1 /* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <[email protected]> 20 * Hank Janssen <[email protected]> 21 * K. Y. Srinivasan <[email protected]> 22 * 23 */ 24 25 #ifndef _HYPERV_H 26 #define _HYPERV_H 27 28 #include <uapi/linux/hyperv.h> 29 30 #include <linux/types.h> 31 #include <linux/scatterlist.h> 32 #include <linux/list.h> 33 #include <linux/timer.h> 34 #include <linux/completion.h> 35 #include <linux/device.h> 36 #include <linux/mod_devicetable.h> 37 #include <linux/interrupt.h> 38 39 #define MAX_PAGE_BUFFER_COUNT 32 40 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 41 42 #pragma pack(push, 1) 43 44 /* Single-page buffer */ 45 struct hv_page_buffer { 46 u32 len; 47 u32 offset; 48 u64 pfn; 49 }; 50 51 /* Multiple-page buffer */ 52 struct hv_multipage_buffer { 53 /* Length and Offset determines the # of pfns in the array */ 54 u32 len; 55 u32 offset; 56 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 57 }; 58 59 /* 60 * Multiple-page buffer array; the pfn array is variable size: 61 * The number of entries in the PFN array is determined by 62 * "len" and "offset". 63 */ 64 struct hv_mpb_array { 65 /* Length and Offset determines the # of pfns in the array */ 66 u32 len; 67 u32 offset; 68 u64 pfn_array[]; 69 }; 70 71 /* 0x18 includes the proprietary packet header */ 72 #define MAX_PAGE_BUFFER_PACKET (0x18 + \ 73 (sizeof(struct hv_page_buffer) * \ 74 MAX_PAGE_BUFFER_COUNT)) 75 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 76 sizeof(struct hv_multipage_buffer)) 77 78 79 #pragma pack(pop) 80 81 struct hv_ring_buffer { 82 /* Offset in bytes from the start of ring data below */ 83 u32 write_index; 84 85 /* Offset in bytes from the start of ring data below */ 86 u32 read_index; 87 88 u32 interrupt_mask; 89 90 /* 91 * Win8 uses some of the reserved bits to implement 92 * interrupt driven flow management. On the send side 93 * we can request that the receiver interrupt the sender 94 * when the ring transitions from being full to being able 95 * to handle a message of size "pending_send_sz". 96 * 97 * Add necessary state for this enhancement. 98 */ 99 u32 pending_send_sz; 100 101 u32 reserved1[12]; 102 103 union { 104 struct { 105 u32 feat_pending_send_sz:1; 106 }; 107 u32 value; 108 } feature_bits; 109 110 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 111 u8 reserved2[4028]; 112 113 /* 114 * Ring data starts here + RingDataStartOffset 115 * !!! DO NOT place any fields below this !!! 116 */ 117 u8 buffer[0]; 118 } __packed; 119 120 struct hv_ring_buffer_info { 121 struct hv_ring_buffer *ring_buffer; 122 u32 ring_size; /* Include the shared header */ 123 spinlock_t ring_lock; 124 125 u32 ring_datasize; /* < ring_size */ 126 u32 priv_read_index; 127 }; 128 129 130 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi) 131 { 132 u32 read_loc, write_loc, dsize, read; 133 134 dsize = rbi->ring_datasize; 135 read_loc = rbi->ring_buffer->read_index; 136 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 137 138 read = write_loc >= read_loc ? (write_loc - read_loc) : 139 (dsize - read_loc) + write_loc; 140 141 return read; 142 } 143 144 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi) 145 { 146 u32 read_loc, write_loc, dsize, write; 147 148 dsize = rbi->ring_datasize; 149 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 150 write_loc = rbi->ring_buffer->write_index; 151 152 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 153 read_loc - write_loc; 154 return write; 155 } 156 157 /* 158 * VMBUS version is 32 bit entity broken up into 159 * two 16 bit quantities: major_number. minor_number. 160 * 161 * 0 . 13 (Windows Server 2008) 162 * 1 . 1 (Windows 7) 163 * 2 . 4 (Windows 8) 164 * 3 . 0 (Windows 8 R2) 165 * 4 . 0 (Windows 10) 166 * 5 . 0 (Newer Windows 10) 167 */ 168 169 #define VERSION_WS2008 ((0 << 16) | (13)) 170 #define VERSION_WIN7 ((1 << 16) | (1)) 171 #define VERSION_WIN8 ((2 << 16) | (4)) 172 #define VERSION_WIN8_1 ((3 << 16) | (0)) 173 #define VERSION_WIN10 ((4 << 16) | (0)) 174 #define VERSION_WIN10_V5 ((5 << 16) | (0)) 175 176 #define VERSION_INVAL -1 177 178 #define VERSION_CURRENT VERSION_WIN10_V5 179 180 /* Make maximum size of pipe payload of 16K */ 181 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 182 183 /* Define PipeMode values. */ 184 #define VMBUS_PIPE_TYPE_BYTE 0x00000000 185 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 186 187 /* The size of the user defined data buffer for non-pipe offers. */ 188 #define MAX_USER_DEFINED_BYTES 120 189 190 /* The size of the user defined data buffer for pipe offers. */ 191 #define MAX_PIPE_USER_DEFINED_BYTES 116 192 193 /* 194 * At the center of the Channel Management library is the Channel Offer. This 195 * struct contains the fundamental information about an offer. 196 */ 197 struct vmbus_channel_offer { 198 uuid_le if_type; 199 uuid_le if_instance; 200 201 /* 202 * These two fields are not currently used. 203 */ 204 u64 reserved1; 205 u64 reserved2; 206 207 u16 chn_flags; 208 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 209 210 union { 211 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 212 struct { 213 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 214 } std; 215 216 /* 217 * Pipes: 218 * The following sructure is an integrated pipe protocol, which 219 * is implemented on top of standard user-defined data. Pipe 220 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 221 * use. 222 */ 223 struct { 224 u32 pipe_mode; 225 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 226 } pipe; 227 } u; 228 /* 229 * The sub_channel_index is defined in win8. 230 */ 231 u16 sub_channel_index; 232 u16 reserved3; 233 } __packed; 234 235 /* Server Flags */ 236 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 237 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 238 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 239 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 240 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 241 #define VMBUS_CHANNEL_PARENT_OFFER 0x200 242 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 243 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 244 245 struct vmpacket_descriptor { 246 u16 type; 247 u16 offset8; 248 u16 len8; 249 u16 flags; 250 u64 trans_id; 251 } __packed; 252 253 struct vmpacket_header { 254 u32 prev_pkt_start_offset; 255 struct vmpacket_descriptor descriptor; 256 } __packed; 257 258 struct vmtransfer_page_range { 259 u32 byte_count; 260 u32 byte_offset; 261 } __packed; 262 263 struct vmtransfer_page_packet_header { 264 struct vmpacket_descriptor d; 265 u16 xfer_pageset_id; 266 u8 sender_owns_set; 267 u8 reserved; 268 u32 range_cnt; 269 struct vmtransfer_page_range ranges[1]; 270 } __packed; 271 272 struct vmgpadl_packet_header { 273 struct vmpacket_descriptor d; 274 u32 gpadl; 275 u32 reserved; 276 } __packed; 277 278 struct vmadd_remove_transfer_page_set { 279 struct vmpacket_descriptor d; 280 u32 gpadl; 281 u16 xfer_pageset_id; 282 u16 reserved; 283 } __packed; 284 285 /* 286 * This structure defines a range in guest physical space that can be made to 287 * look virtually contiguous. 288 */ 289 struct gpa_range { 290 u32 byte_count; 291 u32 byte_offset; 292 u64 pfn_array[0]; 293 }; 294 295 /* 296 * This is the format for an Establish Gpadl packet, which contains a handle by 297 * which this GPADL will be known and a set of GPA ranges associated with it. 298 * This can be converted to a MDL by the guest OS. If there are multiple GPA 299 * ranges, then the resulting MDL will be "chained," representing multiple VA 300 * ranges. 301 */ 302 struct vmestablish_gpadl { 303 struct vmpacket_descriptor d; 304 u32 gpadl; 305 u32 range_cnt; 306 struct gpa_range range[1]; 307 } __packed; 308 309 /* 310 * This is the format for a Teardown Gpadl packet, which indicates that the 311 * GPADL handle in the Establish Gpadl packet will never be referenced again. 312 */ 313 struct vmteardown_gpadl { 314 struct vmpacket_descriptor d; 315 u32 gpadl; 316 u32 reserved; /* for alignment to a 8-byte boundary */ 317 } __packed; 318 319 /* 320 * This is the format for a GPA-Direct packet, which contains a set of GPA 321 * ranges, in addition to commands and/or data. 322 */ 323 struct vmdata_gpa_direct { 324 struct vmpacket_descriptor d; 325 u32 reserved; 326 u32 range_cnt; 327 struct gpa_range range[1]; 328 } __packed; 329 330 /* This is the format for a Additional Data Packet. */ 331 struct vmadditional_data { 332 struct vmpacket_descriptor d; 333 u64 total_bytes; 334 u32 offset; 335 u32 byte_cnt; 336 unsigned char data[1]; 337 } __packed; 338 339 union vmpacket_largest_possible_header { 340 struct vmpacket_descriptor simple_hdr; 341 struct vmtransfer_page_packet_header xfer_page_hdr; 342 struct vmgpadl_packet_header gpadl_hdr; 343 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 344 struct vmestablish_gpadl establish_gpadl_hdr; 345 struct vmteardown_gpadl teardown_gpadl_hdr; 346 struct vmdata_gpa_direct data_gpa_direct_hdr; 347 }; 348 349 #define VMPACKET_DATA_START_ADDRESS(__packet) \ 350 (void *)(((unsigned char *)__packet) + \ 351 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 352 353 #define VMPACKET_DATA_LENGTH(__packet) \ 354 ((((struct vmpacket_descriptor)__packet)->len8 - \ 355 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 356 357 #define VMPACKET_TRANSFER_MODE(__packet) \ 358 (((struct IMPACT)__packet)->type) 359 360 enum vmbus_packet_type { 361 VM_PKT_INVALID = 0x0, 362 VM_PKT_SYNCH = 0x1, 363 VM_PKT_ADD_XFER_PAGESET = 0x2, 364 VM_PKT_RM_XFER_PAGESET = 0x3, 365 VM_PKT_ESTABLISH_GPADL = 0x4, 366 VM_PKT_TEARDOWN_GPADL = 0x5, 367 VM_PKT_DATA_INBAND = 0x6, 368 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 369 VM_PKT_DATA_USING_GPADL = 0x8, 370 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 371 VM_PKT_CANCEL_REQUEST = 0xa, 372 VM_PKT_COMP = 0xb, 373 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 374 VM_PKT_ADDITIONAL_DATA = 0xd 375 }; 376 377 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 378 379 380 /* Version 1 messages */ 381 enum vmbus_channel_message_type { 382 CHANNELMSG_INVALID = 0, 383 CHANNELMSG_OFFERCHANNEL = 1, 384 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 385 CHANNELMSG_REQUESTOFFERS = 3, 386 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 387 CHANNELMSG_OPENCHANNEL = 5, 388 CHANNELMSG_OPENCHANNEL_RESULT = 6, 389 CHANNELMSG_CLOSECHANNEL = 7, 390 CHANNELMSG_GPADL_HEADER = 8, 391 CHANNELMSG_GPADL_BODY = 9, 392 CHANNELMSG_GPADL_CREATED = 10, 393 CHANNELMSG_GPADL_TEARDOWN = 11, 394 CHANNELMSG_GPADL_TORNDOWN = 12, 395 CHANNELMSG_RELID_RELEASED = 13, 396 CHANNELMSG_INITIATE_CONTACT = 14, 397 CHANNELMSG_VERSION_RESPONSE = 15, 398 CHANNELMSG_UNLOAD = 16, 399 CHANNELMSG_UNLOAD_RESPONSE = 17, 400 CHANNELMSG_18 = 18, 401 CHANNELMSG_19 = 19, 402 CHANNELMSG_20 = 20, 403 CHANNELMSG_TL_CONNECT_REQUEST = 21, 404 CHANNELMSG_COUNT 405 }; 406 407 struct vmbus_channel_message_header { 408 enum vmbus_channel_message_type msgtype; 409 u32 padding; 410 } __packed; 411 412 /* Query VMBus Version parameters */ 413 struct vmbus_channel_query_vmbus_version { 414 struct vmbus_channel_message_header header; 415 u32 version; 416 } __packed; 417 418 /* VMBus Version Supported parameters */ 419 struct vmbus_channel_version_supported { 420 struct vmbus_channel_message_header header; 421 u8 version_supported; 422 } __packed; 423 424 /* Offer Channel parameters */ 425 struct vmbus_channel_offer_channel { 426 struct vmbus_channel_message_header header; 427 struct vmbus_channel_offer offer; 428 u32 child_relid; 429 u8 monitorid; 430 /* 431 * win7 and beyond splits this field into a bit field. 432 */ 433 u8 monitor_allocated:1; 434 u8 reserved:7; 435 /* 436 * These are new fields added in win7 and later. 437 * Do not access these fields without checking the 438 * negotiated protocol. 439 * 440 * If "is_dedicated_interrupt" is set, we must not set the 441 * associated bit in the channel bitmap while sending the 442 * interrupt to the host. 443 * 444 * connection_id is to be used in signaling the host. 445 */ 446 u16 is_dedicated_interrupt:1; 447 u16 reserved1:15; 448 u32 connection_id; 449 } __packed; 450 451 /* Rescind Offer parameters */ 452 struct vmbus_channel_rescind_offer { 453 struct vmbus_channel_message_header header; 454 u32 child_relid; 455 } __packed; 456 457 static inline u32 458 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi) 459 { 460 return rbi->ring_buffer->pending_send_sz; 461 } 462 463 /* 464 * Request Offer -- no parameters, SynIC message contains the partition ID 465 * Set Snoop -- no parameters, SynIC message contains the partition ID 466 * Clear Snoop -- no parameters, SynIC message contains the partition ID 467 * All Offers Delivered -- no parameters, SynIC message contains the partition 468 * ID 469 * Flush Client -- no parameters, SynIC message contains the partition ID 470 */ 471 472 /* Open Channel parameters */ 473 struct vmbus_channel_open_channel { 474 struct vmbus_channel_message_header header; 475 476 /* Identifies the specific VMBus channel that is being opened. */ 477 u32 child_relid; 478 479 /* ID making a particular open request at a channel offer unique. */ 480 u32 openid; 481 482 /* GPADL for the channel's ring buffer. */ 483 u32 ringbuffer_gpadlhandle; 484 485 /* 486 * Starting with win8, this field will be used to specify 487 * the target virtual processor on which to deliver the interrupt for 488 * the host to guest communication. 489 * Prior to win8, incoming channel interrupts would only 490 * be delivered on cpu 0. Setting this value to 0 would 491 * preserve the earlier behavior. 492 */ 493 u32 target_vp; 494 495 /* 496 * The upstream ring buffer begins at offset zero in the memory 497 * described by RingBufferGpadlHandle. The downstream ring buffer 498 * follows it at this offset (in pages). 499 */ 500 u32 downstream_ringbuffer_pageoffset; 501 502 /* User-specific data to be passed along to the server endpoint. */ 503 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 504 } __packed; 505 506 /* Open Channel Result parameters */ 507 struct vmbus_channel_open_result { 508 struct vmbus_channel_message_header header; 509 u32 child_relid; 510 u32 openid; 511 u32 status; 512 } __packed; 513 514 /* Close channel parameters; */ 515 struct vmbus_channel_close_channel { 516 struct vmbus_channel_message_header header; 517 u32 child_relid; 518 } __packed; 519 520 /* Channel Message GPADL */ 521 #define GPADL_TYPE_RING_BUFFER 1 522 #define GPADL_TYPE_SERVER_SAVE_AREA 2 523 #define GPADL_TYPE_TRANSACTION 8 524 525 /* 526 * The number of PFNs in a GPADL message is defined by the number of 527 * pages that would be spanned by ByteCount and ByteOffset. If the 528 * implied number of PFNs won't fit in this packet, there will be a 529 * follow-up packet that contains more. 530 */ 531 struct vmbus_channel_gpadl_header { 532 struct vmbus_channel_message_header header; 533 u32 child_relid; 534 u32 gpadl; 535 u16 range_buflen; 536 u16 rangecount; 537 struct gpa_range range[0]; 538 } __packed; 539 540 /* This is the followup packet that contains more PFNs. */ 541 struct vmbus_channel_gpadl_body { 542 struct vmbus_channel_message_header header; 543 u32 msgnumber; 544 u32 gpadl; 545 u64 pfn[0]; 546 } __packed; 547 548 struct vmbus_channel_gpadl_created { 549 struct vmbus_channel_message_header header; 550 u32 child_relid; 551 u32 gpadl; 552 u32 creation_status; 553 } __packed; 554 555 struct vmbus_channel_gpadl_teardown { 556 struct vmbus_channel_message_header header; 557 u32 child_relid; 558 u32 gpadl; 559 } __packed; 560 561 struct vmbus_channel_gpadl_torndown { 562 struct vmbus_channel_message_header header; 563 u32 gpadl; 564 } __packed; 565 566 struct vmbus_channel_relid_released { 567 struct vmbus_channel_message_header header; 568 u32 child_relid; 569 } __packed; 570 571 struct vmbus_channel_initiate_contact { 572 struct vmbus_channel_message_header header; 573 u32 vmbus_version_requested; 574 u32 target_vcpu; /* The VCPU the host should respond to */ 575 union { 576 u64 interrupt_page; 577 struct { 578 u8 msg_sint; 579 u8 padding1[3]; 580 u32 padding2; 581 }; 582 }; 583 u64 monitor_page1; 584 u64 monitor_page2; 585 } __packed; 586 587 /* Hyper-V socket: guest's connect()-ing to host */ 588 struct vmbus_channel_tl_connect_request { 589 struct vmbus_channel_message_header header; 590 uuid_le guest_endpoint_id; 591 uuid_le host_service_id; 592 } __packed; 593 594 struct vmbus_channel_version_response { 595 struct vmbus_channel_message_header header; 596 u8 version_supported; 597 598 u8 connection_state; 599 u16 padding; 600 601 /* 602 * On new hosts that support VMBus protocol 5.0, we must use 603 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message, 604 * and for subsequent messages, we must use the Message Connection ID 605 * field in the host-returned Version Response Message. 606 * 607 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1). 608 */ 609 u32 msg_conn_id; 610 } __packed; 611 612 enum vmbus_channel_state { 613 CHANNEL_OFFER_STATE, 614 CHANNEL_OPENING_STATE, 615 CHANNEL_OPEN_STATE, 616 CHANNEL_OPENED_STATE, 617 }; 618 619 /* 620 * Represents each channel msg on the vmbus connection This is a 621 * variable-size data structure depending on the msg type itself 622 */ 623 struct vmbus_channel_msginfo { 624 /* Bookkeeping stuff */ 625 struct list_head msglistentry; 626 627 /* So far, this is only used to handle gpadl body message */ 628 struct list_head submsglist; 629 630 /* Synchronize the request/response if needed */ 631 struct completion waitevent; 632 struct vmbus_channel *waiting_channel; 633 union { 634 struct vmbus_channel_version_supported version_supported; 635 struct vmbus_channel_open_result open_result; 636 struct vmbus_channel_gpadl_torndown gpadl_torndown; 637 struct vmbus_channel_gpadl_created gpadl_created; 638 struct vmbus_channel_version_response version_response; 639 } response; 640 641 u32 msgsize; 642 /* 643 * The channel message that goes out on the "wire". 644 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 645 */ 646 unsigned char msg[0]; 647 }; 648 649 struct vmbus_close_msg { 650 struct vmbus_channel_msginfo info; 651 struct vmbus_channel_close_channel msg; 652 }; 653 654 /* Define connection identifier type. */ 655 union hv_connection_id { 656 u32 asu32; 657 struct { 658 u32 id:24; 659 u32 reserved:8; 660 } u; 661 }; 662 663 enum hv_numa_policy { 664 HV_BALANCED = 0, 665 HV_LOCALIZED, 666 }; 667 668 enum vmbus_device_type { 669 HV_IDE = 0, 670 HV_SCSI, 671 HV_FC, 672 HV_NIC, 673 HV_ND, 674 HV_PCIE, 675 HV_FB, 676 HV_KBD, 677 HV_MOUSE, 678 HV_KVP, 679 HV_TS, 680 HV_HB, 681 HV_SHUTDOWN, 682 HV_FCOPY, 683 HV_BACKUP, 684 HV_DM, 685 HV_UNKNOWN, 686 }; 687 688 struct vmbus_device { 689 u16 dev_type; 690 uuid_le guid; 691 bool perf_device; 692 }; 693 694 struct vmbus_channel { 695 struct list_head listentry; 696 697 struct hv_device *device_obj; 698 699 enum vmbus_channel_state state; 700 701 struct vmbus_channel_offer_channel offermsg; 702 /* 703 * These are based on the OfferMsg.MonitorId. 704 * Save it here for easy access. 705 */ 706 u8 monitor_grp; 707 u8 monitor_bit; 708 709 bool rescind; /* got rescind msg */ 710 struct completion rescind_event; 711 712 u32 ringbuffer_gpadlhandle; 713 714 /* Allocated memory for ring buffer */ 715 void *ringbuffer_pages; 716 u32 ringbuffer_pagecount; 717 struct hv_ring_buffer_info outbound; /* send to parent */ 718 struct hv_ring_buffer_info inbound; /* receive from parent */ 719 720 struct vmbus_close_msg close_msg; 721 722 /* Statistics */ 723 u64 interrupts; /* Host to Guest interrupts */ 724 u64 sig_events; /* Guest to Host events */ 725 726 /* Channel callback's invoked in softirq context */ 727 struct tasklet_struct callback_event; 728 void (*onchannel_callback)(void *context); 729 void *channel_callback_context; 730 731 /* 732 * A channel can be marked for one of three modes of reading: 733 * BATCHED - callback called from taslket and should read 734 * channel until empty. Interrupts from the host 735 * are masked while read is in process (default). 736 * DIRECT - callback called from tasklet (softirq). 737 * ISR - callback called in interrupt context and must 738 * invoke its own deferred processing. 739 * Host interrupts are disabled and must be re-enabled 740 * when ring is empty. 741 */ 742 enum hv_callback_mode { 743 HV_CALL_BATCHED, 744 HV_CALL_DIRECT, 745 HV_CALL_ISR 746 } callback_mode; 747 748 bool is_dedicated_interrupt; 749 u64 sig_event; 750 751 /* 752 * Starting with win8, this field will be used to specify 753 * the target virtual processor on which to deliver the interrupt for 754 * the host to guest communication. 755 * Prior to win8, incoming channel interrupts would only 756 * be delivered on cpu 0. Setting this value to 0 would 757 * preserve the earlier behavior. 758 */ 759 u32 target_vp; 760 /* The corresponding CPUID in the guest */ 761 u32 target_cpu; 762 /* 763 * State to manage the CPU affiliation of channels. 764 */ 765 struct cpumask alloced_cpus_in_node; 766 int numa_node; 767 /* 768 * Support for sub-channels. For high performance devices, 769 * it will be useful to have multiple sub-channels to support 770 * a scalable communication infrastructure with the host. 771 * The support for sub-channels is implemented as an extention 772 * to the current infrastructure. 773 * The initial offer is considered the primary channel and this 774 * offer message will indicate if the host supports sub-channels. 775 * The guest is free to ask for sub-channels to be offerred and can 776 * open these sub-channels as a normal "primary" channel. However, 777 * all sub-channels will have the same type and instance guids as the 778 * primary channel. Requests sent on a given channel will result in a 779 * response on the same channel. 780 */ 781 782 /* 783 * Sub-channel creation callback. This callback will be called in 784 * process context when a sub-channel offer is received from the host. 785 * The guest can open the sub-channel in the context of this callback. 786 */ 787 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 788 789 /* 790 * Channel rescind callback. Some channels (the hvsock ones), need to 791 * register a callback which is invoked in vmbus_onoffer_rescind(). 792 */ 793 void (*chn_rescind_callback)(struct vmbus_channel *channel); 794 795 /* 796 * The spinlock to protect the structure. It is being used to protect 797 * test-and-set access to various attributes of the structure as well 798 * as all sc_list operations. 799 */ 800 spinlock_t lock; 801 /* 802 * All Sub-channels of a primary channel are linked here. 803 */ 804 struct list_head sc_list; 805 /* 806 * Current number of sub-channels. 807 */ 808 int num_sc; 809 /* 810 * Number of a sub-channel (position within sc_list) which is supposed 811 * to be used as the next outgoing channel. 812 */ 813 int next_oc; 814 /* 815 * The primary channel this sub-channel belongs to. 816 * This will be NULL for the primary channel. 817 */ 818 struct vmbus_channel *primary_channel; 819 /* 820 * Support per-channel state for use by vmbus drivers. 821 */ 822 void *per_channel_state; 823 /* 824 * To support per-cpu lookup mapping of relid to channel, 825 * link up channels based on their CPU affinity. 826 */ 827 struct list_head percpu_list; 828 829 /* 830 * Defer freeing channel until after all cpu's have 831 * gone through grace period. 832 */ 833 struct rcu_head rcu; 834 835 /* 836 * For sysfs per-channel properties. 837 */ 838 struct kobject kobj; 839 840 /* 841 * For performance critical channels (storage, networking 842 * etc,), Hyper-V has a mechanism to enhance the throughput 843 * at the expense of latency: 844 * When the host is to be signaled, we just set a bit in a shared page 845 * and this bit will be inspected by the hypervisor within a certain 846 * window and if the bit is set, the host will be signaled. The window 847 * of time is the monitor latency - currently around 100 usecs. This 848 * mechanism improves throughput by: 849 * 850 * A) Making the host more efficient - each time it wakes up, 851 * potentially it will process morev number of packets. The 852 * monitor latency allows a batch to build up. 853 * B) By deferring the hypercall to signal, we will also minimize 854 * the interrupts. 855 * 856 * Clearly, these optimizations improve throughput at the expense of 857 * latency. Furthermore, since the channel is shared for both 858 * control and data messages, control messages currently suffer 859 * unnecessary latency adversley impacting performance and boot 860 * time. To fix this issue, permit tagging the channel as being 861 * in "low latency" mode. In this mode, we will bypass the monitor 862 * mechanism. 863 */ 864 bool low_latency; 865 866 /* 867 * NUMA distribution policy: 868 * We support two policies: 869 * 1) Balanced: Here all performance critical channels are 870 * distributed evenly amongst all the NUMA nodes. 871 * This policy will be the default policy. 872 * 2) Localized: All channels of a given instance of a 873 * performance critical service will be assigned CPUs 874 * within a selected NUMA node. 875 */ 876 enum hv_numa_policy affinity_policy; 877 878 bool probe_done; 879 880 }; 881 882 static inline bool is_hvsock_channel(const struct vmbus_channel *c) 883 { 884 return !!(c->offermsg.offer.chn_flags & 885 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 886 } 887 888 static inline void set_channel_affinity_state(struct vmbus_channel *c, 889 enum hv_numa_policy policy) 890 { 891 c->affinity_policy = policy; 892 } 893 894 static inline void set_channel_read_mode(struct vmbus_channel *c, 895 enum hv_callback_mode mode) 896 { 897 c->callback_mode = mode; 898 } 899 900 static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 901 { 902 c->per_channel_state = s; 903 } 904 905 static inline void *get_per_channel_state(struct vmbus_channel *c) 906 { 907 return c->per_channel_state; 908 } 909 910 static inline void set_channel_pending_send_size(struct vmbus_channel *c, 911 u32 size) 912 { 913 c->outbound.ring_buffer->pending_send_sz = size; 914 } 915 916 static inline void set_low_latency_mode(struct vmbus_channel *c) 917 { 918 c->low_latency = true; 919 } 920 921 static inline void clear_low_latency_mode(struct vmbus_channel *c) 922 { 923 c->low_latency = false; 924 } 925 926 void vmbus_onmessage(void *context); 927 928 int vmbus_request_offers(void); 929 930 /* 931 * APIs for managing sub-channels. 932 */ 933 934 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 935 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 936 937 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 938 void (*chn_rescind_cb)(struct vmbus_channel *)); 939 940 /* 941 * Retrieve the (sub) channel on which to send an outgoing request. 942 * When a primary channel has multiple sub-channels, we choose a 943 * channel whose VCPU binding is closest to the VCPU on which 944 * this call is being made. 945 */ 946 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary); 947 948 /* 949 * Check if sub-channels have already been offerred. This API will be useful 950 * when the driver is unloaded after establishing sub-channels. In this case, 951 * when the driver is re-loaded, the driver would have to check if the 952 * subchannels have already been established before attempting to request 953 * the creation of sub-channels. 954 * This function returns TRUE to indicate that subchannels have already been 955 * created. 956 * This function should be invoked after setting the callback function for 957 * sub-channel creation. 958 */ 959 bool vmbus_are_subchannels_present(struct vmbus_channel *primary); 960 961 /* The format must be the same as struct vmdata_gpa_direct */ 962 struct vmbus_channel_packet_page_buffer { 963 u16 type; 964 u16 dataoffset8; 965 u16 length8; 966 u16 flags; 967 u64 transactionid; 968 u32 reserved; 969 u32 rangecount; 970 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 971 } __packed; 972 973 /* The format must be the same as struct vmdata_gpa_direct */ 974 struct vmbus_channel_packet_multipage_buffer { 975 u16 type; 976 u16 dataoffset8; 977 u16 length8; 978 u16 flags; 979 u64 transactionid; 980 u32 reserved; 981 u32 rangecount; /* Always 1 in this case */ 982 struct hv_multipage_buffer range; 983 } __packed; 984 985 /* The format must be the same as struct vmdata_gpa_direct */ 986 struct vmbus_packet_mpb_array { 987 u16 type; 988 u16 dataoffset8; 989 u16 length8; 990 u16 flags; 991 u64 transactionid; 992 u32 reserved; 993 u32 rangecount; /* Always 1 in this case */ 994 struct hv_mpb_array range; 995 } __packed; 996 997 998 extern int vmbus_open(struct vmbus_channel *channel, 999 u32 send_ringbuffersize, 1000 u32 recv_ringbuffersize, 1001 void *userdata, 1002 u32 userdatalen, 1003 void (*onchannel_callback)(void *context), 1004 void *context); 1005 1006 extern void vmbus_close(struct vmbus_channel *channel); 1007 1008 extern int vmbus_sendpacket(struct vmbus_channel *channel, 1009 void *buffer, 1010 u32 bufferLen, 1011 u64 requestid, 1012 enum vmbus_packet_type type, 1013 u32 flags); 1014 1015 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1016 struct hv_page_buffer pagebuffers[], 1017 u32 pagecount, 1018 void *buffer, 1019 u32 bufferlen, 1020 u64 requestid); 1021 1022 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1023 struct vmbus_packet_mpb_array *mpb, 1024 u32 desc_size, 1025 void *buffer, 1026 u32 bufferlen, 1027 u64 requestid); 1028 1029 extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1030 void *kbuffer, 1031 u32 size, 1032 u32 *gpadl_handle); 1033 1034 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1035 u32 gpadl_handle); 1036 1037 extern int vmbus_recvpacket(struct vmbus_channel *channel, 1038 void *buffer, 1039 u32 bufferlen, 1040 u32 *buffer_actual_len, 1041 u64 *requestid); 1042 1043 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1044 void *buffer, 1045 u32 bufferlen, 1046 u32 *buffer_actual_len, 1047 u64 *requestid); 1048 1049 1050 extern void vmbus_ontimer(unsigned long data); 1051 1052 /* Base driver object */ 1053 struct hv_driver { 1054 const char *name; 1055 1056 /* 1057 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1058 * channel flag, actually doesn't mean a synthetic device because the 1059 * offer's if_type/if_instance can change for every new hvsock 1060 * connection. 1061 * 1062 * However, to facilitate the notification of new-offer/rescind-offer 1063 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1064 * a special vmbus device, and hence we need the below flag to 1065 * indicate if the driver is the hvsock driver or not: we need to 1066 * specially treat the hvosck offer & driver in vmbus_match(). 1067 */ 1068 bool hvsock; 1069 1070 /* the device type supported by this driver */ 1071 uuid_le dev_type; 1072 const struct hv_vmbus_device_id *id_table; 1073 1074 struct device_driver driver; 1075 1076 /* dynamic device GUID's */ 1077 struct { 1078 spinlock_t lock; 1079 struct list_head list; 1080 } dynids; 1081 1082 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1083 int (*remove)(struct hv_device *); 1084 void (*shutdown)(struct hv_device *); 1085 1086 }; 1087 1088 /* Base device object */ 1089 struct hv_device { 1090 /* the device type id of this device */ 1091 uuid_le dev_type; 1092 1093 /* the device instance id of this device */ 1094 uuid_le dev_instance; 1095 u16 vendor_id; 1096 u16 device_id; 1097 1098 struct device device; 1099 1100 struct vmbus_channel *channel; 1101 struct kset *channels_kset; 1102 }; 1103 1104 1105 static inline struct hv_device *device_to_hv_device(struct device *d) 1106 { 1107 return container_of(d, struct hv_device, device); 1108 } 1109 1110 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1111 { 1112 return container_of(d, struct hv_driver, driver); 1113 } 1114 1115 static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1116 { 1117 dev_set_drvdata(&dev->device, data); 1118 } 1119 1120 static inline void *hv_get_drvdata(struct hv_device *dev) 1121 { 1122 return dev_get_drvdata(&dev->device); 1123 } 1124 1125 struct hv_ring_buffer_debug_info { 1126 u32 current_interrupt_mask; 1127 u32 current_read_index; 1128 u32 current_write_index; 1129 u32 bytes_avail_toread; 1130 u32 bytes_avail_towrite; 1131 }; 1132 1133 void hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info, 1134 struct hv_ring_buffer_debug_info *debug_info); 1135 1136 /* Vmbus interface */ 1137 #define vmbus_driver_register(driver) \ 1138 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1139 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1140 struct module *owner, 1141 const char *mod_name); 1142 void vmbus_driver_unregister(struct hv_driver *hv_driver); 1143 1144 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1145 1146 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1147 resource_size_t min, resource_size_t max, 1148 resource_size_t size, resource_size_t align, 1149 bool fb_overlap_ok); 1150 void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1151 1152 /* 1153 * GUID definitions of various offer types - services offered to the guest. 1154 */ 1155 1156 /* 1157 * Network GUID 1158 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1159 */ 1160 #define HV_NIC_GUID \ 1161 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1162 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1163 1164 /* 1165 * IDE GUID 1166 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1167 */ 1168 #define HV_IDE_GUID \ 1169 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1170 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1171 1172 /* 1173 * SCSI GUID 1174 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1175 */ 1176 #define HV_SCSI_GUID \ 1177 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1178 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1179 1180 /* 1181 * Shutdown GUID 1182 * {0e0b6031-5213-4934-818b-38d90ced39db} 1183 */ 1184 #define HV_SHUTDOWN_GUID \ 1185 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1186 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1187 1188 /* 1189 * Time Synch GUID 1190 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1191 */ 1192 #define HV_TS_GUID \ 1193 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1194 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1195 1196 /* 1197 * Heartbeat GUID 1198 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1199 */ 1200 #define HV_HEART_BEAT_GUID \ 1201 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1202 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1203 1204 /* 1205 * KVP GUID 1206 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1207 */ 1208 #define HV_KVP_GUID \ 1209 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1210 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1211 1212 /* 1213 * Dynamic memory GUID 1214 * {525074dc-8985-46e2-8057-a307dc18a502} 1215 */ 1216 #define HV_DM_GUID \ 1217 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1218 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1219 1220 /* 1221 * Mouse GUID 1222 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1223 */ 1224 #define HV_MOUSE_GUID \ 1225 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1226 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1227 1228 /* 1229 * Keyboard GUID 1230 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1231 */ 1232 #define HV_KBD_GUID \ 1233 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1234 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1235 1236 /* 1237 * VSS (Backup/Restore) GUID 1238 */ 1239 #define HV_VSS_GUID \ 1240 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1241 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1242 /* 1243 * Synthetic Video GUID 1244 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1245 */ 1246 #define HV_SYNTHVID_GUID \ 1247 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1248 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1249 1250 /* 1251 * Synthetic FC GUID 1252 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1253 */ 1254 #define HV_SYNTHFC_GUID \ 1255 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1256 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1257 1258 /* 1259 * Guest File Copy Service 1260 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1261 */ 1262 1263 #define HV_FCOPY_GUID \ 1264 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1265 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1266 1267 /* 1268 * NetworkDirect. This is the guest RDMA service. 1269 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1270 */ 1271 #define HV_ND_GUID \ 1272 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1273 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1274 1275 /* 1276 * PCI Express Pass Through 1277 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1278 */ 1279 1280 #define HV_PCIE_GUID \ 1281 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1282 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1283 1284 /* 1285 * Linux doesn't support the 3 devices: the first two are for 1286 * Automatic Virtual Machine Activation, and the third is for 1287 * Remote Desktop Virtualization. 1288 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1289 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1290 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1291 */ 1292 1293 #define HV_AVMA1_GUID \ 1294 .guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1295 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1296 1297 #define HV_AVMA2_GUID \ 1298 .guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1299 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1300 1301 #define HV_RDV_GUID \ 1302 .guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1303 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1304 1305 /* 1306 * Common header for Hyper-V ICs 1307 */ 1308 1309 #define ICMSGTYPE_NEGOTIATE 0 1310 #define ICMSGTYPE_HEARTBEAT 1 1311 #define ICMSGTYPE_KVPEXCHANGE 2 1312 #define ICMSGTYPE_SHUTDOWN 3 1313 #define ICMSGTYPE_TIMESYNC 4 1314 #define ICMSGTYPE_VSS 5 1315 1316 #define ICMSGHDRFLAG_TRANSACTION 1 1317 #define ICMSGHDRFLAG_REQUEST 2 1318 #define ICMSGHDRFLAG_RESPONSE 4 1319 1320 1321 /* 1322 * While we want to handle util services as regular devices, 1323 * there is only one instance of each of these services; so 1324 * we statically allocate the service specific state. 1325 */ 1326 1327 struct hv_util_service { 1328 u8 *recv_buffer; 1329 void *channel; 1330 void (*util_cb)(void *); 1331 int (*util_init)(struct hv_util_service *); 1332 void (*util_deinit)(void); 1333 }; 1334 1335 struct vmbuspipe_hdr { 1336 u32 flags; 1337 u32 msgsize; 1338 } __packed; 1339 1340 struct ic_version { 1341 u16 major; 1342 u16 minor; 1343 } __packed; 1344 1345 struct icmsg_hdr { 1346 struct ic_version icverframe; 1347 u16 icmsgtype; 1348 struct ic_version icvermsg; 1349 u16 icmsgsize; 1350 u32 status; 1351 u8 ictransaction_id; 1352 u8 icflags; 1353 u8 reserved[2]; 1354 } __packed; 1355 1356 struct icmsg_negotiate { 1357 u16 icframe_vercnt; 1358 u16 icmsg_vercnt; 1359 u32 reserved; 1360 struct ic_version icversion_data[1]; /* any size array */ 1361 } __packed; 1362 1363 struct shutdown_msg_data { 1364 u32 reason_code; 1365 u32 timeout_seconds; 1366 u32 flags; 1367 u8 display_message[2048]; 1368 } __packed; 1369 1370 struct heartbeat_msg_data { 1371 u64 seq_num; 1372 u32 reserved[8]; 1373 } __packed; 1374 1375 /* Time Sync IC defs */ 1376 #define ICTIMESYNCFLAG_PROBE 0 1377 #define ICTIMESYNCFLAG_SYNC 1 1378 #define ICTIMESYNCFLAG_SAMPLE 2 1379 1380 #ifdef __x86_64__ 1381 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1382 #else 1383 #define WLTIMEDELTA 116444736000000000LL 1384 #endif 1385 1386 struct ictimesync_data { 1387 u64 parenttime; 1388 u64 childtime; 1389 u64 roundtriptime; 1390 u8 flags; 1391 } __packed; 1392 1393 struct ictimesync_ref_data { 1394 u64 parenttime; 1395 u64 vmreferencetime; 1396 u8 flags; 1397 char leapflags; 1398 char stratum; 1399 u8 reserved[3]; 1400 } __packed; 1401 1402 struct hyperv_service_callback { 1403 u8 msg_type; 1404 char *log_msg; 1405 uuid_le data; 1406 struct vmbus_channel *channel; 1407 void (*callback)(void *context); 1408 }; 1409 1410 #define MAX_SRV_VER 0x7ffffff 1411 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, 1412 const int *fw_version, int fw_vercnt, 1413 const int *srv_version, int srv_vercnt, 1414 int *nego_fw_version, int *nego_srv_version); 1415 1416 void hv_process_channel_removal(u32 relid); 1417 1418 void vmbus_setevent(struct vmbus_channel *channel); 1419 /* 1420 * Negotiated version with the Host. 1421 */ 1422 1423 extern __u32 vmbus_proto_version; 1424 1425 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id, 1426 const uuid_le *shv_host_servie_id); 1427 void vmbus_set_event(struct vmbus_channel *channel); 1428 1429 /* Get the start of the ring buffer. */ 1430 static inline void * 1431 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info) 1432 { 1433 return ring_info->ring_buffer->buffer; 1434 } 1435 1436 /* 1437 * Mask off host interrupt callback notifications 1438 */ 1439 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi) 1440 { 1441 rbi->ring_buffer->interrupt_mask = 1; 1442 1443 /* make sure mask update is not reordered */ 1444 virt_mb(); 1445 } 1446 1447 /* 1448 * Re-enable host callback and return number of outstanding bytes 1449 */ 1450 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi) 1451 { 1452 1453 rbi->ring_buffer->interrupt_mask = 0; 1454 1455 /* make sure mask update is not reordered */ 1456 virt_mb(); 1457 1458 /* 1459 * Now check to see if the ring buffer is still empty. 1460 * If it is not, we raced and we need to process new 1461 * incoming messages. 1462 */ 1463 return hv_get_bytes_to_read(rbi); 1464 } 1465 1466 /* 1467 * An API to support in-place processing of incoming VMBUS packets. 1468 */ 1469 1470 /* Get data payload associated with descriptor */ 1471 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc) 1472 { 1473 return (void *)((unsigned long)desc + (desc->offset8 << 3)); 1474 } 1475 1476 /* Get data size associated with descriptor */ 1477 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc) 1478 { 1479 return (desc->len8 << 3) - (desc->offset8 << 3); 1480 } 1481 1482 1483 struct vmpacket_descriptor * 1484 hv_pkt_iter_first(struct vmbus_channel *channel); 1485 1486 struct vmpacket_descriptor * 1487 __hv_pkt_iter_next(struct vmbus_channel *channel, 1488 const struct vmpacket_descriptor *pkt); 1489 1490 void hv_pkt_iter_close(struct vmbus_channel *channel); 1491 1492 /* 1493 * Get next packet descriptor from iterator 1494 * If at end of list, return NULL and update host. 1495 */ 1496 static inline struct vmpacket_descriptor * 1497 hv_pkt_iter_next(struct vmbus_channel *channel, 1498 const struct vmpacket_descriptor *pkt) 1499 { 1500 struct vmpacket_descriptor *nxt; 1501 1502 nxt = __hv_pkt_iter_next(channel, pkt); 1503 if (!nxt) 1504 hv_pkt_iter_close(channel); 1505 1506 return nxt; 1507 } 1508 1509 #define foreach_vmbus_pkt(pkt, channel) \ 1510 for (pkt = hv_pkt_iter_first(channel); pkt; \ 1511 pkt = hv_pkt_iter_next(channel, pkt)) 1512 1513 #endif /* _HYPERV_H */ 1514