_WS2008 ((0 << 16) | (13)) 195 #define VERSION_WIN7 ((1 << 16) | (1)) 196 #define VERSION_WIN8 ((2 << 16) | (4)) 197 #define VERSION_WIN8_1 ((3 << 16) | (0)) 198 #define VERSION_WIN10 ((4 << 16) | (0)) 199 200 #define VERSION_INVAL -1 201 202 #define VERSION_CURRENT VERSION_WIN10 203 204 /* Make maximum size of pipe payload of 16K */ 205 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 206 207 /* Define PipeMode values. */ 208 #define VMBUS_PIPE_TYPE_BYTE 0x00000000 209 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 210 211 /* The size of the user defined data buffer for non-pipe offers. */ 212 #define MAX_USER_DEFINED_BYTES 120 213 214 /* The size of the user defined data buffer for pipe offers. */ 215 #define MAX_PIPE_USER_DEFINED_BYTES 116 216 217 /* 218 * At the center of the Channel Management library is the Channel Offer. This 219 * struct contains the fundamental information about an offer. 220 */ 221 struct vmbus_channel_offer { 222 uuid_le if_type; 223 uuid_le if_instance; 224 225 /* 226 * These two fields are not currently used. 227 */ 228 u64 reserved1; 229 u64 reserved2; 230 231 u16 chn_flags; 232 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 233 234 union { 235 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 236 struct { 237 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 238 } std; 239 240 /* 241 * Pipes: 242 * The following sructure is an integrated pipe protocol, which 243 * is implemented on top of standard user-defined data. Pipe 244 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 245 * use. 246 */ 247 struct { 248 u32 pipe_mode; 249 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 250 } pipe; 251 } u; 252 /* 253 * The sub_channel_index is defined in win8. 254 */ 255 u16 sub_channel_index; 256 u16 reserved3; 257 } __packed; 258 259 /* Server Flags */ 260 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 261 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 262 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 263 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 264 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 265 #define VMBUS_CHANNEL_PARENT_OFFER 0x200 266 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 267 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 268 269 struct vmpacket_descriptor { 270 u16 type; 271 u16 offset8; 272 u16 len8; 273 u16 flags; 274 u64 trans_id; 275 } __packed; 276 277 struct vmpacket_header { 278 u32 prev_pkt_start_offset; 279 struct vmpacket_descriptor descriptor; 280 } __packed; 281 282 struct vmtransfer_page_range { 283 u32 byte_count; 284 u32 byte_offset; 285 } __packed; 286 287 struct vmtransfer_page_packet_header { 288 struct vmpacket_descriptor d; 289 u16 xfer_pageset_id; 290 u8 sender_owns_set; 291 u8 reserved; 292 u32 range_cnt; 293 struct vmtransfer_page_range ranges[1]; 294 } __packed; 295 296 struct vmgpadl_packet_header { 297 struct vmpacket_descriptor d; 298 u32 gpadl; 299 u32 reserved; 300 } __packed; 301 302 struct vmadd_remove_transfer_page_set { 303 struct vmpacket_descriptor d; 304 u32 gpadl; 305 u16 xfer_pageset_id; 306 u16 reserved; 307 } __packed; 308 309 /* 310 * This structure defines a range in guest physical space that can be made to 311 * look virtually contiguous. 312 */ 313 struct gpa_range { 314 u32 byte_count; 315 u32 byte_offset; 316 u64 pfn_array[0]; 317 }; 318 319 /* 320 * This is the format for an Establish Gpadl packet, which contains a handle by 321 * which this GPADL will be known and a set of GPA ranges associated with it. 322 * This can be converted to a MDL by the guest OS. If there are multiple GPA 323 * ranges, then the resulting MDL will be "chained," representing multiple VA 324 * ranges. 325 */ 326 struct vmestablish_gpadl { 327 struct vmpacket_descriptor d; 328 u32 gpadl; 329 u32 range_cnt; 330 struct gpa_range range[1]; 331 } __packed; 332 333 /* 334 * This is the format for a Teardown Gpadl packet, which indicates that the 335 * GPADL handle in the Establish Gpadl packet will never be referenced again. 336 */ 337 struct vmteardown_gpadl { 338 struct vmpacket_descriptor d; 339 u32 gpadl; 340 u32 reserved; /* for alignment to a 8-byte boundary */ 341 } __packed; 342 343 /* 344 * This is the format for a GPA-Direct packet, which contains a set of GPA 345 * ranges, in addition to commands and/or data. 346 */ 347 struct vmdata_gpa_direct { 348 struct vmpacket_descriptor d; 349 u32 reserved; 350 u32 range_cnt; 351 struct gpa_range range[1]; 352 } __packed; 353 354 /* This is the format for a Additional Data Packet. */ 355 struct vmadditional_data { 356 struct vmpacket_descriptor d; 357 u64 total_bytes; 358 u32 offset; 359 u32 byte_cnt; 360 unsigned char data[1]; 361 } __packed; 362 363 union vmpacket_largest_possible_header { 364 struct vmpacket_descriptor simple_hdr; 365 struct vmtransfer_page_packet_header xfer_page_hdr; 366 struct vmgpadl_packet_header gpadl_hdr; 367 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 368 struct vmestablish_gpadl establish_gpadl_hdr; 369 struct vmteardown_gpadl teardown_gpadl_hdr; 370 struct vmdata_gpa_direct data_gpa_direct_hdr; 371 }; 372 373 #define VMPACKET_DATA_START_ADDRESS(__packet) \ 374 (void *)(((unsigned char *)__packet) + \ 375 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 376 377 #define VMPACKET_DATA_LENGTH(__packet) \ 378 ((((struct vmpacket_descriptor)__packet)->len8 - \ 379 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 380 381 #define VMPACKET_TRANSFER_MODE(__packet) \ 382 (((struct IMPACT)__packet)->type) 383 384 enum vmbus_packet_type { 385 VM_PKT_INVALID = 0x0, 386 VM_PKT_SYNCH = 0x1, 387 VM_PKT_ADD_XFER_PAGESET = 0x2, 388 VM_PKT_RM_XFER_PAGESET = 0x3, 389 VM_PKT_ESTABLISH_GPADL = 0x4, 390 VM_PKT_TEARDOWN_GPADL = 0x5, 391 VM_PKT_DATA_INBAND = 0x6, 392 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 393 VM_PKT_DATA_USING_GPADL = 0x8, 394 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 395 VM_PKT_CANCEL_REQUEST = 0xa, 396 VM_PKT_COMP = 0xb, 397 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 398 VM_PKT_ADDITIONAL_DATA = 0xd 399 }; 400 401 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 402 403 404 /* Version 1 messages */ 405 enum vmbus_channel_message_type { 406 CHANNELMSG_INVALID = 0, 407 CHANNELMSG_OFFERCHANNEL = 1, 408 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 409 CHANNELMSG_REQUESTOFFERS = 3, 410 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 411 CHANNELMSG_OPENCHANNEL = 5, 412 CHANNELMSG_OPENCHANNEL_RESULT = 6, 413 CHANNELMSG_CLOSECHANNEL = 7, 414 CHANNELMSG_GPADL_HEADER = 8, 415 CHANNELMSG_GPADL_BODY = 9, 416 CHANNELMSG_GPADL_CREATED = 10, 417 CHANNELMSG_GPADL_TEARDOWN = 11, 418 CHANNELMSG_GPADL_TORNDOWN = 12, 419 CHANNELMSG_RELID_RELEASED = 13, 420 CHANNELMSG_INITIATE_CONTACT = 14, 421 CHANNELMSG_VERSION_RESPONSE = 15, 422 CHANNELMSG_UNLOAD = 16, 423 CHANNELMSG_UNLOAD_RESPONSE = 17, 424 CHANNELMSG_18 = 18, 425 CHANNELMSG_19 = 19, 426 CHANNELMSG_20 = 20, 427 CHANNELMSG_TL_CONNECT_REQUEST = 21, 428 CHANNELMSG_COUNT 429 }; 430 431 struct vmbus_channel_message_header { 432 enum vmbus_channel_message_type msgtype; 433 u32 padding; 434 } __packed; 435 436 /* Query VMBus Version parameters */ 437 struct vmbus_channel_query_vmbus_version { 438 struct vmbus_channel_message_header header; 439 u32 version; 440 } __packed; 441 442 /* VMBus Version Supported parameters */ 443 struct vmbus_channel_version_supported { 444 struct vmbus_channel_message_header header; 445 u8 version_supported; 446 } __packed; 447 448 /* Offer Channel parameters */ 449 struct vmbus_channel_offer_channel { 450 struct vmbus_channel_message_header header; 451 struct vmbus_channel_offer offer; 452 u32 child_relid; 453 u8 monitorid; 454 /* 455 * win7 and beyond splits this field into a bit field. 456 */ 457 u8 monitor_allocated:1; 458 u8 reserved:7; 459 /* 460 * These are new fields added in win7 and later. 461 * Do not access these fields without checking the 462 * negotiated protocol. 463 * 464 * If "is_dedicated_interrupt" is set, we must not set the 465 * associated bit in the channel bitmap while sending the 466 * interrupt to the host. 467 * 468 * connection_id is to be used in signaling the host. 469 */ 470 u16 is_dedicated_interrupt:1; 471 u16 reserved1:15; 472 u32 connection_id; 473 } __packed; 474 475 /* Rescind Offer parameters */ 476 struct vmbus_channel_rescind_offer { 477 struct vmbus_channel_message_header header; 478 u32 child_relid; 479 } __packed; 480 481 /* 482 * Request Offer -- no parameters, SynIC message contains the partition ID 483 * Set Snoop -- no parameters, SynIC message contains the partition ID 484 * Clear Snoop -- no parameters, SynIC message contains the partition ID 485 * All Offers Delivered -- no parameters, SynIC message contains the partition 486 * ID 487 * Flush Client -- no parameters, SynIC message contains the partition ID 488 */ 489 490 /* Open Channel parameters */ 491 struct vmbus_channel_open_channel { 492 struct vmbus_channel_message_header header; 493 494 /* Identifies the specific VMBus channel that is being opened. */ 495 u32 child_relid; 496 497 /* ID making a particular open request at a channel offer unique. */ 498 u32 openid; 499 500 /* GPADL for the channel's ring buffer. */ 501 u32 ringbuffer_gpadlhandle; 502 503 /* 504 * Starting with win8, this field will be used to specify 505 * the target virtual processor on which to deliver the interrupt for 506 * the host to guest communication. 507 * Prior to win8, incoming channel interrupts would only 508 * be delivered on cpu 0. Setting this value to 0 would 509 * preserve the earlier behavior. 510 */ 511 u32 target_vp; 512 513 /* 514 * The upstream ring buffer begins at offset zero in the memory 515 * described by RingBufferGpadlHandle. The downstream ring buffer 516 * follows it at this offset (in pages). 517 */ 518 u32 downstream_ringbuffer_pageoffset; 519 520 /* User-specific data to be passed along to the server endpoint. */ 521 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 522 } __packed; 523 524 /* Open Channel Result parameters */ 525 struct vmbus_channel_open_result { 526 struct vmbus_channel_message_header header; 527 u32 child_relid; 528 u32 openid; 529 u32 status; 530 } __packed; 531 532 /* Close channel parameters; */ 533 struct vmbus_channel_close_channel { 534 struct vmbus_channel_message_header header; 535 u32 child_relid; 536 } __packed; 537 538 /* Channel Message GPADL */ 539 #define GPADL_TYPE_RING_BUFFER 1 540 #define GPADL_TYPE_SERVER_SAVE_AREA 2 541 #define GPADL_TYPE_TRANSACTION 8 542 543 /* 544 * The number of PFNs in a GPADL message is defined by the number of 545 * pages that would be spanned by ByteCount and ByteOffset. If the 546 * implied number of PFNs won't fit in this packet, there will be a 547 * follow-up packet that contains more. 548 */ 549 struct vmbus_channel_gpadl_header { 550 struct vmbus_channel_message_header header; 551 u32 child_relid; 552 u32 gpadl; 553 u16 range_buflen; 554 u16 rangecount; 555 struct gpa_range range[0]; 556 } __packed; 557 558 /* This is the followup packet that contains more PFNs. */ 559 struct vmbus_channel_gpadl_body { 560 struct vmbus_channel_message_header header; 561 u32 msgnumber; 562 u32 gpadl; 563 u64 pfn[0]; 564 } __packed; 565 566 struct vmbus_channel_gpadl_created { 567 struct vmbus_channel_message_header header; 568 u32 child_relid; 569 u32 gpadl; 570 u32 creation_status; 571 } __packed; 572 573 struct vmbus_channel_gpadl_teardown { 574 struct vmbus_channel_message_header header; 575 u32 child_relid; 576 u32 gpadl; 577 } __packed; 578 579 struct vmbus_channel_gpadl_torndown { 580 struct vmbus_channel_message_header header; 581 u32 gpadl; 582 } __packed; 583 584 struct vmbus_channel_relid_released { 585 struct vmbus_channel_message_header header; 586 u32 child_relid; 587 } __packed; 588 589 struct vmbus_channel_initiate_contact { 590 struct vmbus_channel_message_header header; 591 u32 vmbus_version_requested; 592 u32 target_vcpu; /* The VCPU the host should respond to */ 593 u64 interrupt_page; 594 u64 monitor_page1; 595 u64 monitor_page2; 596 } __packed; 597 598 /* Hyper-V socket: guest's connect()-ing to host */ 599 struct vmbus_channel_tl_connect_request { 600 struct vmbus_channel_message_header header; 601 uuid_le guest_endpoint_id; 602 uuid_le host_service_id; 603 } __packed; 604 605 struct vmbus_channel_version_response { 606 struct vmbus_channel_message_header header; 607 u8 version_supported; 608 } __packed; 609 610 enum vmbus_channel_state { 611 CHANNEL_OFFER_STATE, 612 CHANNEL_OPENING_STATE, 613 CHANNEL_OPEN_STATE, 614 CHANNEL_OPENED_STATE, 615 }; 616 617 /* 618 * Represents each channel msg on the vmbus connection This is a 619 * variable-size data structure depending on the msg type itself 620 */ 621 struct vmbus_channel_msginfo { 622 /* Bookkeeping stuff */ 623 struct list_head msglistentry; 624 625 /* So far, this is only used to handle gpadl body message */ 626 struct list_head submsglist; 627 628 /* Synchronize the request/response if needed */ 629 struct completion waitevent; 630 union { 631 struct vmbus_channel_version_supported version_supported; 632 struct vmbus_channel_open_result open_result; 633 struct vmbus_channel_gpadl_torndown gpadl_torndown; 634 struct vmbus_channel_gpadl_created gpadl_created; 635 struct vmbus_channel_version_response version_response; 636 } response; 637 638 u32 msgsize; 639 /* 640 * The channel message that goes out on the "wire". 641 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 642 */ 643 unsigned char msg[0]; 644 }; 645 646 struct vmbus_close_msg { 647 struct vmbus_channel_msginfo info; 648 struct vmbus_channel_close_channel msg; 649 }; 650 651 /* Define connection identifier type. */ 652 union hv_connection_id { 653 u32 asu32; 654 struct { 655 u32 id:24; 656 u32 reserved:8; 657 } u; 658 }; 659 660 /* Definition of the hv_signal_event hypercall input structure. */ 661 struct hv_input_signal_event { 662 union hv_connection_id connectionid; 663 u16 flag_number; 664 u16 rsvdz; 665 }; 666 667 struct hv_input_signal_event_buffer { 668 u64 align8; 669 struct hv_input_signal_event event; 670 }; 671 672 enum hv_signal_policy { 673 HV_SIGNAL_POLICY_DEFAULT = 0, 674 HV_SIGNAL_POLICY_EXPLICIT, 675 }; 676 677 enum vmbus_device_type { 678 HV_IDE = 0, 679 HV_SCSI, 680 HV_FC, 681 HV_NIC, 682 HV_ND, 683 HV_PCIE, 684 HV_FB, 685 HV_KBD, 686 HV_MOUSE, 687 HV_KVP, 688 HV_TS, 689 HV_HB, 690 HV_SHUTDOWN, 691 HV_FCOPY, 692 HV_BACKUP, 693 HV_DM, 694 HV_UNKOWN, 695 }; 696 697 struct vmbus_device { 698 u16 dev_type; 699 uuid_le guid; 700 bool perf_device; 701 }; 702 703 struct vmbus_channel { 704 /* Unique channel id */ 705 int id; 706 707 struct list_head listentry; 708 709 struct hv_device *device_obj; 710 711 enum vmbus_channel_state state; 712 713 struct vmbus_channel_offer_channel offermsg; 714 /* 715 * These are based on the OfferMsg.MonitorId. 716 * Save it here for easy access. 717 */ 718 u8 monitor_grp; 719 u8 monitor_bit; 720 721 bool rescind; /* got rescind msg */ 722 723 u32 ringbuffer_gpadlhandle; 724 725 /* Allocated memory for ring buffer */ 726 void *ringbuffer_pages; 727 u32 ringbuffer_pagecount; 728 struct hv_ring_buffer_info outbound; /* send to parent */ 729 struct hv_ring_buffer_info inbound; /* receive from parent */ 730 spinlock_t inbound_lock; 731 732 struct vmbus_close_msg close_msg; 733 734 /* Channel callback are invoked in this workqueue context */ 735 /* HANDLE dataWorkQueue; */ 736 737 void (*onchannel_callback)(void *context); 738 void *channel_callback_context; 739 740 /* 741 * A channel can be marked for efficient (batched) 742 * reading: 743 * If batched_reading is set to "true", we read until the 744 * channel is empty and hold off interrupts from the host 745 * during the entire read process. 746 * If batched_reading is set to "false", the client is not 747 * going to perform batched reading. 748 * 749 * By default we will enable batched reading; specific 750 * drivers that don't want this behavior can turn it off. 751 */ 752 753 bool batched_reading; 754 755 bool is_dedicated_interrupt; 756 struct hv_input_signal_event_buffer sig_buf; 757 struct hv_input_signal_event *sig_event; 758 759 /* 760 * Starting with win8, this field will be used to specify 761 * the target virtual processor on which to deliver the interrupt for 762 * the host to guest communication. 763 * Prior to win8, incoming channel interrupts would only 764 * be delivered on cpu 0. Setting this value to 0 would 765 * preserve the earlier behavior. 766 */ 767 u32 target_vp; 768 /* The corresponding CPUID in the guest */ 769 u32 target_cpu; 770 /* 771 * State to manage the CPU affiliation of channels. 772 */ 773 struct cpumask alloced_cpus_in_node; 774 int numa_node; 775 /* 776 * Support for sub-channels. For high performance devices, 777 * it will be useful to have multiple sub-channels to support 778 * a scalable communication infrastructure with the host. 779 * The support for sub-channels is implemented as an extention 780 * to the current infrastructure. 781 * The initial offer is considered the primary channel and this 782 * offer message will indicate if the host supports sub-channels. 783 * The guest is free to ask for sub-channels to be offerred and can 784 * open these sub-channels as a normal "primary" channel. However, 785 * all sub-channels will have the same type and instance guids as the 786 * primary channel. Requests sent on a given channel will result in a 787 * response on the same channel. 788 */ 789 790 /* 791 * Sub-channel creation callback. This callback will be called in 792 * process context when a sub-channel offer is received from the host. 793 * The guest can open the sub-channel in the context of this callback. 794 */ 795 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 796 797 /* 798 * Channel rescind callback. Some channels (the hvsock ones), need to 799 * register a callback which is invoked in vmbus_onoffer_rescind(). 800 */ 801 void (*chn_rescind_callback)(struct vmbus_channel *channel); 802 803 /* 804 * The spinlock to protect the structure. It is being used to protect 805 * test-and-set access to various attributes of the structure as well 806 * as all sc_list operations. 807 */ 808 spinlock_t lock; 809 /* 810 * All Sub-channels of a primary channel are linked here. 811 */ 812 struct list_head sc_list; 813 /* 814 * Current number of sub-channels. 815 */ 816 int num_sc; 817 /* 818 * Number of a sub-channel (position within sc_list) which is supposed 819 * to be used as the next outgoing channel. 820 */ 821 int next_oc; 822 /* 823 * The primary channel this sub-channel belongs to. 824 * This will be NULL for the primary channel. 825 */ 826 struct vmbus_channel *primary_channel; 827 /* 828 * Support per-channel state for use by vmbus drivers. 829 */ 830 void *per_channel_state; 831 /* 832 * To support per-cpu lookup mapping of relid to channel, 833 * link up channels based on their CPU affinity. 834 */ 835 struct list_head percpu_list; 836 /* 837 * Host signaling policy: The default policy will be 838 * based on the ring buffer state. We will also support 839 * a policy where the client driver can have explicit 840 * signaling control. 841 */ 842 enum hv_signal_policy signal_policy; 843 /* 844 * On the channel send side, many of the VMBUS 845 * device drivers explicity serialize access to the 846 * outgoing ring buffer. Give more control to the 847 * VMBUS device drivers in terms how to serialize 848 * accesss to the outgoing ring buffer. 849 * The default behavior will be to aquire the 850 * ring lock to preserve the current behavior. 851 */ 852 bool acquire_ring_lock; 853 854 }; 855 856 static inline void set_channel_lock_state(struct vmbus_channel *c, bool state) 857 { 858 c->acquire_ring_lock = state; 859 } 860 861 static inline bool is_hvsock_channel(const struct vmbus_channel *c) 862 { 863 return !!(c->offermsg.offer.chn_flags & 864 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 865 } 866 867 static inline void set_channel_signal_state(struct vmbus_channel *c, 868 enum hv_signal_policy policy) 869 { 870 c->signal_policy = policy; 871 } 872 873 static inline void set_channel_read_state(struct vmbus_channel *c, bool state) 874 { 875 c->batched_reading = state; 876 } 877 878 static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 879 { 880 c->per_channel_state = s; 881 } 882 883 static inline void *get_per_channel_state(struct vmbus_channel *c) 884 { 885 return c->per_channel_state; 886 } 887 888 static inline void set_channel_pending_send_size(struct vmbus_channel *c, 889 u32 size) 890 { 891 c->outbound.ring_buffer->pending_send_sz = size; 892 } 893 894 void vmbus_onmessage(void *context); 895 896 int vmbus_request_offers(void); 897 898 /* 899 * APIs for managing sub-channels. 900 */ 901 902 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 903 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 904 905 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 906 void (*chn_rescind_cb)(struct vmbus_channel *)); 907 908 /* 909 * Retrieve the (sub) channel on which to send an outgoing request. 910 * When a primary channel has multiple sub-channels, we choose a 911 * channel whose VCPU binding is closest to the VCPU on which 912 * this call is being made. 913 */ 914 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary); 915 916 /* 917 * Check if sub-channels have already been offerred. This API will be useful 918 * when the driver is unloaded after establishing sub-channels. In this case, 919 * when the driver is re-loaded, the driver would have to check if the 920 * subchannels have already been established before attempting to request 921 * the creation of sub-channels. 922 * This function returns TRUE to indicate that subchannels have already been 923 * created. 924 * This function should be invoked after setting the callback function for 925 * sub-channel creation. 926 */ 927 bool vmbus_are_subchannels_present(struct vmbus_channel *primary); 928 929 /* The format must be the same as struct vmdata_gpa_direct */ 930 struct vmbus_channel_packet_page_buffer { 931 u16 type; 932 u16 dataoffset8; 933 u16 length8; 934 u16 flags; 935 u64 transactionid; 936 u32 reserved; 937 u32 rangecount; 938 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 939 } __packed; 940 941 /* The format must be the same as struct vmdata_gpa_direct */ 942 struct vmbus_channel_packet_multipage_buffer { 943 u16 type; 944 u16 dataoffset8; 945 u16 length8; 946 u16 flags; 947 u64 transactionid; 948 u32 reserved; 949 u32 rangecount; /* Always 1 in this case */ 950 struct hv_multipage_buffer range; 951 } __packed; 952 953 /* The format must be the same as struct vmdata_gpa_direct */ 954 struct vmbus_packet_mpb_array { 955 u16 type; 956 u16 dataoffset8; 957 u16 length8; 958 u16 flags; 959 u64 transactionid; 960 u32 reserved; 961 u32 rangecount; /* Always 1 in this case */ 962 struct hv_mpb_array range; 963 } __packed; 964 965 966 extern int vmbus_open(struct vmbus_channel *channel, 967 u32 send_ringbuffersize, 968 u32 recv_ringbuffersize, 969 void *userdata, 970 u32 userdatalen, 971 void(*onchannel_callback)(void *context), 972 void *context); 973 974 extern void vmbus_close(struct vmbus_channel *channel); 975 976 extern int vmbus_sendpacket(struct vmbus_channel *channel, 977 void *buffer, 978 u32 bufferLen, 979 u64 requestid, 980 enum vmbus_packet_type type, 981 u32 flags); 982 983 extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel, 984 void *buffer, 985 u32 bufferLen, 986 u64 requestid, 987 enum vmbus_packet_type type, 988 u32 flags, 989 bool kick_q); 990 991 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 992 struct hv_page_buffer pagebuffers[], 993 u32 pagecount, 994 void *buffer, 995 u32 bufferlen, 996 u64 requestid); 997 998 extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel, 999 struct hv_page_buffer pagebuffers[], 1000 u32 pagecount, 1001 void *buffer, 1002 u32 bufferlen, 1003 u64 requestid, 1004 u32 flags, 1005 bool kick_q); 1006 1007 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel, 1008 struct hv_multipage_buffer *mpb, 1009 void *buffer, 1010 u32 bufferlen, 1011 u64 requestid); 1012 1013 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1014 struct vmbus_packet_mpb_array *mpb, 1015 u32 desc_size, 1016 void *buffer, 1017 u32 bufferlen, 1018 u64 requestid); 1019 1020 extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1021 void *kbuffer, 1022 u32 size, 1023 u32 *gpadl_handle); 1024 1025 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1026 u32 gpadl_handle); 1027 1028 extern int vmbus_recvpacket(struct vmbus_channel *channel, 1029 void *buffer, 1030 u32 bufferlen, 1031 u32 *buffer_actual_len, 1032 u64 *requestid); 1033 1034 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1035 void *buffer, 1036 u32 bufferlen, 1037 u32 *buffer_actual_len, 1038 u64 *requestid); 1039 1040 1041 extern void vmbus_ontimer(unsigned long data); 1042 1043 /* Base driver object */ 1044 struct hv_driver { 1045 const char *name; 1046 1047 /* 1048 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1049 * channel flag, actually doesn't mean a synthetic device because the 1050 * offer's if_type/if_instance can change for every new hvsock 1051 * connection. 1052 * 1053 * However, to facilitate the notification of new-offer/rescind-offer 1054 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1055 * a special vmbus device, and hence we need the below flag to 1056 * indicate if the driver is the hvsock driver or not: we need to 1057 * specially treat the hvosck offer & driver in vmbus_match(). 1058 */ 1059 bool hvsock; 1060 1061 /* the device type supported by this driver */ 1062 uuid_le dev_type; 1063 const struct hv_vmbus_device_id *id_table; 1064 1065 struct device_driver driver; 1066 1067 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1068 int (*remove)(struct hv_device *); 1069 void (*shutdown)(struct hv_device *); 1070 1071 }; 1072 1073 /* Base device object */ 1074 struct hv_device { 1075 /* the device type id of this device */ 1076 uuid_le dev_type; 1077 1078 /* the device instance id of this device */ 1079 uuid_le dev_instance; 1080 u16 vendor_id; 1081 u16 device_id; 1082 1083 struct device device; 1084 1085 struct vmbus_channel *channel; 1086 }; 1087 1088 1089 static inline struct hv_device *device_to_hv_device(struct device *d) 1090 { 1091 return container_of(d, struct hv_device, device); 1092 } 1093 1094 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1095 { 1096 return container_of(d, struct hv_driver, driver); 1097 } 1098 1099 static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1100 { 1101 dev_set_drvdata(&dev->device, data); 1102 } 1103 1104 static inline void *hv_get_drvdata(struct hv_device *dev) 1105 { 1106 return dev_get_drvdata(&dev->device); 1107 } 1108 1109 /* Vmbus interface */ 1110 #define vmbus_driver_register(driver) \ 1111 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1112 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1113 struct module *owner, 1114 const char *mod_name); 1115 void vmbus_driver_unregister(struct hv_driver *hv_driver); 1116 1117 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1118 1119 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1120 resource_size_t min, resource_size_t max, 1121 resource_size_t size, resource_size_t align, 1122 bool fb_overlap_ok); 1123 void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1124 int vmbus_cpu_number_to_vp_number(int cpu_number); 1125 u64 hv_do_hypercall(u64 control, void *input, void *output); 1126 1127 /* 1128 * GUID definitions of various offer types - services offered to the guest. 1129 */ 1130 1131 /* 1132 * Network GUID 1133 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1134 */ 1135 #define HV_NIC_GUID \ 1136 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1137 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1138 1139 /* 1140 * IDE GUID 1141 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1142 */ 1143 #define HV_IDE_GUID \ 1144 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1145 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1146 1147 /* 1148 * SCSI GUID 1149 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1150 */ 1151 #define HV_SCSI_GUID \ 1152 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1153 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1154 1155 /* 1156 * Shutdown GUID 1157 * {0e0b6031-5213-4934-818b-38d90ced39db} 1158 */ 1159 #define HV_SHUTDOWN_GUID \ 1160 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1161 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1162 1163 /* 1164 * Time Synch GUID 1165 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1166 */ 1167 #define HV_TS_GUID \ 1168 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1169 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1170 1171 /* 1172 * Heartbeat GUID 1173 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1174 */ 1175 #define HV_HEART_BEAT_GUID \ 1176 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1177 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1178 1179 /* 1180 * KVP GUID 1181 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1182 */ 1183 #define HV_KVP_GUID \ 1184 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1185 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1186 1187 /* 1188 * Dynamic memory GUID 1189 * {525074dc-8985-46e2-8057-a307dc18a502} 1190 */ 1191 #define HV_DM_GUID \ 1192 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1193 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1194 1195 /* 1196 * Mouse GUID 1197 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1198 */ 1199 #define HV_MOUSE_GUID \ 1200 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1201 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1202 1203 /* 1204 * Keyboard GUID 1205 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1206 */ 1207 #define HV_KBD_GUID \ 1208 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1209 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1210 1211 /* 1212 * VSS (Backup/Restore) GUID 1213 */ 1214 #define HV_VSS_GUID \ 1215 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1216 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1217 /* 1218 * Synthetic Video GUID 1219 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1220 */ 1221 #define HV_SYNTHVID_GUID \ 1222 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1223 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1224 1225 /* 1226 * Synthetic FC GUID 1227 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1228 */ 1229 #define HV_SYNTHFC_GUID \ 1230 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1231 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1232 1233 /* 1234 * Guest File Copy Service 1235 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1236 */ 1237 1238 #define HV_FCOPY_GUID \ 1239 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1240 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1241 1242 /* 1243 * NetworkDirect. This is the guest RDMA service. 1244 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1245 */ 1246 #define HV_ND_GUID \ 1247 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1248 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1249 1250 /* 1251 * PCI Express Pass Through 1252 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1253 */ 1254 1255 #define HV_PCIE_GUID \ 1256 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1257 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1258 1259 /* 1260 * Common header for Hyper-V ICs 1261 */ 1262 1263 #define ICMSGTYPE_NEGOTIATE 0 1264 #define ICMSGTYPE_HEARTBEAT 1 1265 #define ICMSGTYPE_KVPEXCHANGE 2 1266 #define ICMSGTYPE_SHUTDOWN 3 1267 #define ICMSGTYPE_TIMESYNC 4 1268 #define ICMSGTYPE_VSS 5 1269 1270 #define ICMSGHDRFLAG_TRANSACTION 1 1271 #define ICMSGHDRFLAG_REQUEST 2 1272 #define ICMSGHDRFLAG_RESPONSE 4 1273 1274 1275 /* 1276 * While we want to handle util services as regular devices, 1277 * there is only one instance of each of these services; so 1278 * we statically allocate the service specific state. 1279 */ 1280 1281 struct hv_util_service { 1282 u8 *recv_buffer; 1283 void *channel; 1284 void (*util_cb)(void *); 1285 int (*util_init)(struct hv_util_service *); 1286 void (*util_deinit)(void); 1287 }; 1288 1289 struct vmbuspipe_hdr { 1290 u32 flags; 1291 u32 msgsize; 1292 } __packed; 1293 1294 struct ic_version { 1295 u16 major; 1296 u16 minor; 1297 } __packed; 1298 1299 struct icmsg_hdr { 1300 struct ic_version icverframe; 1301 u16 icmsgtype; 1302 struct ic_version icvermsg; 1303 u16 icmsgsize; 1304 u32 status; 1305 u8 ictransaction_id; 1306 u8 icflags; 1307 u8 reserved[2]; 1308 } __packed; 1309 1310 struct icmsg_negotiate { 1311 u16 icframe_vercnt; 1312 u16 icmsg_vercnt; 1313 u32 reserved; 1314 struct ic_version icversion_data[1]; /* any size array */ 1315 } __packed; 1316 1317 struct shutdown_msg_data { 1318 u32 reason_code; 1319 u32 timeout_seconds; 1320 u32 flags; 1321 u8 display_message[2048]; 1322 } __packed; 1323 1324 struct heartbeat_msg_data { 1325 u64 seq_num; 1326 u32 reserved[8]; 1327 } __packed; 1328 1329 /* Time Sync IC defs */ 1330 #define ICTIMESYNCFLAG_PROBE 0 1331 #define ICTIMESYNCFLAG_SYNC 1 1332 #define ICTIMESYNCFLAG_SAMPLE 2 1333 1334 #ifdef __x86_64__ 1335 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1336 #else 1337 #define WLTIMEDELTA 116444736000000000LL 1338 #endif 1339 1340 struct ictimesync_data { 1341 u64 parenttime; 1342 u64 childtime; 1343 u64 roundtriptime; 1344 u8 flags; 1345 } __packed; 1346 1347 struct hyperv_service_callback { 1348 u8 msg_type; 1349 char *log_msg; 1350 uuid_le data; 1351 struct vmbus_channel *channel; 1352 void (*callback) (void *context); 1353 }; 1354 1355 #define MAX_SRV_VER 0x7ffffff 1356 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *, 1357 struct icmsg_negotiate *, u8 *, int, 1358 int); 1359 1360 void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid); 1361 1362 /* 1363 * Negotiated version with the Host. 1364 */ 1365 1366 extern __u32 vmbus_proto_version; 1367 1368 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id, 1369 const uuid_le *shv_host_servie_id); 1370 void vmbus_set_event(struct vmbus_channel *channel); 1371 1372 /* Get the start of the ring buffer. */ 1373 static inline void * 1374 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info) 1375 { 1376 return (void *)ring_info->ring_buffer->buffer; 1377 } 1378 1379 /* 1380 * To optimize the flow management on the send-side, 1381 * when the sender is blocked because of lack of 1382 * sufficient space in the ring buffer, potential the 1383 * consumer of the ring buffer can signal the producer. 1384 * This is controlled by the following parameters: 1385 * 1386 * 1. pending_send_sz: This is the size in bytes that the 1387 * producer is trying to send. 1388 * 2. The feature bit feat_pending_send_sz set to indicate if 1389 * the consumer of the ring will signal when the ring 1390 * state transitions from being full to a state where 1391 * there is room for the producer to send the pending packet. 1392 */ 1393 1394 static inline bool hv_need_to_signal_on_read(struct hv_ring_buffer_info *rbi) 1395 { 1396 u32 cur_write_sz; 1397 u32 pending_sz; 1398 1399 /* 1400 * Issue a full memory barrier before making the signaling decision. 1401 * Here is the reason for having this barrier: 1402 * If the reading of the pend_sz (in this function) 1403 * were to be reordered and read before we commit the new read 1404 * index (in the calling function) we could 1405 * have a problem. If the host were to set the pending_sz after we 1406 * have sampled pending_sz and go to sleep before we commit the 1407 * read index, we could miss sending the interrupt. Issue a full 1408 * memory barrier to address this. 1409 */ 1410 virt_mb(); 1411 1412 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); 1413 /* If the other end is not blocked on write don't bother. */ 1414 if (pending_sz == 0) 1415 return false; 1416 1417 cur_write_sz = hv_get_bytes_to_write(rbi); 1418 1419 if (cur_write_sz >= pending_sz) 1420 return true; 1421 1422 return false; 1423 } 1424 1425 /* 1426 * An API to support in-place processing of incoming VMBUS packets. 1427 */ 1428 #define VMBUS_PKT_TRAILER 8 1429 1430 static inline struct vmpacket_descriptor * 1431 get_next_pkt_raw(struct vmbus_channel *channel) 1432 { 1433 struct hv_ring_buffer_info *ring_info = &channel->inbound; 1434 u32 read_loc = ring_info->priv_read_index; 1435 void *ring_buffer = hv_get_ring_buffer(ring_info); 1436 struct vmpacket_descriptor *cur_desc; 1437 u32 packetlen; 1438 u32 dsize = ring_info->ring_datasize; 1439 u32 delta = read_loc - ring_info->ring_buffer->read_index; 1440 u32 bytes_avail_toread = (hv_get_bytes_to_read(ring_info) - delta); 1441 1442 if (bytes_avail_toread < sizeof(struct vmpacket_descriptor)) 1443 return NULL; 1444 1445 if ((read_loc + sizeof(*cur_desc)) > dsize) 1446 return NULL; 1447 1448 cur_desc = ring_buffer + read_loc; 1449 packetlen = cur_desc->len8 << 3; 1450 1451 /* 1452 * If the packet under consideration is wrapping around, 1453 * return failure. 1454 */ 1455 if ((read_loc + packetlen + VMBUS_PKT_TRAILER) > (dsize - 1)) 1456 return NULL; 1457 1458 return cur_desc; 1459 } 1460 1461 /* 1462 * A helper function to step through packets "in-place" 1463 * This API is to be called after each successful call 1464 * get_next_pkt_raw(). 1465 */ 1466 static inline void put_pkt_raw(struct vmbus_channel *channel, 1467 struct vmpacket_descriptor *desc) 1468 { 1469 struct hv_ring_buffer_info *ring_info = &channel->inbound; 1470 u32 read_loc = ring_info->priv_read_index; 1471 u32 packetlen = desc->len8 << 3; 1472 u32 dsize = ring_info->ring_datasize; 1473 1474 if ((read_loc + packetlen + VMBUS_PKT_TRAILER) > dsize) 1475 BUG(); 1476 /* 1477 * Include the packet trailer. 1478 */ 1479 ring_info->priv_read_index += packetlen + VMBUS_PKT_TRAILER; 1480 } 1481 1482 /* 1483 * This call commits the read index and potentially signals the host. 1484 * Here is the pattern for using the "in-place" consumption APIs: 1485 * 1486 * while (get_next_pkt_raw() { 1487 * process the packet "in-place"; 1488 * put_pkt_raw(); 1489 * } 1490 * if (packets processed in place) 1491 * commit_rd_index(); 1492 */ 1493 static inline void commit_rd_index(struct vmbus_channel *channel) 1494 { 1495 struct hv_ring_buffer_info *ring_info = &channel->inbound; 1496 /* 1497 * Make sure all reads are done before we update the read index since 1498 * the writer may start writing to the read area once the read index 1499 * is updated. 1500 */ 1501 virt_rmb(); 1502 ring_info->ring_buffer->read_index = ring_info->priv_read_index; 1503 1504 if (hv_need_to_signal_on_read(ring_info)) 1505 vmbus_set_event(channel); 1506 } 1507 1508 1509 #endif /* _HYPERV_H */ 1510