xref: /linux-6.15/include/linux/hyperv.h (revision 0aadb6a7)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *
4  * Copyright (c) 2011, Microsoft Corporation.
5  *
6  * Authors:
7  *   Haiyang Zhang <[email protected]>
8  *   Hank Janssen  <[email protected]>
9  *   K. Y. Srinivasan <[email protected]>
10  */
11 
12 #ifndef _HYPERV_H
13 #define _HYPERV_H
14 
15 #include <uapi/linux/hyperv.h>
16 
17 #include <linux/mm.h>
18 #include <linux/types.h>
19 #include <linux/scatterlist.h>
20 #include <linux/list.h>
21 #include <linux/timer.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/interrupt.h>
26 #include <linux/reciprocal_div.h>
27 #include <asm/hyperv-tlfs.h>
28 
29 #define MAX_PAGE_BUFFER_COUNT				32
30 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
31 
32 #pragma pack(push, 1)
33 
34 /*
35  * Types for GPADL, decides is how GPADL header is created.
36  *
37  * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the
38  * same as HV_HYP_PAGE_SIZE.
39  *
40  * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers
41  * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put
42  * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each
43  * HV_HYP_PAGE will be different between different types of GPADL, for example
44  * if PAGE_SIZE is 64K:
45  *
46  * BUFFER:
47  *
48  * gva:    |--       64k      --|--       64k      --| ... |
49  * gpa:    | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k |
50  * index:  0    1    2     15   16   17   18 .. 31   32 ...
51  *         |    |    ...   |    |    |   ...    |   ...
52  *         v    V          V    V    V          V
53  * gpadl:  | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... |
54  * index:  0    1    2 ... 15   16   17   18 .. 31   32 ...
55  *
56  * RING:
57  *
58  *         | header  |           data           | header  |     data      |
59  * gva:    |-- 64k --|--       64k      --| ... |-- 64k --|-- 64k --| ... |
60  * gpa:    | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... |
61  * index:  0    1    16   17   18    31   ...   n   n+1  n+16 ...         2n
62  *         |         /    /          /          |         /               /
63  *         |        /    /          /           |        /               /
64  *         |       /    /   ...    /    ...     |       /      ...      /
65  *         |      /    /          /             |      /               /
66  *         |     /    /          /              |     /               /
67  *         V    V    V          V               V    V               v
68  * gpadl:  | 4k | 4k |   ...    |    ...        | 4k | 4k |  ...     |
69  * index:  0    1    2   ...    16   ...       n-15 n-14 n-13  ...  2n-30
70  */
71 enum hv_gpadl_type {
72 	HV_GPADL_BUFFER,
73 	HV_GPADL_RING
74 };
75 
76 /* Single-page buffer */
77 struct hv_page_buffer {
78 	u32 len;
79 	u32 offset;
80 	u64 pfn;
81 };
82 
83 /* Multiple-page buffer */
84 struct hv_multipage_buffer {
85 	/* Length and Offset determines the # of pfns in the array */
86 	u32 len;
87 	u32 offset;
88 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
89 };
90 
91 /*
92  * Multiple-page buffer array; the pfn array is variable size:
93  * The number of entries in the PFN array is determined by
94  * "len" and "offset".
95  */
96 struct hv_mpb_array {
97 	/* Length and Offset determines the # of pfns in the array */
98 	u32 len;
99 	u32 offset;
100 	u64 pfn_array[];
101 };
102 
103 /* 0x18 includes the proprietary packet header */
104 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
105 					(sizeof(struct hv_page_buffer) * \
106 					 MAX_PAGE_BUFFER_COUNT))
107 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
108 					 sizeof(struct hv_multipage_buffer))
109 
110 
111 #pragma pack(pop)
112 
113 struct hv_ring_buffer {
114 	/* Offset in bytes from the start of ring data below */
115 	u32 write_index;
116 
117 	/* Offset in bytes from the start of ring data below */
118 	u32 read_index;
119 
120 	u32 interrupt_mask;
121 
122 	/*
123 	 * WS2012/Win8 and later versions of Hyper-V implement interrupt
124 	 * driven flow management. The feature bit feat_pending_send_sz
125 	 * is set by the host on the host->guest ring buffer, and by the
126 	 * guest on the guest->host ring buffer.
127 	 *
128 	 * The meaning of the feature bit is a bit complex in that it has
129 	 * semantics that apply to both ring buffers.  If the guest sets
130 	 * the feature bit in the guest->host ring buffer, the guest is
131 	 * telling the host that:
132 	 * 1) It will set the pending_send_sz field in the guest->host ring
133 	 *    buffer when it is waiting for space to become available, and
134 	 * 2) It will read the pending_send_sz field in the host->guest
135 	 *    ring buffer and interrupt the host when it frees enough space
136 	 *
137 	 * Similarly, if the host sets the feature bit in the host->guest
138 	 * ring buffer, the host is telling the guest that:
139 	 * 1) It will set the pending_send_sz field in the host->guest ring
140 	 *    buffer when it is waiting for space to become available, and
141 	 * 2) It will read the pending_send_sz field in the guest->host
142 	 *    ring buffer and interrupt the guest when it frees enough space
143 	 *
144 	 * If either the guest or host does not set the feature bit that it
145 	 * owns, that guest or host must do polling if it encounters a full
146 	 * ring buffer, and not signal the other end with an interrupt.
147 	 */
148 	u32 pending_send_sz;
149 	u32 reserved1[12];
150 	union {
151 		struct {
152 			u32 feat_pending_send_sz:1;
153 		};
154 		u32 value;
155 	} feature_bits;
156 
157 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
158 	u8	reserved2[PAGE_SIZE - 68];
159 
160 	/*
161 	 * Ring data starts here + RingDataStartOffset
162 	 * !!! DO NOT place any fields below this !!!
163 	 */
164 	u8 buffer[];
165 } __packed;
166 
167 /* Calculate the proper size of a ringbuffer, it must be page-aligned */
168 #define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(sizeof(struct hv_ring_buffer) + \
169 					       (payload_sz))
170 
171 struct hv_ring_buffer_info {
172 	struct hv_ring_buffer *ring_buffer;
173 	u32 ring_size;			/* Include the shared header */
174 	struct reciprocal_value ring_size_div10_reciprocal;
175 	spinlock_t ring_lock;
176 
177 	u32 ring_datasize;		/* < ring_size */
178 	u32 priv_read_index;
179 	/*
180 	 * The ring buffer mutex lock. This lock prevents the ring buffer from
181 	 * being freed while the ring buffer is being accessed.
182 	 */
183 	struct mutex ring_buffer_mutex;
184 
185 	/* Buffer that holds a copy of an incoming host packet */
186 	void *pkt_buffer;
187 	u32 pkt_buffer_size;
188 };
189 
190 
191 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
192 {
193 	u32 read_loc, write_loc, dsize, read;
194 
195 	dsize = rbi->ring_datasize;
196 	read_loc = rbi->ring_buffer->read_index;
197 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
198 
199 	read = write_loc >= read_loc ? (write_loc - read_loc) :
200 		(dsize - read_loc) + write_loc;
201 
202 	return read;
203 }
204 
205 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
206 {
207 	u32 read_loc, write_loc, dsize, write;
208 
209 	dsize = rbi->ring_datasize;
210 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
211 	write_loc = rbi->ring_buffer->write_index;
212 
213 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
214 		read_loc - write_loc;
215 	return write;
216 }
217 
218 static inline u32 hv_get_avail_to_write_percent(
219 		const struct hv_ring_buffer_info *rbi)
220 {
221 	u32 avail_write = hv_get_bytes_to_write(rbi);
222 
223 	return reciprocal_divide(
224 			(avail_write  << 3) + (avail_write << 1),
225 			rbi->ring_size_div10_reciprocal);
226 }
227 
228 /*
229  * VMBUS version is 32 bit entity broken up into
230  * two 16 bit quantities: major_number. minor_number.
231  *
232  * 0 . 13 (Windows Server 2008)
233  * 1 . 1  (Windows 7)
234  * 2 . 4  (Windows 8)
235  * 3 . 0  (Windows 8 R2)
236  * 4 . 0  (Windows 10)
237  * 4 . 1  (Windows 10 RS3)
238  * 5 . 0  (Newer Windows 10)
239  * 5 . 1  (Windows 10 RS4)
240  * 5 . 2  (Windows Server 2019, RS5)
241  * 5 . 3  (Windows Server 2022)
242  */
243 
244 #define VERSION_WS2008  ((0 << 16) | (13))
245 #define VERSION_WIN7    ((1 << 16) | (1))
246 #define VERSION_WIN8    ((2 << 16) | (4))
247 #define VERSION_WIN8_1    ((3 << 16) | (0))
248 #define VERSION_WIN10 ((4 << 16) | (0))
249 #define VERSION_WIN10_V4_1 ((4 << 16) | (1))
250 #define VERSION_WIN10_V5 ((5 << 16) | (0))
251 #define VERSION_WIN10_V5_1 ((5 << 16) | (1))
252 #define VERSION_WIN10_V5_2 ((5 << 16) | (2))
253 #define VERSION_WIN10_V5_3 ((5 << 16) | (3))
254 
255 /* Make maximum size of pipe payload of 16K */
256 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
257 
258 /* Define PipeMode values. */
259 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
260 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
261 
262 /* The size of the user defined data buffer for non-pipe offers. */
263 #define MAX_USER_DEFINED_BYTES		120
264 
265 /* The size of the user defined data buffer for pipe offers. */
266 #define MAX_PIPE_USER_DEFINED_BYTES	116
267 
268 /*
269  * At the center of the Channel Management library is the Channel Offer. This
270  * struct contains the fundamental information about an offer.
271  */
272 struct vmbus_channel_offer {
273 	guid_t if_type;
274 	guid_t if_instance;
275 
276 	/*
277 	 * These two fields are not currently used.
278 	 */
279 	u64 reserved1;
280 	u64 reserved2;
281 
282 	u16 chn_flags;
283 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
284 
285 	union {
286 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
287 		struct {
288 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
289 		} std;
290 
291 		/*
292 		 * Pipes:
293 		 * The following structure is an integrated pipe protocol, which
294 		 * is implemented on top of standard user-defined data. Pipe
295 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
296 		 * use.
297 		 */
298 		struct {
299 			u32  pipe_mode;
300 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
301 		} pipe;
302 	} u;
303 	/*
304 	 * The sub_channel_index is defined in Win8: a value of zero means a
305 	 * primary channel and a value of non-zero means a sub-channel.
306 	 *
307 	 * Before Win8, the field is reserved, meaning it's always zero.
308 	 */
309 	u16 sub_channel_index;
310 	u16 reserved3;
311 } __packed;
312 
313 /* Server Flags */
314 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
315 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
316 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
317 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
318 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
319 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
320 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
321 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER		0x2000
322 
323 struct vmpacket_descriptor {
324 	u16 type;
325 	u16 offset8;
326 	u16 len8;
327 	u16 flags;
328 	u64 trans_id;
329 } __packed;
330 
331 struct vmpacket_header {
332 	u32 prev_pkt_start_offset;
333 	struct vmpacket_descriptor descriptor;
334 } __packed;
335 
336 struct vmtransfer_page_range {
337 	u32 byte_count;
338 	u32 byte_offset;
339 } __packed;
340 
341 struct vmtransfer_page_packet_header {
342 	struct vmpacket_descriptor d;
343 	u16 xfer_pageset_id;
344 	u8  sender_owns_set;
345 	u8 reserved;
346 	u32 range_cnt;
347 	struct vmtransfer_page_range ranges[1];
348 } __packed;
349 
350 struct vmgpadl_packet_header {
351 	struct vmpacket_descriptor d;
352 	u32 gpadl;
353 	u32 reserved;
354 } __packed;
355 
356 struct vmadd_remove_transfer_page_set {
357 	struct vmpacket_descriptor d;
358 	u32 gpadl;
359 	u16 xfer_pageset_id;
360 	u16 reserved;
361 } __packed;
362 
363 /*
364  * This structure defines a range in guest physical space that can be made to
365  * look virtually contiguous.
366  */
367 struct gpa_range {
368 	u32 byte_count;
369 	u32 byte_offset;
370 	u64 pfn_array[];
371 };
372 
373 /*
374  * This is the format for an Establish Gpadl packet, which contains a handle by
375  * which this GPADL will be known and a set of GPA ranges associated with it.
376  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
377  * ranges, then the resulting MDL will be "chained," representing multiple VA
378  * ranges.
379  */
380 struct vmestablish_gpadl {
381 	struct vmpacket_descriptor d;
382 	u32 gpadl;
383 	u32 range_cnt;
384 	struct gpa_range range[1];
385 } __packed;
386 
387 /*
388  * This is the format for a Teardown Gpadl packet, which indicates that the
389  * GPADL handle in the Establish Gpadl packet will never be referenced again.
390  */
391 struct vmteardown_gpadl {
392 	struct vmpacket_descriptor d;
393 	u32 gpadl;
394 	u32 reserved;	/* for alignment to a 8-byte boundary */
395 } __packed;
396 
397 /*
398  * This is the format for a GPA-Direct packet, which contains a set of GPA
399  * ranges, in addition to commands and/or data.
400  */
401 struct vmdata_gpa_direct {
402 	struct vmpacket_descriptor d;
403 	u32 reserved;
404 	u32 range_cnt;
405 	struct gpa_range range[1];
406 } __packed;
407 
408 /* This is the format for a Additional Data Packet. */
409 struct vmadditional_data {
410 	struct vmpacket_descriptor d;
411 	u64 total_bytes;
412 	u32 offset;
413 	u32 byte_cnt;
414 	unsigned char data[1];
415 } __packed;
416 
417 union vmpacket_largest_possible_header {
418 	struct vmpacket_descriptor simple_hdr;
419 	struct vmtransfer_page_packet_header xfer_page_hdr;
420 	struct vmgpadl_packet_header gpadl_hdr;
421 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
422 	struct vmestablish_gpadl establish_gpadl_hdr;
423 	struct vmteardown_gpadl teardown_gpadl_hdr;
424 	struct vmdata_gpa_direct data_gpa_direct_hdr;
425 };
426 
427 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
428 	(void *)(((unsigned char *)__packet) +	\
429 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
430 
431 #define VMPACKET_DATA_LENGTH(__packet)		\
432 	((((struct vmpacket_descriptor)__packet)->len8 -	\
433 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
434 
435 #define VMPACKET_TRANSFER_MODE(__packet)	\
436 	(((struct IMPACT)__packet)->type)
437 
438 enum vmbus_packet_type {
439 	VM_PKT_INVALID				= 0x0,
440 	VM_PKT_SYNCH				= 0x1,
441 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
442 	VM_PKT_RM_XFER_PAGESET			= 0x3,
443 	VM_PKT_ESTABLISH_GPADL			= 0x4,
444 	VM_PKT_TEARDOWN_GPADL			= 0x5,
445 	VM_PKT_DATA_INBAND			= 0x6,
446 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
447 	VM_PKT_DATA_USING_GPADL			= 0x8,
448 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
449 	VM_PKT_CANCEL_REQUEST			= 0xa,
450 	VM_PKT_COMP				= 0xb,
451 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
452 	VM_PKT_ADDITIONAL_DATA			= 0xd
453 };
454 
455 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
456 
457 
458 /* Version 1 messages */
459 enum vmbus_channel_message_type {
460 	CHANNELMSG_INVALID			=  0,
461 	CHANNELMSG_OFFERCHANNEL		=  1,
462 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
463 	CHANNELMSG_REQUESTOFFERS		=  3,
464 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
465 	CHANNELMSG_OPENCHANNEL		=  5,
466 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
467 	CHANNELMSG_CLOSECHANNEL		=  7,
468 	CHANNELMSG_GPADL_HEADER		=  8,
469 	CHANNELMSG_GPADL_BODY			=  9,
470 	CHANNELMSG_GPADL_CREATED		= 10,
471 	CHANNELMSG_GPADL_TEARDOWN		= 11,
472 	CHANNELMSG_GPADL_TORNDOWN		= 12,
473 	CHANNELMSG_RELID_RELEASED		= 13,
474 	CHANNELMSG_INITIATE_CONTACT		= 14,
475 	CHANNELMSG_VERSION_RESPONSE		= 15,
476 	CHANNELMSG_UNLOAD			= 16,
477 	CHANNELMSG_UNLOAD_RESPONSE		= 17,
478 	CHANNELMSG_18				= 18,
479 	CHANNELMSG_19				= 19,
480 	CHANNELMSG_20				= 20,
481 	CHANNELMSG_TL_CONNECT_REQUEST		= 21,
482 	CHANNELMSG_MODIFYCHANNEL		= 22,
483 	CHANNELMSG_TL_CONNECT_RESULT		= 23,
484 	CHANNELMSG_MODIFYCHANNEL_RESPONSE	= 24,
485 	CHANNELMSG_COUNT
486 };
487 
488 /* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
489 #define INVALID_RELID	U32_MAX
490 
491 struct vmbus_channel_message_header {
492 	enum vmbus_channel_message_type msgtype;
493 	u32 padding;
494 } __packed;
495 
496 /* Query VMBus Version parameters */
497 struct vmbus_channel_query_vmbus_version {
498 	struct vmbus_channel_message_header header;
499 	u32 version;
500 } __packed;
501 
502 /* VMBus Version Supported parameters */
503 struct vmbus_channel_version_supported {
504 	struct vmbus_channel_message_header header;
505 	u8 version_supported;
506 } __packed;
507 
508 /* Offer Channel parameters */
509 struct vmbus_channel_offer_channel {
510 	struct vmbus_channel_message_header header;
511 	struct vmbus_channel_offer offer;
512 	u32 child_relid;
513 	u8 monitorid;
514 	/*
515 	 * win7 and beyond splits this field into a bit field.
516 	 */
517 	u8 monitor_allocated:1;
518 	u8 reserved:7;
519 	/*
520 	 * These are new fields added in win7 and later.
521 	 * Do not access these fields without checking the
522 	 * negotiated protocol.
523 	 *
524 	 * If "is_dedicated_interrupt" is set, we must not set the
525 	 * associated bit in the channel bitmap while sending the
526 	 * interrupt to the host.
527 	 *
528 	 * connection_id is to be used in signaling the host.
529 	 */
530 	u16 is_dedicated_interrupt:1;
531 	u16 reserved1:15;
532 	u32 connection_id;
533 } __packed;
534 
535 /* Rescind Offer parameters */
536 struct vmbus_channel_rescind_offer {
537 	struct vmbus_channel_message_header header;
538 	u32 child_relid;
539 } __packed;
540 
541 /*
542  * Request Offer -- no parameters, SynIC message contains the partition ID
543  * Set Snoop -- no parameters, SynIC message contains the partition ID
544  * Clear Snoop -- no parameters, SynIC message contains the partition ID
545  * All Offers Delivered -- no parameters, SynIC message contains the partition
546  *		           ID
547  * Flush Client -- no parameters, SynIC message contains the partition ID
548  */
549 
550 /* Open Channel parameters */
551 struct vmbus_channel_open_channel {
552 	struct vmbus_channel_message_header header;
553 
554 	/* Identifies the specific VMBus channel that is being opened. */
555 	u32 child_relid;
556 
557 	/* ID making a particular open request at a channel offer unique. */
558 	u32 openid;
559 
560 	/* GPADL for the channel's ring buffer. */
561 	u32 ringbuffer_gpadlhandle;
562 
563 	/*
564 	 * Starting with win8, this field will be used to specify
565 	 * the target virtual processor on which to deliver the interrupt for
566 	 * the host to guest communication.
567 	 * Prior to win8, incoming channel interrupts would only
568 	 * be delivered on cpu 0. Setting this value to 0 would
569 	 * preserve the earlier behavior.
570 	 */
571 	u32 target_vp;
572 
573 	/*
574 	 * The upstream ring buffer begins at offset zero in the memory
575 	 * described by RingBufferGpadlHandle. The downstream ring buffer
576 	 * follows it at this offset (in pages).
577 	 */
578 	u32 downstream_ringbuffer_pageoffset;
579 
580 	/* User-specific data to be passed along to the server endpoint. */
581 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
582 } __packed;
583 
584 /* Open Channel Result parameters */
585 struct vmbus_channel_open_result {
586 	struct vmbus_channel_message_header header;
587 	u32 child_relid;
588 	u32 openid;
589 	u32 status;
590 } __packed;
591 
592 /* Modify Channel Result parameters */
593 struct vmbus_channel_modifychannel_response {
594 	struct vmbus_channel_message_header header;
595 	u32 child_relid;
596 	u32 status;
597 } __packed;
598 
599 /* Close channel parameters; */
600 struct vmbus_channel_close_channel {
601 	struct vmbus_channel_message_header header;
602 	u32 child_relid;
603 } __packed;
604 
605 /* Channel Message GPADL */
606 #define GPADL_TYPE_RING_BUFFER		1
607 #define GPADL_TYPE_SERVER_SAVE_AREA	2
608 #define GPADL_TYPE_TRANSACTION		8
609 
610 /*
611  * The number of PFNs in a GPADL message is defined by the number of
612  * pages that would be spanned by ByteCount and ByteOffset.  If the
613  * implied number of PFNs won't fit in this packet, there will be a
614  * follow-up packet that contains more.
615  */
616 struct vmbus_channel_gpadl_header {
617 	struct vmbus_channel_message_header header;
618 	u32 child_relid;
619 	u32 gpadl;
620 	u16 range_buflen;
621 	u16 rangecount;
622 	struct gpa_range range[];
623 } __packed;
624 
625 /* This is the followup packet that contains more PFNs. */
626 struct vmbus_channel_gpadl_body {
627 	struct vmbus_channel_message_header header;
628 	u32 msgnumber;
629 	u32 gpadl;
630 	u64 pfn[];
631 } __packed;
632 
633 struct vmbus_channel_gpadl_created {
634 	struct vmbus_channel_message_header header;
635 	u32 child_relid;
636 	u32 gpadl;
637 	u32 creation_status;
638 } __packed;
639 
640 struct vmbus_channel_gpadl_teardown {
641 	struct vmbus_channel_message_header header;
642 	u32 child_relid;
643 	u32 gpadl;
644 } __packed;
645 
646 struct vmbus_channel_gpadl_torndown {
647 	struct vmbus_channel_message_header header;
648 	u32 gpadl;
649 } __packed;
650 
651 struct vmbus_channel_relid_released {
652 	struct vmbus_channel_message_header header;
653 	u32 child_relid;
654 } __packed;
655 
656 struct vmbus_channel_initiate_contact {
657 	struct vmbus_channel_message_header header;
658 	u32 vmbus_version_requested;
659 	u32 target_vcpu; /* The VCPU the host should respond to */
660 	union {
661 		u64 interrupt_page;
662 		struct {
663 			u8	msg_sint;
664 			u8	padding1[3];
665 			u32	padding2;
666 		};
667 	};
668 	u64 monitor_page1;
669 	u64 monitor_page2;
670 } __packed;
671 
672 /* Hyper-V socket: guest's connect()-ing to host */
673 struct vmbus_channel_tl_connect_request {
674 	struct vmbus_channel_message_header header;
675 	guid_t guest_endpoint_id;
676 	guid_t host_service_id;
677 } __packed;
678 
679 /* Modify Channel parameters, cf. vmbus_send_modifychannel() */
680 struct vmbus_channel_modifychannel {
681 	struct vmbus_channel_message_header header;
682 	u32 child_relid;
683 	u32 target_vp;
684 } __packed;
685 
686 struct vmbus_channel_version_response {
687 	struct vmbus_channel_message_header header;
688 	u8 version_supported;
689 
690 	u8 connection_state;
691 	u16 padding;
692 
693 	/*
694 	 * On new hosts that support VMBus protocol 5.0, we must use
695 	 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
696 	 * and for subsequent messages, we must use the Message Connection ID
697 	 * field in the host-returned Version Response Message.
698 	 *
699 	 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
700 	 */
701 	u32 msg_conn_id;
702 } __packed;
703 
704 enum vmbus_channel_state {
705 	CHANNEL_OFFER_STATE,
706 	CHANNEL_OPENING_STATE,
707 	CHANNEL_OPEN_STATE,
708 	CHANNEL_OPENED_STATE,
709 };
710 
711 /*
712  * Represents each channel msg on the vmbus connection This is a
713  * variable-size data structure depending on the msg type itself
714  */
715 struct vmbus_channel_msginfo {
716 	/* Bookkeeping stuff */
717 	struct list_head msglistentry;
718 
719 	/* So far, this is only used to handle gpadl body message */
720 	struct list_head submsglist;
721 
722 	/* Synchronize the request/response if needed */
723 	struct completion  waitevent;
724 	struct vmbus_channel *waiting_channel;
725 	union {
726 		struct vmbus_channel_version_supported version_supported;
727 		struct vmbus_channel_open_result open_result;
728 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
729 		struct vmbus_channel_gpadl_created gpadl_created;
730 		struct vmbus_channel_version_response version_response;
731 		struct vmbus_channel_modifychannel_response modify_response;
732 	} response;
733 
734 	u32 msgsize;
735 	/*
736 	 * The channel message that goes out on the "wire".
737 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
738 	 */
739 	unsigned char msg[];
740 };
741 
742 struct vmbus_close_msg {
743 	struct vmbus_channel_msginfo info;
744 	struct vmbus_channel_close_channel msg;
745 };
746 
747 /* Define connection identifier type. */
748 union hv_connection_id {
749 	u32 asu32;
750 	struct {
751 		u32 id:24;
752 		u32 reserved:8;
753 	} u;
754 };
755 
756 enum vmbus_device_type {
757 	HV_IDE = 0,
758 	HV_SCSI,
759 	HV_FC,
760 	HV_NIC,
761 	HV_ND,
762 	HV_PCIE,
763 	HV_FB,
764 	HV_KBD,
765 	HV_MOUSE,
766 	HV_KVP,
767 	HV_TS,
768 	HV_HB,
769 	HV_SHUTDOWN,
770 	HV_FCOPY,
771 	HV_BACKUP,
772 	HV_DM,
773 	HV_UNKNOWN,
774 };
775 
776 /*
777  * Provides request ids for VMBus. Encapsulates guest memory
778  * addresses and stores the next available slot in req_arr
779  * to generate new ids in constant time.
780  */
781 struct vmbus_requestor {
782 	u64 *req_arr;
783 	unsigned long *req_bitmap; /* is a given slot available? */
784 	u32 size;
785 	u64 next_request_id;
786 	spinlock_t req_lock; /* provides atomicity */
787 };
788 
789 #define VMBUS_NO_RQSTOR U64_MAX
790 #define VMBUS_RQST_ERROR (U64_MAX - 1)
791 #define VMBUS_RQST_ADDR_ANY U64_MAX
792 /* NetVSC-specific */
793 #define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2)
794 /* StorVSC-specific */
795 #define VMBUS_RQST_INIT (U64_MAX - 2)
796 #define VMBUS_RQST_RESET (U64_MAX - 3)
797 
798 struct vmbus_device {
799 	u16  dev_type;
800 	guid_t guid;
801 	bool perf_device;
802 	bool allowed_in_isolated;
803 };
804 
805 #define VMBUS_DEFAULT_MAX_PKT_SIZE 4096
806 
807 struct vmbus_gpadl {
808 	u32 gpadl_handle;
809 	u32 size;
810 	void *buffer;
811 };
812 
813 struct vmbus_channel {
814 	struct list_head listentry;
815 
816 	struct hv_device *device_obj;
817 
818 	enum vmbus_channel_state state;
819 
820 	struct vmbus_channel_offer_channel offermsg;
821 	/*
822 	 * These are based on the OfferMsg.MonitorId.
823 	 * Save it here for easy access.
824 	 */
825 	u8 monitor_grp;
826 	u8 monitor_bit;
827 
828 	bool rescind; /* got rescind msg */
829 	bool rescind_ref; /* got rescind msg, got channel reference */
830 	struct completion rescind_event;
831 
832 	struct vmbus_gpadl ringbuffer_gpadlhandle;
833 
834 	/* Allocated memory for ring buffer */
835 	struct page *ringbuffer_page;
836 	u32 ringbuffer_pagecount;
837 	u32 ringbuffer_send_offset;
838 	struct hv_ring_buffer_info outbound;	/* send to parent */
839 	struct hv_ring_buffer_info inbound;	/* receive from parent */
840 
841 	struct vmbus_close_msg close_msg;
842 
843 	/* Statistics */
844 	u64	interrupts;	/* Host to Guest interrupts */
845 	u64	sig_events;	/* Guest to Host events */
846 
847 	/*
848 	 * Guest to host interrupts caused by the outbound ring buffer changing
849 	 * from empty to not empty.
850 	 */
851 	u64 intr_out_empty;
852 
853 	/*
854 	 * Indicates that a full outbound ring buffer was encountered. The flag
855 	 * is set to true when a full outbound ring buffer is encountered and
856 	 * set to false when a write to the outbound ring buffer is completed.
857 	 */
858 	bool out_full_flag;
859 
860 	/* Channel callback's invoked in softirq context */
861 	struct tasklet_struct callback_event;
862 	void (*onchannel_callback)(void *context);
863 	void *channel_callback_context;
864 
865 	void (*change_target_cpu_callback)(struct vmbus_channel *channel,
866 			u32 old, u32 new);
867 
868 	/*
869 	 * Synchronize channel scheduling and channel removal; see the inline
870 	 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb().
871 	 */
872 	spinlock_t sched_lock;
873 
874 	/*
875 	 * A channel can be marked for one of three modes of reading:
876 	 *   BATCHED - callback called from taslket and should read
877 	 *            channel until empty. Interrupts from the host
878 	 *            are masked while read is in process (default).
879 	 *   DIRECT - callback called from tasklet (softirq).
880 	 *   ISR - callback called in interrupt context and must
881 	 *         invoke its own deferred processing.
882 	 *         Host interrupts are disabled and must be re-enabled
883 	 *         when ring is empty.
884 	 */
885 	enum hv_callback_mode {
886 		HV_CALL_BATCHED,
887 		HV_CALL_DIRECT,
888 		HV_CALL_ISR
889 	} callback_mode;
890 
891 	bool is_dedicated_interrupt;
892 	u64 sig_event;
893 
894 	/*
895 	 * Starting with win8, this field will be used to specify the
896 	 * target CPU on which to deliver the interrupt for the host
897 	 * to guest communication.
898 	 *
899 	 * Prior to win8, incoming channel interrupts would only be
900 	 * delivered on CPU 0. Setting this value to 0 would preserve
901 	 * the earlier behavior.
902 	 */
903 	u32 target_cpu;
904 	/*
905 	 * Support for sub-channels. For high performance devices,
906 	 * it will be useful to have multiple sub-channels to support
907 	 * a scalable communication infrastructure with the host.
908 	 * The support for sub-channels is implemented as an extension
909 	 * to the current infrastructure.
910 	 * The initial offer is considered the primary channel and this
911 	 * offer message will indicate if the host supports sub-channels.
912 	 * The guest is free to ask for sub-channels to be offered and can
913 	 * open these sub-channels as a normal "primary" channel. However,
914 	 * all sub-channels will have the same type and instance guids as the
915 	 * primary channel. Requests sent on a given channel will result in a
916 	 * response on the same channel.
917 	 */
918 
919 	/*
920 	 * Sub-channel creation callback. This callback will be called in
921 	 * process context when a sub-channel offer is received from the host.
922 	 * The guest can open the sub-channel in the context of this callback.
923 	 */
924 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
925 
926 	/*
927 	 * Channel rescind callback. Some channels (the hvsock ones), need to
928 	 * register a callback which is invoked in vmbus_onoffer_rescind().
929 	 */
930 	void (*chn_rescind_callback)(struct vmbus_channel *channel);
931 
932 	/*
933 	 * All Sub-channels of a primary channel are linked here.
934 	 */
935 	struct list_head sc_list;
936 	/*
937 	 * The primary channel this sub-channel belongs to.
938 	 * This will be NULL for the primary channel.
939 	 */
940 	struct vmbus_channel *primary_channel;
941 	/*
942 	 * Support per-channel state for use by vmbus drivers.
943 	 */
944 	void *per_channel_state;
945 
946 	/*
947 	 * Defer freeing channel until after all cpu's have
948 	 * gone through grace period.
949 	 */
950 	struct rcu_head rcu;
951 
952 	/*
953 	 * For sysfs per-channel properties.
954 	 */
955 	struct kobject			kobj;
956 
957 	/*
958 	 * For performance critical channels (storage, networking
959 	 * etc,), Hyper-V has a mechanism to enhance the throughput
960 	 * at the expense of latency:
961 	 * When the host is to be signaled, we just set a bit in a shared page
962 	 * and this bit will be inspected by the hypervisor within a certain
963 	 * window and if the bit is set, the host will be signaled. The window
964 	 * of time is the monitor latency - currently around 100 usecs. This
965 	 * mechanism improves throughput by:
966 	 *
967 	 * A) Making the host more efficient - each time it wakes up,
968 	 *    potentially it will process morev number of packets. The
969 	 *    monitor latency allows a batch to build up.
970 	 * B) By deferring the hypercall to signal, we will also minimize
971 	 *    the interrupts.
972 	 *
973 	 * Clearly, these optimizations improve throughput at the expense of
974 	 * latency. Furthermore, since the channel is shared for both
975 	 * control and data messages, control messages currently suffer
976 	 * unnecessary latency adversely impacting performance and boot
977 	 * time. To fix this issue, permit tagging the channel as being
978 	 * in "low latency" mode. In this mode, we will bypass the monitor
979 	 * mechanism.
980 	 */
981 	bool low_latency;
982 
983 	bool probe_done;
984 
985 	/*
986 	 * Cache the device ID here for easy access; this is useful, in
987 	 * particular, in situations where the channel's device_obj has
988 	 * not been allocated/initialized yet.
989 	 */
990 	u16 device_id;
991 
992 	/*
993 	 * We must offload the handling of the primary/sub channels
994 	 * from the single-threaded vmbus_connection.work_queue to
995 	 * two different workqueue, otherwise we can block
996 	 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
997 	 */
998 	struct work_struct add_channel_work;
999 
1000 	/*
1001 	 * Guest to host interrupts caused by the inbound ring buffer changing
1002 	 * from full to not full while a packet is waiting.
1003 	 */
1004 	u64 intr_in_full;
1005 
1006 	/*
1007 	 * The total number of write operations that encountered a full
1008 	 * outbound ring buffer.
1009 	 */
1010 	u64 out_full_total;
1011 
1012 	/*
1013 	 * The number of write operations that were the first to encounter a
1014 	 * full outbound ring buffer.
1015 	 */
1016 	u64 out_full_first;
1017 
1018 	/* enabling/disabling fuzz testing on the channel (default is false)*/
1019 	bool fuzz_testing_state;
1020 
1021 	/*
1022 	 * Interrupt delay will delay the guest from emptying the ring buffer
1023 	 * for a specific amount of time. The delay is in microseconds and will
1024 	 * be between 1 to a maximum of 1000, its default is 0 (no delay).
1025 	 * The  Message delay will delay guest reading on a per message basis
1026 	 * in microseconds between 1 to 1000 with the default being 0
1027 	 * (no delay).
1028 	 */
1029 	u32 fuzz_testing_interrupt_delay;
1030 	u32 fuzz_testing_message_delay;
1031 
1032 	/* callback to generate a request ID from a request address */
1033 	u64 (*next_request_id_callback)(struct vmbus_channel *channel, u64 rqst_addr);
1034 	/* callback to retrieve a request address from a request ID */
1035 	u64 (*request_addr_callback)(struct vmbus_channel *channel, u64 rqst_id);
1036 
1037 	/* request/transaction ids for VMBus */
1038 	struct vmbus_requestor requestor;
1039 	u32 rqstor_size;
1040 
1041 	/* The max size of a packet on this channel */
1042 	u32 max_pkt_size;
1043 };
1044 
1045 u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr);
1046 u64 __vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id,
1047 			       u64 rqst_addr);
1048 u64 vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id,
1049 			     u64 rqst_addr);
1050 u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id);
1051 
1052 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
1053 {
1054 	return !!(c->offermsg.offer.chn_flags &
1055 		  VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
1056 }
1057 
1058 static inline bool is_sub_channel(const struct vmbus_channel *c)
1059 {
1060 	return c->offermsg.offer.sub_channel_index != 0;
1061 }
1062 
1063 static inline void set_channel_read_mode(struct vmbus_channel *c,
1064 					enum hv_callback_mode mode)
1065 {
1066 	c->callback_mode = mode;
1067 }
1068 
1069 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
1070 {
1071 	c->per_channel_state = s;
1072 }
1073 
1074 static inline void *get_per_channel_state(struct vmbus_channel *c)
1075 {
1076 	return c->per_channel_state;
1077 }
1078 
1079 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
1080 						 u32 size)
1081 {
1082 	unsigned long flags;
1083 
1084 	if (size) {
1085 		spin_lock_irqsave(&c->outbound.ring_lock, flags);
1086 		++c->out_full_total;
1087 
1088 		if (!c->out_full_flag) {
1089 			++c->out_full_first;
1090 			c->out_full_flag = true;
1091 		}
1092 		spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
1093 	} else {
1094 		c->out_full_flag = false;
1095 	}
1096 
1097 	c->outbound.ring_buffer->pending_send_sz = size;
1098 }
1099 
1100 void vmbus_onmessage(struct vmbus_channel_message_header *hdr);
1101 
1102 int vmbus_request_offers(void);
1103 
1104 /*
1105  * APIs for managing sub-channels.
1106  */
1107 
1108 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1109 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1110 
1111 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1112 		void (*chn_rescind_cb)(struct vmbus_channel *));
1113 
1114 /* The format must be the same as struct vmdata_gpa_direct */
1115 struct vmbus_channel_packet_page_buffer {
1116 	u16 type;
1117 	u16 dataoffset8;
1118 	u16 length8;
1119 	u16 flags;
1120 	u64 transactionid;
1121 	u32 reserved;
1122 	u32 rangecount;
1123 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1124 } __packed;
1125 
1126 /* The format must be the same as struct vmdata_gpa_direct */
1127 struct vmbus_channel_packet_multipage_buffer {
1128 	u16 type;
1129 	u16 dataoffset8;
1130 	u16 length8;
1131 	u16 flags;
1132 	u64 transactionid;
1133 	u32 reserved;
1134 	u32 rangecount;		/* Always 1 in this case */
1135 	struct hv_multipage_buffer range;
1136 } __packed;
1137 
1138 /* The format must be the same as struct vmdata_gpa_direct */
1139 struct vmbus_packet_mpb_array {
1140 	u16 type;
1141 	u16 dataoffset8;
1142 	u16 length8;
1143 	u16 flags;
1144 	u64 transactionid;
1145 	u32 reserved;
1146 	u32 rangecount;         /* Always 1 in this case */
1147 	struct hv_mpb_array range;
1148 } __packed;
1149 
1150 int vmbus_alloc_ring(struct vmbus_channel *channel,
1151 		     u32 send_size, u32 recv_size);
1152 void vmbus_free_ring(struct vmbus_channel *channel);
1153 
1154 int vmbus_connect_ring(struct vmbus_channel *channel,
1155 		       void (*onchannel_callback)(void *context),
1156 		       void *context);
1157 int vmbus_disconnect_ring(struct vmbus_channel *channel);
1158 
1159 extern int vmbus_open(struct vmbus_channel *channel,
1160 			    u32 send_ringbuffersize,
1161 			    u32 recv_ringbuffersize,
1162 			    void *userdata,
1163 			    u32 userdatalen,
1164 			    void (*onchannel_callback)(void *context),
1165 			    void *context);
1166 
1167 extern void vmbus_close(struct vmbus_channel *channel);
1168 
1169 extern int vmbus_sendpacket_getid(struct vmbus_channel *channel,
1170 				  void *buffer,
1171 				  u32 bufferLen,
1172 				  u64 requestid,
1173 				  u64 *trans_id,
1174 				  enum vmbus_packet_type type,
1175 				  u32 flags);
1176 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1177 				  void *buffer,
1178 				  u32 bufferLen,
1179 				  u64 requestid,
1180 				  enum vmbus_packet_type type,
1181 				  u32 flags);
1182 
1183 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1184 					    struct hv_page_buffer pagebuffers[],
1185 					    u32 pagecount,
1186 					    void *buffer,
1187 					    u32 bufferlen,
1188 					    u64 requestid);
1189 
1190 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1191 				     struct vmbus_packet_mpb_array *mpb,
1192 				     u32 desc_size,
1193 				     void *buffer,
1194 				     u32 bufferlen,
1195 				     u64 requestid);
1196 
1197 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1198 				      void *kbuffer,
1199 				      u32 size,
1200 				      struct vmbus_gpadl *gpadl);
1201 
1202 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1203 				     struct vmbus_gpadl *gpadl);
1204 
1205 void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1206 
1207 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1208 				  void *buffer,
1209 				  u32 bufferlen,
1210 				  u32 *buffer_actual_len,
1211 				  u64 *requestid);
1212 
1213 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1214 				     void *buffer,
1215 				     u32 bufferlen,
1216 				     u32 *buffer_actual_len,
1217 				     u64 *requestid);
1218 
1219 
1220 extern void vmbus_ontimer(unsigned long data);
1221 
1222 /* Base driver object */
1223 struct hv_driver {
1224 	const char *name;
1225 
1226 	/*
1227 	 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1228 	 * channel flag, actually doesn't mean a synthetic device because the
1229 	 * offer's if_type/if_instance can change for every new hvsock
1230 	 * connection.
1231 	 *
1232 	 * However, to facilitate the notification of new-offer/rescind-offer
1233 	 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1234 	 * a special vmbus device, and hence we need the below flag to
1235 	 * indicate if the driver is the hvsock driver or not: we need to
1236 	 * specially treat the hvosck offer & driver in vmbus_match().
1237 	 */
1238 	bool hvsock;
1239 
1240 	/* the device type supported by this driver */
1241 	guid_t dev_type;
1242 	const struct hv_vmbus_device_id *id_table;
1243 
1244 	struct device_driver driver;
1245 
1246 	/* dynamic device GUID's */
1247 	struct  {
1248 		spinlock_t lock;
1249 		struct list_head list;
1250 	} dynids;
1251 
1252 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1253 	int (*remove)(struct hv_device *);
1254 	void (*shutdown)(struct hv_device *);
1255 
1256 	int (*suspend)(struct hv_device *);
1257 	int (*resume)(struct hv_device *);
1258 
1259 };
1260 
1261 /* Base device object */
1262 struct hv_device {
1263 	/* the device type id of this device */
1264 	guid_t dev_type;
1265 
1266 	/* the device instance id of this device */
1267 	guid_t dev_instance;
1268 	u16 vendor_id;
1269 	u16 device_id;
1270 
1271 	struct device device;
1272 	char *driver_override; /* Driver name to force a match */
1273 
1274 	struct vmbus_channel *channel;
1275 	struct kset	     *channels_kset;
1276 	struct device_dma_parameters dma_parms;
1277 	u64 dma_mask;
1278 
1279 	/* place holder to keep track of the dir for hv device in debugfs */
1280 	struct dentry *debug_dir;
1281 
1282 };
1283 
1284 
1285 static inline struct hv_device *device_to_hv_device(struct device *d)
1286 {
1287 	return container_of(d, struct hv_device, device);
1288 }
1289 
1290 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1291 {
1292 	return container_of(d, struct hv_driver, driver);
1293 }
1294 
1295 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1296 {
1297 	dev_set_drvdata(&dev->device, data);
1298 }
1299 
1300 static inline void *hv_get_drvdata(struct hv_device *dev)
1301 {
1302 	return dev_get_drvdata(&dev->device);
1303 }
1304 
1305 struct hv_ring_buffer_debug_info {
1306 	u32 current_interrupt_mask;
1307 	u32 current_read_index;
1308 	u32 current_write_index;
1309 	u32 bytes_avail_toread;
1310 	u32 bytes_avail_towrite;
1311 };
1312 
1313 
1314 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1315 				struct hv_ring_buffer_debug_info *debug_info);
1316 
1317 /* Vmbus interface */
1318 #define vmbus_driver_register(driver)	\
1319 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1320 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1321 					 struct module *owner,
1322 					 const char *mod_name);
1323 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1324 
1325 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1326 
1327 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1328 			resource_size_t min, resource_size_t max,
1329 			resource_size_t size, resource_size_t align,
1330 			bool fb_overlap_ok);
1331 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1332 
1333 /*
1334  * GUID definitions of various offer types - services offered to the guest.
1335  */
1336 
1337 /*
1338  * Network GUID
1339  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1340  */
1341 #define HV_NIC_GUID \
1342 	.guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1343 			  0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1344 
1345 /*
1346  * IDE GUID
1347  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1348  */
1349 #define HV_IDE_GUID \
1350 	.guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1351 			  0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1352 
1353 /*
1354  * SCSI GUID
1355  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1356  */
1357 #define HV_SCSI_GUID \
1358 	.guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1359 			  0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1360 
1361 /*
1362  * Shutdown GUID
1363  * {0e0b6031-5213-4934-818b-38d90ced39db}
1364  */
1365 #define HV_SHUTDOWN_GUID \
1366 	.guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1367 			  0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1368 
1369 /*
1370  * Time Synch GUID
1371  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1372  */
1373 #define HV_TS_GUID \
1374 	.guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1375 			  0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1376 
1377 /*
1378  * Heartbeat GUID
1379  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1380  */
1381 #define HV_HEART_BEAT_GUID \
1382 	.guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1383 			  0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1384 
1385 /*
1386  * KVP GUID
1387  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1388  */
1389 #define HV_KVP_GUID \
1390 	.guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1391 			  0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1392 
1393 /*
1394  * Dynamic memory GUID
1395  * {525074dc-8985-46e2-8057-a307dc18a502}
1396  */
1397 #define HV_DM_GUID \
1398 	.guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1399 			  0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1400 
1401 /*
1402  * Mouse GUID
1403  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1404  */
1405 #define HV_MOUSE_GUID \
1406 	.guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1407 			  0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1408 
1409 /*
1410  * Keyboard GUID
1411  * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1412  */
1413 #define HV_KBD_GUID \
1414 	.guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1415 			  0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1416 
1417 /*
1418  * VSS (Backup/Restore) GUID
1419  */
1420 #define HV_VSS_GUID \
1421 	.guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1422 			  0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1423 /*
1424  * Synthetic Video GUID
1425  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1426  */
1427 #define HV_SYNTHVID_GUID \
1428 	.guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1429 			  0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1430 
1431 /*
1432  * Synthetic FC GUID
1433  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1434  */
1435 #define HV_SYNTHFC_GUID \
1436 	.guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1437 			  0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1438 
1439 /*
1440  * Guest File Copy Service
1441  * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1442  */
1443 
1444 #define HV_FCOPY_GUID \
1445 	.guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1446 			  0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1447 
1448 /*
1449  * NetworkDirect. This is the guest RDMA service.
1450  * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1451  */
1452 #define HV_ND_GUID \
1453 	.guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1454 			  0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1455 
1456 /*
1457  * PCI Express Pass Through
1458  * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1459  */
1460 
1461 #define HV_PCIE_GUID \
1462 	.guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1463 			  0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1464 
1465 /*
1466  * Linux doesn't support these 4 devices: the first two are for
1467  * Automatic Virtual Machine Activation, the third is for
1468  * Remote Desktop Virtualization, and the fourth is Initial
1469  * Machine Configuration (IMC) used only by Windows guests.
1470  * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1471  * {3375baf4-9e15-4b30-b765-67acb10d607b}
1472  * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1473  * {c376c1c3-d276-48d2-90a9-c04748072c60}
1474  */
1475 
1476 #define HV_AVMA1_GUID \
1477 	.guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1478 			  0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1479 
1480 #define HV_AVMA2_GUID \
1481 	.guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1482 			  0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1483 
1484 #define HV_RDV_GUID \
1485 	.guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1486 			  0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1487 
1488 #define HV_IMC_GUID \
1489 	.guid = GUID_INIT(0xc376c1c3, 0xd276, 0x48d2, 0x90, 0xa9, \
1490 			  0xc0, 0x47, 0x48, 0x07, 0x2c, 0x60)
1491 
1492 /*
1493  * Common header for Hyper-V ICs
1494  */
1495 
1496 #define ICMSGTYPE_NEGOTIATE		0
1497 #define ICMSGTYPE_HEARTBEAT		1
1498 #define ICMSGTYPE_KVPEXCHANGE		2
1499 #define ICMSGTYPE_SHUTDOWN		3
1500 #define ICMSGTYPE_TIMESYNC		4
1501 #define ICMSGTYPE_VSS			5
1502 #define ICMSGTYPE_FCOPY			7
1503 
1504 #define ICMSGHDRFLAG_TRANSACTION	1
1505 #define ICMSGHDRFLAG_REQUEST		2
1506 #define ICMSGHDRFLAG_RESPONSE		4
1507 
1508 
1509 /*
1510  * While we want to handle util services as regular devices,
1511  * there is only one instance of each of these services; so
1512  * we statically allocate the service specific state.
1513  */
1514 
1515 struct hv_util_service {
1516 	u8 *recv_buffer;
1517 	void *channel;
1518 	void (*util_cb)(void *);
1519 	int (*util_init)(struct hv_util_service *);
1520 	void (*util_deinit)(void);
1521 	int (*util_pre_suspend)(void);
1522 	int (*util_pre_resume)(void);
1523 };
1524 
1525 struct vmbuspipe_hdr {
1526 	u32 flags;
1527 	u32 msgsize;
1528 } __packed;
1529 
1530 struct ic_version {
1531 	u16 major;
1532 	u16 minor;
1533 } __packed;
1534 
1535 struct icmsg_hdr {
1536 	struct ic_version icverframe;
1537 	u16 icmsgtype;
1538 	struct ic_version icvermsg;
1539 	u16 icmsgsize;
1540 	u32 status;
1541 	u8 ictransaction_id;
1542 	u8 icflags;
1543 	u8 reserved[2];
1544 } __packed;
1545 
1546 #define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100
1547 #define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr))
1548 #define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \
1549 	(ICMSG_HDR + sizeof(struct icmsg_negotiate) + \
1550 	 (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version)))
1551 
1552 struct icmsg_negotiate {
1553 	u16 icframe_vercnt;
1554 	u16 icmsg_vercnt;
1555 	u32 reserved;
1556 	struct ic_version icversion_data[]; /* any size array */
1557 } __packed;
1558 
1559 struct shutdown_msg_data {
1560 	u32 reason_code;
1561 	u32 timeout_seconds;
1562 	u32 flags;
1563 	u8  display_message[2048];
1564 } __packed;
1565 
1566 struct heartbeat_msg_data {
1567 	u64 seq_num;
1568 	u32 reserved[8];
1569 } __packed;
1570 
1571 /* Time Sync IC defs */
1572 #define ICTIMESYNCFLAG_PROBE	0
1573 #define ICTIMESYNCFLAG_SYNC	1
1574 #define ICTIMESYNCFLAG_SAMPLE	2
1575 
1576 #ifdef __x86_64__
1577 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1578 #else
1579 #define WLTIMEDELTA	116444736000000000LL
1580 #endif
1581 
1582 struct ictimesync_data {
1583 	u64 parenttime;
1584 	u64 childtime;
1585 	u64 roundtriptime;
1586 	u8 flags;
1587 } __packed;
1588 
1589 struct ictimesync_ref_data {
1590 	u64 parenttime;
1591 	u64 vmreferencetime;
1592 	u8 flags;
1593 	char leapflags;
1594 	char stratum;
1595 	u8 reserved[3];
1596 } __packed;
1597 
1598 struct hyperv_service_callback {
1599 	u8 msg_type;
1600 	char *log_msg;
1601 	guid_t data;
1602 	struct vmbus_channel *channel;
1603 	void (*callback)(void *context);
1604 };
1605 
1606 struct hv_dma_range {
1607 	dma_addr_t dma;
1608 	u32 mapping_size;
1609 };
1610 
1611 #define MAX_SRV_VER	0x7ffffff
1612 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen,
1613 				const int *fw_version, int fw_vercnt,
1614 				const int *srv_version, int srv_vercnt,
1615 				int *nego_fw_version, int *nego_srv_version);
1616 
1617 void hv_process_channel_removal(struct vmbus_channel *channel);
1618 
1619 void vmbus_setevent(struct vmbus_channel *channel);
1620 /*
1621  * Negotiated version with the Host.
1622  */
1623 
1624 extern __u32 vmbus_proto_version;
1625 
1626 int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1627 				  const guid_t *shv_host_servie_id);
1628 int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp);
1629 void vmbus_set_event(struct vmbus_channel *channel);
1630 
1631 /* Get the start of the ring buffer. */
1632 static inline void *
1633 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1634 {
1635 	return ring_info->ring_buffer->buffer;
1636 }
1637 
1638 /*
1639  * Mask off host interrupt callback notifications
1640  */
1641 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1642 {
1643 	rbi->ring_buffer->interrupt_mask = 1;
1644 
1645 	/* make sure mask update is not reordered */
1646 	virt_mb();
1647 }
1648 
1649 /*
1650  * Re-enable host callback and return number of outstanding bytes
1651  */
1652 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1653 {
1654 
1655 	rbi->ring_buffer->interrupt_mask = 0;
1656 
1657 	/* make sure mask update is not reordered */
1658 	virt_mb();
1659 
1660 	/*
1661 	 * Now check to see if the ring buffer is still empty.
1662 	 * If it is not, we raced and we need to process new
1663 	 * incoming messages.
1664 	 */
1665 	return hv_get_bytes_to_read(rbi);
1666 }
1667 
1668 /*
1669  * An API to support in-place processing of incoming VMBUS packets.
1670  */
1671 
1672 /* Get data payload associated with descriptor */
1673 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1674 {
1675 	return (void *)((unsigned long)desc + (desc->offset8 << 3));
1676 }
1677 
1678 /* Get data size associated with descriptor */
1679 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1680 {
1681 	return (desc->len8 << 3) - (desc->offset8 << 3);
1682 }
1683 
1684 
1685 struct vmpacket_descriptor *
1686 hv_pkt_iter_first_raw(struct vmbus_channel *channel);
1687 
1688 struct vmpacket_descriptor *
1689 hv_pkt_iter_first(struct vmbus_channel *channel);
1690 
1691 struct vmpacket_descriptor *
1692 __hv_pkt_iter_next(struct vmbus_channel *channel,
1693 		   const struct vmpacket_descriptor *pkt,
1694 		   bool copy);
1695 
1696 void hv_pkt_iter_close(struct vmbus_channel *channel);
1697 
1698 static inline struct vmpacket_descriptor *
1699 hv_pkt_iter_next_pkt(struct vmbus_channel *channel,
1700 		     const struct vmpacket_descriptor *pkt,
1701 		     bool copy)
1702 {
1703 	struct vmpacket_descriptor *nxt;
1704 
1705 	nxt = __hv_pkt_iter_next(channel, pkt, copy);
1706 	if (!nxt)
1707 		hv_pkt_iter_close(channel);
1708 
1709 	return nxt;
1710 }
1711 
1712 /*
1713  * Get next packet descriptor without copying it out of the ring buffer
1714  * If at end of list, return NULL and update host.
1715  */
1716 static inline struct vmpacket_descriptor *
1717 hv_pkt_iter_next_raw(struct vmbus_channel *channel,
1718 		     const struct vmpacket_descriptor *pkt)
1719 {
1720 	return hv_pkt_iter_next_pkt(channel, pkt, false);
1721 }
1722 
1723 /*
1724  * Get next packet descriptor from iterator
1725  * If at end of list, return NULL and update host.
1726  */
1727 static inline struct vmpacket_descriptor *
1728 hv_pkt_iter_next(struct vmbus_channel *channel,
1729 		 const struct vmpacket_descriptor *pkt)
1730 {
1731 	return hv_pkt_iter_next_pkt(channel, pkt, true);
1732 }
1733 
1734 #define foreach_vmbus_pkt(pkt, channel) \
1735 	for (pkt = hv_pkt_iter_first(channel); pkt; \
1736 	    pkt = hv_pkt_iter_next(channel, pkt))
1737 
1738 /*
1739  * Interface for passing data between SR-IOV PF and VF drivers. The VF driver
1740  * sends requests to read and write blocks. Each block must be 128 bytes or
1741  * smaller. Optionally, the VF driver can register a callback function which
1742  * will be invoked when the host says that one or more of the first 64 block
1743  * IDs is "invalid" which means that the VF driver should reread them.
1744  */
1745 #define HV_CONFIG_BLOCK_SIZE_MAX 128
1746 
1747 int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
1748 			unsigned int block_id, unsigned int *bytes_returned);
1749 int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
1750 			 unsigned int block_id);
1751 int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
1752 				void (*block_invalidate)(void *context,
1753 							 u64 block_mask));
1754 
1755 struct hyperv_pci_block_ops {
1756 	int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
1757 			  unsigned int block_id, unsigned int *bytes_returned);
1758 	int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
1759 			   unsigned int block_id);
1760 	int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
1761 				  void (*block_invalidate)(void *context,
1762 							   u64 block_mask));
1763 };
1764 
1765 extern struct hyperv_pci_block_ops hvpci_block_ops;
1766 
1767 static inline unsigned long virt_to_hvpfn(void *addr)
1768 {
1769 	phys_addr_t paddr;
1770 
1771 	if (is_vmalloc_addr(addr))
1772 		paddr = page_to_phys(vmalloc_to_page(addr)) +
1773 				     offset_in_page(addr);
1774 	else
1775 		paddr = __pa(addr);
1776 
1777 	return  paddr >> HV_HYP_PAGE_SHIFT;
1778 }
1779 
1780 #define NR_HV_HYP_PAGES_IN_PAGE	(PAGE_SIZE / HV_HYP_PAGE_SIZE)
1781 #define offset_in_hvpage(ptr)	((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK)
1782 #define HVPFN_UP(x)	(((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT)
1783 #define HVPFN_DOWN(x)	((x) >> HV_HYP_PAGE_SHIFT)
1784 #define page_to_hvpfn(page)	(page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE)
1785 
1786 #endif /* _HYPERV_H */
1787