xref: /linux-6.15/include/linux/hyperv.h (revision 6f0310a1)
1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <[email protected]>
20  *   Hank Janssen  <[email protected]>
21  *   K. Y. Srinivasan <[email protected]>
22  *
23  */
24 
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27 
28 #include <uapi/linux/hyperv.h>
29 #include <uapi/asm/hyperv.h>
30 
31 #include <linux/types.h>
32 #include <linux/scatterlist.h>
33 #include <linux/list.h>
34 #include <linux/timer.h>
35 #include <linux/workqueue.h>
36 #include <linux/completion.h>
37 #include <linux/device.h>
38 #include <linux/mod_devicetable.h>
39 
40 
41 #define MAX_PAGE_BUFFER_COUNT				32
42 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
43 
44 #pragma pack(push, 1)
45 
46 /* Single-page buffer */
47 struct hv_page_buffer {
48 	u32 len;
49 	u32 offset;
50 	u64 pfn;
51 };
52 
53 /* Multiple-page buffer */
54 struct hv_multipage_buffer {
55 	/* Length and Offset determines the # of pfns in the array */
56 	u32 len;
57 	u32 offset;
58 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
59 };
60 
61 /*
62  * Multiple-page buffer array; the pfn array is variable size:
63  * The number of entries in the PFN array is determined by
64  * "len" and "offset".
65  */
66 struct hv_mpb_array {
67 	/* Length and Offset determines the # of pfns in the array */
68 	u32 len;
69 	u32 offset;
70 	u64 pfn_array[];
71 };
72 
73 /* 0x18 includes the proprietary packet header */
74 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
75 					(sizeof(struct hv_page_buffer) * \
76 					 MAX_PAGE_BUFFER_COUNT))
77 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
78 					 sizeof(struct hv_multipage_buffer))
79 
80 
81 #pragma pack(pop)
82 
83 struct hv_ring_buffer {
84 	/* Offset in bytes from the start of ring data below */
85 	u32 write_index;
86 
87 	/* Offset in bytes from the start of ring data below */
88 	u32 read_index;
89 
90 	u32 interrupt_mask;
91 
92 	/*
93 	 * Win8 uses some of the reserved bits to implement
94 	 * interrupt driven flow management. On the send side
95 	 * we can request that the receiver interrupt the sender
96 	 * when the ring transitions from being full to being able
97 	 * to handle a message of size "pending_send_sz".
98 	 *
99 	 * Add necessary state for this enhancement.
100 	 */
101 	u32 pending_send_sz;
102 
103 	u32 reserved1[12];
104 
105 	union {
106 		struct {
107 			u32 feat_pending_send_sz:1;
108 		};
109 		u32 value;
110 	} feature_bits;
111 
112 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
113 	u8	reserved2[4028];
114 
115 	/*
116 	 * Ring data starts here + RingDataStartOffset
117 	 * !!! DO NOT place any fields below this !!!
118 	 */
119 	u8 buffer[0];
120 } __packed;
121 
122 struct hv_ring_buffer_info {
123 	struct hv_ring_buffer *ring_buffer;
124 	u32 ring_size;			/* Include the shared header */
125 	spinlock_t ring_lock;
126 
127 	u32 ring_datasize;		/* < ring_size */
128 	u32 ring_data_startoffset;
129 	u32 priv_write_index;
130 	u32 priv_read_index;
131 	u32 cached_read_index;
132 };
133 
134 /*
135  *
136  * hv_get_ringbuffer_availbytes()
137  *
138  * Get number of bytes available to read and to write to
139  * for the specified ring buffer
140  */
141 static inline void
142 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
143 			  u32 *read, u32 *write)
144 {
145 	u32 read_loc, write_loc, dsize;
146 
147 	/* Capture the read/write indices before they changed */
148 	read_loc = rbi->ring_buffer->read_index;
149 	write_loc = rbi->ring_buffer->write_index;
150 	dsize = rbi->ring_datasize;
151 
152 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
153 		read_loc - write_loc;
154 	*read = dsize - *write;
155 }
156 
157 static inline u32 hv_get_bytes_to_read(struct hv_ring_buffer_info *rbi)
158 {
159 	u32 read_loc, write_loc, dsize, read;
160 
161 	dsize = rbi->ring_datasize;
162 	read_loc = rbi->ring_buffer->read_index;
163 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
164 
165 	read = write_loc >= read_loc ? (write_loc - read_loc) :
166 		(dsize - read_loc) + write_loc;
167 
168 	return read;
169 }
170 
171 static inline u32 hv_get_bytes_to_write(struct hv_ring_buffer_info *rbi)
172 {
173 	u32 read_loc, write_loc, dsize, write;
174 
175 	dsize = rbi->ring_datasize;
176 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
177 	write_loc = rbi->ring_buffer->write_index;
178 
179 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
180 		read_loc - write_loc;
181 	return write;
182 }
183 
184 static inline u32 hv_get_cached_bytes_to_write(
185 	const struct hv_ring_buffer_info *rbi)
186 {
187 	u32 read_loc, write_loc, dsize, write;
188 
189 	dsize = rbi->ring_datasize;
190 	read_loc = rbi->cached_read_index;
191 	write_loc = rbi->ring_buffer->write_index;
192 
193 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
194 		read_loc - write_loc;
195 	return write;
196 }
197 /*
198  * VMBUS version is 32 bit entity broken up into
199  * two 16 bit quantities: major_number. minor_number.
200  *
201  * 0 . 13 (Windows Server 2008)
202  * 1 . 1  (Windows 7)
203  * 2 . 4  (Windows 8)
204  * 3 . 0  (Windows 8 R2)
205  * 4 . 0  (Windows 10)
206  */
207 
208 #define VERSION_WS2008  ((0 << 16) | (13))
209 #define VERSION_WIN7    ((1 << 16) | (1))
210 #define VERSION_WIN8    ((2 << 16) | (4))
211 #define VERSION_WIN8_1    ((3 << 16) | (0))
212 #define VERSION_WIN10	((4 << 16) | (0))
213 
214 #define VERSION_INVAL -1
215 
216 #define VERSION_CURRENT VERSION_WIN10
217 
218 /* Make maximum size of pipe payload of 16K */
219 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
220 
221 /* Define PipeMode values. */
222 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
223 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
224 
225 /* The size of the user defined data buffer for non-pipe offers. */
226 #define MAX_USER_DEFINED_BYTES		120
227 
228 /* The size of the user defined data buffer for pipe offers. */
229 #define MAX_PIPE_USER_DEFINED_BYTES	116
230 
231 /*
232  * At the center of the Channel Management library is the Channel Offer. This
233  * struct contains the fundamental information about an offer.
234  */
235 struct vmbus_channel_offer {
236 	uuid_le if_type;
237 	uuid_le if_instance;
238 
239 	/*
240 	 * These two fields are not currently used.
241 	 */
242 	u64 reserved1;
243 	u64 reserved2;
244 
245 	u16 chn_flags;
246 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
247 
248 	union {
249 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
250 		struct {
251 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
252 		} std;
253 
254 		/*
255 		 * Pipes:
256 		 * The following sructure is an integrated pipe protocol, which
257 		 * is implemented on top of standard user-defined data. Pipe
258 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
259 		 * use.
260 		 */
261 		struct {
262 			u32  pipe_mode;
263 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
264 		} pipe;
265 	} u;
266 	/*
267 	 * The sub_channel_index is defined in win8.
268 	 */
269 	u16 sub_channel_index;
270 	u16 reserved3;
271 } __packed;
272 
273 /* Server Flags */
274 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
275 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
276 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
277 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
278 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
279 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
280 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
281 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER		0x2000
282 
283 struct vmpacket_descriptor {
284 	u16 type;
285 	u16 offset8;
286 	u16 len8;
287 	u16 flags;
288 	u64 trans_id;
289 } __packed;
290 
291 struct vmpacket_header {
292 	u32 prev_pkt_start_offset;
293 	struct vmpacket_descriptor descriptor;
294 } __packed;
295 
296 struct vmtransfer_page_range {
297 	u32 byte_count;
298 	u32 byte_offset;
299 } __packed;
300 
301 struct vmtransfer_page_packet_header {
302 	struct vmpacket_descriptor d;
303 	u16 xfer_pageset_id;
304 	u8  sender_owns_set;
305 	u8 reserved;
306 	u32 range_cnt;
307 	struct vmtransfer_page_range ranges[1];
308 } __packed;
309 
310 struct vmgpadl_packet_header {
311 	struct vmpacket_descriptor d;
312 	u32 gpadl;
313 	u32 reserved;
314 } __packed;
315 
316 struct vmadd_remove_transfer_page_set {
317 	struct vmpacket_descriptor d;
318 	u32 gpadl;
319 	u16 xfer_pageset_id;
320 	u16 reserved;
321 } __packed;
322 
323 /*
324  * This structure defines a range in guest physical space that can be made to
325  * look virtually contiguous.
326  */
327 struct gpa_range {
328 	u32 byte_count;
329 	u32 byte_offset;
330 	u64 pfn_array[0];
331 };
332 
333 /*
334  * This is the format for an Establish Gpadl packet, which contains a handle by
335  * which this GPADL will be known and a set of GPA ranges associated with it.
336  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
337  * ranges, then the resulting MDL will be "chained," representing multiple VA
338  * ranges.
339  */
340 struct vmestablish_gpadl {
341 	struct vmpacket_descriptor d;
342 	u32 gpadl;
343 	u32 range_cnt;
344 	struct gpa_range range[1];
345 } __packed;
346 
347 /*
348  * This is the format for a Teardown Gpadl packet, which indicates that the
349  * GPADL handle in the Establish Gpadl packet will never be referenced again.
350  */
351 struct vmteardown_gpadl {
352 	struct vmpacket_descriptor d;
353 	u32 gpadl;
354 	u32 reserved;	/* for alignment to a 8-byte boundary */
355 } __packed;
356 
357 /*
358  * This is the format for a GPA-Direct packet, which contains a set of GPA
359  * ranges, in addition to commands and/or data.
360  */
361 struct vmdata_gpa_direct {
362 	struct vmpacket_descriptor d;
363 	u32 reserved;
364 	u32 range_cnt;
365 	struct gpa_range range[1];
366 } __packed;
367 
368 /* This is the format for a Additional Data Packet. */
369 struct vmadditional_data {
370 	struct vmpacket_descriptor d;
371 	u64 total_bytes;
372 	u32 offset;
373 	u32 byte_cnt;
374 	unsigned char data[1];
375 } __packed;
376 
377 union vmpacket_largest_possible_header {
378 	struct vmpacket_descriptor simple_hdr;
379 	struct vmtransfer_page_packet_header xfer_page_hdr;
380 	struct vmgpadl_packet_header gpadl_hdr;
381 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
382 	struct vmestablish_gpadl establish_gpadl_hdr;
383 	struct vmteardown_gpadl teardown_gpadl_hdr;
384 	struct vmdata_gpa_direct data_gpa_direct_hdr;
385 };
386 
387 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
388 	(void *)(((unsigned char *)__packet) +	\
389 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
390 
391 #define VMPACKET_DATA_LENGTH(__packet)		\
392 	((((struct vmpacket_descriptor)__packet)->len8 -	\
393 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
394 
395 #define VMPACKET_TRANSFER_MODE(__packet)	\
396 	(((struct IMPACT)__packet)->type)
397 
398 enum vmbus_packet_type {
399 	VM_PKT_INVALID				= 0x0,
400 	VM_PKT_SYNCH				= 0x1,
401 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
402 	VM_PKT_RM_XFER_PAGESET			= 0x3,
403 	VM_PKT_ESTABLISH_GPADL			= 0x4,
404 	VM_PKT_TEARDOWN_GPADL			= 0x5,
405 	VM_PKT_DATA_INBAND			= 0x6,
406 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
407 	VM_PKT_DATA_USING_GPADL			= 0x8,
408 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
409 	VM_PKT_CANCEL_REQUEST			= 0xa,
410 	VM_PKT_COMP				= 0xb,
411 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
412 	VM_PKT_ADDITIONAL_DATA			= 0xd
413 };
414 
415 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
416 
417 
418 /* Version 1 messages */
419 enum vmbus_channel_message_type {
420 	CHANNELMSG_INVALID			=  0,
421 	CHANNELMSG_OFFERCHANNEL		=  1,
422 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
423 	CHANNELMSG_REQUESTOFFERS		=  3,
424 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
425 	CHANNELMSG_OPENCHANNEL		=  5,
426 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
427 	CHANNELMSG_CLOSECHANNEL		=  7,
428 	CHANNELMSG_GPADL_HEADER		=  8,
429 	CHANNELMSG_GPADL_BODY			=  9,
430 	CHANNELMSG_GPADL_CREATED		= 10,
431 	CHANNELMSG_GPADL_TEARDOWN		= 11,
432 	CHANNELMSG_GPADL_TORNDOWN		= 12,
433 	CHANNELMSG_RELID_RELEASED		= 13,
434 	CHANNELMSG_INITIATE_CONTACT		= 14,
435 	CHANNELMSG_VERSION_RESPONSE		= 15,
436 	CHANNELMSG_UNLOAD			= 16,
437 	CHANNELMSG_UNLOAD_RESPONSE		= 17,
438 	CHANNELMSG_18				= 18,
439 	CHANNELMSG_19				= 19,
440 	CHANNELMSG_20				= 20,
441 	CHANNELMSG_TL_CONNECT_REQUEST		= 21,
442 	CHANNELMSG_COUNT
443 };
444 
445 struct vmbus_channel_message_header {
446 	enum vmbus_channel_message_type msgtype;
447 	u32 padding;
448 } __packed;
449 
450 /* Query VMBus Version parameters */
451 struct vmbus_channel_query_vmbus_version {
452 	struct vmbus_channel_message_header header;
453 	u32 version;
454 } __packed;
455 
456 /* VMBus Version Supported parameters */
457 struct vmbus_channel_version_supported {
458 	struct vmbus_channel_message_header header;
459 	u8 version_supported;
460 } __packed;
461 
462 /* Offer Channel parameters */
463 struct vmbus_channel_offer_channel {
464 	struct vmbus_channel_message_header header;
465 	struct vmbus_channel_offer offer;
466 	u32 child_relid;
467 	u8 monitorid;
468 	/*
469 	 * win7 and beyond splits this field into a bit field.
470 	 */
471 	u8 monitor_allocated:1;
472 	u8 reserved:7;
473 	/*
474 	 * These are new fields added in win7 and later.
475 	 * Do not access these fields without checking the
476 	 * negotiated protocol.
477 	 *
478 	 * If "is_dedicated_interrupt" is set, we must not set the
479 	 * associated bit in the channel bitmap while sending the
480 	 * interrupt to the host.
481 	 *
482 	 * connection_id is to be used in signaling the host.
483 	 */
484 	u16 is_dedicated_interrupt:1;
485 	u16 reserved1:15;
486 	u32 connection_id;
487 } __packed;
488 
489 /* Rescind Offer parameters */
490 struct vmbus_channel_rescind_offer {
491 	struct vmbus_channel_message_header header;
492 	u32 child_relid;
493 } __packed;
494 
495 /*
496  * Request Offer -- no parameters, SynIC message contains the partition ID
497  * Set Snoop -- no parameters, SynIC message contains the partition ID
498  * Clear Snoop -- no parameters, SynIC message contains the partition ID
499  * All Offers Delivered -- no parameters, SynIC message contains the partition
500  *		           ID
501  * Flush Client -- no parameters, SynIC message contains the partition ID
502  */
503 
504 /* Open Channel parameters */
505 struct vmbus_channel_open_channel {
506 	struct vmbus_channel_message_header header;
507 
508 	/* Identifies the specific VMBus channel that is being opened. */
509 	u32 child_relid;
510 
511 	/* ID making a particular open request at a channel offer unique. */
512 	u32 openid;
513 
514 	/* GPADL for the channel's ring buffer. */
515 	u32 ringbuffer_gpadlhandle;
516 
517 	/*
518 	 * Starting with win8, this field will be used to specify
519 	 * the target virtual processor on which to deliver the interrupt for
520 	 * the host to guest communication.
521 	 * Prior to win8, incoming channel interrupts would only
522 	 * be delivered on cpu 0. Setting this value to 0 would
523 	 * preserve the earlier behavior.
524 	 */
525 	u32 target_vp;
526 
527 	/*
528 	* The upstream ring buffer begins at offset zero in the memory
529 	* described by RingBufferGpadlHandle. The downstream ring buffer
530 	* follows it at this offset (in pages).
531 	*/
532 	u32 downstream_ringbuffer_pageoffset;
533 
534 	/* User-specific data to be passed along to the server endpoint. */
535 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
536 } __packed;
537 
538 /* Open Channel Result parameters */
539 struct vmbus_channel_open_result {
540 	struct vmbus_channel_message_header header;
541 	u32 child_relid;
542 	u32 openid;
543 	u32 status;
544 } __packed;
545 
546 /* Close channel parameters; */
547 struct vmbus_channel_close_channel {
548 	struct vmbus_channel_message_header header;
549 	u32 child_relid;
550 } __packed;
551 
552 /* Channel Message GPADL */
553 #define GPADL_TYPE_RING_BUFFER		1
554 #define GPADL_TYPE_SERVER_SAVE_AREA	2
555 #define GPADL_TYPE_TRANSACTION		8
556 
557 /*
558  * The number of PFNs in a GPADL message is defined by the number of
559  * pages that would be spanned by ByteCount and ByteOffset.  If the
560  * implied number of PFNs won't fit in this packet, there will be a
561  * follow-up packet that contains more.
562  */
563 struct vmbus_channel_gpadl_header {
564 	struct vmbus_channel_message_header header;
565 	u32 child_relid;
566 	u32 gpadl;
567 	u16 range_buflen;
568 	u16 rangecount;
569 	struct gpa_range range[0];
570 } __packed;
571 
572 /* This is the followup packet that contains more PFNs. */
573 struct vmbus_channel_gpadl_body {
574 	struct vmbus_channel_message_header header;
575 	u32 msgnumber;
576 	u32 gpadl;
577 	u64 pfn[0];
578 } __packed;
579 
580 struct vmbus_channel_gpadl_created {
581 	struct vmbus_channel_message_header header;
582 	u32 child_relid;
583 	u32 gpadl;
584 	u32 creation_status;
585 } __packed;
586 
587 struct vmbus_channel_gpadl_teardown {
588 	struct vmbus_channel_message_header header;
589 	u32 child_relid;
590 	u32 gpadl;
591 } __packed;
592 
593 struct vmbus_channel_gpadl_torndown {
594 	struct vmbus_channel_message_header header;
595 	u32 gpadl;
596 } __packed;
597 
598 struct vmbus_channel_relid_released {
599 	struct vmbus_channel_message_header header;
600 	u32 child_relid;
601 } __packed;
602 
603 struct vmbus_channel_initiate_contact {
604 	struct vmbus_channel_message_header header;
605 	u32 vmbus_version_requested;
606 	u32 target_vcpu; /* The VCPU the host should respond to */
607 	u64 interrupt_page;
608 	u64 monitor_page1;
609 	u64 monitor_page2;
610 } __packed;
611 
612 /* Hyper-V socket: guest's connect()-ing to host */
613 struct vmbus_channel_tl_connect_request {
614 	struct vmbus_channel_message_header header;
615 	uuid_le guest_endpoint_id;
616 	uuid_le host_service_id;
617 } __packed;
618 
619 struct vmbus_channel_version_response {
620 	struct vmbus_channel_message_header header;
621 	u8 version_supported;
622 } __packed;
623 
624 enum vmbus_channel_state {
625 	CHANNEL_OFFER_STATE,
626 	CHANNEL_OPENING_STATE,
627 	CHANNEL_OPEN_STATE,
628 	CHANNEL_OPENED_STATE,
629 };
630 
631 /*
632  * Represents each channel msg on the vmbus connection This is a
633  * variable-size data structure depending on the msg type itself
634  */
635 struct vmbus_channel_msginfo {
636 	/* Bookkeeping stuff */
637 	struct list_head msglistentry;
638 
639 	/* So far, this is only used to handle gpadl body message */
640 	struct list_head submsglist;
641 
642 	/* Synchronize the request/response if needed */
643 	struct completion  waitevent;
644 	union {
645 		struct vmbus_channel_version_supported version_supported;
646 		struct vmbus_channel_open_result open_result;
647 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
648 		struct vmbus_channel_gpadl_created gpadl_created;
649 		struct vmbus_channel_version_response version_response;
650 	} response;
651 
652 	u32 msgsize;
653 	/*
654 	 * The channel message that goes out on the "wire".
655 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
656 	 */
657 	unsigned char msg[0];
658 };
659 
660 struct vmbus_close_msg {
661 	struct vmbus_channel_msginfo info;
662 	struct vmbus_channel_close_channel msg;
663 };
664 
665 /* Define connection identifier type. */
666 union hv_connection_id {
667 	u32 asu32;
668 	struct {
669 		u32 id:24;
670 		u32 reserved:8;
671 	} u;
672 };
673 
674 /* Definition of the hv_signal_event hypercall input structure. */
675 struct hv_input_signal_event {
676 	union hv_connection_id connectionid;
677 	u16 flag_number;
678 	u16 rsvdz;
679 };
680 
681 struct hv_input_signal_event_buffer {
682 	u64 align8;
683 	struct hv_input_signal_event event;
684 };
685 
686 enum hv_signal_policy {
687 	HV_SIGNAL_POLICY_DEFAULT = 0,
688 	HV_SIGNAL_POLICY_EXPLICIT,
689 };
690 
691 enum hv_numa_policy {
692 	HV_BALANCED = 0,
693 	HV_LOCALIZED,
694 };
695 
696 enum vmbus_device_type {
697 	HV_IDE = 0,
698 	HV_SCSI,
699 	HV_FC,
700 	HV_NIC,
701 	HV_ND,
702 	HV_PCIE,
703 	HV_FB,
704 	HV_KBD,
705 	HV_MOUSE,
706 	HV_KVP,
707 	HV_TS,
708 	HV_HB,
709 	HV_SHUTDOWN,
710 	HV_FCOPY,
711 	HV_BACKUP,
712 	HV_DM,
713 	HV_UNKNOWN,
714 };
715 
716 struct vmbus_device {
717 	u16  dev_type;
718 	uuid_le guid;
719 	bool perf_device;
720 };
721 
722 struct vmbus_channel {
723 	struct list_head listentry;
724 
725 	struct hv_device *device_obj;
726 
727 	enum vmbus_channel_state state;
728 
729 	struct vmbus_channel_offer_channel offermsg;
730 	/*
731 	 * These are based on the OfferMsg.MonitorId.
732 	 * Save it here for easy access.
733 	 */
734 	u8 monitor_grp;
735 	u8 monitor_bit;
736 
737 	bool rescind; /* got rescind msg */
738 
739 	u32 ringbuffer_gpadlhandle;
740 
741 	/* Allocated memory for ring buffer */
742 	void *ringbuffer_pages;
743 	u32 ringbuffer_pagecount;
744 	struct hv_ring_buffer_info outbound;	/* send to parent */
745 	struct hv_ring_buffer_info inbound;	/* receive from parent */
746 	spinlock_t inbound_lock;
747 
748 	struct vmbus_close_msg close_msg;
749 
750 	/* Channel callback are invoked in this workqueue context */
751 	/* HANDLE dataWorkQueue; */
752 
753 	void (*onchannel_callback)(void *context);
754 	void *channel_callback_context;
755 
756 	/*
757 	 * A channel can be marked for efficient (batched)
758 	 * reading:
759 	 * If batched_reading is set to "true", we read until the
760 	 * channel is empty and hold off interrupts from the host
761 	 * during the entire read process.
762 	 * If batched_reading is set to "false", the client is not
763 	 * going to perform batched reading.
764 	 *
765 	 * By default we will enable batched reading; specific
766 	 * drivers that don't want this behavior can turn it off.
767 	 */
768 
769 	bool batched_reading;
770 
771 	bool is_dedicated_interrupt;
772 	struct hv_input_signal_event_buffer sig_buf;
773 	struct hv_input_signal_event *sig_event;
774 
775 	/*
776 	 * Starting with win8, this field will be used to specify
777 	 * the target virtual processor on which to deliver the interrupt for
778 	 * the host to guest communication.
779 	 * Prior to win8, incoming channel interrupts would only
780 	 * be delivered on cpu 0. Setting this value to 0 would
781 	 * preserve the earlier behavior.
782 	 */
783 	u32 target_vp;
784 	/* The corresponding CPUID in the guest */
785 	u32 target_cpu;
786 	/*
787 	 * State to manage the CPU affiliation of channels.
788 	 */
789 	struct cpumask alloced_cpus_in_node;
790 	int numa_node;
791 	/*
792 	 * Support for sub-channels. For high performance devices,
793 	 * it will be useful to have multiple sub-channels to support
794 	 * a scalable communication infrastructure with the host.
795 	 * The support for sub-channels is implemented as an extention
796 	 * to the current infrastructure.
797 	 * The initial offer is considered the primary channel and this
798 	 * offer message will indicate if the host supports sub-channels.
799 	 * The guest is free to ask for sub-channels to be offerred and can
800 	 * open these sub-channels as a normal "primary" channel. However,
801 	 * all sub-channels will have the same type and instance guids as the
802 	 * primary channel. Requests sent on a given channel will result in a
803 	 * response on the same channel.
804 	 */
805 
806 	/*
807 	 * Sub-channel creation callback. This callback will be called in
808 	 * process context when a sub-channel offer is received from the host.
809 	 * The guest can open the sub-channel in the context of this callback.
810 	 */
811 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
812 
813 	/*
814 	 * Channel rescind callback. Some channels (the hvsock ones), need to
815 	 * register a callback which is invoked in vmbus_onoffer_rescind().
816 	 */
817 	void (*chn_rescind_callback)(struct vmbus_channel *channel);
818 
819 	/*
820 	 * The spinlock to protect the structure. It is being used to protect
821 	 * test-and-set access to various attributes of the structure as well
822 	 * as all sc_list operations.
823 	 */
824 	spinlock_t lock;
825 	/*
826 	 * All Sub-channels of a primary channel are linked here.
827 	 */
828 	struct list_head sc_list;
829 	/*
830 	 * Current number of sub-channels.
831 	 */
832 	int num_sc;
833 	/*
834 	 * Number of a sub-channel (position within sc_list) which is supposed
835 	 * to be used as the next outgoing channel.
836 	 */
837 	int next_oc;
838 	/*
839 	 * The primary channel this sub-channel belongs to.
840 	 * This will be NULL for the primary channel.
841 	 */
842 	struct vmbus_channel *primary_channel;
843 	/*
844 	 * Support per-channel state for use by vmbus drivers.
845 	 */
846 	void *per_channel_state;
847 	/*
848 	 * To support per-cpu lookup mapping of relid to channel,
849 	 * link up channels based on their CPU affinity.
850 	 */
851 	struct list_head percpu_list;
852 	/*
853 	 * Host signaling policy: The default policy will be
854 	 * based on the ring buffer state. We will also support
855 	 * a policy where the client driver can have explicit
856 	 * signaling control.
857 	 */
858 	enum hv_signal_policy  signal_policy;
859 	/*
860 	 * On the channel send side, many of the VMBUS
861 	 * device drivers explicity serialize access to the
862 	 * outgoing ring buffer. Give more control to the
863 	 * VMBUS device drivers in terms how to serialize
864 	 * accesss to the outgoing ring buffer.
865 	 * The default behavior will be to aquire the
866 	 * ring lock to preserve the current behavior.
867 	 */
868 	bool acquire_ring_lock;
869 	/*
870 	 * For performance critical channels (storage, networking
871 	 * etc,), Hyper-V has a mechanism to enhance the throughput
872 	 * at the expense of latency:
873 	 * When the host is to be signaled, we just set a bit in a shared page
874 	 * and this bit will be inspected by the hypervisor within a certain
875 	 * window and if the bit is set, the host will be signaled. The window
876 	 * of time is the monitor latency - currently around 100 usecs. This
877 	 * mechanism improves throughput by:
878 	 *
879 	 * A) Making the host more efficient - each time it wakes up,
880 	 *    potentially it will process morev number of packets. The
881 	 *    monitor latency allows a batch to build up.
882 	 * B) By deferring the hypercall to signal, we will also minimize
883 	 *    the interrupts.
884 	 *
885 	 * Clearly, these optimizations improve throughput at the expense of
886 	 * latency. Furthermore, since the channel is shared for both
887 	 * control and data messages, control messages currently suffer
888 	 * unnecessary latency adversley impacting performance and boot
889 	 * time. To fix this issue, permit tagging the channel as being
890 	 * in "low latency" mode. In this mode, we will bypass the monitor
891 	 * mechanism.
892 	 */
893 	bool low_latency;
894 
895 	/*
896 	 * NUMA distribution policy:
897 	 * We support teo policies:
898 	 * 1) Balanced: Here all performance critical channels are
899 	 *    distributed evenly amongst all the NUMA nodes.
900 	 *    This policy will be the default policy.
901 	 * 2) Localized: All channels of a given instance of a
902 	 *    performance critical service will be assigned CPUs
903 	 *    within a selected NUMA node.
904 	 */
905 	enum hv_numa_policy affinity_policy;
906 
907 };
908 
909 static inline void set_channel_lock_state(struct vmbus_channel *c, bool state)
910 {
911 	c->acquire_ring_lock = state;
912 }
913 
914 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
915 {
916 	return !!(c->offermsg.offer.chn_flags &
917 		  VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
918 }
919 
920 static inline void set_channel_signal_state(struct vmbus_channel *c,
921 					    enum hv_signal_policy policy)
922 {
923 	c->signal_policy = policy;
924 }
925 
926 static inline void set_channel_affinity_state(struct vmbus_channel *c,
927 					      enum hv_numa_policy policy)
928 {
929 	c->affinity_policy = policy;
930 }
931 
932 static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
933 {
934 	c->batched_reading = state;
935 }
936 
937 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
938 {
939 	c->per_channel_state = s;
940 }
941 
942 static inline void *get_per_channel_state(struct vmbus_channel *c)
943 {
944 	return c->per_channel_state;
945 }
946 
947 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
948 						 u32 size)
949 {
950 	c->outbound.ring_buffer->pending_send_sz = size;
951 }
952 
953 static inline void set_low_latency_mode(struct vmbus_channel *c)
954 {
955 	c->low_latency = true;
956 }
957 
958 static inline void clear_low_latency_mode(struct vmbus_channel *c)
959 {
960 	c->low_latency = false;
961 }
962 
963 void vmbus_onmessage(void *context);
964 
965 int vmbus_request_offers(void);
966 
967 /*
968  * APIs for managing sub-channels.
969  */
970 
971 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
972 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
973 
974 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
975 		void (*chn_rescind_cb)(struct vmbus_channel *));
976 
977 /*
978  * Retrieve the (sub) channel on which to send an outgoing request.
979  * When a primary channel has multiple sub-channels, we choose a
980  * channel whose VCPU binding is closest to the VCPU on which
981  * this call is being made.
982  */
983 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
984 
985 /*
986  * Check if sub-channels have already been offerred. This API will be useful
987  * when the driver is unloaded after establishing sub-channels. In this case,
988  * when the driver is re-loaded, the driver would have to check if the
989  * subchannels have already been established before attempting to request
990  * the creation of sub-channels.
991  * This function returns TRUE to indicate that subchannels have already been
992  * created.
993  * This function should be invoked after setting the callback function for
994  * sub-channel creation.
995  */
996 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
997 
998 /* The format must be the same as struct vmdata_gpa_direct */
999 struct vmbus_channel_packet_page_buffer {
1000 	u16 type;
1001 	u16 dataoffset8;
1002 	u16 length8;
1003 	u16 flags;
1004 	u64 transactionid;
1005 	u32 reserved;
1006 	u32 rangecount;
1007 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1008 } __packed;
1009 
1010 /* The format must be the same as struct vmdata_gpa_direct */
1011 struct vmbus_channel_packet_multipage_buffer {
1012 	u16 type;
1013 	u16 dataoffset8;
1014 	u16 length8;
1015 	u16 flags;
1016 	u64 transactionid;
1017 	u32 reserved;
1018 	u32 rangecount;		/* Always 1 in this case */
1019 	struct hv_multipage_buffer range;
1020 } __packed;
1021 
1022 /* The format must be the same as struct vmdata_gpa_direct */
1023 struct vmbus_packet_mpb_array {
1024 	u16 type;
1025 	u16 dataoffset8;
1026 	u16 length8;
1027 	u16 flags;
1028 	u64 transactionid;
1029 	u32 reserved;
1030 	u32 rangecount;         /* Always 1 in this case */
1031 	struct hv_mpb_array range;
1032 } __packed;
1033 
1034 
1035 extern int vmbus_open(struct vmbus_channel *channel,
1036 			    u32 send_ringbuffersize,
1037 			    u32 recv_ringbuffersize,
1038 			    void *userdata,
1039 			    u32 userdatalen,
1040 			    void(*onchannel_callback)(void *context),
1041 			    void *context);
1042 
1043 extern void vmbus_close(struct vmbus_channel *channel);
1044 
1045 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1046 				  void *buffer,
1047 				  u32 bufferLen,
1048 				  u64 requestid,
1049 				  enum vmbus_packet_type type,
1050 				  u32 flags);
1051 
1052 extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel,
1053 				  void *buffer,
1054 				  u32 bufferLen,
1055 				  u64 requestid,
1056 				  enum vmbus_packet_type type,
1057 				  u32 flags,
1058 				  bool kick_q);
1059 
1060 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1061 					    struct hv_page_buffer pagebuffers[],
1062 					    u32 pagecount,
1063 					    void *buffer,
1064 					    u32 bufferlen,
1065 					    u64 requestid);
1066 
1067 extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel,
1068 					   struct hv_page_buffer pagebuffers[],
1069 					   u32 pagecount,
1070 					   void *buffer,
1071 					   u32 bufferlen,
1072 					   u64 requestid,
1073 					   u32 flags,
1074 					   bool kick_q);
1075 
1076 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1077 					struct hv_multipage_buffer *mpb,
1078 					void *buffer,
1079 					u32 bufferlen,
1080 					u64 requestid);
1081 
1082 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1083 				     struct vmbus_packet_mpb_array *mpb,
1084 				     u32 desc_size,
1085 				     void *buffer,
1086 				     u32 bufferlen,
1087 				     u64 requestid);
1088 
1089 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1090 				      void *kbuffer,
1091 				      u32 size,
1092 				      u32 *gpadl_handle);
1093 
1094 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1095 				     u32 gpadl_handle);
1096 
1097 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1098 				  void *buffer,
1099 				  u32 bufferlen,
1100 				  u32 *buffer_actual_len,
1101 				  u64 *requestid);
1102 
1103 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1104 				     void *buffer,
1105 				     u32 bufferlen,
1106 				     u32 *buffer_actual_len,
1107 				     u64 *requestid);
1108 
1109 
1110 extern void vmbus_ontimer(unsigned long data);
1111 
1112 /* Base driver object */
1113 struct hv_driver {
1114 	const char *name;
1115 
1116 	/*
1117 	 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1118 	 * channel flag, actually doesn't mean a synthetic device because the
1119 	 * offer's if_type/if_instance can change for every new hvsock
1120 	 * connection.
1121 	 *
1122 	 * However, to facilitate the notification of new-offer/rescind-offer
1123 	 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1124 	 * a special vmbus device, and hence we need the below flag to
1125 	 * indicate if the driver is the hvsock driver or not: we need to
1126 	 * specially treat the hvosck offer & driver in vmbus_match().
1127 	 */
1128 	bool hvsock;
1129 
1130 	/* the device type supported by this driver */
1131 	uuid_le dev_type;
1132 	const struct hv_vmbus_device_id *id_table;
1133 
1134 	struct device_driver driver;
1135 
1136 	/* dynamic device GUID's */
1137 	struct  {
1138 		spinlock_t lock;
1139 		struct list_head list;
1140 	} dynids;
1141 
1142 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1143 	int (*remove)(struct hv_device *);
1144 	void (*shutdown)(struct hv_device *);
1145 
1146 };
1147 
1148 /* Base device object */
1149 struct hv_device {
1150 	/* the device type id of this device */
1151 	uuid_le dev_type;
1152 
1153 	/* the device instance id of this device */
1154 	uuid_le dev_instance;
1155 	u16 vendor_id;
1156 	u16 device_id;
1157 
1158 	struct device device;
1159 
1160 	struct vmbus_channel *channel;
1161 };
1162 
1163 
1164 static inline struct hv_device *device_to_hv_device(struct device *d)
1165 {
1166 	return container_of(d, struct hv_device, device);
1167 }
1168 
1169 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1170 {
1171 	return container_of(d, struct hv_driver, driver);
1172 }
1173 
1174 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1175 {
1176 	dev_set_drvdata(&dev->device, data);
1177 }
1178 
1179 static inline void *hv_get_drvdata(struct hv_device *dev)
1180 {
1181 	return dev_get_drvdata(&dev->device);
1182 }
1183 
1184 /* Vmbus interface */
1185 #define vmbus_driver_register(driver)	\
1186 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1187 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1188 					 struct module *owner,
1189 					 const char *mod_name);
1190 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1191 
1192 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1193 
1194 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1195 			resource_size_t min, resource_size_t max,
1196 			resource_size_t size, resource_size_t align,
1197 			bool fb_overlap_ok);
1198 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1199 int vmbus_cpu_number_to_vp_number(int cpu_number);
1200 u64 hv_do_hypercall(u64 control, void *input, void *output);
1201 
1202 /*
1203  * GUID definitions of various offer types - services offered to the guest.
1204  */
1205 
1206 /*
1207  * Network GUID
1208  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1209  */
1210 #define HV_NIC_GUID \
1211 	.guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1212 			0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1213 
1214 /*
1215  * IDE GUID
1216  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1217  */
1218 #define HV_IDE_GUID \
1219 	.guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1220 			0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1221 
1222 /*
1223  * SCSI GUID
1224  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1225  */
1226 #define HV_SCSI_GUID \
1227 	.guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1228 			0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1229 
1230 /*
1231  * Shutdown GUID
1232  * {0e0b6031-5213-4934-818b-38d90ced39db}
1233  */
1234 #define HV_SHUTDOWN_GUID \
1235 	.guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1236 			0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1237 
1238 /*
1239  * Time Synch GUID
1240  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1241  */
1242 #define HV_TS_GUID \
1243 	.guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1244 			0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1245 
1246 /*
1247  * Heartbeat GUID
1248  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1249  */
1250 #define HV_HEART_BEAT_GUID \
1251 	.guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1252 			0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1253 
1254 /*
1255  * KVP GUID
1256  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1257  */
1258 #define HV_KVP_GUID \
1259 	.guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1260 			0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1261 
1262 /*
1263  * Dynamic memory GUID
1264  * {525074dc-8985-46e2-8057-a307dc18a502}
1265  */
1266 #define HV_DM_GUID \
1267 	.guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1268 			0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1269 
1270 /*
1271  * Mouse GUID
1272  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1273  */
1274 #define HV_MOUSE_GUID \
1275 	.guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1276 			0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1277 
1278 /*
1279  * Keyboard GUID
1280  * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1281  */
1282 #define HV_KBD_GUID \
1283 	.guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1284 			0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1285 
1286 /*
1287  * VSS (Backup/Restore) GUID
1288  */
1289 #define HV_VSS_GUID \
1290 	.guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1291 			0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1292 /*
1293  * Synthetic Video GUID
1294  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1295  */
1296 #define HV_SYNTHVID_GUID \
1297 	.guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1298 			0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1299 
1300 /*
1301  * Synthetic FC GUID
1302  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1303  */
1304 #define HV_SYNTHFC_GUID \
1305 	.guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1306 			0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1307 
1308 /*
1309  * Guest File Copy Service
1310  * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1311  */
1312 
1313 #define HV_FCOPY_GUID \
1314 	.guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1315 			0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1316 
1317 /*
1318  * NetworkDirect. This is the guest RDMA service.
1319  * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1320  */
1321 #define HV_ND_GUID \
1322 	.guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1323 			0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1324 
1325 /*
1326  * PCI Express Pass Through
1327  * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1328  */
1329 
1330 #define HV_PCIE_GUID \
1331 	.guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1332 			0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1333 
1334 /*
1335  * Linux doesn't support the 3 devices: the first two are for
1336  * Automatic Virtual Machine Activation, and the third is for
1337  * Remote Desktop Virtualization.
1338  * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1339  * {3375baf4-9e15-4b30-b765-67acb10d607b}
1340  * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1341  */
1342 
1343 #define HV_AVMA1_GUID \
1344 	.guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1345 			0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1346 
1347 #define HV_AVMA2_GUID \
1348 	.guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1349 			0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1350 
1351 #define HV_RDV_GUID \
1352 	.guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1353 			0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1354 
1355 /*
1356  * Common header for Hyper-V ICs
1357  */
1358 
1359 #define ICMSGTYPE_NEGOTIATE		0
1360 #define ICMSGTYPE_HEARTBEAT		1
1361 #define ICMSGTYPE_KVPEXCHANGE		2
1362 #define ICMSGTYPE_SHUTDOWN		3
1363 #define ICMSGTYPE_TIMESYNC		4
1364 #define ICMSGTYPE_VSS			5
1365 
1366 #define ICMSGHDRFLAG_TRANSACTION	1
1367 #define ICMSGHDRFLAG_REQUEST		2
1368 #define ICMSGHDRFLAG_RESPONSE		4
1369 
1370 
1371 /*
1372  * While we want to handle util services as regular devices,
1373  * there is only one instance of each of these services; so
1374  * we statically allocate the service specific state.
1375  */
1376 
1377 struct hv_util_service {
1378 	u8 *recv_buffer;
1379 	void *channel;
1380 	void (*util_cb)(void *);
1381 	int (*util_init)(struct hv_util_service *);
1382 	void (*util_deinit)(void);
1383 };
1384 
1385 struct vmbuspipe_hdr {
1386 	u32 flags;
1387 	u32 msgsize;
1388 } __packed;
1389 
1390 struct ic_version {
1391 	u16 major;
1392 	u16 minor;
1393 } __packed;
1394 
1395 struct icmsg_hdr {
1396 	struct ic_version icverframe;
1397 	u16 icmsgtype;
1398 	struct ic_version icvermsg;
1399 	u16 icmsgsize;
1400 	u32 status;
1401 	u8 ictransaction_id;
1402 	u8 icflags;
1403 	u8 reserved[2];
1404 } __packed;
1405 
1406 struct icmsg_negotiate {
1407 	u16 icframe_vercnt;
1408 	u16 icmsg_vercnt;
1409 	u32 reserved;
1410 	struct ic_version icversion_data[1]; /* any size array */
1411 } __packed;
1412 
1413 struct shutdown_msg_data {
1414 	u32 reason_code;
1415 	u32 timeout_seconds;
1416 	u32 flags;
1417 	u8  display_message[2048];
1418 } __packed;
1419 
1420 struct heartbeat_msg_data {
1421 	u64 seq_num;
1422 	u32 reserved[8];
1423 } __packed;
1424 
1425 /* Time Sync IC defs */
1426 #define ICTIMESYNCFLAG_PROBE	0
1427 #define ICTIMESYNCFLAG_SYNC	1
1428 #define ICTIMESYNCFLAG_SAMPLE	2
1429 
1430 #ifdef __x86_64__
1431 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1432 #else
1433 #define WLTIMEDELTA	116444736000000000LL
1434 #endif
1435 
1436 struct ictimesync_data {
1437 	u64 parenttime;
1438 	u64 childtime;
1439 	u64 roundtriptime;
1440 	u8 flags;
1441 } __packed;
1442 
1443 struct ictimesync_ref_data {
1444 	u64 parenttime;
1445 	u64 vmreferencetime;
1446 	u8 flags;
1447 	char leapflags;
1448 	char stratum;
1449 	u8 reserved[3];
1450 } __packed;
1451 
1452 struct hyperv_service_callback {
1453 	u8 msg_type;
1454 	char *log_msg;
1455 	uuid_le data;
1456 	struct vmbus_channel *channel;
1457 	void (*callback) (void *context);
1458 };
1459 
1460 #define MAX_SRV_VER	0x7ffffff
1461 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1462 					struct icmsg_negotiate *, u8 *, int,
1463 					int);
1464 
1465 void hv_event_tasklet_disable(struct vmbus_channel *channel);
1466 void hv_event_tasklet_enable(struct vmbus_channel *channel);
1467 
1468 void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid);
1469 
1470 void vmbus_setevent(struct vmbus_channel *channel);
1471 /*
1472  * Negotiated version with the Host.
1473  */
1474 
1475 extern __u32 vmbus_proto_version;
1476 
1477 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1478 				  const uuid_le *shv_host_servie_id);
1479 void vmbus_set_event(struct vmbus_channel *channel);
1480 
1481 /* Get the start of the ring buffer. */
1482 static inline void *
1483 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
1484 {
1485 	return (void *)ring_info->ring_buffer->buffer;
1486 }
1487 
1488 /*
1489  * To optimize the flow management on the send-side,
1490  * when the sender is blocked because of lack of
1491  * sufficient space in the ring buffer, potential the
1492  * consumer of the ring buffer can signal the producer.
1493  * This is controlled by the following parameters:
1494  *
1495  * 1. pending_send_sz: This is the size in bytes that the
1496  *    producer is trying to send.
1497  * 2. The feature bit feat_pending_send_sz set to indicate if
1498  *    the consumer of the ring will signal when the ring
1499  *    state transitions from being full to a state where
1500  *    there is room for the producer to send the pending packet.
1501  */
1502 
1503 static inline  void hv_signal_on_read(struct vmbus_channel *channel)
1504 {
1505 	u32 cur_write_sz, cached_write_sz;
1506 	u32 pending_sz;
1507 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1508 
1509 	/*
1510 	 * Issue a full memory barrier before making the signaling decision.
1511 	 * Here is the reason for having this barrier:
1512 	 * If the reading of the pend_sz (in this function)
1513 	 * were to be reordered and read before we commit the new read
1514 	 * index (in the calling function)  we could
1515 	 * have a problem. If the host were to set the pending_sz after we
1516 	 * have sampled pending_sz and go to sleep before we commit the
1517 	 * read index, we could miss sending the interrupt. Issue a full
1518 	 * memory barrier to address this.
1519 	 */
1520 	virt_mb();
1521 
1522 	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
1523 	/* If the other end is not blocked on write don't bother. */
1524 	if (pending_sz == 0)
1525 		return;
1526 
1527 	cur_write_sz = hv_get_bytes_to_write(rbi);
1528 
1529 	if (cur_write_sz < pending_sz)
1530 		return;
1531 
1532 	cached_write_sz = hv_get_cached_bytes_to_write(rbi);
1533 	if (cached_write_sz < pending_sz)
1534 		vmbus_setevent(channel);
1535 
1536 	return;
1537 }
1538 
1539 static inline void
1540 init_cached_read_index(struct vmbus_channel *channel)
1541 {
1542 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1543 
1544 	rbi->cached_read_index = rbi->ring_buffer->read_index;
1545 }
1546 
1547 /*
1548  * An API to support in-place processing of incoming VMBUS packets.
1549  */
1550 #define VMBUS_PKT_TRAILER	8
1551 
1552 static inline struct vmpacket_descriptor *
1553 get_next_pkt_raw(struct vmbus_channel *channel)
1554 {
1555 	struct hv_ring_buffer_info *ring_info = &channel->inbound;
1556 	u32 priv_read_loc = ring_info->priv_read_index;
1557 	void *ring_buffer = hv_get_ring_buffer(ring_info);
1558 	u32 dsize = ring_info->ring_datasize;
1559 	/*
1560 	 * delta is the difference between what is available to read and
1561 	 * what was already consumed in place. We commit read index after
1562 	 * the whole batch is processed.
1563 	 */
1564 	u32 delta = priv_read_loc >= ring_info->ring_buffer->read_index ?
1565 		priv_read_loc - ring_info->ring_buffer->read_index :
1566 		(dsize - ring_info->ring_buffer->read_index) + priv_read_loc;
1567 	u32 bytes_avail_toread = (hv_get_bytes_to_read(ring_info) - delta);
1568 
1569 	if (bytes_avail_toread < sizeof(struct vmpacket_descriptor))
1570 		return NULL;
1571 
1572 	return ring_buffer + priv_read_loc;
1573 }
1574 
1575 /*
1576  * A helper function to step through packets "in-place"
1577  * This API is to be called after each successful call
1578  * get_next_pkt_raw().
1579  */
1580 static inline void put_pkt_raw(struct vmbus_channel *channel,
1581 				struct vmpacket_descriptor *desc)
1582 {
1583 	struct hv_ring_buffer_info *ring_info = &channel->inbound;
1584 	u32 packetlen = desc->len8 << 3;
1585 	u32 dsize = ring_info->ring_datasize;
1586 
1587 	/*
1588 	 * Include the packet trailer.
1589 	 */
1590 	ring_info->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
1591 	ring_info->priv_read_index %= dsize;
1592 }
1593 
1594 /*
1595  * This call commits the read index and potentially signals the host.
1596  * Here is the pattern for using the "in-place" consumption APIs:
1597  *
1598  * init_cached_read_index();
1599  *
1600  * while (get_next_pkt_raw() {
1601  *	process the packet "in-place";
1602  *	put_pkt_raw();
1603  * }
1604  * if (packets processed in place)
1605  *	commit_rd_index();
1606  */
1607 static inline void commit_rd_index(struct vmbus_channel *channel)
1608 {
1609 	struct hv_ring_buffer_info *ring_info = &channel->inbound;
1610 	/*
1611 	 * Make sure all reads are done before we update the read index since
1612 	 * the writer may start writing to the read area once the read index
1613 	 * is updated.
1614 	 */
1615 	virt_rmb();
1616 	ring_info->ring_buffer->read_index = ring_info->priv_read_index;
1617 
1618 	hv_signal_on_read(channel);
1619 }
1620 
1621 
1622 #endif /* _HYPERV_H */
1623