xref: /linux-6.15/include/linux/hyperv.h (revision 509edd95)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *
4  * Copyright (c) 2011, Microsoft Corporation.
5  *
6  * Authors:
7  *   Haiyang Zhang <[email protected]>
8  *   Hank Janssen  <[email protected]>
9  *   K. Y. Srinivasan <[email protected]>
10  */
11 
12 #ifndef _HYPERV_H
13 #define _HYPERV_H
14 
15 #include <uapi/linux/hyperv.h>
16 
17 #include <linux/types.h>
18 #include <linux/scatterlist.h>
19 #include <linux/list.h>
20 #include <linux/timer.h>
21 #include <linux/completion.h>
22 #include <linux/device.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/reciprocal_div.h>
26 
27 #define MAX_PAGE_BUFFER_COUNT				32
28 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
29 
30 #pragma pack(push, 1)
31 
32 /* Single-page buffer */
33 struct hv_page_buffer {
34 	u32 len;
35 	u32 offset;
36 	u64 pfn;
37 };
38 
39 /* Multiple-page buffer */
40 struct hv_multipage_buffer {
41 	/* Length and Offset determines the # of pfns in the array */
42 	u32 len;
43 	u32 offset;
44 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
45 };
46 
47 /*
48  * Multiple-page buffer array; the pfn array is variable size:
49  * The number of entries in the PFN array is determined by
50  * "len" and "offset".
51  */
52 struct hv_mpb_array {
53 	/* Length and Offset determines the # of pfns in the array */
54 	u32 len;
55 	u32 offset;
56 	u64 pfn_array[];
57 };
58 
59 /* 0x18 includes the proprietary packet header */
60 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
61 					(sizeof(struct hv_page_buffer) * \
62 					 MAX_PAGE_BUFFER_COUNT))
63 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
64 					 sizeof(struct hv_multipage_buffer))
65 
66 
67 #pragma pack(pop)
68 
69 struct hv_ring_buffer {
70 	/* Offset in bytes from the start of ring data below */
71 	u32 write_index;
72 
73 	/* Offset in bytes from the start of ring data below */
74 	u32 read_index;
75 
76 	u32 interrupt_mask;
77 
78 	/*
79 	 * WS2012/Win8 and later versions of Hyper-V implement interrupt
80 	 * driven flow management. The feature bit feat_pending_send_sz
81 	 * is set by the host on the host->guest ring buffer, and by the
82 	 * guest on the guest->host ring buffer.
83 	 *
84 	 * The meaning of the feature bit is a bit complex in that it has
85 	 * semantics that apply to both ring buffers.  If the guest sets
86 	 * the feature bit in the guest->host ring buffer, the guest is
87 	 * telling the host that:
88 	 * 1) It will set the pending_send_sz field in the guest->host ring
89 	 *    buffer when it is waiting for space to become available, and
90 	 * 2) It will read the pending_send_sz field in the host->guest
91 	 *    ring buffer and interrupt the host when it frees enough space
92 	 *
93 	 * Similarly, if the host sets the feature bit in the host->guest
94 	 * ring buffer, the host is telling the guest that:
95 	 * 1) It will set the pending_send_sz field in the host->guest ring
96 	 *    buffer when it is waiting for space to become available, and
97 	 * 2) It will read the pending_send_sz field in the guest->host
98 	 *    ring buffer and interrupt the guest when it frees enough space
99 	 *
100 	 * If either the guest or host does not set the feature bit that it
101 	 * owns, that guest or host must do polling if it encounters a full
102 	 * ring buffer, and not signal the other end with an interrupt.
103 	 */
104 	u32 pending_send_sz;
105 	u32 reserved1[12];
106 	union {
107 		struct {
108 			u32 feat_pending_send_sz:1;
109 		};
110 		u32 value;
111 	} feature_bits;
112 
113 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
114 	u8	reserved2[4028];
115 
116 	/*
117 	 * Ring data starts here + RingDataStartOffset
118 	 * !!! DO NOT place any fields below this !!!
119 	 */
120 	u8 buffer[];
121 } __packed;
122 
123 struct hv_ring_buffer_info {
124 	struct hv_ring_buffer *ring_buffer;
125 	u32 ring_size;			/* Include the shared header */
126 	struct reciprocal_value ring_size_div10_reciprocal;
127 	spinlock_t ring_lock;
128 
129 	u32 ring_datasize;		/* < ring_size */
130 	u32 priv_read_index;
131 	/*
132 	 * The ring buffer mutex lock. This lock prevents the ring buffer from
133 	 * being freed while the ring buffer is being accessed.
134 	 */
135 	struct mutex ring_buffer_mutex;
136 };
137 
138 
139 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
140 {
141 	u32 read_loc, write_loc, dsize, read;
142 
143 	dsize = rbi->ring_datasize;
144 	read_loc = rbi->ring_buffer->read_index;
145 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
146 
147 	read = write_loc >= read_loc ? (write_loc - read_loc) :
148 		(dsize - read_loc) + write_loc;
149 
150 	return read;
151 }
152 
153 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
154 {
155 	u32 read_loc, write_loc, dsize, write;
156 
157 	dsize = rbi->ring_datasize;
158 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
159 	write_loc = rbi->ring_buffer->write_index;
160 
161 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
162 		read_loc - write_loc;
163 	return write;
164 }
165 
166 static inline u32 hv_get_avail_to_write_percent(
167 		const struct hv_ring_buffer_info *rbi)
168 {
169 	u32 avail_write = hv_get_bytes_to_write(rbi);
170 
171 	return reciprocal_divide(
172 			(avail_write  << 3) + (avail_write << 1),
173 			rbi->ring_size_div10_reciprocal);
174 }
175 
176 /*
177  * VMBUS version is 32 bit entity broken up into
178  * two 16 bit quantities: major_number. minor_number.
179  *
180  * 0 . 13 (Windows Server 2008)
181  * 1 . 1  (Windows 7)
182  * 2 . 4  (Windows 8)
183  * 3 . 0  (Windows 8 R2)
184  * 4 . 0  (Windows 10)
185  * 4 . 1  (Windows 10 RS3)
186  * 5 . 0  (Newer Windows 10)
187  * 5 . 1  (Windows 10 RS4)
188  * 5 . 2  (Windows Server 2019, RS5)
189  */
190 
191 #define VERSION_WS2008  ((0 << 16) | (13))
192 #define VERSION_WIN7    ((1 << 16) | (1))
193 #define VERSION_WIN8    ((2 << 16) | (4))
194 #define VERSION_WIN8_1    ((3 << 16) | (0))
195 #define VERSION_WIN10 ((4 << 16) | (0))
196 #define VERSION_WIN10_V4_1 ((4 << 16) | (1))
197 #define VERSION_WIN10_V5 ((5 << 16) | (0))
198 #define VERSION_WIN10_V5_1 ((5 << 16) | (1))
199 #define VERSION_WIN10_V5_2 ((5 << 16) | (2))
200 
201 /* Make maximum size of pipe payload of 16K */
202 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
203 
204 /* Define PipeMode values. */
205 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
206 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
207 
208 /* The size of the user defined data buffer for non-pipe offers. */
209 #define MAX_USER_DEFINED_BYTES		120
210 
211 /* The size of the user defined data buffer for pipe offers. */
212 #define MAX_PIPE_USER_DEFINED_BYTES	116
213 
214 /*
215  * At the center of the Channel Management library is the Channel Offer. This
216  * struct contains the fundamental information about an offer.
217  */
218 struct vmbus_channel_offer {
219 	guid_t if_type;
220 	guid_t if_instance;
221 
222 	/*
223 	 * These two fields are not currently used.
224 	 */
225 	u64 reserved1;
226 	u64 reserved2;
227 
228 	u16 chn_flags;
229 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
230 
231 	union {
232 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
233 		struct {
234 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
235 		} std;
236 
237 		/*
238 		 * Pipes:
239 		 * The following sructure is an integrated pipe protocol, which
240 		 * is implemented on top of standard user-defined data. Pipe
241 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
242 		 * use.
243 		 */
244 		struct {
245 			u32  pipe_mode;
246 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
247 		} pipe;
248 	} u;
249 	/*
250 	 * The sub_channel_index is defined in Win8: a value of zero means a
251 	 * primary channel and a value of non-zero means a sub-channel.
252 	 *
253 	 * Before Win8, the field is reserved, meaning it's always zero.
254 	 */
255 	u16 sub_channel_index;
256 	u16 reserved3;
257 } __packed;
258 
259 /* Server Flags */
260 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
261 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
262 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
263 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
264 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
265 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
266 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
267 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER		0x2000
268 
269 struct vmpacket_descriptor {
270 	u16 type;
271 	u16 offset8;
272 	u16 len8;
273 	u16 flags;
274 	u64 trans_id;
275 } __packed;
276 
277 struct vmpacket_header {
278 	u32 prev_pkt_start_offset;
279 	struct vmpacket_descriptor descriptor;
280 } __packed;
281 
282 struct vmtransfer_page_range {
283 	u32 byte_count;
284 	u32 byte_offset;
285 } __packed;
286 
287 struct vmtransfer_page_packet_header {
288 	struct vmpacket_descriptor d;
289 	u16 xfer_pageset_id;
290 	u8  sender_owns_set;
291 	u8 reserved;
292 	u32 range_cnt;
293 	struct vmtransfer_page_range ranges[1];
294 } __packed;
295 
296 struct vmgpadl_packet_header {
297 	struct vmpacket_descriptor d;
298 	u32 gpadl;
299 	u32 reserved;
300 } __packed;
301 
302 struct vmadd_remove_transfer_page_set {
303 	struct vmpacket_descriptor d;
304 	u32 gpadl;
305 	u16 xfer_pageset_id;
306 	u16 reserved;
307 } __packed;
308 
309 /*
310  * This structure defines a range in guest physical space that can be made to
311  * look virtually contiguous.
312  */
313 struct gpa_range {
314 	u32 byte_count;
315 	u32 byte_offset;
316 	u64 pfn_array[];
317 };
318 
319 /*
320  * This is the format for an Establish Gpadl packet, which contains a handle by
321  * which this GPADL will be known and a set of GPA ranges associated with it.
322  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
323  * ranges, then the resulting MDL will be "chained," representing multiple VA
324  * ranges.
325  */
326 struct vmestablish_gpadl {
327 	struct vmpacket_descriptor d;
328 	u32 gpadl;
329 	u32 range_cnt;
330 	struct gpa_range range[1];
331 } __packed;
332 
333 /*
334  * This is the format for a Teardown Gpadl packet, which indicates that the
335  * GPADL handle in the Establish Gpadl packet will never be referenced again.
336  */
337 struct vmteardown_gpadl {
338 	struct vmpacket_descriptor d;
339 	u32 gpadl;
340 	u32 reserved;	/* for alignment to a 8-byte boundary */
341 } __packed;
342 
343 /*
344  * This is the format for a GPA-Direct packet, which contains a set of GPA
345  * ranges, in addition to commands and/or data.
346  */
347 struct vmdata_gpa_direct {
348 	struct vmpacket_descriptor d;
349 	u32 reserved;
350 	u32 range_cnt;
351 	struct gpa_range range[1];
352 } __packed;
353 
354 /* This is the format for a Additional Data Packet. */
355 struct vmadditional_data {
356 	struct vmpacket_descriptor d;
357 	u64 total_bytes;
358 	u32 offset;
359 	u32 byte_cnt;
360 	unsigned char data[1];
361 } __packed;
362 
363 union vmpacket_largest_possible_header {
364 	struct vmpacket_descriptor simple_hdr;
365 	struct vmtransfer_page_packet_header xfer_page_hdr;
366 	struct vmgpadl_packet_header gpadl_hdr;
367 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
368 	struct vmestablish_gpadl establish_gpadl_hdr;
369 	struct vmteardown_gpadl teardown_gpadl_hdr;
370 	struct vmdata_gpa_direct data_gpa_direct_hdr;
371 };
372 
373 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
374 	(void *)(((unsigned char *)__packet) +	\
375 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
376 
377 #define VMPACKET_DATA_LENGTH(__packet)		\
378 	((((struct vmpacket_descriptor)__packet)->len8 -	\
379 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
380 
381 #define VMPACKET_TRANSFER_MODE(__packet)	\
382 	(((struct IMPACT)__packet)->type)
383 
384 enum vmbus_packet_type {
385 	VM_PKT_INVALID				= 0x0,
386 	VM_PKT_SYNCH				= 0x1,
387 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
388 	VM_PKT_RM_XFER_PAGESET			= 0x3,
389 	VM_PKT_ESTABLISH_GPADL			= 0x4,
390 	VM_PKT_TEARDOWN_GPADL			= 0x5,
391 	VM_PKT_DATA_INBAND			= 0x6,
392 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
393 	VM_PKT_DATA_USING_GPADL			= 0x8,
394 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
395 	VM_PKT_CANCEL_REQUEST			= 0xa,
396 	VM_PKT_COMP				= 0xb,
397 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
398 	VM_PKT_ADDITIONAL_DATA			= 0xd
399 };
400 
401 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
402 
403 
404 /* Version 1 messages */
405 enum vmbus_channel_message_type {
406 	CHANNELMSG_INVALID			=  0,
407 	CHANNELMSG_OFFERCHANNEL		=  1,
408 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
409 	CHANNELMSG_REQUESTOFFERS		=  3,
410 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
411 	CHANNELMSG_OPENCHANNEL		=  5,
412 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
413 	CHANNELMSG_CLOSECHANNEL		=  7,
414 	CHANNELMSG_GPADL_HEADER		=  8,
415 	CHANNELMSG_GPADL_BODY			=  9,
416 	CHANNELMSG_GPADL_CREATED		= 10,
417 	CHANNELMSG_GPADL_TEARDOWN		= 11,
418 	CHANNELMSG_GPADL_TORNDOWN		= 12,
419 	CHANNELMSG_RELID_RELEASED		= 13,
420 	CHANNELMSG_INITIATE_CONTACT		= 14,
421 	CHANNELMSG_VERSION_RESPONSE		= 15,
422 	CHANNELMSG_UNLOAD			= 16,
423 	CHANNELMSG_UNLOAD_RESPONSE		= 17,
424 	CHANNELMSG_18				= 18,
425 	CHANNELMSG_19				= 19,
426 	CHANNELMSG_20				= 20,
427 	CHANNELMSG_TL_CONNECT_REQUEST		= 21,
428 	CHANNELMSG_MODIFYCHANNEL		= 22,
429 	CHANNELMSG_TL_CONNECT_RESULT		= 23,
430 	CHANNELMSG_COUNT
431 };
432 
433 /* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
434 #define INVALID_RELID	U32_MAX
435 
436 struct vmbus_channel_message_header {
437 	enum vmbus_channel_message_type msgtype;
438 	u32 padding;
439 } __packed;
440 
441 /* Query VMBus Version parameters */
442 struct vmbus_channel_query_vmbus_version {
443 	struct vmbus_channel_message_header header;
444 	u32 version;
445 } __packed;
446 
447 /* VMBus Version Supported parameters */
448 struct vmbus_channel_version_supported {
449 	struct vmbus_channel_message_header header;
450 	u8 version_supported;
451 } __packed;
452 
453 /* Offer Channel parameters */
454 struct vmbus_channel_offer_channel {
455 	struct vmbus_channel_message_header header;
456 	struct vmbus_channel_offer offer;
457 	u32 child_relid;
458 	u8 monitorid;
459 	/*
460 	 * win7 and beyond splits this field into a bit field.
461 	 */
462 	u8 monitor_allocated:1;
463 	u8 reserved:7;
464 	/*
465 	 * These are new fields added in win7 and later.
466 	 * Do not access these fields without checking the
467 	 * negotiated protocol.
468 	 *
469 	 * If "is_dedicated_interrupt" is set, we must not set the
470 	 * associated bit in the channel bitmap while sending the
471 	 * interrupt to the host.
472 	 *
473 	 * connection_id is to be used in signaling the host.
474 	 */
475 	u16 is_dedicated_interrupt:1;
476 	u16 reserved1:15;
477 	u32 connection_id;
478 } __packed;
479 
480 /* Rescind Offer parameters */
481 struct vmbus_channel_rescind_offer {
482 	struct vmbus_channel_message_header header;
483 	u32 child_relid;
484 } __packed;
485 
486 static inline u32
487 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
488 {
489 	return rbi->ring_buffer->pending_send_sz;
490 }
491 
492 /*
493  * Request Offer -- no parameters, SynIC message contains the partition ID
494  * Set Snoop -- no parameters, SynIC message contains the partition ID
495  * Clear Snoop -- no parameters, SynIC message contains the partition ID
496  * All Offers Delivered -- no parameters, SynIC message contains the partition
497  *		           ID
498  * Flush Client -- no parameters, SynIC message contains the partition ID
499  */
500 
501 /* Open Channel parameters */
502 struct vmbus_channel_open_channel {
503 	struct vmbus_channel_message_header header;
504 
505 	/* Identifies the specific VMBus channel that is being opened. */
506 	u32 child_relid;
507 
508 	/* ID making a particular open request at a channel offer unique. */
509 	u32 openid;
510 
511 	/* GPADL for the channel's ring buffer. */
512 	u32 ringbuffer_gpadlhandle;
513 
514 	/*
515 	 * Starting with win8, this field will be used to specify
516 	 * the target virtual processor on which to deliver the interrupt for
517 	 * the host to guest communication.
518 	 * Prior to win8, incoming channel interrupts would only
519 	 * be delivered on cpu 0. Setting this value to 0 would
520 	 * preserve the earlier behavior.
521 	 */
522 	u32 target_vp;
523 
524 	/*
525 	 * The upstream ring buffer begins at offset zero in the memory
526 	 * described by RingBufferGpadlHandle. The downstream ring buffer
527 	 * follows it at this offset (in pages).
528 	 */
529 	u32 downstream_ringbuffer_pageoffset;
530 
531 	/* User-specific data to be passed along to the server endpoint. */
532 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
533 } __packed;
534 
535 /* Open Channel Result parameters */
536 struct vmbus_channel_open_result {
537 	struct vmbus_channel_message_header header;
538 	u32 child_relid;
539 	u32 openid;
540 	u32 status;
541 } __packed;
542 
543 /* Close channel parameters; */
544 struct vmbus_channel_close_channel {
545 	struct vmbus_channel_message_header header;
546 	u32 child_relid;
547 } __packed;
548 
549 /* Channel Message GPADL */
550 #define GPADL_TYPE_RING_BUFFER		1
551 #define GPADL_TYPE_SERVER_SAVE_AREA	2
552 #define GPADL_TYPE_TRANSACTION		8
553 
554 /*
555  * The number of PFNs in a GPADL message is defined by the number of
556  * pages that would be spanned by ByteCount and ByteOffset.  If the
557  * implied number of PFNs won't fit in this packet, there will be a
558  * follow-up packet that contains more.
559  */
560 struct vmbus_channel_gpadl_header {
561 	struct vmbus_channel_message_header header;
562 	u32 child_relid;
563 	u32 gpadl;
564 	u16 range_buflen;
565 	u16 rangecount;
566 	struct gpa_range range[];
567 } __packed;
568 
569 /* This is the followup packet that contains more PFNs. */
570 struct vmbus_channel_gpadl_body {
571 	struct vmbus_channel_message_header header;
572 	u32 msgnumber;
573 	u32 gpadl;
574 	u64 pfn[];
575 } __packed;
576 
577 struct vmbus_channel_gpadl_created {
578 	struct vmbus_channel_message_header header;
579 	u32 child_relid;
580 	u32 gpadl;
581 	u32 creation_status;
582 } __packed;
583 
584 struct vmbus_channel_gpadl_teardown {
585 	struct vmbus_channel_message_header header;
586 	u32 child_relid;
587 	u32 gpadl;
588 } __packed;
589 
590 struct vmbus_channel_gpadl_torndown {
591 	struct vmbus_channel_message_header header;
592 	u32 gpadl;
593 } __packed;
594 
595 struct vmbus_channel_relid_released {
596 	struct vmbus_channel_message_header header;
597 	u32 child_relid;
598 } __packed;
599 
600 struct vmbus_channel_initiate_contact {
601 	struct vmbus_channel_message_header header;
602 	u32 vmbus_version_requested;
603 	u32 target_vcpu; /* The VCPU the host should respond to */
604 	union {
605 		u64 interrupt_page;
606 		struct {
607 			u8	msg_sint;
608 			u8	padding1[3];
609 			u32	padding2;
610 		};
611 	};
612 	u64 monitor_page1;
613 	u64 monitor_page2;
614 } __packed;
615 
616 /* Hyper-V socket: guest's connect()-ing to host */
617 struct vmbus_channel_tl_connect_request {
618 	struct vmbus_channel_message_header header;
619 	guid_t guest_endpoint_id;
620 	guid_t host_service_id;
621 } __packed;
622 
623 /* Modify Channel parameters, cf. vmbus_send_modifychannel() */
624 struct vmbus_channel_modifychannel {
625 	struct vmbus_channel_message_header header;
626 	u32 child_relid;
627 	u32 target_vp;
628 } __packed;
629 
630 struct vmbus_channel_version_response {
631 	struct vmbus_channel_message_header header;
632 	u8 version_supported;
633 
634 	u8 connection_state;
635 	u16 padding;
636 
637 	/*
638 	 * On new hosts that support VMBus protocol 5.0, we must use
639 	 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
640 	 * and for subsequent messages, we must use the Message Connection ID
641 	 * field in the host-returned Version Response Message.
642 	 *
643 	 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
644 	 */
645 	u32 msg_conn_id;
646 } __packed;
647 
648 enum vmbus_channel_state {
649 	CHANNEL_OFFER_STATE,
650 	CHANNEL_OPENING_STATE,
651 	CHANNEL_OPEN_STATE,
652 	CHANNEL_OPENED_STATE,
653 };
654 
655 /*
656  * Represents each channel msg on the vmbus connection This is a
657  * variable-size data structure depending on the msg type itself
658  */
659 struct vmbus_channel_msginfo {
660 	/* Bookkeeping stuff */
661 	struct list_head msglistentry;
662 
663 	/* So far, this is only used to handle gpadl body message */
664 	struct list_head submsglist;
665 
666 	/* Synchronize the request/response if needed */
667 	struct completion  waitevent;
668 	struct vmbus_channel *waiting_channel;
669 	union {
670 		struct vmbus_channel_version_supported version_supported;
671 		struct vmbus_channel_open_result open_result;
672 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
673 		struct vmbus_channel_gpadl_created gpadl_created;
674 		struct vmbus_channel_version_response version_response;
675 	} response;
676 
677 	u32 msgsize;
678 	/*
679 	 * The channel message that goes out on the "wire".
680 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
681 	 */
682 	unsigned char msg[];
683 };
684 
685 struct vmbus_close_msg {
686 	struct vmbus_channel_msginfo info;
687 	struct vmbus_channel_close_channel msg;
688 };
689 
690 /* Define connection identifier type. */
691 union hv_connection_id {
692 	u32 asu32;
693 	struct {
694 		u32 id:24;
695 		u32 reserved:8;
696 	} u;
697 };
698 
699 enum vmbus_device_type {
700 	HV_IDE = 0,
701 	HV_SCSI,
702 	HV_FC,
703 	HV_NIC,
704 	HV_ND,
705 	HV_PCIE,
706 	HV_FB,
707 	HV_KBD,
708 	HV_MOUSE,
709 	HV_KVP,
710 	HV_TS,
711 	HV_HB,
712 	HV_SHUTDOWN,
713 	HV_FCOPY,
714 	HV_BACKUP,
715 	HV_DM,
716 	HV_UNKNOWN,
717 };
718 
719 struct vmbus_device {
720 	u16  dev_type;
721 	guid_t guid;
722 	bool perf_device;
723 };
724 
725 struct vmbus_channel {
726 	struct list_head listentry;
727 
728 	struct hv_device *device_obj;
729 
730 	enum vmbus_channel_state state;
731 
732 	struct vmbus_channel_offer_channel offermsg;
733 	/*
734 	 * These are based on the OfferMsg.MonitorId.
735 	 * Save it here for easy access.
736 	 */
737 	u8 monitor_grp;
738 	u8 monitor_bit;
739 
740 	bool rescind; /* got rescind msg */
741 	struct completion rescind_event;
742 
743 	u32 ringbuffer_gpadlhandle;
744 
745 	/* Allocated memory for ring buffer */
746 	struct page *ringbuffer_page;
747 	u32 ringbuffer_pagecount;
748 	u32 ringbuffer_send_offset;
749 	struct hv_ring_buffer_info outbound;	/* send to parent */
750 	struct hv_ring_buffer_info inbound;	/* receive from parent */
751 
752 	struct vmbus_close_msg close_msg;
753 
754 	/* Statistics */
755 	u64	interrupts;	/* Host to Guest interrupts */
756 	u64	sig_events;	/* Guest to Host events */
757 
758 	/*
759 	 * Guest to host interrupts caused by the outbound ring buffer changing
760 	 * from empty to not empty.
761 	 */
762 	u64 intr_out_empty;
763 
764 	/*
765 	 * Indicates that a full outbound ring buffer was encountered. The flag
766 	 * is set to true when a full outbound ring buffer is encountered and
767 	 * set to false when a write to the outbound ring buffer is completed.
768 	 */
769 	bool out_full_flag;
770 
771 	/* Channel callback's invoked in softirq context */
772 	struct tasklet_struct callback_event;
773 	void (*onchannel_callback)(void *context);
774 	void *channel_callback_context;
775 
776 	void (*change_target_cpu_callback)(struct vmbus_channel *channel,
777 			u32 old, u32 new);
778 
779 	/*
780 	 * Synchronize channel scheduling and channel removal; see the inline
781 	 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb().
782 	 */
783 	spinlock_t sched_lock;
784 
785 	/*
786 	 * A channel can be marked for one of three modes of reading:
787 	 *   BATCHED - callback called from taslket and should read
788 	 *            channel until empty. Interrupts from the host
789 	 *            are masked while read is in process (default).
790 	 *   DIRECT - callback called from tasklet (softirq).
791 	 *   ISR - callback called in interrupt context and must
792 	 *         invoke its own deferred processing.
793 	 *         Host interrupts are disabled and must be re-enabled
794 	 *         when ring is empty.
795 	 */
796 	enum hv_callback_mode {
797 		HV_CALL_BATCHED,
798 		HV_CALL_DIRECT,
799 		HV_CALL_ISR
800 	} callback_mode;
801 
802 	bool is_dedicated_interrupt;
803 	u64 sig_event;
804 
805 	/*
806 	 * Starting with win8, this field will be used to specify the
807 	 * target CPU on which to deliver the interrupt for the host
808 	 * to guest communication.
809 	 *
810 	 * Prior to win8, incoming channel interrupts would only be
811 	 * delivered on CPU 0. Setting this value to 0 would preserve
812 	 * the earlier behavior.
813 	 */
814 	u32 target_cpu;
815 	/*
816 	 * Support for sub-channels. For high performance devices,
817 	 * it will be useful to have multiple sub-channels to support
818 	 * a scalable communication infrastructure with the host.
819 	 * The support for sub-channels is implemented as an extention
820 	 * to the current infrastructure.
821 	 * The initial offer is considered the primary channel and this
822 	 * offer message will indicate if the host supports sub-channels.
823 	 * The guest is free to ask for sub-channels to be offerred and can
824 	 * open these sub-channels as a normal "primary" channel. However,
825 	 * all sub-channels will have the same type and instance guids as the
826 	 * primary channel. Requests sent on a given channel will result in a
827 	 * response on the same channel.
828 	 */
829 
830 	/*
831 	 * Sub-channel creation callback. This callback will be called in
832 	 * process context when a sub-channel offer is received from the host.
833 	 * The guest can open the sub-channel in the context of this callback.
834 	 */
835 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
836 
837 	/*
838 	 * Channel rescind callback. Some channels (the hvsock ones), need to
839 	 * register a callback which is invoked in vmbus_onoffer_rescind().
840 	 */
841 	void (*chn_rescind_callback)(struct vmbus_channel *channel);
842 
843 	/*
844 	 * All Sub-channels of a primary channel are linked here.
845 	 */
846 	struct list_head sc_list;
847 	/*
848 	 * The primary channel this sub-channel belongs to.
849 	 * This will be NULL for the primary channel.
850 	 */
851 	struct vmbus_channel *primary_channel;
852 	/*
853 	 * Support per-channel state for use by vmbus drivers.
854 	 */
855 	void *per_channel_state;
856 
857 	/*
858 	 * Defer freeing channel until after all cpu's have
859 	 * gone through grace period.
860 	 */
861 	struct rcu_head rcu;
862 
863 	/*
864 	 * For sysfs per-channel properties.
865 	 */
866 	struct kobject			kobj;
867 
868 	/*
869 	 * For performance critical channels (storage, networking
870 	 * etc,), Hyper-V has a mechanism to enhance the throughput
871 	 * at the expense of latency:
872 	 * When the host is to be signaled, we just set a bit in a shared page
873 	 * and this bit will be inspected by the hypervisor within a certain
874 	 * window and if the bit is set, the host will be signaled. The window
875 	 * of time is the monitor latency - currently around 100 usecs. This
876 	 * mechanism improves throughput by:
877 	 *
878 	 * A) Making the host more efficient - each time it wakes up,
879 	 *    potentially it will process morev number of packets. The
880 	 *    monitor latency allows a batch to build up.
881 	 * B) By deferring the hypercall to signal, we will also minimize
882 	 *    the interrupts.
883 	 *
884 	 * Clearly, these optimizations improve throughput at the expense of
885 	 * latency. Furthermore, since the channel is shared for both
886 	 * control and data messages, control messages currently suffer
887 	 * unnecessary latency adversley impacting performance and boot
888 	 * time. To fix this issue, permit tagging the channel as being
889 	 * in "low latency" mode. In this mode, we will bypass the monitor
890 	 * mechanism.
891 	 */
892 	bool low_latency;
893 
894 	bool probe_done;
895 
896 	/*
897 	 * Cache the device ID here for easy access; this is useful, in
898 	 * particular, in situations where the channel's device_obj has
899 	 * not been allocated/initialized yet.
900 	 */
901 	u16 device_id;
902 
903 	/*
904 	 * We must offload the handling of the primary/sub channels
905 	 * from the single-threaded vmbus_connection.work_queue to
906 	 * two different workqueue, otherwise we can block
907 	 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
908 	 */
909 	struct work_struct add_channel_work;
910 
911 	/*
912 	 * Guest to host interrupts caused by the inbound ring buffer changing
913 	 * from full to not full while a packet is waiting.
914 	 */
915 	u64 intr_in_full;
916 
917 	/*
918 	 * The total number of write operations that encountered a full
919 	 * outbound ring buffer.
920 	 */
921 	u64 out_full_total;
922 
923 	/*
924 	 * The number of write operations that were the first to encounter a
925 	 * full outbound ring buffer.
926 	 */
927 	u64 out_full_first;
928 
929 	/* enabling/disabling fuzz testing on the channel (default is false)*/
930 	bool fuzz_testing_state;
931 
932 	/*
933 	 * Interrupt delay will delay the guest from emptying the ring buffer
934 	 * for a specific amount of time. The delay is in microseconds and will
935 	 * be between 1 to a maximum of 1000, its default is 0 (no delay).
936 	 * The  Message delay will delay guest reading on a per message basis
937 	 * in microseconds between 1 to 1000 with the default being 0
938 	 * (no delay).
939 	 */
940 	u32 fuzz_testing_interrupt_delay;
941 	u32 fuzz_testing_message_delay;
942 
943 };
944 
945 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
946 {
947 	return !!(c->offermsg.offer.chn_flags &
948 		  VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
949 }
950 
951 static inline bool is_sub_channel(const struct vmbus_channel *c)
952 {
953 	return c->offermsg.offer.sub_channel_index != 0;
954 }
955 
956 static inline void set_channel_read_mode(struct vmbus_channel *c,
957 					enum hv_callback_mode mode)
958 {
959 	c->callback_mode = mode;
960 }
961 
962 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
963 {
964 	c->per_channel_state = s;
965 }
966 
967 static inline void *get_per_channel_state(struct vmbus_channel *c)
968 {
969 	return c->per_channel_state;
970 }
971 
972 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
973 						 u32 size)
974 {
975 	unsigned long flags;
976 
977 	if (size) {
978 		spin_lock_irqsave(&c->outbound.ring_lock, flags);
979 		++c->out_full_total;
980 
981 		if (!c->out_full_flag) {
982 			++c->out_full_first;
983 			c->out_full_flag = true;
984 		}
985 		spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
986 	} else {
987 		c->out_full_flag = false;
988 	}
989 
990 	c->outbound.ring_buffer->pending_send_sz = size;
991 }
992 
993 static inline void set_low_latency_mode(struct vmbus_channel *c)
994 {
995 	c->low_latency = true;
996 }
997 
998 static inline void clear_low_latency_mode(struct vmbus_channel *c)
999 {
1000 	c->low_latency = false;
1001 }
1002 
1003 void vmbus_onmessage(struct vmbus_channel_message_header *hdr);
1004 
1005 int vmbus_request_offers(void);
1006 
1007 /*
1008  * APIs for managing sub-channels.
1009  */
1010 
1011 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1012 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1013 
1014 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1015 		void (*chn_rescind_cb)(struct vmbus_channel *));
1016 
1017 /*
1018  * Check if sub-channels have already been offerred. This API will be useful
1019  * when the driver is unloaded after establishing sub-channels. In this case,
1020  * when the driver is re-loaded, the driver would have to check if the
1021  * subchannels have already been established before attempting to request
1022  * the creation of sub-channels.
1023  * This function returns TRUE to indicate that subchannels have already been
1024  * created.
1025  * This function should be invoked after setting the callback function for
1026  * sub-channel creation.
1027  */
1028 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1029 
1030 /* The format must be the same as struct vmdata_gpa_direct */
1031 struct vmbus_channel_packet_page_buffer {
1032 	u16 type;
1033 	u16 dataoffset8;
1034 	u16 length8;
1035 	u16 flags;
1036 	u64 transactionid;
1037 	u32 reserved;
1038 	u32 rangecount;
1039 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1040 } __packed;
1041 
1042 /* The format must be the same as struct vmdata_gpa_direct */
1043 struct vmbus_channel_packet_multipage_buffer {
1044 	u16 type;
1045 	u16 dataoffset8;
1046 	u16 length8;
1047 	u16 flags;
1048 	u64 transactionid;
1049 	u32 reserved;
1050 	u32 rangecount;		/* Always 1 in this case */
1051 	struct hv_multipage_buffer range;
1052 } __packed;
1053 
1054 /* The format must be the same as struct vmdata_gpa_direct */
1055 struct vmbus_packet_mpb_array {
1056 	u16 type;
1057 	u16 dataoffset8;
1058 	u16 length8;
1059 	u16 flags;
1060 	u64 transactionid;
1061 	u32 reserved;
1062 	u32 rangecount;         /* Always 1 in this case */
1063 	struct hv_mpb_array range;
1064 } __packed;
1065 
1066 int vmbus_alloc_ring(struct vmbus_channel *channel,
1067 		     u32 send_size, u32 recv_size);
1068 void vmbus_free_ring(struct vmbus_channel *channel);
1069 
1070 int vmbus_connect_ring(struct vmbus_channel *channel,
1071 		       void (*onchannel_callback)(void *context),
1072 		       void *context);
1073 int vmbus_disconnect_ring(struct vmbus_channel *channel);
1074 
1075 extern int vmbus_open(struct vmbus_channel *channel,
1076 			    u32 send_ringbuffersize,
1077 			    u32 recv_ringbuffersize,
1078 			    void *userdata,
1079 			    u32 userdatalen,
1080 			    void (*onchannel_callback)(void *context),
1081 			    void *context);
1082 
1083 extern void vmbus_close(struct vmbus_channel *channel);
1084 
1085 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1086 				  void *buffer,
1087 				  u32 bufferLen,
1088 				  u64 requestid,
1089 				  enum vmbus_packet_type type,
1090 				  u32 flags);
1091 
1092 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1093 					    struct hv_page_buffer pagebuffers[],
1094 					    u32 pagecount,
1095 					    void *buffer,
1096 					    u32 bufferlen,
1097 					    u64 requestid);
1098 
1099 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1100 				     struct vmbus_packet_mpb_array *mpb,
1101 				     u32 desc_size,
1102 				     void *buffer,
1103 				     u32 bufferlen,
1104 				     u64 requestid);
1105 
1106 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1107 				      void *kbuffer,
1108 				      u32 size,
1109 				      u32 *gpadl_handle);
1110 
1111 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1112 				     u32 gpadl_handle);
1113 
1114 void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1115 
1116 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1117 				  void *buffer,
1118 				  u32 bufferlen,
1119 				  u32 *buffer_actual_len,
1120 				  u64 *requestid);
1121 
1122 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1123 				     void *buffer,
1124 				     u32 bufferlen,
1125 				     u32 *buffer_actual_len,
1126 				     u64 *requestid);
1127 
1128 
1129 extern void vmbus_ontimer(unsigned long data);
1130 
1131 /* Base driver object */
1132 struct hv_driver {
1133 	const char *name;
1134 
1135 	/*
1136 	 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1137 	 * channel flag, actually doesn't mean a synthetic device because the
1138 	 * offer's if_type/if_instance can change for every new hvsock
1139 	 * connection.
1140 	 *
1141 	 * However, to facilitate the notification of new-offer/rescind-offer
1142 	 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1143 	 * a special vmbus device, and hence we need the below flag to
1144 	 * indicate if the driver is the hvsock driver or not: we need to
1145 	 * specially treat the hvosck offer & driver in vmbus_match().
1146 	 */
1147 	bool hvsock;
1148 
1149 	/* the device type supported by this driver */
1150 	guid_t dev_type;
1151 	const struct hv_vmbus_device_id *id_table;
1152 
1153 	struct device_driver driver;
1154 
1155 	/* dynamic device GUID's */
1156 	struct  {
1157 		spinlock_t lock;
1158 		struct list_head list;
1159 	} dynids;
1160 
1161 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1162 	int (*remove)(struct hv_device *);
1163 	void (*shutdown)(struct hv_device *);
1164 
1165 	int (*suspend)(struct hv_device *);
1166 	int (*resume)(struct hv_device *);
1167 
1168 };
1169 
1170 /* Base device object */
1171 struct hv_device {
1172 	/* the device type id of this device */
1173 	guid_t dev_type;
1174 
1175 	/* the device instance id of this device */
1176 	guid_t dev_instance;
1177 	u16 vendor_id;
1178 	u16 device_id;
1179 
1180 	struct device device;
1181 	char *driver_override; /* Driver name to force a match */
1182 
1183 	struct vmbus_channel *channel;
1184 	struct kset	     *channels_kset;
1185 
1186 	/* place holder to keep track of the dir for hv device in debugfs */
1187 	struct dentry *debug_dir;
1188 
1189 };
1190 
1191 
1192 static inline struct hv_device *device_to_hv_device(struct device *d)
1193 {
1194 	return container_of(d, struct hv_device, device);
1195 }
1196 
1197 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1198 {
1199 	return container_of(d, struct hv_driver, driver);
1200 }
1201 
1202 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1203 {
1204 	dev_set_drvdata(&dev->device, data);
1205 }
1206 
1207 static inline void *hv_get_drvdata(struct hv_device *dev)
1208 {
1209 	return dev_get_drvdata(&dev->device);
1210 }
1211 
1212 struct hv_ring_buffer_debug_info {
1213 	u32 current_interrupt_mask;
1214 	u32 current_read_index;
1215 	u32 current_write_index;
1216 	u32 bytes_avail_toread;
1217 	u32 bytes_avail_towrite;
1218 };
1219 
1220 
1221 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1222 				struct hv_ring_buffer_debug_info *debug_info);
1223 
1224 /* Vmbus interface */
1225 #define vmbus_driver_register(driver)	\
1226 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1227 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1228 					 struct module *owner,
1229 					 const char *mod_name);
1230 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1231 
1232 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1233 
1234 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1235 			resource_size_t min, resource_size_t max,
1236 			resource_size_t size, resource_size_t align,
1237 			bool fb_overlap_ok);
1238 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1239 
1240 /*
1241  * GUID definitions of various offer types - services offered to the guest.
1242  */
1243 
1244 /*
1245  * Network GUID
1246  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1247  */
1248 #define HV_NIC_GUID \
1249 	.guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1250 			  0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1251 
1252 /*
1253  * IDE GUID
1254  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1255  */
1256 #define HV_IDE_GUID \
1257 	.guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1258 			  0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1259 
1260 /*
1261  * SCSI GUID
1262  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1263  */
1264 #define HV_SCSI_GUID \
1265 	.guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1266 			  0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1267 
1268 /*
1269  * Shutdown GUID
1270  * {0e0b6031-5213-4934-818b-38d90ced39db}
1271  */
1272 #define HV_SHUTDOWN_GUID \
1273 	.guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1274 			  0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1275 
1276 /*
1277  * Time Synch GUID
1278  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1279  */
1280 #define HV_TS_GUID \
1281 	.guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1282 			  0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1283 
1284 /*
1285  * Heartbeat GUID
1286  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1287  */
1288 #define HV_HEART_BEAT_GUID \
1289 	.guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1290 			  0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1291 
1292 /*
1293  * KVP GUID
1294  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1295  */
1296 #define HV_KVP_GUID \
1297 	.guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1298 			  0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1299 
1300 /*
1301  * Dynamic memory GUID
1302  * {525074dc-8985-46e2-8057-a307dc18a502}
1303  */
1304 #define HV_DM_GUID \
1305 	.guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1306 			  0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1307 
1308 /*
1309  * Mouse GUID
1310  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1311  */
1312 #define HV_MOUSE_GUID \
1313 	.guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1314 			  0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1315 
1316 /*
1317  * Keyboard GUID
1318  * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1319  */
1320 #define HV_KBD_GUID \
1321 	.guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1322 			  0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1323 
1324 /*
1325  * VSS (Backup/Restore) GUID
1326  */
1327 #define HV_VSS_GUID \
1328 	.guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1329 			  0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1330 /*
1331  * Synthetic Video GUID
1332  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1333  */
1334 #define HV_SYNTHVID_GUID \
1335 	.guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1336 			  0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1337 
1338 /*
1339  * Synthetic FC GUID
1340  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1341  */
1342 #define HV_SYNTHFC_GUID \
1343 	.guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1344 			  0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1345 
1346 /*
1347  * Guest File Copy Service
1348  * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1349  */
1350 
1351 #define HV_FCOPY_GUID \
1352 	.guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1353 			  0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1354 
1355 /*
1356  * NetworkDirect. This is the guest RDMA service.
1357  * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1358  */
1359 #define HV_ND_GUID \
1360 	.guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1361 			  0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1362 
1363 /*
1364  * PCI Express Pass Through
1365  * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1366  */
1367 
1368 #define HV_PCIE_GUID \
1369 	.guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1370 			  0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1371 
1372 /*
1373  * Linux doesn't support the 3 devices: the first two are for
1374  * Automatic Virtual Machine Activation, and the third is for
1375  * Remote Desktop Virtualization.
1376  * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1377  * {3375baf4-9e15-4b30-b765-67acb10d607b}
1378  * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1379  */
1380 
1381 #define HV_AVMA1_GUID \
1382 	.guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1383 			  0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1384 
1385 #define HV_AVMA2_GUID \
1386 	.guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1387 			  0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1388 
1389 #define HV_RDV_GUID \
1390 	.guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1391 			  0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1392 
1393 /*
1394  * Common header for Hyper-V ICs
1395  */
1396 
1397 #define ICMSGTYPE_NEGOTIATE		0
1398 #define ICMSGTYPE_HEARTBEAT		1
1399 #define ICMSGTYPE_KVPEXCHANGE		2
1400 #define ICMSGTYPE_SHUTDOWN		3
1401 #define ICMSGTYPE_TIMESYNC		4
1402 #define ICMSGTYPE_VSS			5
1403 
1404 #define ICMSGHDRFLAG_TRANSACTION	1
1405 #define ICMSGHDRFLAG_REQUEST		2
1406 #define ICMSGHDRFLAG_RESPONSE		4
1407 
1408 
1409 /*
1410  * While we want to handle util services as regular devices,
1411  * there is only one instance of each of these services; so
1412  * we statically allocate the service specific state.
1413  */
1414 
1415 struct hv_util_service {
1416 	u8 *recv_buffer;
1417 	void *channel;
1418 	void (*util_cb)(void *);
1419 	int (*util_init)(struct hv_util_service *);
1420 	void (*util_deinit)(void);
1421 	int (*util_pre_suspend)(void);
1422 	int (*util_pre_resume)(void);
1423 };
1424 
1425 struct vmbuspipe_hdr {
1426 	u32 flags;
1427 	u32 msgsize;
1428 } __packed;
1429 
1430 struct ic_version {
1431 	u16 major;
1432 	u16 minor;
1433 } __packed;
1434 
1435 struct icmsg_hdr {
1436 	struct ic_version icverframe;
1437 	u16 icmsgtype;
1438 	struct ic_version icvermsg;
1439 	u16 icmsgsize;
1440 	u32 status;
1441 	u8 ictransaction_id;
1442 	u8 icflags;
1443 	u8 reserved[2];
1444 } __packed;
1445 
1446 struct icmsg_negotiate {
1447 	u16 icframe_vercnt;
1448 	u16 icmsg_vercnt;
1449 	u32 reserved;
1450 	struct ic_version icversion_data[1]; /* any size array */
1451 } __packed;
1452 
1453 struct shutdown_msg_data {
1454 	u32 reason_code;
1455 	u32 timeout_seconds;
1456 	u32 flags;
1457 	u8  display_message[2048];
1458 } __packed;
1459 
1460 struct heartbeat_msg_data {
1461 	u64 seq_num;
1462 	u32 reserved[8];
1463 } __packed;
1464 
1465 /* Time Sync IC defs */
1466 #define ICTIMESYNCFLAG_PROBE	0
1467 #define ICTIMESYNCFLAG_SYNC	1
1468 #define ICTIMESYNCFLAG_SAMPLE	2
1469 
1470 #ifdef __x86_64__
1471 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1472 #else
1473 #define WLTIMEDELTA	116444736000000000LL
1474 #endif
1475 
1476 struct ictimesync_data {
1477 	u64 parenttime;
1478 	u64 childtime;
1479 	u64 roundtriptime;
1480 	u8 flags;
1481 } __packed;
1482 
1483 struct ictimesync_ref_data {
1484 	u64 parenttime;
1485 	u64 vmreferencetime;
1486 	u8 flags;
1487 	char leapflags;
1488 	char stratum;
1489 	u8 reserved[3];
1490 } __packed;
1491 
1492 struct hyperv_service_callback {
1493 	u8 msg_type;
1494 	char *log_msg;
1495 	guid_t data;
1496 	struct vmbus_channel *channel;
1497 	void (*callback)(void *context);
1498 };
1499 
1500 #define MAX_SRV_VER	0x7ffffff
1501 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1502 				const int *fw_version, int fw_vercnt,
1503 				const int *srv_version, int srv_vercnt,
1504 				int *nego_fw_version, int *nego_srv_version);
1505 
1506 void hv_process_channel_removal(struct vmbus_channel *channel);
1507 
1508 void vmbus_setevent(struct vmbus_channel *channel);
1509 /*
1510  * Negotiated version with the Host.
1511  */
1512 
1513 extern __u32 vmbus_proto_version;
1514 
1515 int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1516 				  const guid_t *shv_host_servie_id);
1517 int vmbus_send_modifychannel(u32 child_relid, u32 target_vp);
1518 void vmbus_set_event(struct vmbus_channel *channel);
1519 
1520 /* Get the start of the ring buffer. */
1521 static inline void *
1522 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1523 {
1524 	return ring_info->ring_buffer->buffer;
1525 }
1526 
1527 /*
1528  * Mask off host interrupt callback notifications
1529  */
1530 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1531 {
1532 	rbi->ring_buffer->interrupt_mask = 1;
1533 
1534 	/* make sure mask update is not reordered */
1535 	virt_mb();
1536 }
1537 
1538 /*
1539  * Re-enable host callback and return number of outstanding bytes
1540  */
1541 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1542 {
1543 
1544 	rbi->ring_buffer->interrupt_mask = 0;
1545 
1546 	/* make sure mask update is not reordered */
1547 	virt_mb();
1548 
1549 	/*
1550 	 * Now check to see if the ring buffer is still empty.
1551 	 * If it is not, we raced and we need to process new
1552 	 * incoming messages.
1553 	 */
1554 	return hv_get_bytes_to_read(rbi);
1555 }
1556 
1557 /*
1558  * An API to support in-place processing of incoming VMBUS packets.
1559  */
1560 
1561 /* Get data payload associated with descriptor */
1562 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1563 {
1564 	return (void *)((unsigned long)desc + (desc->offset8 << 3));
1565 }
1566 
1567 /* Get data size associated with descriptor */
1568 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1569 {
1570 	return (desc->len8 << 3) - (desc->offset8 << 3);
1571 }
1572 
1573 
1574 struct vmpacket_descriptor *
1575 hv_pkt_iter_first(struct vmbus_channel *channel);
1576 
1577 struct vmpacket_descriptor *
1578 __hv_pkt_iter_next(struct vmbus_channel *channel,
1579 		   const struct vmpacket_descriptor *pkt);
1580 
1581 void hv_pkt_iter_close(struct vmbus_channel *channel);
1582 
1583 /*
1584  * Get next packet descriptor from iterator
1585  * If at end of list, return NULL and update host.
1586  */
1587 static inline struct vmpacket_descriptor *
1588 hv_pkt_iter_next(struct vmbus_channel *channel,
1589 		 const struct vmpacket_descriptor *pkt)
1590 {
1591 	struct vmpacket_descriptor *nxt;
1592 
1593 	nxt = __hv_pkt_iter_next(channel, pkt);
1594 	if (!nxt)
1595 		hv_pkt_iter_close(channel);
1596 
1597 	return nxt;
1598 }
1599 
1600 #define foreach_vmbus_pkt(pkt, channel) \
1601 	for (pkt = hv_pkt_iter_first(channel); pkt; \
1602 	    pkt = hv_pkt_iter_next(channel, pkt))
1603 
1604 /*
1605  * Interface for passing data between SR-IOV PF and VF drivers. The VF driver
1606  * sends requests to read and write blocks. Each block must be 128 bytes or
1607  * smaller. Optionally, the VF driver can register a callback function which
1608  * will be invoked when the host says that one or more of the first 64 block
1609  * IDs is "invalid" which means that the VF driver should reread them.
1610  */
1611 #define HV_CONFIG_BLOCK_SIZE_MAX 128
1612 
1613 int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
1614 			unsigned int block_id, unsigned int *bytes_returned);
1615 int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
1616 			 unsigned int block_id);
1617 int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
1618 				void (*block_invalidate)(void *context,
1619 							 u64 block_mask));
1620 
1621 struct hyperv_pci_block_ops {
1622 	int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
1623 			  unsigned int block_id, unsigned int *bytes_returned);
1624 	int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
1625 			   unsigned int block_id);
1626 	int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
1627 				  void (*block_invalidate)(void *context,
1628 							   u64 block_mask));
1629 };
1630 
1631 extern struct hyperv_pci_block_ops hvpci_block_ops;
1632 
1633 #endif /* _HYPERV_H */
1634