xref: /linux-6.15/include/linux/hyperv.h (revision 8ab02e09)
1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <[email protected]>
20  *   Hank Janssen  <[email protected]>
21  *   K. Y. Srinivasan <[email protected]>
22  *
23  */
24 
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27 
28 #include <uapi/linux/hyperv.h>
29 #include <uapi/asm/hyperv.h>
30 
31 #include <linux/types.h>
32 #include <linux/scatterlist.h>
33 #include <linux/list.h>
34 #include <linux/timer.h>
35 #include <linux/completion.h>
36 #include <linux/device.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/interrupt.h>
39 
40 #define MAX_PAGE_BUFFER_COUNT				32
41 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
42 
43 #pragma pack(push, 1)
44 
45 /* Single-page buffer */
46 struct hv_page_buffer {
47 	u32 len;
48 	u32 offset;
49 	u64 pfn;
50 };
51 
52 /* Multiple-page buffer */
53 struct hv_multipage_buffer {
54 	/* Length and Offset determines the # of pfns in the array */
55 	u32 len;
56 	u32 offset;
57 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
58 };
59 
60 /*
61  * Multiple-page buffer array; the pfn array is variable size:
62  * The number of entries in the PFN array is determined by
63  * "len" and "offset".
64  */
65 struct hv_mpb_array {
66 	/* Length and Offset determines the # of pfns in the array */
67 	u32 len;
68 	u32 offset;
69 	u64 pfn_array[];
70 };
71 
72 /* 0x18 includes the proprietary packet header */
73 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
74 					(sizeof(struct hv_page_buffer) * \
75 					 MAX_PAGE_BUFFER_COUNT))
76 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
77 					 sizeof(struct hv_multipage_buffer))
78 
79 
80 #pragma pack(pop)
81 
82 struct hv_ring_buffer {
83 	/* Offset in bytes from the start of ring data below */
84 	u32 write_index;
85 
86 	/* Offset in bytes from the start of ring data below */
87 	u32 read_index;
88 
89 	u32 interrupt_mask;
90 
91 	/*
92 	 * Win8 uses some of the reserved bits to implement
93 	 * interrupt driven flow management. On the send side
94 	 * we can request that the receiver interrupt the sender
95 	 * when the ring transitions from being full to being able
96 	 * to handle a message of size "pending_send_sz".
97 	 *
98 	 * Add necessary state for this enhancement.
99 	 */
100 	u32 pending_send_sz;
101 
102 	u32 reserved1[12];
103 
104 	union {
105 		struct {
106 			u32 feat_pending_send_sz:1;
107 		};
108 		u32 value;
109 	} feature_bits;
110 
111 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
112 	u8	reserved2[4028];
113 
114 	/*
115 	 * Ring data starts here + RingDataStartOffset
116 	 * !!! DO NOT place any fields below this !!!
117 	 */
118 	u8 buffer[0];
119 } __packed;
120 
121 struct hv_ring_buffer_info {
122 	struct hv_ring_buffer *ring_buffer;
123 	u32 ring_size;			/* Include the shared header */
124 	spinlock_t ring_lock;
125 
126 	u32 ring_datasize;		/* < ring_size */
127 	u32 ring_data_startoffset;
128 	u32 priv_write_index;
129 	u32 priv_read_index;
130 	u32 cached_read_index;
131 };
132 
133 /*
134  *
135  * hv_get_ringbuffer_availbytes()
136  *
137  * Get number of bytes available to read and to write to
138  * for the specified ring buffer
139  */
140 static inline void
141 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
142 			     u32 *read, u32 *write)
143 {
144 	u32 read_loc, write_loc, dsize;
145 
146 	/* Capture the read/write indices before they changed */
147 	read_loc = rbi->ring_buffer->read_index;
148 	write_loc = rbi->ring_buffer->write_index;
149 	dsize = rbi->ring_datasize;
150 
151 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
152 		read_loc - write_loc;
153 	*read = dsize - *write;
154 }
155 
156 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
157 {
158 	u32 read_loc, write_loc, dsize, read;
159 
160 	dsize = rbi->ring_datasize;
161 	read_loc = rbi->ring_buffer->read_index;
162 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
163 
164 	read = write_loc >= read_loc ? (write_loc - read_loc) :
165 		(dsize - read_loc) + write_loc;
166 
167 	return read;
168 }
169 
170 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
171 {
172 	u32 read_loc, write_loc, dsize, write;
173 
174 	dsize = rbi->ring_datasize;
175 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
176 	write_loc = rbi->ring_buffer->write_index;
177 
178 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
179 		read_loc - write_loc;
180 	return write;
181 }
182 
183 static inline u32 hv_get_cached_bytes_to_write(
184 	const struct hv_ring_buffer_info *rbi)
185 {
186 	u32 read_loc, write_loc, dsize, write;
187 
188 	dsize = rbi->ring_datasize;
189 	read_loc = rbi->cached_read_index;
190 	write_loc = rbi->ring_buffer->write_index;
191 
192 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
193 		read_loc - write_loc;
194 	return write;
195 }
196 /*
197  * VMBUS version is 32 bit entity broken up into
198  * two 16 bit quantities: major_number. minor_number.
199  *
200  * 0 . 13 (Windows Server 2008)
201  * 1 . 1  (Windows 7)
202  * 2 . 4  (Windows 8)
203  * 3 . 0  (Windows 8 R2)
204  * 4 . 0  (Windows 10)
205  */
206 
207 #define VERSION_WS2008  ((0 << 16) | (13))
208 #define VERSION_WIN7    ((1 << 16) | (1))
209 #define VERSION_WIN8    ((2 << 16) | (4))
210 #define VERSION_WIN8_1    ((3 << 16) | (0))
211 #define VERSION_WIN10	((4 << 16) | (0))
212 
213 #define VERSION_INVAL -1
214 
215 #define VERSION_CURRENT VERSION_WIN10
216 
217 /* Make maximum size of pipe payload of 16K */
218 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
219 
220 /* Define PipeMode values. */
221 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
222 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
223 
224 /* The size of the user defined data buffer for non-pipe offers. */
225 #define MAX_USER_DEFINED_BYTES		120
226 
227 /* The size of the user defined data buffer for pipe offers. */
228 #define MAX_PIPE_USER_DEFINED_BYTES	116
229 
230 /*
231  * At the center of the Channel Management library is the Channel Offer. This
232  * struct contains the fundamental information about an offer.
233  */
234 struct vmbus_channel_offer {
235 	uuid_le if_type;
236 	uuid_le if_instance;
237 
238 	/*
239 	 * These two fields are not currently used.
240 	 */
241 	u64 reserved1;
242 	u64 reserved2;
243 
244 	u16 chn_flags;
245 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
246 
247 	union {
248 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
249 		struct {
250 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
251 		} std;
252 
253 		/*
254 		 * Pipes:
255 		 * The following sructure is an integrated pipe protocol, which
256 		 * is implemented on top of standard user-defined data. Pipe
257 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
258 		 * use.
259 		 */
260 		struct {
261 			u32  pipe_mode;
262 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
263 		} pipe;
264 	} u;
265 	/*
266 	 * The sub_channel_index is defined in win8.
267 	 */
268 	u16 sub_channel_index;
269 	u16 reserved3;
270 } __packed;
271 
272 /* Server Flags */
273 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
274 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
275 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
276 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
277 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
278 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
279 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
280 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER		0x2000
281 
282 struct vmpacket_descriptor {
283 	u16 type;
284 	u16 offset8;
285 	u16 len8;
286 	u16 flags;
287 	u64 trans_id;
288 } __packed;
289 
290 struct vmpacket_header {
291 	u32 prev_pkt_start_offset;
292 	struct vmpacket_descriptor descriptor;
293 } __packed;
294 
295 struct vmtransfer_page_range {
296 	u32 byte_count;
297 	u32 byte_offset;
298 } __packed;
299 
300 struct vmtransfer_page_packet_header {
301 	struct vmpacket_descriptor d;
302 	u16 xfer_pageset_id;
303 	u8  sender_owns_set;
304 	u8 reserved;
305 	u32 range_cnt;
306 	struct vmtransfer_page_range ranges[1];
307 } __packed;
308 
309 struct vmgpadl_packet_header {
310 	struct vmpacket_descriptor d;
311 	u32 gpadl;
312 	u32 reserved;
313 } __packed;
314 
315 struct vmadd_remove_transfer_page_set {
316 	struct vmpacket_descriptor d;
317 	u32 gpadl;
318 	u16 xfer_pageset_id;
319 	u16 reserved;
320 } __packed;
321 
322 /*
323  * This structure defines a range in guest physical space that can be made to
324  * look virtually contiguous.
325  */
326 struct gpa_range {
327 	u32 byte_count;
328 	u32 byte_offset;
329 	u64 pfn_array[0];
330 };
331 
332 /*
333  * This is the format for an Establish Gpadl packet, which contains a handle by
334  * which this GPADL will be known and a set of GPA ranges associated with it.
335  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
336  * ranges, then the resulting MDL will be "chained," representing multiple VA
337  * ranges.
338  */
339 struct vmestablish_gpadl {
340 	struct vmpacket_descriptor d;
341 	u32 gpadl;
342 	u32 range_cnt;
343 	struct gpa_range range[1];
344 } __packed;
345 
346 /*
347  * This is the format for a Teardown Gpadl packet, which indicates that the
348  * GPADL handle in the Establish Gpadl packet will never be referenced again.
349  */
350 struct vmteardown_gpadl {
351 	struct vmpacket_descriptor d;
352 	u32 gpadl;
353 	u32 reserved;	/* for alignment to a 8-byte boundary */
354 } __packed;
355 
356 /*
357  * This is the format for a GPA-Direct packet, which contains a set of GPA
358  * ranges, in addition to commands and/or data.
359  */
360 struct vmdata_gpa_direct {
361 	struct vmpacket_descriptor d;
362 	u32 reserved;
363 	u32 range_cnt;
364 	struct gpa_range range[1];
365 } __packed;
366 
367 /* This is the format for a Additional Data Packet. */
368 struct vmadditional_data {
369 	struct vmpacket_descriptor d;
370 	u64 total_bytes;
371 	u32 offset;
372 	u32 byte_cnt;
373 	unsigned char data[1];
374 } __packed;
375 
376 union vmpacket_largest_possible_header {
377 	struct vmpacket_descriptor simple_hdr;
378 	struct vmtransfer_page_packet_header xfer_page_hdr;
379 	struct vmgpadl_packet_header gpadl_hdr;
380 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
381 	struct vmestablish_gpadl establish_gpadl_hdr;
382 	struct vmteardown_gpadl teardown_gpadl_hdr;
383 	struct vmdata_gpa_direct data_gpa_direct_hdr;
384 };
385 
386 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
387 	(void *)(((unsigned char *)__packet) +	\
388 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
389 
390 #define VMPACKET_DATA_LENGTH(__packet)		\
391 	((((struct vmpacket_descriptor)__packet)->len8 -	\
392 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
393 
394 #define VMPACKET_TRANSFER_MODE(__packet)	\
395 	(((struct IMPACT)__packet)->type)
396 
397 enum vmbus_packet_type {
398 	VM_PKT_INVALID				= 0x0,
399 	VM_PKT_SYNCH				= 0x1,
400 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
401 	VM_PKT_RM_XFER_PAGESET			= 0x3,
402 	VM_PKT_ESTABLISH_GPADL			= 0x4,
403 	VM_PKT_TEARDOWN_GPADL			= 0x5,
404 	VM_PKT_DATA_INBAND			= 0x6,
405 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
406 	VM_PKT_DATA_USING_GPADL			= 0x8,
407 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
408 	VM_PKT_CANCEL_REQUEST			= 0xa,
409 	VM_PKT_COMP				= 0xb,
410 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
411 	VM_PKT_ADDITIONAL_DATA			= 0xd
412 };
413 
414 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
415 
416 
417 /* Version 1 messages */
418 enum vmbus_channel_message_type {
419 	CHANNELMSG_INVALID			=  0,
420 	CHANNELMSG_OFFERCHANNEL		=  1,
421 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
422 	CHANNELMSG_REQUESTOFFERS		=  3,
423 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
424 	CHANNELMSG_OPENCHANNEL		=  5,
425 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
426 	CHANNELMSG_CLOSECHANNEL		=  7,
427 	CHANNELMSG_GPADL_HEADER		=  8,
428 	CHANNELMSG_GPADL_BODY			=  9,
429 	CHANNELMSG_GPADL_CREATED		= 10,
430 	CHANNELMSG_GPADL_TEARDOWN		= 11,
431 	CHANNELMSG_GPADL_TORNDOWN		= 12,
432 	CHANNELMSG_RELID_RELEASED		= 13,
433 	CHANNELMSG_INITIATE_CONTACT		= 14,
434 	CHANNELMSG_VERSION_RESPONSE		= 15,
435 	CHANNELMSG_UNLOAD			= 16,
436 	CHANNELMSG_UNLOAD_RESPONSE		= 17,
437 	CHANNELMSG_18				= 18,
438 	CHANNELMSG_19				= 19,
439 	CHANNELMSG_20				= 20,
440 	CHANNELMSG_TL_CONNECT_REQUEST		= 21,
441 	CHANNELMSG_COUNT
442 };
443 
444 struct vmbus_channel_message_header {
445 	enum vmbus_channel_message_type msgtype;
446 	u32 padding;
447 } __packed;
448 
449 /* Query VMBus Version parameters */
450 struct vmbus_channel_query_vmbus_version {
451 	struct vmbus_channel_message_header header;
452 	u32 version;
453 } __packed;
454 
455 /* VMBus Version Supported parameters */
456 struct vmbus_channel_version_supported {
457 	struct vmbus_channel_message_header header;
458 	u8 version_supported;
459 } __packed;
460 
461 /* Offer Channel parameters */
462 struct vmbus_channel_offer_channel {
463 	struct vmbus_channel_message_header header;
464 	struct vmbus_channel_offer offer;
465 	u32 child_relid;
466 	u8 monitorid;
467 	/*
468 	 * win7 and beyond splits this field into a bit field.
469 	 */
470 	u8 monitor_allocated:1;
471 	u8 reserved:7;
472 	/*
473 	 * These are new fields added in win7 and later.
474 	 * Do not access these fields without checking the
475 	 * negotiated protocol.
476 	 *
477 	 * If "is_dedicated_interrupt" is set, we must not set the
478 	 * associated bit in the channel bitmap while sending the
479 	 * interrupt to the host.
480 	 *
481 	 * connection_id is to be used in signaling the host.
482 	 */
483 	u16 is_dedicated_interrupt:1;
484 	u16 reserved1:15;
485 	u32 connection_id;
486 } __packed;
487 
488 /* Rescind Offer parameters */
489 struct vmbus_channel_rescind_offer {
490 	struct vmbus_channel_message_header header;
491 	u32 child_relid;
492 } __packed;
493 
494 /*
495  * Request Offer -- no parameters, SynIC message contains the partition ID
496  * Set Snoop -- no parameters, SynIC message contains the partition ID
497  * Clear Snoop -- no parameters, SynIC message contains the partition ID
498  * All Offers Delivered -- no parameters, SynIC message contains the partition
499  *		           ID
500  * Flush Client -- no parameters, SynIC message contains the partition ID
501  */
502 
503 /* Open Channel parameters */
504 struct vmbus_channel_open_channel {
505 	struct vmbus_channel_message_header header;
506 
507 	/* Identifies the specific VMBus channel that is being opened. */
508 	u32 child_relid;
509 
510 	/* ID making a particular open request at a channel offer unique. */
511 	u32 openid;
512 
513 	/* GPADL for the channel's ring buffer. */
514 	u32 ringbuffer_gpadlhandle;
515 
516 	/*
517 	 * Starting with win8, this field will be used to specify
518 	 * the target virtual processor on which to deliver the interrupt for
519 	 * the host to guest communication.
520 	 * Prior to win8, incoming channel interrupts would only
521 	 * be delivered on cpu 0. Setting this value to 0 would
522 	 * preserve the earlier behavior.
523 	 */
524 	u32 target_vp;
525 
526 	/*
527 	* The upstream ring buffer begins at offset zero in the memory
528 	* described by RingBufferGpadlHandle. The downstream ring buffer
529 	* follows it at this offset (in pages).
530 	*/
531 	u32 downstream_ringbuffer_pageoffset;
532 
533 	/* User-specific data to be passed along to the server endpoint. */
534 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
535 } __packed;
536 
537 /* Open Channel Result parameters */
538 struct vmbus_channel_open_result {
539 	struct vmbus_channel_message_header header;
540 	u32 child_relid;
541 	u32 openid;
542 	u32 status;
543 } __packed;
544 
545 /* Close channel parameters; */
546 struct vmbus_channel_close_channel {
547 	struct vmbus_channel_message_header header;
548 	u32 child_relid;
549 } __packed;
550 
551 /* Channel Message GPADL */
552 #define GPADL_TYPE_RING_BUFFER		1
553 #define GPADL_TYPE_SERVER_SAVE_AREA	2
554 #define GPADL_TYPE_TRANSACTION		8
555 
556 /*
557  * The number of PFNs in a GPADL message is defined by the number of
558  * pages that would be spanned by ByteCount and ByteOffset.  If the
559  * implied number of PFNs won't fit in this packet, there will be a
560  * follow-up packet that contains more.
561  */
562 struct vmbus_channel_gpadl_header {
563 	struct vmbus_channel_message_header header;
564 	u32 child_relid;
565 	u32 gpadl;
566 	u16 range_buflen;
567 	u16 rangecount;
568 	struct gpa_range range[0];
569 } __packed;
570 
571 /* This is the followup packet that contains more PFNs. */
572 struct vmbus_channel_gpadl_body {
573 	struct vmbus_channel_message_header header;
574 	u32 msgnumber;
575 	u32 gpadl;
576 	u64 pfn[0];
577 } __packed;
578 
579 struct vmbus_channel_gpadl_created {
580 	struct vmbus_channel_message_header header;
581 	u32 child_relid;
582 	u32 gpadl;
583 	u32 creation_status;
584 } __packed;
585 
586 struct vmbus_channel_gpadl_teardown {
587 	struct vmbus_channel_message_header header;
588 	u32 child_relid;
589 	u32 gpadl;
590 } __packed;
591 
592 struct vmbus_channel_gpadl_torndown {
593 	struct vmbus_channel_message_header header;
594 	u32 gpadl;
595 } __packed;
596 
597 struct vmbus_channel_relid_released {
598 	struct vmbus_channel_message_header header;
599 	u32 child_relid;
600 } __packed;
601 
602 struct vmbus_channel_initiate_contact {
603 	struct vmbus_channel_message_header header;
604 	u32 vmbus_version_requested;
605 	u32 target_vcpu; /* The VCPU the host should respond to */
606 	u64 interrupt_page;
607 	u64 monitor_page1;
608 	u64 monitor_page2;
609 } __packed;
610 
611 /* Hyper-V socket: guest's connect()-ing to host */
612 struct vmbus_channel_tl_connect_request {
613 	struct vmbus_channel_message_header header;
614 	uuid_le guest_endpoint_id;
615 	uuid_le host_service_id;
616 } __packed;
617 
618 struct vmbus_channel_version_response {
619 	struct vmbus_channel_message_header header;
620 	u8 version_supported;
621 } __packed;
622 
623 enum vmbus_channel_state {
624 	CHANNEL_OFFER_STATE,
625 	CHANNEL_OPENING_STATE,
626 	CHANNEL_OPEN_STATE,
627 	CHANNEL_OPENED_STATE,
628 };
629 
630 /*
631  * Represents each channel msg on the vmbus connection This is a
632  * variable-size data structure depending on the msg type itself
633  */
634 struct vmbus_channel_msginfo {
635 	/* Bookkeeping stuff */
636 	struct list_head msglistentry;
637 
638 	/* So far, this is only used to handle gpadl body message */
639 	struct list_head submsglist;
640 
641 	/* Synchronize the request/response if needed */
642 	struct completion  waitevent;
643 	struct vmbus_channel *waiting_channel;
644 	union {
645 		struct vmbus_channel_version_supported version_supported;
646 		struct vmbus_channel_open_result open_result;
647 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
648 		struct vmbus_channel_gpadl_created gpadl_created;
649 		struct vmbus_channel_version_response version_response;
650 	} response;
651 
652 	u32 msgsize;
653 	/*
654 	 * The channel message that goes out on the "wire".
655 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
656 	 */
657 	unsigned char msg[0];
658 };
659 
660 struct vmbus_close_msg {
661 	struct vmbus_channel_msginfo info;
662 	struct vmbus_channel_close_channel msg;
663 };
664 
665 /* Define connection identifier type. */
666 union hv_connection_id {
667 	u32 asu32;
668 	struct {
669 		u32 id:24;
670 		u32 reserved:8;
671 	} u;
672 };
673 
674 /* Definition of the hv_signal_event hypercall input structure. */
675 struct hv_input_signal_event {
676 	union hv_connection_id connectionid;
677 	u16 flag_number;
678 	u16 rsvdz;
679 };
680 
681 struct hv_input_signal_event_buffer {
682 	u64 align8;
683 	struct hv_input_signal_event event;
684 };
685 
686 enum hv_numa_policy {
687 	HV_BALANCED = 0,
688 	HV_LOCALIZED,
689 };
690 
691 enum vmbus_device_type {
692 	HV_IDE = 0,
693 	HV_SCSI,
694 	HV_FC,
695 	HV_NIC,
696 	HV_ND,
697 	HV_PCIE,
698 	HV_FB,
699 	HV_KBD,
700 	HV_MOUSE,
701 	HV_KVP,
702 	HV_TS,
703 	HV_HB,
704 	HV_SHUTDOWN,
705 	HV_FCOPY,
706 	HV_BACKUP,
707 	HV_DM,
708 	HV_UNKNOWN,
709 };
710 
711 struct vmbus_device {
712 	u16  dev_type;
713 	uuid_le guid;
714 	bool perf_device;
715 };
716 
717 struct vmbus_channel {
718 	struct list_head listentry;
719 
720 	struct hv_device *device_obj;
721 
722 	enum vmbus_channel_state state;
723 
724 	struct vmbus_channel_offer_channel offermsg;
725 	/*
726 	 * These are based on the OfferMsg.MonitorId.
727 	 * Save it here for easy access.
728 	 */
729 	u8 monitor_grp;
730 	u8 monitor_bit;
731 
732 	bool rescind; /* got rescind msg */
733 
734 	u32 ringbuffer_gpadlhandle;
735 
736 	/* Allocated memory for ring buffer */
737 	void *ringbuffer_pages;
738 	u32 ringbuffer_pagecount;
739 	struct hv_ring_buffer_info outbound;	/* send to parent */
740 	struct hv_ring_buffer_info inbound;	/* receive from parent */
741 	spinlock_t inbound_lock;
742 
743 	struct vmbus_close_msg close_msg;
744 
745 	/* Channel callback's invoked in softirq context */
746 	struct tasklet_struct callback_event;
747 	void (*onchannel_callback)(void *context);
748 	void *channel_callback_context;
749 
750 	/*
751 	 * A channel can be marked for one of three modes of reading:
752 	 *   BATCHED - callback called from taslket and should read
753 	 *            channel until empty. Interrupts from the host
754 	 *            are masked while read is in process (default).
755 	 *   DIRECT - callback called from tasklet (softirq).
756 	 *   ISR - callback called in interrupt context and must
757 	 *         invoke its own deferred processing.
758 	 *         Host interrupts are disabled and must be re-enabled
759 	 *         when ring is empty.
760 	 */
761 	enum hv_callback_mode {
762 		HV_CALL_BATCHED,
763 		HV_CALL_DIRECT,
764 		HV_CALL_ISR
765 	} callback_mode;
766 
767 	bool is_dedicated_interrupt;
768 	struct hv_input_signal_event_buffer sig_buf;
769 	struct hv_input_signal_event *sig_event;
770 
771 	/*
772 	 * Starting with win8, this field will be used to specify
773 	 * the target virtual processor on which to deliver the interrupt for
774 	 * the host to guest communication.
775 	 * Prior to win8, incoming channel interrupts would only
776 	 * be delivered on cpu 0. Setting this value to 0 would
777 	 * preserve the earlier behavior.
778 	 */
779 	u32 target_vp;
780 	/* The corresponding CPUID in the guest */
781 	u32 target_cpu;
782 	/*
783 	 * State to manage the CPU affiliation of channels.
784 	 */
785 	struct cpumask alloced_cpus_in_node;
786 	int numa_node;
787 	/*
788 	 * Support for sub-channels. For high performance devices,
789 	 * it will be useful to have multiple sub-channels to support
790 	 * a scalable communication infrastructure with the host.
791 	 * The support for sub-channels is implemented as an extention
792 	 * to the current infrastructure.
793 	 * The initial offer is considered the primary channel and this
794 	 * offer message will indicate if the host supports sub-channels.
795 	 * The guest is free to ask for sub-channels to be offerred and can
796 	 * open these sub-channels as a normal "primary" channel. However,
797 	 * all sub-channels will have the same type and instance guids as the
798 	 * primary channel. Requests sent on a given channel will result in a
799 	 * response on the same channel.
800 	 */
801 
802 	/*
803 	 * Sub-channel creation callback. This callback will be called in
804 	 * process context when a sub-channel offer is received from the host.
805 	 * The guest can open the sub-channel in the context of this callback.
806 	 */
807 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
808 
809 	/*
810 	 * Channel rescind callback. Some channels (the hvsock ones), need to
811 	 * register a callback which is invoked in vmbus_onoffer_rescind().
812 	 */
813 	void (*chn_rescind_callback)(struct vmbus_channel *channel);
814 
815 	/*
816 	 * The spinlock to protect the structure. It is being used to protect
817 	 * test-and-set access to various attributes of the structure as well
818 	 * as all sc_list operations.
819 	 */
820 	spinlock_t lock;
821 	/*
822 	 * All Sub-channels of a primary channel are linked here.
823 	 */
824 	struct list_head sc_list;
825 	/*
826 	 * Current number of sub-channels.
827 	 */
828 	int num_sc;
829 	/*
830 	 * Number of a sub-channel (position within sc_list) which is supposed
831 	 * to be used as the next outgoing channel.
832 	 */
833 	int next_oc;
834 	/*
835 	 * The primary channel this sub-channel belongs to.
836 	 * This will be NULL for the primary channel.
837 	 */
838 	struct vmbus_channel *primary_channel;
839 	/*
840 	 * Support per-channel state for use by vmbus drivers.
841 	 */
842 	void *per_channel_state;
843 	/*
844 	 * To support per-cpu lookup mapping of relid to channel,
845 	 * link up channels based on their CPU affinity.
846 	 */
847 	struct list_head percpu_list;
848 	/*
849 	 * For performance critical channels (storage, networking
850 	 * etc,), Hyper-V has a mechanism to enhance the throughput
851 	 * at the expense of latency:
852 	 * When the host is to be signaled, we just set a bit in a shared page
853 	 * and this bit will be inspected by the hypervisor within a certain
854 	 * window and if the bit is set, the host will be signaled. The window
855 	 * of time is the monitor latency - currently around 100 usecs. This
856 	 * mechanism improves throughput by:
857 	 *
858 	 * A) Making the host more efficient - each time it wakes up,
859 	 *    potentially it will process morev number of packets. The
860 	 *    monitor latency allows a batch to build up.
861 	 * B) By deferring the hypercall to signal, we will also minimize
862 	 *    the interrupts.
863 	 *
864 	 * Clearly, these optimizations improve throughput at the expense of
865 	 * latency. Furthermore, since the channel is shared for both
866 	 * control and data messages, control messages currently suffer
867 	 * unnecessary latency adversley impacting performance and boot
868 	 * time. To fix this issue, permit tagging the channel as being
869 	 * in "low latency" mode. In this mode, we will bypass the monitor
870 	 * mechanism.
871 	 */
872 	bool low_latency;
873 
874 	/*
875 	 * NUMA distribution policy:
876 	 * We support teo policies:
877 	 * 1) Balanced: Here all performance critical channels are
878 	 *    distributed evenly amongst all the NUMA nodes.
879 	 *    This policy will be the default policy.
880 	 * 2) Localized: All channels of a given instance of a
881 	 *    performance critical service will be assigned CPUs
882 	 *    within a selected NUMA node.
883 	 */
884 	enum hv_numa_policy affinity_policy;
885 
886 };
887 
888 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
889 {
890 	return !!(c->offermsg.offer.chn_flags &
891 		  VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
892 }
893 
894 static inline void set_channel_affinity_state(struct vmbus_channel *c,
895 					      enum hv_numa_policy policy)
896 {
897 	c->affinity_policy = policy;
898 }
899 
900 static inline void set_channel_read_mode(struct vmbus_channel *c,
901 					enum hv_callback_mode mode)
902 {
903 	c->callback_mode = mode;
904 }
905 
906 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
907 {
908 	c->per_channel_state = s;
909 }
910 
911 static inline void *get_per_channel_state(struct vmbus_channel *c)
912 {
913 	return c->per_channel_state;
914 }
915 
916 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
917 						 u32 size)
918 {
919 	c->outbound.ring_buffer->pending_send_sz = size;
920 }
921 
922 static inline void set_low_latency_mode(struct vmbus_channel *c)
923 {
924 	c->low_latency = true;
925 }
926 
927 static inline void clear_low_latency_mode(struct vmbus_channel *c)
928 {
929 	c->low_latency = false;
930 }
931 
932 void vmbus_onmessage(void *context);
933 
934 int vmbus_request_offers(void);
935 
936 /*
937  * APIs for managing sub-channels.
938  */
939 
940 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
941 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
942 
943 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
944 		void (*chn_rescind_cb)(struct vmbus_channel *));
945 
946 /*
947  * Retrieve the (sub) channel on which to send an outgoing request.
948  * When a primary channel has multiple sub-channels, we choose a
949  * channel whose VCPU binding is closest to the VCPU on which
950  * this call is being made.
951  */
952 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
953 
954 /*
955  * Check if sub-channels have already been offerred. This API will be useful
956  * when the driver is unloaded after establishing sub-channels. In this case,
957  * when the driver is re-loaded, the driver would have to check if the
958  * subchannels have already been established before attempting to request
959  * the creation of sub-channels.
960  * This function returns TRUE to indicate that subchannels have already been
961  * created.
962  * This function should be invoked after setting the callback function for
963  * sub-channel creation.
964  */
965 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
966 
967 /* The format must be the same as struct vmdata_gpa_direct */
968 struct vmbus_channel_packet_page_buffer {
969 	u16 type;
970 	u16 dataoffset8;
971 	u16 length8;
972 	u16 flags;
973 	u64 transactionid;
974 	u32 reserved;
975 	u32 rangecount;
976 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
977 } __packed;
978 
979 /* The format must be the same as struct vmdata_gpa_direct */
980 struct vmbus_channel_packet_multipage_buffer {
981 	u16 type;
982 	u16 dataoffset8;
983 	u16 length8;
984 	u16 flags;
985 	u64 transactionid;
986 	u32 reserved;
987 	u32 rangecount;		/* Always 1 in this case */
988 	struct hv_multipage_buffer range;
989 } __packed;
990 
991 /* The format must be the same as struct vmdata_gpa_direct */
992 struct vmbus_packet_mpb_array {
993 	u16 type;
994 	u16 dataoffset8;
995 	u16 length8;
996 	u16 flags;
997 	u64 transactionid;
998 	u32 reserved;
999 	u32 rangecount;         /* Always 1 in this case */
1000 	struct hv_mpb_array range;
1001 } __packed;
1002 
1003 
1004 extern int vmbus_open(struct vmbus_channel *channel,
1005 			    u32 send_ringbuffersize,
1006 			    u32 recv_ringbuffersize,
1007 			    void *userdata,
1008 			    u32 userdatalen,
1009 			    void(*onchannel_callback)(void *context),
1010 			    void *context);
1011 
1012 extern void vmbus_close(struct vmbus_channel *channel);
1013 
1014 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1015 				  void *buffer,
1016 				  u32 bufferLen,
1017 				  u64 requestid,
1018 				  enum vmbus_packet_type type,
1019 				  u32 flags);
1020 
1021 extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel,
1022 				  void *buffer,
1023 				  u32 bufferLen,
1024 				  u64 requestid,
1025 				  enum vmbus_packet_type type,
1026 				  u32 flags);
1027 
1028 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1029 					    struct hv_page_buffer pagebuffers[],
1030 					    u32 pagecount,
1031 					    void *buffer,
1032 					    u32 bufferlen,
1033 					    u64 requestid);
1034 
1035 extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel,
1036 					   struct hv_page_buffer pagebuffers[],
1037 					   u32 pagecount,
1038 					   void *buffer,
1039 					   u32 bufferlen,
1040 					   u64 requestid,
1041 					   u32 flags);
1042 
1043 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1044 					struct hv_multipage_buffer *mpb,
1045 					void *buffer,
1046 					u32 bufferlen,
1047 					u64 requestid);
1048 
1049 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1050 				     struct vmbus_packet_mpb_array *mpb,
1051 				     u32 desc_size,
1052 				     void *buffer,
1053 				     u32 bufferlen,
1054 				     u64 requestid);
1055 
1056 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1057 				      void *kbuffer,
1058 				      u32 size,
1059 				      u32 *gpadl_handle);
1060 
1061 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1062 				     u32 gpadl_handle);
1063 
1064 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1065 				  void *buffer,
1066 				  u32 bufferlen,
1067 				  u32 *buffer_actual_len,
1068 				  u64 *requestid);
1069 
1070 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1071 				     void *buffer,
1072 				     u32 bufferlen,
1073 				     u32 *buffer_actual_len,
1074 				     u64 *requestid);
1075 
1076 
1077 extern void vmbus_ontimer(unsigned long data);
1078 
1079 /* Base driver object */
1080 struct hv_driver {
1081 	const char *name;
1082 
1083 	/*
1084 	 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1085 	 * channel flag, actually doesn't mean a synthetic device because the
1086 	 * offer's if_type/if_instance can change for every new hvsock
1087 	 * connection.
1088 	 *
1089 	 * However, to facilitate the notification of new-offer/rescind-offer
1090 	 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1091 	 * a special vmbus device, and hence we need the below flag to
1092 	 * indicate if the driver is the hvsock driver or not: we need to
1093 	 * specially treat the hvosck offer & driver in vmbus_match().
1094 	 */
1095 	bool hvsock;
1096 
1097 	/* the device type supported by this driver */
1098 	uuid_le dev_type;
1099 	const struct hv_vmbus_device_id *id_table;
1100 
1101 	struct device_driver driver;
1102 
1103 	/* dynamic device GUID's */
1104 	struct  {
1105 		spinlock_t lock;
1106 		struct list_head list;
1107 	} dynids;
1108 
1109 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1110 	int (*remove)(struct hv_device *);
1111 	void (*shutdown)(struct hv_device *);
1112 
1113 };
1114 
1115 /* Base device object */
1116 struct hv_device {
1117 	/* the device type id of this device */
1118 	uuid_le dev_type;
1119 
1120 	/* the device instance id of this device */
1121 	uuid_le dev_instance;
1122 	u16 vendor_id;
1123 	u16 device_id;
1124 
1125 	struct device device;
1126 
1127 	struct vmbus_channel *channel;
1128 };
1129 
1130 
1131 static inline struct hv_device *device_to_hv_device(struct device *d)
1132 {
1133 	return container_of(d, struct hv_device, device);
1134 }
1135 
1136 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1137 {
1138 	return container_of(d, struct hv_driver, driver);
1139 }
1140 
1141 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1142 {
1143 	dev_set_drvdata(&dev->device, data);
1144 }
1145 
1146 static inline void *hv_get_drvdata(struct hv_device *dev)
1147 {
1148 	return dev_get_drvdata(&dev->device);
1149 }
1150 
1151 /* Vmbus interface */
1152 #define vmbus_driver_register(driver)	\
1153 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1154 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1155 					 struct module *owner,
1156 					 const char *mod_name);
1157 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1158 
1159 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1160 
1161 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1162 			resource_size_t min, resource_size_t max,
1163 			resource_size_t size, resource_size_t align,
1164 			bool fb_overlap_ok);
1165 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1166 int vmbus_cpu_number_to_vp_number(int cpu_number);
1167 u64 hv_do_hypercall(u64 control, void *input, void *output);
1168 
1169 /*
1170  * GUID definitions of various offer types - services offered to the guest.
1171  */
1172 
1173 /*
1174  * Network GUID
1175  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1176  */
1177 #define HV_NIC_GUID \
1178 	.guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1179 			0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1180 
1181 /*
1182  * IDE GUID
1183  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1184  */
1185 #define HV_IDE_GUID \
1186 	.guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1187 			0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1188 
1189 /*
1190  * SCSI GUID
1191  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1192  */
1193 #define HV_SCSI_GUID \
1194 	.guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1195 			0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1196 
1197 /*
1198  * Shutdown GUID
1199  * {0e0b6031-5213-4934-818b-38d90ced39db}
1200  */
1201 #define HV_SHUTDOWN_GUID \
1202 	.guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1203 			0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1204 
1205 /*
1206  * Time Synch GUID
1207  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1208  */
1209 #define HV_TS_GUID \
1210 	.guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1211 			0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1212 
1213 /*
1214  * Heartbeat GUID
1215  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1216  */
1217 #define HV_HEART_BEAT_GUID \
1218 	.guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1219 			0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1220 
1221 /*
1222  * KVP GUID
1223  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1224  */
1225 #define HV_KVP_GUID \
1226 	.guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1227 			0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1228 
1229 /*
1230  * Dynamic memory GUID
1231  * {525074dc-8985-46e2-8057-a307dc18a502}
1232  */
1233 #define HV_DM_GUID \
1234 	.guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1235 			0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1236 
1237 /*
1238  * Mouse GUID
1239  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1240  */
1241 #define HV_MOUSE_GUID \
1242 	.guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1243 			0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1244 
1245 /*
1246  * Keyboard GUID
1247  * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1248  */
1249 #define HV_KBD_GUID \
1250 	.guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1251 			0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1252 
1253 /*
1254  * VSS (Backup/Restore) GUID
1255  */
1256 #define HV_VSS_GUID \
1257 	.guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1258 			0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1259 /*
1260  * Synthetic Video GUID
1261  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1262  */
1263 #define HV_SYNTHVID_GUID \
1264 	.guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1265 			0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1266 
1267 /*
1268  * Synthetic FC GUID
1269  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1270  */
1271 #define HV_SYNTHFC_GUID \
1272 	.guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1273 			0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1274 
1275 /*
1276  * Guest File Copy Service
1277  * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1278  */
1279 
1280 #define HV_FCOPY_GUID \
1281 	.guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1282 			0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1283 
1284 /*
1285  * NetworkDirect. This is the guest RDMA service.
1286  * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1287  */
1288 #define HV_ND_GUID \
1289 	.guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1290 			0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1291 
1292 /*
1293  * PCI Express Pass Through
1294  * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1295  */
1296 
1297 #define HV_PCIE_GUID \
1298 	.guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1299 			0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1300 
1301 /*
1302  * Linux doesn't support the 3 devices: the first two are for
1303  * Automatic Virtual Machine Activation, and the third is for
1304  * Remote Desktop Virtualization.
1305  * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1306  * {3375baf4-9e15-4b30-b765-67acb10d607b}
1307  * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1308  */
1309 
1310 #define HV_AVMA1_GUID \
1311 	.guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1312 			0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1313 
1314 #define HV_AVMA2_GUID \
1315 	.guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1316 			0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1317 
1318 #define HV_RDV_GUID \
1319 	.guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1320 			0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1321 
1322 /*
1323  * Common header for Hyper-V ICs
1324  */
1325 
1326 #define ICMSGTYPE_NEGOTIATE		0
1327 #define ICMSGTYPE_HEARTBEAT		1
1328 #define ICMSGTYPE_KVPEXCHANGE		2
1329 #define ICMSGTYPE_SHUTDOWN		3
1330 #define ICMSGTYPE_TIMESYNC		4
1331 #define ICMSGTYPE_VSS			5
1332 
1333 #define ICMSGHDRFLAG_TRANSACTION	1
1334 #define ICMSGHDRFLAG_REQUEST		2
1335 #define ICMSGHDRFLAG_RESPONSE		4
1336 
1337 
1338 /*
1339  * While we want to handle util services as regular devices,
1340  * there is only one instance of each of these services; so
1341  * we statically allocate the service specific state.
1342  */
1343 
1344 struct hv_util_service {
1345 	u8 *recv_buffer;
1346 	void *channel;
1347 	void (*util_cb)(void *);
1348 	int (*util_init)(struct hv_util_service *);
1349 	void (*util_deinit)(void);
1350 };
1351 
1352 struct vmbuspipe_hdr {
1353 	u32 flags;
1354 	u32 msgsize;
1355 } __packed;
1356 
1357 struct ic_version {
1358 	u16 major;
1359 	u16 minor;
1360 } __packed;
1361 
1362 struct icmsg_hdr {
1363 	struct ic_version icverframe;
1364 	u16 icmsgtype;
1365 	struct ic_version icvermsg;
1366 	u16 icmsgsize;
1367 	u32 status;
1368 	u8 ictransaction_id;
1369 	u8 icflags;
1370 	u8 reserved[2];
1371 } __packed;
1372 
1373 struct icmsg_negotiate {
1374 	u16 icframe_vercnt;
1375 	u16 icmsg_vercnt;
1376 	u32 reserved;
1377 	struct ic_version icversion_data[1]; /* any size array */
1378 } __packed;
1379 
1380 struct shutdown_msg_data {
1381 	u32 reason_code;
1382 	u32 timeout_seconds;
1383 	u32 flags;
1384 	u8  display_message[2048];
1385 } __packed;
1386 
1387 struct heartbeat_msg_data {
1388 	u64 seq_num;
1389 	u32 reserved[8];
1390 } __packed;
1391 
1392 /* Time Sync IC defs */
1393 #define ICTIMESYNCFLAG_PROBE	0
1394 #define ICTIMESYNCFLAG_SYNC	1
1395 #define ICTIMESYNCFLAG_SAMPLE	2
1396 
1397 #ifdef __x86_64__
1398 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1399 #else
1400 #define WLTIMEDELTA	116444736000000000LL
1401 #endif
1402 
1403 struct ictimesync_data {
1404 	u64 parenttime;
1405 	u64 childtime;
1406 	u64 roundtriptime;
1407 	u8 flags;
1408 } __packed;
1409 
1410 struct ictimesync_ref_data {
1411 	u64 parenttime;
1412 	u64 vmreferencetime;
1413 	u8 flags;
1414 	char leapflags;
1415 	char stratum;
1416 	u8 reserved[3];
1417 } __packed;
1418 
1419 struct hyperv_service_callback {
1420 	u8 msg_type;
1421 	char *log_msg;
1422 	uuid_le data;
1423 	struct vmbus_channel *channel;
1424 	void (*callback) (void *context);
1425 };
1426 
1427 #define MAX_SRV_VER	0x7ffffff
1428 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1429 				const int *fw_version, int fw_vercnt,
1430 				const int *srv_version, int srv_vercnt,
1431 				int *nego_fw_version, int *nego_srv_version);
1432 
1433 void hv_event_tasklet_disable(struct vmbus_channel *channel);
1434 void hv_event_tasklet_enable(struct vmbus_channel *channel);
1435 
1436 void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid);
1437 
1438 void vmbus_setevent(struct vmbus_channel *channel);
1439 /*
1440  * Negotiated version with the Host.
1441  */
1442 
1443 extern __u32 vmbus_proto_version;
1444 
1445 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1446 				  const uuid_le *shv_host_servie_id);
1447 void vmbus_set_event(struct vmbus_channel *channel);
1448 
1449 /* Get the start of the ring buffer. */
1450 static inline void *
1451 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1452 {
1453 	return ring_info->ring_buffer->buffer;
1454 }
1455 
1456 /*
1457  * To optimize the flow management on the send-side,
1458  * when the sender is blocked because of lack of
1459  * sufficient space in the ring buffer, potential the
1460  * consumer of the ring buffer can signal the producer.
1461  * This is controlled by the following parameters:
1462  *
1463  * 1. pending_send_sz: This is the size in bytes that the
1464  *    producer is trying to send.
1465  * 2. The feature bit feat_pending_send_sz set to indicate if
1466  *    the consumer of the ring will signal when the ring
1467  *    state transitions from being full to a state where
1468  *    there is room for the producer to send the pending packet.
1469  */
1470 
1471 static inline  void hv_signal_on_read(struct vmbus_channel *channel)
1472 {
1473 	u32 cur_write_sz, cached_write_sz;
1474 	u32 pending_sz;
1475 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1476 
1477 	/*
1478 	 * Issue a full memory barrier before making the signaling decision.
1479 	 * Here is the reason for having this barrier:
1480 	 * If the reading of the pend_sz (in this function)
1481 	 * were to be reordered and read before we commit the new read
1482 	 * index (in the calling function)  we could
1483 	 * have a problem. If the host were to set the pending_sz after we
1484 	 * have sampled pending_sz and go to sleep before we commit the
1485 	 * read index, we could miss sending the interrupt. Issue a full
1486 	 * memory barrier to address this.
1487 	 */
1488 	virt_mb();
1489 
1490 	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
1491 	/* If the other end is not blocked on write don't bother. */
1492 	if (pending_sz == 0)
1493 		return;
1494 
1495 	cur_write_sz = hv_get_bytes_to_write(rbi);
1496 
1497 	if (cur_write_sz < pending_sz)
1498 		return;
1499 
1500 	cached_write_sz = hv_get_cached_bytes_to_write(rbi);
1501 	if (cached_write_sz < pending_sz)
1502 		vmbus_setevent(channel);
1503 
1504 	return;
1505 }
1506 
1507 static inline void
1508 init_cached_read_index(struct vmbus_channel *channel)
1509 {
1510 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1511 
1512 	rbi->cached_read_index = rbi->ring_buffer->read_index;
1513 }
1514 
1515 /*
1516  * Mask off host interrupt callback notifications
1517  */
1518 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1519 {
1520 	rbi->ring_buffer->interrupt_mask = 1;
1521 
1522 	/* make sure mask update is not reordered */
1523 	virt_mb();
1524 }
1525 
1526 /*
1527  * Re-enable host callback and return number of outstanding bytes
1528  */
1529 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1530 {
1531 
1532 	rbi->ring_buffer->interrupt_mask = 0;
1533 
1534 	/* make sure mask update is not reordered */
1535 	virt_mb();
1536 
1537 	/*
1538 	 * Now check to see if the ring buffer is still empty.
1539 	 * If it is not, we raced and we need to process new
1540 	 * incoming messages.
1541 	 */
1542 	return hv_get_bytes_to_read(rbi);
1543 }
1544 
1545 /*
1546  * An API to support in-place processing of incoming VMBUS packets.
1547  */
1548 #define VMBUS_PKT_TRAILER	8
1549 
1550 static inline struct vmpacket_descriptor *
1551 get_next_pkt_raw(struct vmbus_channel *channel)
1552 {
1553 	struct hv_ring_buffer_info *ring_info = &channel->inbound;
1554 	u32 priv_read_loc = ring_info->priv_read_index;
1555 	void *ring_buffer = hv_get_ring_buffer(ring_info);
1556 	u32 dsize = ring_info->ring_datasize;
1557 	/*
1558 	 * delta is the difference between what is available to read and
1559 	 * what was already consumed in place. We commit read index after
1560 	 * the whole batch is processed.
1561 	 */
1562 	u32 delta = priv_read_loc >= ring_info->ring_buffer->read_index ?
1563 		priv_read_loc - ring_info->ring_buffer->read_index :
1564 		(dsize - ring_info->ring_buffer->read_index) + priv_read_loc;
1565 	u32 bytes_avail_toread = (hv_get_bytes_to_read(ring_info) - delta);
1566 
1567 	if (bytes_avail_toread < sizeof(struct vmpacket_descriptor))
1568 		return NULL;
1569 
1570 	return ring_buffer + priv_read_loc;
1571 }
1572 
1573 /*
1574  * A helper function to step through packets "in-place"
1575  * This API is to be called after each successful call
1576  * get_next_pkt_raw().
1577  */
1578 static inline void put_pkt_raw(struct vmbus_channel *channel,
1579 				struct vmpacket_descriptor *desc)
1580 {
1581 	struct hv_ring_buffer_info *ring_info = &channel->inbound;
1582 	u32 packetlen = desc->len8 << 3;
1583 	u32 dsize = ring_info->ring_datasize;
1584 
1585 	/*
1586 	 * Include the packet trailer.
1587 	 */
1588 	ring_info->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
1589 	ring_info->priv_read_index %= dsize;
1590 }
1591 
1592 /*
1593  * This call commits the read index and potentially signals the host.
1594  * Here is the pattern for using the "in-place" consumption APIs:
1595  *
1596  * init_cached_read_index();
1597  *
1598  * while (get_next_pkt_raw() {
1599  *	process the packet "in-place";
1600  *	put_pkt_raw();
1601  * }
1602  * if (packets processed in place)
1603  *	commit_rd_index();
1604  */
1605 static inline void commit_rd_index(struct vmbus_channel *channel)
1606 {
1607 	struct hv_ring_buffer_info *ring_info = &channel->inbound;
1608 	/*
1609 	 * Make sure all reads are done before we update the read index since
1610 	 * the writer may start writing to the read area once the read index
1611 	 * is updated.
1612 	 */
1613 	virt_rmb();
1614 	ring_info->ring_buffer->read_index = ring_info->priv_read_index;
1615 
1616 	hv_signal_on_read(channel);
1617 }
1618 
1619 
1620 #endif /* _HYPERV_H */
1621