1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * 4 * Copyright (c) 2011, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <[email protected]> 8 * Hank Janssen <[email protected]> 9 * K. Y. Srinivasan <[email protected]> 10 */ 11 12 #ifndef _HYPERV_H 13 #define _HYPERV_H 14 15 #include <uapi/linux/hyperv.h> 16 17 #include <linux/mm.h> 18 #include <linux/types.h> 19 #include <linux/scatterlist.h> 20 #include <linux/list.h> 21 #include <linux/timer.h> 22 #include <linux/completion.h> 23 #include <linux/device.h> 24 #include <linux/mod_devicetable.h> 25 #include <linux/interrupt.h> 26 #include <linux/reciprocal_div.h> 27 #include <hyperv/hvhdk.h> 28 29 #define MAX_PAGE_BUFFER_COUNT 32 30 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 31 32 #pragma pack(push, 1) 33 34 /* 35 * Types for GPADL, decides is how GPADL header is created. 36 * 37 * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the 38 * same as HV_HYP_PAGE_SIZE. 39 * 40 * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers 41 * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put 42 * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each 43 * HV_HYP_PAGE will be different between different types of GPADL, for example 44 * if PAGE_SIZE is 64K: 45 * 46 * BUFFER: 47 * 48 * gva: |-- 64k --|-- 64k --| ... | 49 * gpa: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | 50 * index: 0 1 2 15 16 17 18 .. 31 32 ... 51 * | | ... | | | ... | ... 52 * v V V V V V 53 * gpadl: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... | 54 * index: 0 1 2 ... 15 16 17 18 .. 31 32 ... 55 * 56 * RING: 57 * 58 * | header | data | header | data | 59 * gva: |-- 64k --|-- 64k --| ... |-- 64k --|-- 64k --| ... | 60 * gpa: | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... | 61 * index: 0 1 16 17 18 31 ... n n+1 n+16 ... 2n 62 * | / / / | / / 63 * | / / / | / / 64 * | / / ... / ... | / ... / 65 * | / / / | / / 66 * | / / / | / / 67 * V V V V V V v 68 * gpadl: | 4k | 4k | ... | ... | 4k | 4k | ... | 69 * index: 0 1 2 ... 16 ... n-15 n-14 n-13 ... 2n-30 70 */ 71 enum hv_gpadl_type { 72 HV_GPADL_BUFFER, 73 HV_GPADL_RING 74 }; 75 76 /* Single-page buffer */ 77 struct hv_page_buffer { 78 u32 len; 79 u32 offset; 80 u64 pfn; 81 }; 82 83 /* Multiple-page buffer */ 84 struct hv_multipage_buffer { 85 /* Length and Offset determines the # of pfns in the array */ 86 u32 len; 87 u32 offset; 88 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 89 }; 90 91 /* 92 * Multiple-page buffer array; the pfn array is variable size: 93 * The number of entries in the PFN array is determined by 94 * "len" and "offset". 95 */ 96 struct hv_mpb_array { 97 /* Length and Offset determines the # of pfns in the array */ 98 u32 len; 99 u32 offset; 100 u64 pfn_array[]; 101 }; 102 103 /* 0x18 includes the proprietary packet header */ 104 #define MAX_PAGE_BUFFER_PACKET (0x18 + \ 105 (sizeof(struct hv_page_buffer) * \ 106 MAX_PAGE_BUFFER_COUNT)) 107 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 108 sizeof(struct hv_multipage_buffer)) 109 110 111 #pragma pack(pop) 112 113 struct hv_ring_buffer { 114 /* Offset in bytes from the start of ring data below */ 115 u32 write_index; 116 117 /* Offset in bytes from the start of ring data below */ 118 u32 read_index; 119 120 u32 interrupt_mask; 121 122 /* 123 * WS2012/Win8 and later versions of Hyper-V implement interrupt 124 * driven flow management. The feature bit feat_pending_send_sz 125 * is set by the host on the host->guest ring buffer, and by the 126 * guest on the guest->host ring buffer. 127 * 128 * The meaning of the feature bit is a bit complex in that it has 129 * semantics that apply to both ring buffers. If the guest sets 130 * the feature bit in the guest->host ring buffer, the guest is 131 * telling the host that: 132 * 1) It will set the pending_send_sz field in the guest->host ring 133 * buffer when it is waiting for space to become available, and 134 * 2) It will read the pending_send_sz field in the host->guest 135 * ring buffer and interrupt the host when it frees enough space 136 * 137 * Similarly, if the host sets the feature bit in the host->guest 138 * ring buffer, the host is telling the guest that: 139 * 1) It will set the pending_send_sz field in the host->guest ring 140 * buffer when it is waiting for space to become available, and 141 * 2) It will read the pending_send_sz field in the guest->host 142 * ring buffer and interrupt the guest when it frees enough space 143 * 144 * If either the guest or host does not set the feature bit that it 145 * owns, that guest or host must do polling if it encounters a full 146 * ring buffer, and not signal the other end with an interrupt. 147 */ 148 u32 pending_send_sz; 149 u32 reserved1[12]; 150 union { 151 struct { 152 u32 feat_pending_send_sz:1; 153 }; 154 u32 value; 155 } feature_bits; 156 157 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 158 u8 reserved2[PAGE_SIZE - 68]; 159 160 /* 161 * Ring data starts here + RingDataStartOffset 162 * !!! DO NOT place any fields below this !!! 163 */ 164 u8 buffer[]; 165 } __packed; 166 167 168 /* 169 * If the requested ring buffer size is at least 8 times the size of the 170 * header, steal space from the ring buffer for the header. Otherwise, add 171 * space for the header so that is doesn't take too much of the ring buffer 172 * space. 173 * 174 * The factor of 8 is somewhat arbitrary. The goal is to prevent adding a 175 * relatively small header (4 Kbytes on x86) to a large-ish power-of-2 ring 176 * buffer size (such as 128 Kbytes) and so end up making a nearly twice as 177 * large allocation that will be almost half wasted. As a contrasting example, 178 * on ARM64 with 64 Kbyte page size, we don't want to take 64 Kbytes for the 179 * header from a 128 Kbyte allocation, leaving only 64 Kbytes for the ring. 180 * In this latter case, we must add 64 Kbytes for the header and not worry 181 * about what's wasted. 182 */ 183 #define VMBUS_HEADER_ADJ(payload_sz) \ 184 ((payload_sz) >= 8 * sizeof(struct hv_ring_buffer) ? \ 185 0 : sizeof(struct hv_ring_buffer)) 186 187 /* Calculate the proper size of a ringbuffer, it must be page-aligned */ 188 #define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(VMBUS_HEADER_ADJ(payload_sz) + \ 189 (payload_sz)) 190 191 struct hv_ring_buffer_info { 192 struct hv_ring_buffer *ring_buffer; 193 u32 ring_size; /* Include the shared header */ 194 struct reciprocal_value ring_size_div10_reciprocal; 195 spinlock_t ring_lock; 196 197 u32 ring_datasize; /* < ring_size */ 198 u32 priv_read_index; 199 /* 200 * The ring buffer mutex lock. This lock prevents the ring buffer from 201 * being freed while the ring buffer is being accessed. 202 */ 203 struct mutex ring_buffer_mutex; 204 205 /* Buffer that holds a copy of an incoming host packet */ 206 void *pkt_buffer; 207 u32 pkt_buffer_size; 208 }; 209 210 211 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi) 212 { 213 u32 read_loc, write_loc, dsize, read; 214 215 dsize = rbi->ring_datasize; 216 read_loc = rbi->ring_buffer->read_index; 217 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 218 219 read = write_loc >= read_loc ? (write_loc - read_loc) : 220 (dsize - read_loc) + write_loc; 221 222 return read; 223 } 224 225 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi) 226 { 227 u32 read_loc, write_loc, dsize, write; 228 229 dsize = rbi->ring_datasize; 230 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 231 write_loc = rbi->ring_buffer->write_index; 232 233 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 234 read_loc - write_loc; 235 return write; 236 } 237 238 static inline u32 hv_get_avail_to_write_percent( 239 const struct hv_ring_buffer_info *rbi) 240 { 241 u32 avail_write = hv_get_bytes_to_write(rbi); 242 243 return reciprocal_divide( 244 (avail_write << 3) + (avail_write << 1), 245 rbi->ring_size_div10_reciprocal); 246 } 247 248 /* 249 * VMBUS version is 32 bit entity broken up into 250 * two 16 bit quantities: major_number. minor_number. 251 * 252 * 0 . 13 (Windows Server 2008) 253 * 1 . 1 (Windows 7, WS2008 R2) 254 * 2 . 4 (Windows 8, WS2012) 255 * 3 . 0 (Windows 8.1, WS2012 R2) 256 * 4 . 0 (Windows 10) 257 * 4 . 1 (Windows 10 RS3) 258 * 5 . 0 (Newer Windows 10) 259 * 5 . 1 (Windows 10 RS4) 260 * 5 . 2 (Windows Server 2019, RS5) 261 * 5 . 3 (Windows Server 2022) 262 * 263 * The WS2008 and WIN7 versions are listed here for 264 * completeness but are no longer supported in the 265 * Linux kernel. 266 */ 267 268 #define VERSION_WS2008 ((0 << 16) | (13)) 269 #define VERSION_WIN7 ((1 << 16) | (1)) 270 #define VERSION_WIN8 ((2 << 16) | (4)) 271 #define VERSION_WIN8_1 ((3 << 16) | (0)) 272 #define VERSION_WIN10 ((4 << 16) | (0)) 273 #define VERSION_WIN10_V4_1 ((4 << 16) | (1)) 274 #define VERSION_WIN10_V5 ((5 << 16) | (0)) 275 #define VERSION_WIN10_V5_1 ((5 << 16) | (1)) 276 #define VERSION_WIN10_V5_2 ((5 << 16) | (2)) 277 #define VERSION_WIN10_V5_3 ((5 << 16) | (3)) 278 279 /* Make maximum size of pipe payload of 16K */ 280 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 281 282 /* Define PipeMode values. */ 283 #define VMBUS_PIPE_TYPE_BYTE 0x00000000 284 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 285 286 /* The size of the user defined data buffer for non-pipe offers. */ 287 #define MAX_USER_DEFINED_BYTES 120 288 289 /* The size of the user defined data buffer for pipe offers. */ 290 #define MAX_PIPE_USER_DEFINED_BYTES 116 291 292 /* 293 * At the center of the Channel Management library is the Channel Offer. This 294 * struct contains the fundamental information about an offer. 295 */ 296 struct vmbus_channel_offer { 297 guid_t if_type; 298 guid_t if_instance; 299 300 /* 301 * These two fields are not currently used. 302 */ 303 u64 reserved1; 304 u64 reserved2; 305 306 u16 chn_flags; 307 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 308 309 union { 310 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 311 struct { 312 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 313 } std; 314 315 /* 316 * Pipes: 317 * The following structure is an integrated pipe protocol, which 318 * is implemented on top of standard user-defined data. Pipe 319 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 320 * use. 321 */ 322 struct { 323 u32 pipe_mode; 324 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 325 } pipe; 326 } u; 327 /* 328 * The sub_channel_index is defined in Win8: a value of zero means a 329 * primary channel and a value of non-zero means a sub-channel. 330 * 331 * Before Win8, the field is reserved, meaning it's always zero. 332 */ 333 u16 sub_channel_index; 334 u16 reserved3; 335 } __packed; 336 337 /* Server Flags */ 338 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 339 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 340 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 341 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 342 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 343 #define VMBUS_CHANNEL_PARENT_OFFER 0x200 344 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 345 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 346 347 struct vmpacket_descriptor { 348 u16 type; 349 u16 offset8; 350 u16 len8; 351 u16 flags; 352 u64 trans_id; 353 } __packed; 354 355 struct vmpacket_header { 356 u32 prev_pkt_start_offset; 357 struct vmpacket_descriptor descriptor; 358 } __packed; 359 360 struct vmtransfer_page_range { 361 u32 byte_count; 362 u32 byte_offset; 363 } __packed; 364 365 struct vmtransfer_page_packet_header { 366 struct vmpacket_descriptor d; 367 u16 xfer_pageset_id; 368 u8 sender_owns_set; 369 u8 reserved; 370 u32 range_cnt; 371 struct vmtransfer_page_range ranges[]; 372 } __packed; 373 374 /* 375 * This structure defines a range in guest physical space that can be made to 376 * look virtually contiguous. 377 */ 378 struct gpa_range { 379 u32 byte_count; 380 u32 byte_offset; 381 u64 pfn_array[]; 382 }; 383 384 /* 385 * This is the format for a GPA-Direct packet, which contains a set of GPA 386 * ranges, in addition to commands and/or data. 387 */ 388 struct vmdata_gpa_direct { 389 struct vmpacket_descriptor d; 390 u32 reserved; 391 u32 range_cnt; 392 struct gpa_range range[1]; 393 } __packed; 394 395 #define VMPACKET_DATA_START_ADDRESS(__packet) \ 396 (void *)(((unsigned char *)__packet) + \ 397 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 398 399 #define VMPACKET_DATA_LENGTH(__packet) \ 400 ((((struct vmpacket_descriptor)__packet)->len8 - \ 401 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 402 403 #define VMPACKET_TRANSFER_MODE(__packet) \ 404 (((struct IMPACT)__packet)->type) 405 406 enum vmbus_packet_type { 407 VM_PKT_INVALID = 0x0, 408 VM_PKT_SYNCH = 0x1, 409 VM_PKT_ADD_XFER_PAGESET = 0x2, 410 VM_PKT_RM_XFER_PAGESET = 0x3, 411 VM_PKT_ESTABLISH_GPADL = 0x4, 412 VM_PKT_TEARDOWN_GPADL = 0x5, 413 VM_PKT_DATA_INBAND = 0x6, 414 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 415 VM_PKT_DATA_USING_GPADL = 0x8, 416 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 417 VM_PKT_CANCEL_REQUEST = 0xa, 418 VM_PKT_COMP = 0xb, 419 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 420 VM_PKT_ADDITIONAL_DATA = 0xd 421 }; 422 423 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 424 425 426 /* Version 1 messages */ 427 enum vmbus_channel_message_type { 428 CHANNELMSG_INVALID = 0, 429 CHANNELMSG_OFFERCHANNEL = 1, 430 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 431 CHANNELMSG_REQUESTOFFERS = 3, 432 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 433 CHANNELMSG_OPENCHANNEL = 5, 434 CHANNELMSG_OPENCHANNEL_RESULT = 6, 435 CHANNELMSG_CLOSECHANNEL = 7, 436 CHANNELMSG_GPADL_HEADER = 8, 437 CHANNELMSG_GPADL_BODY = 9, 438 CHANNELMSG_GPADL_CREATED = 10, 439 CHANNELMSG_GPADL_TEARDOWN = 11, 440 CHANNELMSG_GPADL_TORNDOWN = 12, 441 CHANNELMSG_RELID_RELEASED = 13, 442 CHANNELMSG_INITIATE_CONTACT = 14, 443 CHANNELMSG_VERSION_RESPONSE = 15, 444 CHANNELMSG_UNLOAD = 16, 445 CHANNELMSG_UNLOAD_RESPONSE = 17, 446 CHANNELMSG_18 = 18, 447 CHANNELMSG_19 = 19, 448 CHANNELMSG_20 = 20, 449 CHANNELMSG_TL_CONNECT_REQUEST = 21, 450 CHANNELMSG_MODIFYCHANNEL = 22, 451 CHANNELMSG_TL_CONNECT_RESULT = 23, 452 CHANNELMSG_MODIFYCHANNEL_RESPONSE = 24, 453 CHANNELMSG_COUNT 454 }; 455 456 /* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */ 457 #define INVALID_RELID U32_MAX 458 459 struct vmbus_channel_message_header { 460 enum vmbus_channel_message_type msgtype; 461 u32 padding; 462 } __packed; 463 464 /* Query VMBus Version parameters */ 465 struct vmbus_channel_query_vmbus_version { 466 struct vmbus_channel_message_header header; 467 u32 version; 468 } __packed; 469 470 /* VMBus Version Supported parameters */ 471 struct vmbus_channel_version_supported { 472 struct vmbus_channel_message_header header; 473 u8 version_supported; 474 } __packed; 475 476 /* Offer Channel parameters */ 477 struct vmbus_channel_offer_channel { 478 struct vmbus_channel_message_header header; 479 struct vmbus_channel_offer offer; 480 u32 child_relid; 481 u8 monitorid; 482 /* 483 * win7 and beyond splits this field into a bit field. 484 */ 485 u8 monitor_allocated:1; 486 u8 reserved:7; 487 /* 488 * These are new fields added in win7 and later. 489 * Do not access these fields without checking the 490 * negotiated protocol. 491 * 492 * If "is_dedicated_interrupt" is set, we must not set the 493 * associated bit in the channel bitmap while sending the 494 * interrupt to the host. 495 * 496 * connection_id is to be used in signaling the host. 497 */ 498 u16 is_dedicated_interrupt:1; 499 u16 reserved1:15; 500 u32 connection_id; 501 } __packed; 502 503 /* Rescind Offer parameters */ 504 struct vmbus_channel_rescind_offer { 505 struct vmbus_channel_message_header header; 506 u32 child_relid; 507 } __packed; 508 509 /* 510 * Request Offer -- no parameters, SynIC message contains the partition ID 511 * Set Snoop -- no parameters, SynIC message contains the partition ID 512 * Clear Snoop -- no parameters, SynIC message contains the partition ID 513 * All Offers Delivered -- no parameters, SynIC message contains the partition 514 * ID 515 * Flush Client -- no parameters, SynIC message contains the partition ID 516 */ 517 518 /* Open Channel parameters */ 519 struct vmbus_channel_open_channel { 520 struct vmbus_channel_message_header header; 521 522 /* Identifies the specific VMBus channel that is being opened. */ 523 u32 child_relid; 524 525 /* ID making a particular open request at a channel offer unique. */ 526 u32 openid; 527 528 /* GPADL for the channel's ring buffer. */ 529 u32 ringbuffer_gpadlhandle; 530 531 /* 532 * Starting with win8, this field will be used to specify 533 * the target virtual processor on which to deliver the interrupt for 534 * the host to guest communication. 535 * Prior to win8, incoming channel interrupts would only 536 * be delivered on cpu 0. Setting this value to 0 would 537 * preserve the earlier behavior. 538 */ 539 u32 target_vp; 540 541 /* 542 * The upstream ring buffer begins at offset zero in the memory 543 * described by RingBufferGpadlHandle. The downstream ring buffer 544 * follows it at this offset (in pages). 545 */ 546 u32 downstream_ringbuffer_pageoffset; 547 548 /* User-specific data to be passed along to the server endpoint. */ 549 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 550 } __packed; 551 552 /* Open Channel Result parameters */ 553 struct vmbus_channel_open_result { 554 struct vmbus_channel_message_header header; 555 u32 child_relid; 556 u32 openid; 557 u32 status; 558 } __packed; 559 560 /* Modify Channel Result parameters */ 561 struct vmbus_channel_modifychannel_response { 562 struct vmbus_channel_message_header header; 563 u32 child_relid; 564 u32 status; 565 } __packed; 566 567 /* Close channel parameters; */ 568 struct vmbus_channel_close_channel { 569 struct vmbus_channel_message_header header; 570 u32 child_relid; 571 } __packed; 572 573 /* Channel Message GPADL */ 574 #define GPADL_TYPE_RING_BUFFER 1 575 #define GPADL_TYPE_SERVER_SAVE_AREA 2 576 #define GPADL_TYPE_TRANSACTION 8 577 578 /* 579 * The number of PFNs in a GPADL message is defined by the number of 580 * pages that would be spanned by ByteCount and ByteOffset. If the 581 * implied number of PFNs won't fit in this packet, there will be a 582 * follow-up packet that contains more. 583 */ 584 struct vmbus_channel_gpadl_header { 585 struct vmbus_channel_message_header header; 586 u32 child_relid; 587 u32 gpadl; 588 u16 range_buflen; 589 u16 rangecount; 590 struct gpa_range range[]; 591 } __packed; 592 593 /* This is the followup packet that contains more PFNs. */ 594 struct vmbus_channel_gpadl_body { 595 struct vmbus_channel_message_header header; 596 u32 msgnumber; 597 u32 gpadl; 598 u64 pfn[]; 599 } __packed; 600 601 struct vmbus_channel_gpadl_created { 602 struct vmbus_channel_message_header header; 603 u32 child_relid; 604 u32 gpadl; 605 u32 creation_status; 606 } __packed; 607 608 struct vmbus_channel_gpadl_teardown { 609 struct vmbus_channel_message_header header; 610 u32 child_relid; 611 u32 gpadl; 612 } __packed; 613 614 struct vmbus_channel_gpadl_torndown { 615 struct vmbus_channel_message_header header; 616 u32 gpadl; 617 } __packed; 618 619 struct vmbus_channel_relid_released { 620 struct vmbus_channel_message_header header; 621 u32 child_relid; 622 } __packed; 623 624 struct vmbus_channel_initiate_contact { 625 struct vmbus_channel_message_header header; 626 u32 vmbus_version_requested; 627 u32 target_vcpu; /* The VCPU the host should respond to */ 628 union { 629 u64 interrupt_page; 630 struct { 631 u8 msg_sint; 632 u8 msg_vtl; 633 u8 reserved[6]; 634 }; 635 }; 636 u64 monitor_page1; 637 u64 monitor_page2; 638 } __packed; 639 640 /* Hyper-V socket: guest's connect()-ing to host */ 641 struct vmbus_channel_tl_connect_request { 642 struct vmbus_channel_message_header header; 643 guid_t guest_endpoint_id; 644 guid_t host_service_id; 645 } __packed; 646 647 /* Modify Channel parameters, cf. vmbus_send_modifychannel() */ 648 struct vmbus_channel_modifychannel { 649 struct vmbus_channel_message_header header; 650 u32 child_relid; 651 u32 target_vp; 652 } __packed; 653 654 struct vmbus_channel_version_response { 655 struct vmbus_channel_message_header header; 656 u8 version_supported; 657 658 u8 connection_state; 659 u16 padding; 660 661 /* 662 * On new hosts that support VMBus protocol 5.0, we must use 663 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message, 664 * and for subsequent messages, we must use the Message Connection ID 665 * field in the host-returned Version Response Message. 666 * 667 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1). 668 */ 669 u32 msg_conn_id; 670 } __packed; 671 672 enum vmbus_channel_state { 673 CHANNEL_OFFER_STATE, 674 CHANNEL_OPENING_STATE, 675 CHANNEL_OPEN_STATE, 676 CHANNEL_OPENED_STATE, 677 }; 678 679 /* 680 * Represents each channel msg on the vmbus connection This is a 681 * variable-size data structure depending on the msg type itself 682 */ 683 struct vmbus_channel_msginfo { 684 /* Bookkeeping stuff */ 685 struct list_head msglistentry; 686 687 /* So far, this is only used to handle gpadl body message */ 688 struct list_head submsglist; 689 690 /* Synchronize the request/response if needed */ 691 struct completion waitevent; 692 struct vmbus_channel *waiting_channel; 693 union { 694 struct vmbus_channel_version_supported version_supported; 695 struct vmbus_channel_open_result open_result; 696 struct vmbus_channel_gpadl_torndown gpadl_torndown; 697 struct vmbus_channel_gpadl_created gpadl_created; 698 struct vmbus_channel_version_response version_response; 699 struct vmbus_channel_modifychannel_response modify_response; 700 } response; 701 702 u32 msgsize; 703 /* 704 * The channel message that goes out on the "wire". 705 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 706 */ 707 unsigned char msg[]; 708 }; 709 710 struct vmbus_close_msg { 711 struct vmbus_channel_msginfo info; 712 struct vmbus_channel_close_channel msg; 713 }; 714 715 enum vmbus_device_type { 716 HV_IDE = 0, 717 HV_SCSI, 718 HV_FC, 719 HV_NIC, 720 HV_ND, 721 HV_PCIE, 722 HV_FB, 723 HV_KBD, 724 HV_MOUSE, 725 HV_KVP, 726 HV_TS, 727 HV_HB, 728 HV_SHUTDOWN, 729 HV_FCOPY, 730 HV_BACKUP, 731 HV_DM, 732 HV_UNKNOWN, 733 }; 734 735 /* 736 * Provides request ids for VMBus. Encapsulates guest memory 737 * addresses and stores the next available slot in req_arr 738 * to generate new ids in constant time. 739 */ 740 struct vmbus_requestor { 741 u64 *req_arr; 742 unsigned long *req_bitmap; /* is a given slot available? */ 743 u32 size; 744 u64 next_request_id; 745 spinlock_t req_lock; /* provides atomicity */ 746 }; 747 748 #define VMBUS_NO_RQSTOR U64_MAX 749 #define VMBUS_RQST_ERROR (U64_MAX - 1) 750 #define VMBUS_RQST_ADDR_ANY U64_MAX 751 /* NetVSC-specific */ 752 #define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2) 753 /* StorVSC-specific */ 754 #define VMBUS_RQST_INIT (U64_MAX - 2) 755 #define VMBUS_RQST_RESET (U64_MAX - 3) 756 757 struct vmbus_device { 758 /* preferred ring buffer size in KB, 0 means no preferred size for this device */ 759 size_t pref_ring_size; 760 u16 dev_type; 761 guid_t guid; 762 bool perf_device; 763 bool allowed_in_isolated; 764 }; 765 766 #define VMBUS_DEFAULT_MAX_PKT_SIZE 4096 767 768 struct vmbus_gpadl { 769 u32 gpadl_handle; 770 u32 size; 771 void *buffer; 772 bool decrypted; 773 }; 774 775 struct vmbus_channel { 776 struct list_head listentry; 777 778 struct hv_device *device_obj; 779 780 enum vmbus_channel_state state; 781 782 struct vmbus_channel_offer_channel offermsg; 783 /* 784 * These are based on the OfferMsg.MonitorId. 785 * Save it here for easy access. 786 */ 787 u8 monitor_grp; 788 u8 monitor_bit; 789 790 bool rescind; /* got rescind msg */ 791 bool rescind_ref; /* got rescind msg, got channel reference */ 792 struct completion rescind_event; 793 794 struct vmbus_gpadl ringbuffer_gpadlhandle; 795 796 /* Allocated memory for ring buffer */ 797 struct page *ringbuffer_page; 798 u32 ringbuffer_pagecount; 799 u32 ringbuffer_send_offset; 800 struct hv_ring_buffer_info outbound; /* send to parent */ 801 struct hv_ring_buffer_info inbound; /* receive from parent */ 802 803 struct vmbus_close_msg close_msg; 804 805 /* Statistics */ 806 u64 interrupts; /* Host to Guest interrupts */ 807 u64 sig_events; /* Guest to Host events */ 808 809 /* 810 * Guest to host interrupts caused by the outbound ring buffer changing 811 * from empty to not empty. 812 */ 813 u64 intr_out_empty; 814 815 /* 816 * Indicates that a full outbound ring buffer was encountered. The flag 817 * is set to true when a full outbound ring buffer is encountered and 818 * set to false when a write to the outbound ring buffer is completed. 819 */ 820 bool out_full_flag; 821 822 /* Channel callback's invoked in softirq context */ 823 struct tasklet_struct callback_event; 824 void (*onchannel_callback)(void *context); 825 void *channel_callback_context; 826 827 void (*change_target_cpu_callback)(struct vmbus_channel *channel, 828 u32 old, u32 new); 829 830 /* 831 * Synchronize channel scheduling and channel removal; see the inline 832 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb(). 833 */ 834 spinlock_t sched_lock; 835 836 /* 837 * A channel can be marked for one of three modes of reading: 838 * BATCHED - callback called from taslket and should read 839 * channel until empty. Interrupts from the host 840 * are masked while read is in process (default). 841 * DIRECT - callback called from tasklet (softirq). 842 * ISR - callback called in interrupt context and must 843 * invoke its own deferred processing. 844 * Host interrupts are disabled and must be re-enabled 845 * when ring is empty. 846 */ 847 enum hv_callback_mode { 848 HV_CALL_BATCHED, 849 HV_CALL_DIRECT, 850 HV_CALL_ISR 851 } callback_mode; 852 853 bool is_dedicated_interrupt; 854 u64 sig_event; 855 856 /* 857 * Starting with win8, this field will be used to specify the 858 * target CPU on which to deliver the interrupt for the host 859 * to guest communication. 860 * 861 * Prior to win8, incoming channel interrupts would only be 862 * delivered on CPU 0. Setting this value to 0 would preserve 863 * the earlier behavior. 864 */ 865 u32 target_cpu; 866 /* 867 * Support for sub-channels. For high performance devices, 868 * it will be useful to have multiple sub-channels to support 869 * a scalable communication infrastructure with the host. 870 * The support for sub-channels is implemented as an extension 871 * to the current infrastructure. 872 * The initial offer is considered the primary channel and this 873 * offer message will indicate if the host supports sub-channels. 874 * The guest is free to ask for sub-channels to be offered and can 875 * open these sub-channels as a normal "primary" channel. However, 876 * all sub-channels will have the same type and instance guids as the 877 * primary channel. Requests sent on a given channel will result in a 878 * response on the same channel. 879 */ 880 881 /* 882 * Sub-channel creation callback. This callback will be called in 883 * process context when a sub-channel offer is received from the host. 884 * The guest can open the sub-channel in the context of this callback. 885 */ 886 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 887 888 /* 889 * Channel rescind callback. Some channels (the hvsock ones), need to 890 * register a callback which is invoked in vmbus_onoffer_rescind(). 891 */ 892 void (*chn_rescind_callback)(struct vmbus_channel *channel); 893 894 /* 895 * All Sub-channels of a primary channel are linked here. 896 */ 897 struct list_head sc_list; 898 /* 899 * The primary channel this sub-channel belongs to. 900 * This will be NULL for the primary channel. 901 */ 902 struct vmbus_channel *primary_channel; 903 /* 904 * Support per-channel state for use by vmbus drivers. 905 */ 906 void *per_channel_state; 907 908 /* 909 * Defer freeing channel until after all cpu's have 910 * gone through grace period. 911 */ 912 struct rcu_head rcu; 913 914 /* 915 * For sysfs per-channel properties. 916 */ 917 struct kobject kobj; 918 919 /* 920 * For performance critical channels (storage, networking 921 * etc,), Hyper-V has a mechanism to enhance the throughput 922 * at the expense of latency: 923 * When the host is to be signaled, we just set a bit in a shared page 924 * and this bit will be inspected by the hypervisor within a certain 925 * window and if the bit is set, the host will be signaled. The window 926 * of time is the monitor latency - currently around 100 usecs. This 927 * mechanism improves throughput by: 928 * 929 * A) Making the host more efficient - each time it wakes up, 930 * potentially it will process more number of packets. The 931 * monitor latency allows a batch to build up. 932 * B) By deferring the hypercall to signal, we will also minimize 933 * the interrupts. 934 * 935 * Clearly, these optimizations improve throughput at the expense of 936 * latency. Furthermore, since the channel is shared for both 937 * control and data messages, control messages currently suffer 938 * unnecessary latency adversely impacting performance and boot 939 * time. To fix this issue, permit tagging the channel as being 940 * in "low latency" mode. In this mode, we will bypass the monitor 941 * mechanism. 942 */ 943 bool low_latency; 944 945 bool probe_done; 946 947 /* 948 * Cache the device ID here for easy access; this is useful, in 949 * particular, in situations where the channel's device_obj has 950 * not been allocated/initialized yet. 951 */ 952 u16 device_id; 953 954 /* 955 * We must offload the handling of the primary/sub channels 956 * from the single-threaded vmbus_connection.work_queue to 957 * two different workqueue, otherwise we can block 958 * vmbus_connection.work_queue and hang: see vmbus_process_offer(). 959 */ 960 struct work_struct add_channel_work; 961 962 /* 963 * Guest to host interrupts caused by the inbound ring buffer changing 964 * from full to not full while a packet is waiting. 965 */ 966 u64 intr_in_full; 967 968 /* 969 * The total number of write operations that encountered a full 970 * outbound ring buffer. 971 */ 972 u64 out_full_total; 973 974 /* 975 * The number of write operations that were the first to encounter a 976 * full outbound ring buffer. 977 */ 978 u64 out_full_first; 979 980 /* enabling/disabling fuzz testing on the channel (default is false)*/ 981 bool fuzz_testing_state; 982 983 /* 984 * Interrupt delay will delay the guest from emptying the ring buffer 985 * for a specific amount of time. The delay is in microseconds and will 986 * be between 1 to a maximum of 1000, its default is 0 (no delay). 987 * The Message delay will delay guest reading on a per message basis 988 * in microseconds between 1 to 1000 with the default being 0 989 * (no delay). 990 */ 991 u32 fuzz_testing_interrupt_delay; 992 u32 fuzz_testing_message_delay; 993 994 /* callback to generate a request ID from a request address */ 995 u64 (*next_request_id_callback)(struct vmbus_channel *channel, u64 rqst_addr); 996 /* callback to retrieve a request address from a request ID */ 997 u64 (*request_addr_callback)(struct vmbus_channel *channel, u64 rqst_id); 998 999 /* request/transaction ids for VMBus */ 1000 struct vmbus_requestor requestor; 1001 u32 rqstor_size; 1002 1003 /* The max size of a packet on this channel */ 1004 u32 max_pkt_size; 1005 1006 /* function to mmap ring buffer memory to the channel's sysfs ring attribute */ 1007 int (*mmap_ring_buffer)(struct vmbus_channel *channel, struct vm_area_struct *vma); 1008 1009 /* boolean to control visibility of sysfs for ring buffer */ 1010 bool ring_sysfs_visible; 1011 }; 1012 1013 #define lock_requestor(channel, flags) \ 1014 do { \ 1015 struct vmbus_requestor *rqstor = &(channel)->requestor; \ 1016 \ 1017 spin_lock_irqsave(&rqstor->req_lock, flags); \ 1018 } while (0) 1019 1020 static __always_inline void unlock_requestor(struct vmbus_channel *channel, 1021 unsigned long flags) 1022 { 1023 struct vmbus_requestor *rqstor = &channel->requestor; 1024 1025 spin_unlock_irqrestore(&rqstor->req_lock, flags); 1026 } 1027 1028 u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr); 1029 u64 __vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id, 1030 u64 rqst_addr); 1031 u64 vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id, 1032 u64 rqst_addr); 1033 u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id); 1034 1035 static inline bool is_hvsock_offer(const struct vmbus_channel_offer_channel *o) 1036 { 1037 return !!(o->offer.chn_flags & VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 1038 } 1039 1040 static inline bool is_hvsock_channel(const struct vmbus_channel *c) 1041 { 1042 return is_hvsock_offer(&c->offermsg); 1043 } 1044 1045 static inline bool is_sub_channel(const struct vmbus_channel *c) 1046 { 1047 return c->offermsg.offer.sub_channel_index != 0; 1048 } 1049 1050 static inline void set_channel_read_mode(struct vmbus_channel *c, 1051 enum hv_callback_mode mode) 1052 { 1053 c->callback_mode = mode; 1054 } 1055 1056 static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 1057 { 1058 c->per_channel_state = s; 1059 } 1060 1061 static inline void *get_per_channel_state(struct vmbus_channel *c) 1062 { 1063 return c->per_channel_state; 1064 } 1065 1066 static inline void set_channel_pending_send_size(struct vmbus_channel *c, 1067 u32 size) 1068 { 1069 unsigned long flags; 1070 1071 if (size) { 1072 spin_lock_irqsave(&c->outbound.ring_lock, flags); 1073 ++c->out_full_total; 1074 1075 if (!c->out_full_flag) { 1076 ++c->out_full_first; 1077 c->out_full_flag = true; 1078 } 1079 spin_unlock_irqrestore(&c->outbound.ring_lock, flags); 1080 } else { 1081 c->out_full_flag = false; 1082 } 1083 1084 c->outbound.ring_buffer->pending_send_sz = size; 1085 } 1086 1087 void vmbus_onmessage(struct vmbus_channel_message_header *hdr); 1088 1089 int vmbus_request_offers(void); 1090 1091 /* 1092 * APIs for managing sub-channels. 1093 */ 1094 1095 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 1096 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 1097 1098 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 1099 void (*chn_rescind_cb)(struct vmbus_channel *)); 1100 1101 /* The format must be the same as struct vmdata_gpa_direct */ 1102 struct vmbus_channel_packet_page_buffer { 1103 u16 type; 1104 u16 dataoffset8; 1105 u16 length8; 1106 u16 flags; 1107 u64 transactionid; 1108 u32 reserved; 1109 u32 rangecount; 1110 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1111 } __packed; 1112 1113 /* The format must be the same as struct vmdata_gpa_direct */ 1114 struct vmbus_channel_packet_multipage_buffer { 1115 u16 type; 1116 u16 dataoffset8; 1117 u16 length8; 1118 u16 flags; 1119 u64 transactionid; 1120 u32 reserved; 1121 u32 rangecount; /* Always 1 in this case */ 1122 struct hv_multipage_buffer range; 1123 } __packed; 1124 1125 /* The format must be the same as struct vmdata_gpa_direct */ 1126 struct vmbus_packet_mpb_array { 1127 u16 type; 1128 u16 dataoffset8; 1129 u16 length8; 1130 u16 flags; 1131 u64 transactionid; 1132 u32 reserved; 1133 u32 rangecount; /* Always 1 in this case */ 1134 struct hv_mpb_array range; 1135 } __packed; 1136 1137 int vmbus_alloc_ring(struct vmbus_channel *channel, 1138 u32 send_size, u32 recv_size); 1139 void vmbus_free_ring(struct vmbus_channel *channel); 1140 1141 int vmbus_connect_ring(struct vmbus_channel *channel, 1142 void (*onchannel_callback)(void *context), 1143 void *context); 1144 int vmbus_disconnect_ring(struct vmbus_channel *channel); 1145 1146 extern int vmbus_open(struct vmbus_channel *channel, 1147 u32 send_ringbuffersize, 1148 u32 recv_ringbuffersize, 1149 void *userdata, 1150 u32 userdatalen, 1151 void (*onchannel_callback)(void *context), 1152 void *context); 1153 1154 extern void vmbus_close(struct vmbus_channel *channel); 1155 1156 extern int vmbus_sendpacket_getid(struct vmbus_channel *channel, 1157 void *buffer, 1158 u32 bufferLen, 1159 u64 requestid, 1160 u64 *trans_id, 1161 enum vmbus_packet_type type, 1162 u32 flags); 1163 extern int vmbus_sendpacket(struct vmbus_channel *channel, 1164 void *buffer, 1165 u32 bufferLen, 1166 u64 requestid, 1167 enum vmbus_packet_type type, 1168 u32 flags); 1169 1170 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1171 struct hv_page_buffer pagebuffers[], 1172 u32 pagecount, 1173 void *buffer, 1174 u32 bufferlen, 1175 u64 requestid); 1176 1177 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1178 struct vmbus_packet_mpb_array *mpb, 1179 u32 desc_size, 1180 void *buffer, 1181 u32 bufferlen, 1182 u64 requestid); 1183 1184 extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1185 void *kbuffer, 1186 u32 size, 1187 struct vmbus_gpadl *gpadl); 1188 1189 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1190 struct vmbus_gpadl *gpadl); 1191 1192 void vmbus_reset_channel_cb(struct vmbus_channel *channel); 1193 1194 extern int vmbus_recvpacket(struct vmbus_channel *channel, 1195 void *buffer, 1196 u32 bufferlen, 1197 u32 *buffer_actual_len, 1198 u64 *requestid); 1199 1200 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1201 void *buffer, 1202 u32 bufferlen, 1203 u32 *buffer_actual_len, 1204 u64 *requestid); 1205 1206 /* Base driver object */ 1207 struct hv_driver { 1208 const char *name; 1209 1210 /* 1211 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1212 * channel flag, actually doesn't mean a synthetic device because the 1213 * offer's if_type/if_instance can change for every new hvsock 1214 * connection. 1215 * 1216 * However, to facilitate the notification of new-offer/rescind-offer 1217 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1218 * a special vmbus device, and hence we need the below flag to 1219 * indicate if the driver is the hvsock driver or not: we need to 1220 * specially treat the hvosck offer & driver in vmbus_match(). 1221 */ 1222 bool hvsock; 1223 1224 /* the device type supported by this driver */ 1225 guid_t dev_type; 1226 const struct hv_vmbus_device_id *id_table; 1227 1228 struct device_driver driver; 1229 1230 /* dynamic device GUID's */ 1231 struct { 1232 spinlock_t lock; 1233 struct list_head list; 1234 } dynids; 1235 1236 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1237 void (*remove)(struct hv_device *dev); 1238 void (*shutdown)(struct hv_device *); 1239 1240 int (*suspend)(struct hv_device *); 1241 int (*resume)(struct hv_device *); 1242 1243 }; 1244 1245 /* Base device object */ 1246 struct hv_device { 1247 /* the device type id of this device */ 1248 guid_t dev_type; 1249 1250 /* the device instance id of this device */ 1251 guid_t dev_instance; 1252 u16 vendor_id; 1253 u16 device_id; 1254 1255 struct device device; 1256 /* 1257 * Driver name to force a match. Do not set directly, because core 1258 * frees it. Use driver_set_override() to set or clear it. 1259 */ 1260 const char *driver_override; 1261 1262 struct vmbus_channel *channel; 1263 struct kset *channels_kset; 1264 struct device_dma_parameters dma_parms; 1265 u64 dma_mask; 1266 1267 /* place holder to keep track of the dir for hv device in debugfs */ 1268 struct dentry *debug_dir; 1269 1270 }; 1271 1272 1273 #define device_to_hv_device(d) container_of_const(d, struct hv_device, device) 1274 #define drv_to_hv_drv(d) container_of_const(d, struct hv_driver, driver) 1275 1276 static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1277 { 1278 dev_set_drvdata(&dev->device, data); 1279 } 1280 1281 static inline void *hv_get_drvdata(struct hv_device *dev) 1282 { 1283 return dev_get_drvdata(&dev->device); 1284 } 1285 1286 struct hv_ring_buffer_debug_info { 1287 u32 current_interrupt_mask; 1288 u32 current_read_index; 1289 u32 current_write_index; 1290 u32 bytes_avail_toread; 1291 u32 bytes_avail_towrite; 1292 }; 1293 1294 1295 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 1296 struct hv_ring_buffer_debug_info *debug_info); 1297 1298 bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel); 1299 1300 /* Vmbus interface */ 1301 #define vmbus_driver_register(driver) \ 1302 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1303 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1304 struct module *owner, 1305 const char *mod_name); 1306 void vmbus_driver_unregister(struct hv_driver *hv_driver); 1307 1308 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1309 1310 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1311 resource_size_t min, resource_size_t max, 1312 resource_size_t size, resource_size_t align, 1313 bool fb_overlap_ok); 1314 void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1315 1316 /* 1317 * GUID definitions of various offer types - services offered to the guest. 1318 */ 1319 1320 /* 1321 * Network GUID 1322 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1323 */ 1324 #define HV_NIC_GUID \ 1325 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1326 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1327 1328 /* 1329 * IDE GUID 1330 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1331 */ 1332 #define HV_IDE_GUID \ 1333 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1334 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1335 1336 /* 1337 * SCSI GUID 1338 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1339 */ 1340 #define HV_SCSI_GUID \ 1341 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1342 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1343 1344 /* 1345 * Shutdown GUID 1346 * {0e0b6031-5213-4934-818b-38d90ced39db} 1347 */ 1348 #define HV_SHUTDOWN_GUID \ 1349 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1350 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1351 1352 /* 1353 * Time Synch GUID 1354 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1355 */ 1356 #define HV_TS_GUID \ 1357 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1358 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1359 1360 /* 1361 * Heartbeat GUID 1362 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1363 */ 1364 #define HV_HEART_BEAT_GUID \ 1365 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1366 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1367 1368 /* 1369 * KVP GUID 1370 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1371 */ 1372 #define HV_KVP_GUID \ 1373 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1374 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1375 1376 /* 1377 * Dynamic memory GUID 1378 * {525074dc-8985-46e2-8057-a307dc18a502} 1379 */ 1380 #define HV_DM_GUID \ 1381 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1382 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1383 1384 /* 1385 * Mouse GUID 1386 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1387 */ 1388 #define HV_MOUSE_GUID \ 1389 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1390 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1391 1392 /* 1393 * Keyboard GUID 1394 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1395 */ 1396 #define HV_KBD_GUID \ 1397 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1398 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1399 1400 /* 1401 * VSS (Backup/Restore) GUID 1402 */ 1403 #define HV_VSS_GUID \ 1404 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1405 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1406 /* 1407 * Synthetic Video GUID 1408 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1409 */ 1410 #define HV_SYNTHVID_GUID \ 1411 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1412 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1413 1414 /* 1415 * Synthetic FC GUID 1416 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1417 */ 1418 #define HV_SYNTHFC_GUID \ 1419 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1420 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1421 1422 /* 1423 * Guest File Copy Service 1424 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1425 */ 1426 1427 #define HV_FCOPY_GUID \ 1428 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1429 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1430 1431 /* 1432 * NetworkDirect. This is the guest RDMA service. 1433 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1434 */ 1435 #define HV_ND_GUID \ 1436 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1437 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1438 1439 /* 1440 * PCI Express Pass Through 1441 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1442 */ 1443 1444 #define HV_PCIE_GUID \ 1445 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1446 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1447 1448 /* 1449 * Linux doesn't support these 4 devices: the first two are for 1450 * Automatic Virtual Machine Activation, the third is for 1451 * Remote Desktop Virtualization, and the fourth is Initial 1452 * Machine Configuration (IMC) used only by Windows guests. 1453 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1454 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1455 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1456 * {c376c1c3-d276-48d2-90a9-c04748072c60} 1457 */ 1458 1459 #define HV_AVMA1_GUID \ 1460 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1461 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1462 1463 #define HV_AVMA2_GUID \ 1464 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1465 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1466 1467 #define HV_RDV_GUID \ 1468 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1469 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1470 1471 #define HV_IMC_GUID \ 1472 .guid = GUID_INIT(0xc376c1c3, 0xd276, 0x48d2, 0x90, 0xa9, \ 1473 0xc0, 0x47, 0x48, 0x07, 0x2c, 0x60) 1474 1475 /* 1476 * Common header for Hyper-V ICs 1477 */ 1478 1479 #define ICMSGTYPE_NEGOTIATE 0 1480 #define ICMSGTYPE_HEARTBEAT 1 1481 #define ICMSGTYPE_KVPEXCHANGE 2 1482 #define ICMSGTYPE_SHUTDOWN 3 1483 #define ICMSGTYPE_TIMESYNC 4 1484 #define ICMSGTYPE_VSS 5 1485 #define ICMSGTYPE_FCOPY 7 1486 1487 #define ICMSGHDRFLAG_TRANSACTION 1 1488 #define ICMSGHDRFLAG_REQUEST 2 1489 #define ICMSGHDRFLAG_RESPONSE 4 1490 1491 1492 /* 1493 * While we want to handle util services as regular devices, 1494 * there is only one instance of each of these services; so 1495 * we statically allocate the service specific state. 1496 */ 1497 1498 struct hv_util_service { 1499 u8 *recv_buffer; 1500 void *channel; 1501 void (*util_cb)(void *); 1502 int (*util_init)(struct hv_util_service *); 1503 int (*util_init_transport)(void); 1504 void (*util_deinit)(void); 1505 int (*util_pre_suspend)(void); 1506 int (*util_pre_resume)(void); 1507 }; 1508 1509 struct vmbuspipe_hdr { 1510 u32 flags; 1511 u32 msgsize; 1512 } __packed; 1513 1514 struct ic_version { 1515 u16 major; 1516 u16 minor; 1517 } __packed; 1518 1519 struct icmsg_hdr { 1520 struct ic_version icverframe; 1521 u16 icmsgtype; 1522 struct ic_version icvermsg; 1523 u16 icmsgsize; 1524 u32 status; 1525 u8 ictransaction_id; 1526 u8 icflags; 1527 u8 reserved[2]; 1528 } __packed; 1529 1530 #define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100 1531 #define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr)) 1532 #define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \ 1533 (ICMSG_HDR + sizeof(struct icmsg_negotiate) + \ 1534 (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version))) 1535 1536 struct icmsg_negotiate { 1537 u16 icframe_vercnt; 1538 u16 icmsg_vercnt; 1539 u32 reserved; 1540 struct ic_version icversion_data[]; /* any size array */ 1541 } __packed; 1542 1543 struct shutdown_msg_data { 1544 u32 reason_code; 1545 u32 timeout_seconds; 1546 u32 flags; 1547 u8 display_message[2048]; 1548 } __packed; 1549 1550 struct heartbeat_msg_data { 1551 u64 seq_num; 1552 u32 reserved[8]; 1553 } __packed; 1554 1555 /* Time Sync IC defs */ 1556 #define ICTIMESYNCFLAG_PROBE 0 1557 #define ICTIMESYNCFLAG_SYNC 1 1558 #define ICTIMESYNCFLAG_SAMPLE 2 1559 1560 #ifdef __x86_64__ 1561 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1562 #else 1563 #define WLTIMEDELTA 116444736000000000LL 1564 #endif 1565 1566 struct ictimesync_data { 1567 u64 parenttime; 1568 u64 childtime; 1569 u64 roundtriptime; 1570 u8 flags; 1571 } __packed; 1572 1573 struct ictimesync_ref_data { 1574 u64 parenttime; 1575 u64 vmreferencetime; 1576 u8 flags; 1577 char leapflags; 1578 char stratum; 1579 u8 reserved[3]; 1580 } __packed; 1581 1582 struct hyperv_service_callback { 1583 u8 msg_type; 1584 char *log_msg; 1585 guid_t data; 1586 struct vmbus_channel *channel; 1587 void (*callback)(void *context); 1588 }; 1589 1590 struct hv_dma_range { 1591 dma_addr_t dma; 1592 u32 mapping_size; 1593 }; 1594 1595 #define MAX_SRV_VER 0x7ffffff 1596 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen, 1597 const int *fw_version, int fw_vercnt, 1598 const int *srv_version, int srv_vercnt, 1599 int *nego_fw_version, int *nego_srv_version); 1600 1601 void hv_process_channel_removal(struct vmbus_channel *channel); 1602 1603 void vmbus_setevent(struct vmbus_channel *channel); 1604 /* 1605 * Negotiated version with the Host. 1606 */ 1607 1608 extern __u32 vmbus_proto_version; 1609 1610 int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id, 1611 const guid_t *shv_host_servie_id); 1612 int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp); 1613 void vmbus_set_event(struct vmbus_channel *channel); 1614 int vmbus_channel_set_cpu(struct vmbus_channel *channel, u32 target_cpu); 1615 1616 /* Get the start of the ring buffer. */ 1617 static inline void * 1618 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info) 1619 { 1620 return ring_info->ring_buffer->buffer; 1621 } 1622 1623 /* 1624 * Mask off host interrupt callback notifications 1625 */ 1626 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi) 1627 { 1628 rbi->ring_buffer->interrupt_mask = 1; 1629 1630 /* make sure mask update is not reordered */ 1631 virt_mb(); 1632 } 1633 1634 /* 1635 * Re-enable host callback and return number of outstanding bytes 1636 */ 1637 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi) 1638 { 1639 1640 rbi->ring_buffer->interrupt_mask = 0; 1641 1642 /* make sure mask update is not reordered */ 1643 virt_mb(); 1644 1645 /* 1646 * Now check to see if the ring buffer is still empty. 1647 * If it is not, we raced and we need to process new 1648 * incoming messages. 1649 */ 1650 return hv_get_bytes_to_read(rbi); 1651 } 1652 1653 /* 1654 * An API to support in-place processing of incoming VMBUS packets. 1655 */ 1656 1657 /* Get data payload associated with descriptor */ 1658 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc) 1659 { 1660 return (void *)((unsigned long)desc + (desc->offset8 << 3)); 1661 } 1662 1663 /* Get data size associated with descriptor */ 1664 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc) 1665 { 1666 return (desc->len8 << 3) - (desc->offset8 << 3); 1667 } 1668 1669 /* Get packet length associated with descriptor */ 1670 static inline u32 hv_pkt_len(const struct vmpacket_descriptor *desc) 1671 { 1672 return desc->len8 << 3; 1673 } 1674 1675 struct vmpacket_descriptor * 1676 hv_pkt_iter_first(struct vmbus_channel *channel); 1677 1678 struct vmpacket_descriptor * 1679 __hv_pkt_iter_next(struct vmbus_channel *channel, 1680 const struct vmpacket_descriptor *pkt); 1681 1682 void hv_pkt_iter_close(struct vmbus_channel *channel); 1683 1684 static inline struct vmpacket_descriptor * 1685 hv_pkt_iter_next(struct vmbus_channel *channel, 1686 const struct vmpacket_descriptor *pkt) 1687 { 1688 struct vmpacket_descriptor *nxt; 1689 1690 nxt = __hv_pkt_iter_next(channel, pkt); 1691 if (!nxt) 1692 hv_pkt_iter_close(channel); 1693 1694 return nxt; 1695 } 1696 1697 #define foreach_vmbus_pkt(pkt, channel) \ 1698 for (pkt = hv_pkt_iter_first(channel); pkt; \ 1699 pkt = hv_pkt_iter_next(channel, pkt)) 1700 1701 /* 1702 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver 1703 * sends requests to read and write blocks. Each block must be 128 bytes or 1704 * smaller. Optionally, the VF driver can register a callback function which 1705 * will be invoked when the host says that one or more of the first 64 block 1706 * IDs is "invalid" which means that the VF driver should reread them. 1707 */ 1708 #define HV_CONFIG_BLOCK_SIZE_MAX 128 1709 1710 int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len, 1711 unsigned int block_id, unsigned int *bytes_returned); 1712 int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len, 1713 unsigned int block_id); 1714 int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context, 1715 void (*block_invalidate)(void *context, 1716 u64 block_mask)); 1717 1718 struct hyperv_pci_block_ops { 1719 int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len, 1720 unsigned int block_id, unsigned int *bytes_returned); 1721 int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len, 1722 unsigned int block_id); 1723 int (*reg_blk_invalidate)(struct pci_dev *dev, void *context, 1724 void (*block_invalidate)(void *context, 1725 u64 block_mask)); 1726 }; 1727 1728 extern struct hyperv_pci_block_ops hvpci_block_ops; 1729 1730 static inline unsigned long virt_to_hvpfn(void *addr) 1731 { 1732 phys_addr_t paddr; 1733 1734 if (is_vmalloc_addr(addr)) 1735 paddr = page_to_phys(vmalloc_to_page(addr)) + 1736 offset_in_page(addr); 1737 else 1738 paddr = __pa(addr); 1739 1740 return paddr >> HV_HYP_PAGE_SHIFT; 1741 } 1742 1743 #define NR_HV_HYP_PAGES_IN_PAGE (PAGE_SIZE / HV_HYP_PAGE_SIZE) 1744 #define offset_in_hvpage(ptr) ((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK) 1745 #define HVPFN_UP(x) (((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT) 1746 #define HVPFN_DOWN(x) ((x) >> HV_HYP_PAGE_SHIFT) 1747 #define page_to_hvpfn(page) (page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE) 1748 1749 #endif /* _HYPERV_H */ 1750