1 /* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <[email protected]> 20 * Hank Janssen <[email protected]> 21 * K. Y. Srinivasan <[email protected]> 22 * 23 */ 24 25 #ifndef _HYPERV_H 26 #define _HYPERV_H 27 28 #include <linux/types.h> 29 30 /* 31 * Framework version for util services. 32 */ 33 34 #define UTIL_FW_MAJOR 3 35 #define UTIL_FW_MINOR 0 36 #define UTIL_FW_MAJOR_MINOR (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR) 37 38 39 /* 40 * Implementation of host controlled snapshot of the guest. 41 */ 42 43 #define VSS_OP_REGISTER 128 44 45 enum hv_vss_op { 46 VSS_OP_CREATE = 0, 47 VSS_OP_DELETE, 48 VSS_OP_HOT_BACKUP, 49 VSS_OP_GET_DM_INFO, 50 VSS_OP_BU_COMPLETE, 51 /* 52 * Following operations are only supported with IC version >= 5.0 53 */ 54 VSS_OP_FREEZE, /* Freeze the file systems in the VM */ 55 VSS_OP_THAW, /* Unfreeze the file systems */ 56 VSS_OP_AUTO_RECOVER, 57 VSS_OP_COUNT /* Number of operations, must be last */ 58 }; 59 60 61 /* 62 * Header for all VSS messages. 63 */ 64 struct hv_vss_hdr { 65 __u8 operation; 66 __u8 reserved[7]; 67 } __attribute__((packed)); 68 69 70 /* 71 * Flag values for the hv_vss_check_feature. Linux supports only 72 * one value. 73 */ 74 #define VSS_HBU_NO_AUTO_RECOVERY 0x00000005 75 76 struct hv_vss_check_feature { 77 __u32 flags; 78 } __attribute__((packed)); 79 80 struct hv_vss_check_dm_info { 81 __u32 flags; 82 } __attribute__((packed)); 83 84 struct hv_vss_msg { 85 union { 86 struct hv_vss_hdr vss_hdr; 87 int error; 88 }; 89 union { 90 struct hv_vss_check_feature vss_cf; 91 struct hv_vss_check_dm_info dm_info; 92 }; 93 } __attribute__((packed)); 94 95 /* 96 * An implementation of HyperV key value pair (KVP) functionality for Linux. 97 * 98 * 99 * Copyright (C) 2010, Novell, Inc. 100 * Author : K. Y. Srinivasan <[email protected]> 101 * 102 */ 103 104 /* 105 * Maximum value size - used for both key names and value data, and includes 106 * any applicable NULL terminators. 107 * 108 * Note: This limit is somewhat arbitrary, but falls easily within what is 109 * supported for all native guests (back to Win 2000) and what is reasonable 110 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are 111 * limited to 255 character key names. 112 * 113 * MSDN recommends not storing data values larger than 2048 bytes in the 114 * registry. 115 * 116 * Note: This value is used in defining the KVP exchange message - this value 117 * cannot be modified without affecting the message size and compatibility. 118 */ 119 120 /* 121 * bytes, including any null terminators 122 */ 123 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048) 124 125 126 /* 127 * Maximum key size - the registry limit for the length of an entry name 128 * is 256 characters, including the null terminator 129 */ 130 131 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512) 132 133 /* 134 * In Linux, we implement the KVP functionality in two components: 135 * 1) The kernel component which is packaged as part of the hv_utils driver 136 * is responsible for communicating with the host and responsible for 137 * implementing the host/guest protocol. 2) A user level daemon that is 138 * responsible for data gathering. 139 * 140 * Host/Guest Protocol: The host iterates over an index and expects the guest 141 * to assign a key name to the index and also return the value corresponding to 142 * the key. The host will have atmost one KVP transaction outstanding at any 143 * given point in time. The host side iteration stops when the guest returns 144 * an error. Microsoft has specified the following mapping of key names to 145 * host specified index: 146 * 147 * Index Key Name 148 * 0 FullyQualifiedDomainName 149 * 1 IntegrationServicesVersion 150 * 2 NetworkAddressIPv4 151 * 3 NetworkAddressIPv6 152 * 4 OSBuildNumber 153 * 5 OSName 154 * 6 OSMajorVersion 155 * 7 OSMinorVersion 156 * 8 OSVersion 157 * 9 ProcessorArchitecture 158 * 159 * The Windows host expects the Key Name and Key Value to be encoded in utf16. 160 * 161 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the 162 * data gathering functionality in a user mode daemon. The user level daemon 163 * is also responsible for binding the key name to the index as well. The 164 * kernel and user-level daemon communicate using a connector channel. 165 * 166 * The user mode component first registers with the 167 * the kernel component. Subsequently, the kernel component requests, data 168 * for the specified keys. In response to this message the user mode component 169 * fills in the value corresponding to the specified key. We overload the 170 * sequence field in the cn_msg header to define our KVP message types. 171 * 172 * 173 * The kernel component simply acts as a conduit for communication between the 174 * Windows host and the user-level daemon. The kernel component passes up the 175 * index received from the Host to the user-level daemon. If the index is 176 * valid (supported), the corresponding key as well as its 177 * value (both are strings) is returned. If the index is invalid 178 * (not supported), a NULL key string is returned. 179 */ 180 181 182 /* 183 * Registry value types. 184 */ 185 186 #define REG_SZ 1 187 #define REG_U32 4 188 #define REG_U64 8 189 190 /* 191 * As we look at expanding the KVP functionality to include 192 * IP injection functionality, we need to maintain binary 193 * compatibility with older daemons. 194 * 195 * The KVP opcodes are defined by the host and it was unfortunate 196 * that I chose to treat the registration operation as part of the 197 * KVP operations defined by the host. 198 * Here is the level of compatibility 199 * (between the user level daemon and the kernel KVP driver) that we 200 * will implement: 201 * 202 * An older daemon will always be supported on a newer driver. 203 * A given user level daemon will require a minimal version of the 204 * kernel driver. 205 * If we cannot handle the version differences, we will fail gracefully 206 * (this can happen when we have a user level daemon that is more 207 * advanced than the KVP driver. 208 * 209 * We will use values used in this handshake for determining if we have 210 * workable user level daemon and the kernel driver. We begin by taking the 211 * registration opcode out of the KVP opcode namespace. We will however, 212 * maintain compatibility with the existing user-level daemon code. 213 */ 214 215 /* 216 * Daemon code not supporting IP injection (legacy daemon). 217 */ 218 219 #define KVP_OP_REGISTER 4 220 221 /* 222 * Daemon code supporting IP injection. 223 * The KVP opcode field is used to communicate the 224 * registration information; so define a namespace that 225 * will be distinct from the host defined KVP opcode. 226 */ 227 228 #define KVP_OP_REGISTER1 100 229 230 enum hv_kvp_exchg_op { 231 KVP_OP_GET = 0, 232 KVP_OP_SET, 233 KVP_OP_DELETE, 234 KVP_OP_ENUMERATE, 235 KVP_OP_GET_IP_INFO, 236 KVP_OP_SET_IP_INFO, 237 KVP_OP_COUNT /* Number of operations, must be last. */ 238 }; 239 240 enum hv_kvp_exchg_pool { 241 KVP_POOL_EXTERNAL = 0, 242 KVP_POOL_GUEST, 243 KVP_POOL_AUTO, 244 KVP_POOL_AUTO_EXTERNAL, 245 KVP_POOL_AUTO_INTERNAL, 246 KVP_POOL_COUNT /* Number of pools, must be last. */ 247 }; 248 249 /* 250 * Some Hyper-V status codes. 251 */ 252 253 #define HV_S_OK 0x00000000 254 #define HV_E_FAIL 0x80004005 255 #define HV_S_CONT 0x80070103 256 #define HV_ERROR_NOT_SUPPORTED 0x80070032 257 #define HV_ERROR_MACHINE_LOCKED 0x800704F7 258 #define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F 259 #define HV_INVALIDARG 0x80070057 260 #define HV_GUID_NOTFOUND 0x80041002 261 262 #define ADDR_FAMILY_NONE 0x00 263 #define ADDR_FAMILY_IPV4 0x01 264 #define ADDR_FAMILY_IPV6 0x02 265 266 #define MAX_ADAPTER_ID_SIZE 128 267 #define MAX_IP_ADDR_SIZE 1024 268 #define MAX_GATEWAY_SIZE 512 269 270 271 struct hv_kvp_ipaddr_value { 272 __u16 adapter_id[MAX_ADAPTER_ID_SIZE]; 273 __u8 addr_family; 274 __u8 dhcp_enabled; 275 __u16 ip_addr[MAX_IP_ADDR_SIZE]; 276 __u16 sub_net[MAX_IP_ADDR_SIZE]; 277 __u16 gate_way[MAX_GATEWAY_SIZE]; 278 __u16 dns_addr[MAX_IP_ADDR_SIZE]; 279 } __attribute__((packed)); 280 281 282 struct hv_kvp_hdr { 283 __u8 operation; 284 __u8 pool; 285 __u16 pad; 286 } __attribute__((packed)); 287 288 struct hv_kvp_exchg_msg_value { 289 __u32 value_type; 290 __u32 key_size; 291 __u32 value_size; 292 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 293 union { 294 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE]; 295 __u32 value_u32; 296 __u64 value_u64; 297 }; 298 } __attribute__((packed)); 299 300 struct hv_kvp_msg_enumerate { 301 __u32 index; 302 struct hv_kvp_exchg_msg_value data; 303 } __attribute__((packed)); 304 305 struct hv_kvp_msg_get { 306 struct hv_kvp_exchg_msg_value data; 307 }; 308 309 struct hv_kvp_msg_set { 310 struct hv_kvp_exchg_msg_value data; 311 }; 312 313 struct hv_kvp_msg_delete { 314 __u32 key_size; 315 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 316 }; 317 318 struct hv_kvp_register { 319 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 320 }; 321 322 struct hv_kvp_msg { 323 union { 324 struct hv_kvp_hdr kvp_hdr; 325 int error; 326 }; 327 union { 328 struct hv_kvp_msg_get kvp_get; 329 struct hv_kvp_msg_set kvp_set; 330 struct hv_kvp_msg_delete kvp_delete; 331 struct hv_kvp_msg_enumerate kvp_enum_data; 332 struct hv_kvp_ipaddr_value kvp_ip_val; 333 struct hv_kvp_register kvp_register; 334 } body; 335 } __attribute__((packed)); 336 337 struct hv_kvp_ip_msg { 338 __u8 operation; 339 __u8 pool; 340 struct hv_kvp_ipaddr_value kvp_ip_val; 341 } __attribute__((packed)); 342 343 #ifdef __KERNEL__ 344 #include <linux/scatterlist.h> 345 #include <linux/list.h> 346 #include <linux/uuid.h> 347 #include <linux/timer.h> 348 #include <linux/workqueue.h> 349 #include <linux/completion.h> 350 #include <linux/device.h> 351 #include <linux/mod_devicetable.h> 352 353 354 #define MAX_PAGE_BUFFER_COUNT 19 355 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 356 357 #pragma pack(push, 1) 358 359 /* Single-page buffer */ 360 struct hv_page_buffer { 361 u32 len; 362 u32 offset; 363 u64 pfn; 364 }; 365 366 /* Multiple-page buffer */ 367 struct hv_multipage_buffer { 368 /* Length and Offset determines the # of pfns in the array */ 369 u32 len; 370 u32 offset; 371 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 372 }; 373 374 /* 0x18 includes the proprietary packet header */ 375 #define MAX_PAGE_BUFFER_PACKET (0x18 + \ 376 (sizeof(struct hv_page_buffer) * \ 377 MAX_PAGE_BUFFER_COUNT)) 378 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 379 sizeof(struct hv_multipage_buffer)) 380 381 382 #pragma pack(pop) 383 384 struct hv_ring_buffer { 385 /* Offset in bytes from the start of ring data below */ 386 u32 write_index; 387 388 /* Offset in bytes from the start of ring data below */ 389 u32 read_index; 390 391 u32 interrupt_mask; 392 393 /* 394 * Win8 uses some of the reserved bits to implement 395 * interrupt driven flow management. On the send side 396 * we can request that the receiver interrupt the sender 397 * when the ring transitions from being full to being able 398 * to handle a message of size "pending_send_sz". 399 * 400 * Add necessary state for this enhancement. 401 */ 402 u32 pending_send_sz; 403 404 u32 reserved1[12]; 405 406 union { 407 struct { 408 u32 feat_pending_send_sz:1; 409 }; 410 u32 value; 411 } feature_bits; 412 413 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 414 u8 reserved2[4028]; 415 416 /* 417 * Ring data starts here + RingDataStartOffset 418 * !!! DO NOT place any fields below this !!! 419 */ 420 u8 buffer[0]; 421 } __packed; 422 423 struct hv_ring_buffer_info { 424 struct hv_ring_buffer *ring_buffer; 425 u32 ring_size; /* Include the shared header */ 426 spinlock_t ring_lock; 427 428 u32 ring_datasize; /* < ring_size */ 429 u32 ring_data_startoffset; 430 }; 431 432 /* 433 * 434 * hv_get_ringbuffer_availbytes() 435 * 436 * Get number of bytes available to read and to write to 437 * for the specified ring buffer 438 */ 439 static inline void 440 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi, 441 u32 *read, u32 *write) 442 { 443 u32 read_loc, write_loc, dsize; 444 445 smp_read_barrier_depends(); 446 447 /* Capture the read/write indices before they changed */ 448 read_loc = rbi->ring_buffer->read_index; 449 write_loc = rbi->ring_buffer->write_index; 450 dsize = rbi->ring_datasize; 451 452 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 453 read_loc - write_loc; 454 *read = dsize - *write; 455 } 456 457 /* 458 * VMBUS version is 32 bit entity broken up into 459 * two 16 bit quantities: major_number. minor_number. 460 * 461 * 0 . 13 (Windows Server 2008) 462 * 1 . 1 (Windows 7) 463 * 2 . 4 (Windows 8) 464 */ 465 466 #define VERSION_WS2008 ((0 << 16) | (13)) 467 #define VERSION_WIN7 ((1 << 16) | (1)) 468 #define VERSION_WIN8 ((2 << 16) | (4)) 469 470 #define VERSION_INVAL -1 471 472 #define VERSION_CURRENT VERSION_WIN8 473 474 /* Make maximum size of pipe payload of 16K */ 475 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 476 477 /* Define PipeMode values. */ 478 #define VMBUS_PIPE_TYPE_BYTE 0x00000000 479 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 480 481 /* The size of the user defined data buffer for non-pipe offers. */ 482 #define MAX_USER_DEFINED_BYTES 120 483 484 /* The size of the user defined data buffer for pipe offers. */ 485 #define MAX_PIPE_USER_DEFINED_BYTES 116 486 487 /* 488 * At the center of the Channel Management library is the Channel Offer. This 489 * struct contains the fundamental information about an offer. 490 */ 491 struct vmbus_channel_offer { 492 uuid_le if_type; 493 uuid_le if_instance; 494 495 /* 496 * These two fields are not currently used. 497 */ 498 u64 reserved1; 499 u64 reserved2; 500 501 u16 chn_flags; 502 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 503 504 union { 505 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 506 struct { 507 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 508 } std; 509 510 /* 511 * Pipes: 512 * The following sructure is an integrated pipe protocol, which 513 * is implemented on top of standard user-defined data. Pipe 514 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 515 * use. 516 */ 517 struct { 518 u32 pipe_mode; 519 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 520 } pipe; 521 } u; 522 /* 523 * The sub_channel_index is defined in win8. 524 */ 525 u16 sub_channel_index; 526 u16 reserved3; 527 } __packed; 528 529 /* Server Flags */ 530 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 531 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 532 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 533 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 534 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 535 #define VMBUS_CHANNEL_PARENT_OFFER 0x200 536 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 537 538 struct vmpacket_descriptor { 539 u16 type; 540 u16 offset8; 541 u16 len8; 542 u16 flags; 543 u64 trans_id; 544 } __packed; 545 546 struct vmpacket_header { 547 u32 prev_pkt_start_offset; 548 struct vmpacket_descriptor descriptor; 549 } __packed; 550 551 struct vmtransfer_page_range { 552 u32 byte_count; 553 u32 byte_offset; 554 } __packed; 555 556 struct vmtransfer_page_packet_header { 557 struct vmpacket_descriptor d; 558 u16 xfer_pageset_id; 559 u8 sender_owns_set; 560 u8 reserved; 561 u32 range_cnt; 562 struct vmtransfer_page_range ranges[1]; 563 } __packed; 564 565 struct vmgpadl_packet_header { 566 struct vmpacket_descriptor d; 567 u32 gpadl; 568 u32 reserved; 569 } __packed; 570 571 struct vmadd_remove_transfer_page_set { 572 struct vmpacket_descriptor d; 573 u32 gpadl; 574 u16 xfer_pageset_id; 575 u16 reserved; 576 } __packed; 577 578 /* 579 * This structure defines a range in guest physical space that can be made to 580 * look virtually contiguous. 581 */ 582 struct gpa_range { 583 u32 byte_count; 584 u32 byte_offset; 585 u64 pfn_array[0]; 586 }; 587 588 /* 589 * This is the format for an Establish Gpadl packet, which contains a handle by 590 * which this GPADL will be known and a set of GPA ranges associated with it. 591 * This can be converted to a MDL by the guest OS. If there are multiple GPA 592 * ranges, then the resulting MDL will be "chained," representing multiple VA 593 * ranges. 594 */ 595 struct vmestablish_gpadl { 596 struct vmpacket_descriptor d; 597 u32 gpadl; 598 u32 range_cnt; 599 struct gpa_range range[1]; 600 } __packed; 601 602 /* 603 * This is the format for a Teardown Gpadl packet, which indicates that the 604 * GPADL handle in the Establish Gpadl packet will never be referenced again. 605 */ 606 struct vmteardown_gpadl { 607 struct vmpacket_descriptor d; 608 u32 gpadl; 609 u32 reserved; /* for alignment to a 8-byte boundary */ 610 } __packed; 611 612 /* 613 * This is the format for a GPA-Direct packet, which contains a set of GPA 614 * ranges, in addition to commands and/or data. 615 */ 616 struct vmdata_gpa_direct { 617 struct vmpacket_descriptor d; 618 u32 reserved; 619 u32 range_cnt; 620 struct gpa_range range[1]; 621 } __packed; 622 623 /* This is the format for a Additional Data Packet. */ 624 struct vmadditional_data { 625 struct vmpacket_descriptor d; 626 u64 total_bytes; 627 u32 offset; 628 u32 byte_cnt; 629 unsigned char data[1]; 630 } __packed; 631 632 union vmpacket_largest_possible_header { 633 struct vmpacket_descriptor simple_hdr; 634 struct vmtransfer_page_packet_header xfer_page_hdr; 635 struct vmgpadl_packet_header gpadl_hdr; 636 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 637 struct vmestablish_gpadl establish_gpadl_hdr; 638 struct vmteardown_gpadl teardown_gpadl_hdr; 639 struct vmdata_gpa_direct data_gpa_direct_hdr; 640 }; 641 642 #define VMPACKET_DATA_START_ADDRESS(__packet) \ 643 (void *)(((unsigned char *)__packet) + \ 644 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 645 646 #define VMPACKET_DATA_LENGTH(__packet) \ 647 ((((struct vmpacket_descriptor)__packet)->len8 - \ 648 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 649 650 #define VMPACKET_TRANSFER_MODE(__packet) \ 651 (((struct IMPACT)__packet)->type) 652 653 enum vmbus_packet_type { 654 VM_PKT_INVALID = 0x0, 655 VM_PKT_SYNCH = 0x1, 656 VM_PKT_ADD_XFER_PAGESET = 0x2, 657 VM_PKT_RM_XFER_PAGESET = 0x3, 658 VM_PKT_ESTABLISH_GPADL = 0x4, 659 VM_PKT_TEARDOWN_GPADL = 0x5, 660 VM_PKT_DATA_INBAND = 0x6, 661 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 662 VM_PKT_DATA_USING_GPADL = 0x8, 663 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 664 VM_PKT_CANCEL_REQUEST = 0xa, 665 VM_PKT_COMP = 0xb, 666 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 667 VM_PKT_ADDITIONAL_DATA = 0xd 668 }; 669 670 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 671 672 673 /* Version 1 messages */ 674 enum vmbus_channel_message_type { 675 CHANNELMSG_INVALID = 0, 676 CHANNELMSG_OFFERCHANNEL = 1, 677 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 678 CHANNELMSG_REQUESTOFFERS = 3, 679 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 680 CHANNELMSG_OPENCHANNEL = 5, 681 CHANNELMSG_OPENCHANNEL_RESULT = 6, 682 CHANNELMSG_CLOSECHANNEL = 7, 683 CHANNELMSG_GPADL_HEADER = 8, 684 CHANNELMSG_GPADL_BODY = 9, 685 CHANNELMSG_GPADL_CREATED = 10, 686 CHANNELMSG_GPADL_TEARDOWN = 11, 687 CHANNELMSG_GPADL_TORNDOWN = 12, 688 CHANNELMSG_RELID_RELEASED = 13, 689 CHANNELMSG_INITIATE_CONTACT = 14, 690 CHANNELMSG_VERSION_RESPONSE = 15, 691 CHANNELMSG_UNLOAD = 16, 692 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD 693 CHANNELMSG_VIEWRANGE_ADD = 17, 694 CHANNELMSG_VIEWRANGE_REMOVE = 18, 695 #endif 696 CHANNELMSG_COUNT 697 }; 698 699 struct vmbus_channel_message_header { 700 enum vmbus_channel_message_type msgtype; 701 u32 padding; 702 } __packed; 703 704 /* Query VMBus Version parameters */ 705 struct vmbus_channel_query_vmbus_version { 706 struct vmbus_channel_message_header header; 707 u32 version; 708 } __packed; 709 710 /* VMBus Version Supported parameters */ 711 struct vmbus_channel_version_supported { 712 struct vmbus_channel_message_header header; 713 u8 version_supported; 714 } __packed; 715 716 /* Offer Channel parameters */ 717 struct vmbus_channel_offer_channel { 718 struct vmbus_channel_message_header header; 719 struct vmbus_channel_offer offer; 720 u32 child_relid; 721 u8 monitorid; 722 /* 723 * win7 and beyond splits this field into a bit field. 724 */ 725 u8 monitor_allocated:1; 726 u8 reserved:7; 727 /* 728 * These are new fields added in win7 and later. 729 * Do not access these fields without checking the 730 * negotiated protocol. 731 * 732 * If "is_dedicated_interrupt" is set, we must not set the 733 * associated bit in the channel bitmap while sending the 734 * interrupt to the host. 735 * 736 * connection_id is to be used in signaling the host. 737 */ 738 u16 is_dedicated_interrupt:1; 739 u16 reserved1:15; 740 u32 connection_id; 741 } __packed; 742 743 /* Rescind Offer parameters */ 744 struct vmbus_channel_rescind_offer { 745 struct vmbus_channel_message_header header; 746 u32 child_relid; 747 } __packed; 748 749 /* 750 * Request Offer -- no parameters, SynIC message contains the partition ID 751 * Set Snoop -- no parameters, SynIC message contains the partition ID 752 * Clear Snoop -- no parameters, SynIC message contains the partition ID 753 * All Offers Delivered -- no parameters, SynIC message contains the partition 754 * ID 755 * Flush Client -- no parameters, SynIC message contains the partition ID 756 */ 757 758 /* Open Channel parameters */ 759 struct vmbus_channel_open_channel { 760 struct vmbus_channel_message_header header; 761 762 /* Identifies the specific VMBus channel that is being opened. */ 763 u32 child_relid; 764 765 /* ID making a particular open request at a channel offer unique. */ 766 u32 openid; 767 768 /* GPADL for the channel's ring buffer. */ 769 u32 ringbuffer_gpadlhandle; 770 771 /* 772 * Starting with win8, this field will be used to specify 773 * the target virtual processor on which to deliver the interrupt for 774 * the host to guest communication. 775 * Prior to win8, incoming channel interrupts would only 776 * be delivered on cpu 0. Setting this value to 0 would 777 * preserve the earlier behavior. 778 */ 779 u32 target_vp; 780 781 /* 782 * The upstream ring buffer begins at offset zero in the memory 783 * described by RingBufferGpadlHandle. The downstream ring buffer 784 * follows it at this offset (in pages). 785 */ 786 u32 downstream_ringbuffer_pageoffset; 787 788 /* User-specific data to be passed along to the server endpoint. */ 789 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 790 } __packed; 791 792 /* Open Channel Result parameters */ 793 struct vmbus_channel_open_result { 794 struct vmbus_channel_message_header header; 795 u32 child_relid; 796 u32 openid; 797 u32 status; 798 } __packed; 799 800 /* Close channel parameters; */ 801 struct vmbus_channel_close_channel { 802 struct vmbus_channel_message_header header; 803 u32 child_relid; 804 } __packed; 805 806 /* Channel Message GPADL */ 807 #define GPADL_TYPE_RING_BUFFER 1 808 #define GPADL_TYPE_SERVER_SAVE_AREA 2 809 #define GPADL_TYPE_TRANSACTION 8 810 811 /* 812 * The number of PFNs in a GPADL message is defined by the number of 813 * pages that would be spanned by ByteCount and ByteOffset. If the 814 * implied number of PFNs won't fit in this packet, there will be a 815 * follow-up packet that contains more. 816 */ 817 struct vmbus_channel_gpadl_header { 818 struct vmbus_channel_message_header header; 819 u32 child_relid; 820 u32 gpadl; 821 u16 range_buflen; 822 u16 rangecount; 823 struct gpa_range range[0]; 824 } __packed; 825 826 /* This is the followup packet that contains more PFNs. */ 827 struct vmbus_channel_gpadl_body { 828 struct vmbus_channel_message_header header; 829 u32 msgnumber; 830 u32 gpadl; 831 u64 pfn[0]; 832 } __packed; 833 834 struct vmbus_channel_gpadl_created { 835 struct vmbus_channel_message_header header; 836 u32 child_relid; 837 u32 gpadl; 838 u32 creation_status; 839 } __packed; 840 841 struct vmbus_channel_gpadl_teardown { 842 struct vmbus_channel_message_header header; 843 u32 child_relid; 844 u32 gpadl; 845 } __packed; 846 847 struct vmbus_channel_gpadl_torndown { 848 struct vmbus_channel_message_header header; 849 u32 gpadl; 850 } __packed; 851 852 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD 853 struct vmbus_channel_view_range_add { 854 struct vmbus_channel_message_header header; 855 PHYSICAL_ADDRESS viewrange_base; 856 u64 viewrange_length; 857 u32 child_relid; 858 } __packed; 859 860 struct vmbus_channel_view_range_remove { 861 struct vmbus_channel_message_header header; 862 PHYSICAL_ADDRESS viewrange_base; 863 u32 child_relid; 864 } __packed; 865 #endif 866 867 struct vmbus_channel_relid_released { 868 struct vmbus_channel_message_header header; 869 u32 child_relid; 870 } __packed; 871 872 struct vmbus_channel_initiate_contact { 873 struct vmbus_channel_message_header header; 874 u32 vmbus_version_requested; 875 u32 padding2; 876 u64 interrupt_page; 877 u64 monitor_page1; 878 u64 monitor_page2; 879 } __packed; 880 881 struct vmbus_channel_version_response { 882 struct vmbus_channel_message_header header; 883 u8 version_supported; 884 } __packed; 885 886 enum vmbus_channel_state { 887 CHANNEL_OFFER_STATE, 888 CHANNEL_OPENING_STATE, 889 CHANNEL_OPEN_STATE, 890 CHANNEL_OPENED_STATE, 891 }; 892 893 /* 894 * Represents each channel msg on the vmbus connection This is a 895 * variable-size data structure depending on the msg type itself 896 */ 897 struct vmbus_channel_msginfo { 898 /* Bookkeeping stuff */ 899 struct list_head msglistentry; 900 901 /* So far, this is only used to handle gpadl body message */ 902 struct list_head submsglist; 903 904 /* Synchronize the request/response if needed */ 905 struct completion waitevent; 906 union { 907 struct vmbus_channel_version_supported version_supported; 908 struct vmbus_channel_open_result open_result; 909 struct vmbus_channel_gpadl_torndown gpadl_torndown; 910 struct vmbus_channel_gpadl_created gpadl_created; 911 struct vmbus_channel_version_response version_response; 912 } response; 913 914 u32 msgsize; 915 /* 916 * The channel message that goes out on the "wire". 917 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 918 */ 919 unsigned char msg[0]; 920 }; 921 922 struct vmbus_close_msg { 923 struct vmbus_channel_msginfo info; 924 struct vmbus_channel_close_channel msg; 925 }; 926 927 /* Define connection identifier type. */ 928 union hv_connection_id { 929 u32 asu32; 930 struct { 931 u32 id:24; 932 u32 reserved:8; 933 } u; 934 }; 935 936 /* Definition of the hv_signal_event hypercall input structure. */ 937 struct hv_input_signal_event { 938 union hv_connection_id connectionid; 939 u16 flag_number; 940 u16 rsvdz; 941 }; 942 943 struct hv_input_signal_event_buffer { 944 u64 align8; 945 struct hv_input_signal_event event; 946 }; 947 948 struct vmbus_channel { 949 struct list_head listentry; 950 951 struct hv_device *device_obj; 952 953 struct work_struct work; 954 955 enum vmbus_channel_state state; 956 957 struct vmbus_channel_offer_channel offermsg; 958 /* 959 * These are based on the OfferMsg.MonitorId. 960 * Save it here for easy access. 961 */ 962 u8 monitor_grp; 963 u8 monitor_bit; 964 965 u32 ringbuffer_gpadlhandle; 966 967 /* Allocated memory for ring buffer */ 968 void *ringbuffer_pages; 969 u32 ringbuffer_pagecount; 970 struct hv_ring_buffer_info outbound; /* send to parent */ 971 struct hv_ring_buffer_info inbound; /* receive from parent */ 972 spinlock_t inbound_lock; 973 struct workqueue_struct *controlwq; 974 975 struct vmbus_close_msg close_msg; 976 977 /* Channel callback are invoked in this workqueue context */ 978 /* HANDLE dataWorkQueue; */ 979 980 void (*onchannel_callback)(void *context); 981 void *channel_callback_context; 982 983 /* 984 * A channel can be marked for efficient (batched) 985 * reading: 986 * If batched_reading is set to "true", we read until the 987 * channel is empty and hold off interrupts from the host 988 * during the entire read process. 989 * If batched_reading is set to "false", the client is not 990 * going to perform batched reading. 991 * 992 * By default we will enable batched reading; specific 993 * drivers that don't want this behavior can turn it off. 994 */ 995 996 bool batched_reading; 997 998 bool is_dedicated_interrupt; 999 struct hv_input_signal_event_buffer sig_buf; 1000 struct hv_input_signal_event *sig_event; 1001 1002 /* 1003 * Starting with win8, this field will be used to specify 1004 * the target virtual processor on which to deliver the interrupt for 1005 * the host to guest communication. 1006 * Prior to win8, incoming channel interrupts would only 1007 * be delivered on cpu 0. Setting this value to 0 would 1008 * preserve the earlier behavior. 1009 */ 1010 u32 target_vp; 1011 /* 1012 * Support for sub-channels. For high performance devices, 1013 * it will be useful to have multiple sub-channels to support 1014 * a scalable communication infrastructure with the host. 1015 * The support for sub-channels is implemented as an extention 1016 * to the current infrastructure. 1017 * The initial offer is considered the primary channel and this 1018 * offer message will indicate if the host supports sub-channels. 1019 * The guest is free to ask for sub-channels to be offerred and can 1020 * open these sub-channels as a normal "primary" channel. However, 1021 * all sub-channels will have the same type and instance guids as the 1022 * primary channel. Requests sent on a given channel will result in a 1023 * response on the same channel. 1024 */ 1025 1026 /* 1027 * Sub-channel creation callback. This callback will be called in 1028 * process context when a sub-channel offer is received from the host. 1029 * The guest can open the sub-channel in the context of this callback. 1030 */ 1031 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 1032 1033 spinlock_t sc_lock; 1034 /* 1035 * All Sub-channels of a primary channel are linked here. 1036 */ 1037 struct list_head sc_list; 1038 /* 1039 * The primary channel this sub-channel belongs to. 1040 * This will be NULL for the primary channel. 1041 */ 1042 struct vmbus_channel *primary_channel; 1043 }; 1044 1045 static inline void set_channel_read_state(struct vmbus_channel *c, bool state) 1046 { 1047 c->batched_reading = state; 1048 } 1049 1050 void vmbus_onmessage(void *context); 1051 1052 int vmbus_request_offers(void); 1053 1054 /* 1055 * APIs for managing sub-channels. 1056 */ 1057 1058 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 1059 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 1060 1061 /* 1062 * Retrieve the (sub) channel on which to send an outgoing request. 1063 * When a primary channel has multiple sub-channels, we choose a 1064 * channel whose VCPU binding is closest to the VCPU on which 1065 * this call is being made. 1066 */ 1067 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary); 1068 1069 /* 1070 * Check if sub-channels have already been offerred. This API will be useful 1071 * when the driver is unloaded after establishing sub-channels. In this case, 1072 * when the driver is re-loaded, the driver would have to check if the 1073 * subchannels have already been established before attempting to request 1074 * the creation of sub-channels. 1075 * This function returns TRUE to indicate that subchannels have already been 1076 * created. 1077 * This function should be invoked after setting the callback function for 1078 * sub-channel creation. 1079 */ 1080 bool vmbus_are_subchannels_present(struct vmbus_channel *primary); 1081 1082 /* The format must be the same as struct vmdata_gpa_direct */ 1083 struct vmbus_channel_packet_page_buffer { 1084 u16 type; 1085 u16 dataoffset8; 1086 u16 length8; 1087 u16 flags; 1088 u64 transactionid; 1089 u32 reserved; 1090 u32 rangecount; 1091 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1092 } __packed; 1093 1094 /* The format must be the same as struct vmdata_gpa_direct */ 1095 struct vmbus_channel_packet_multipage_buffer { 1096 u16 type; 1097 u16 dataoffset8; 1098 u16 length8; 1099 u16 flags; 1100 u64 transactionid; 1101 u32 reserved; 1102 u32 rangecount; /* Always 1 in this case */ 1103 struct hv_multipage_buffer range; 1104 } __packed; 1105 1106 1107 extern int vmbus_open(struct vmbus_channel *channel, 1108 u32 send_ringbuffersize, 1109 u32 recv_ringbuffersize, 1110 void *userdata, 1111 u32 userdatalen, 1112 void(*onchannel_callback)(void *context), 1113 void *context); 1114 1115 extern void vmbus_close(struct vmbus_channel *channel); 1116 1117 extern int vmbus_sendpacket(struct vmbus_channel *channel, 1118 const void *buffer, 1119 u32 bufferLen, 1120 u64 requestid, 1121 enum vmbus_packet_type type, 1122 u32 flags); 1123 1124 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1125 struct hv_page_buffer pagebuffers[], 1126 u32 pagecount, 1127 void *buffer, 1128 u32 bufferlen, 1129 u64 requestid); 1130 1131 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel, 1132 struct hv_multipage_buffer *mpb, 1133 void *buffer, 1134 u32 bufferlen, 1135 u64 requestid); 1136 1137 extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1138 void *kbuffer, 1139 u32 size, 1140 u32 *gpadl_handle); 1141 1142 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1143 u32 gpadl_handle); 1144 1145 extern int vmbus_recvpacket(struct vmbus_channel *channel, 1146 void *buffer, 1147 u32 bufferlen, 1148 u32 *buffer_actual_len, 1149 u64 *requestid); 1150 1151 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1152 void *buffer, 1153 u32 bufferlen, 1154 u32 *buffer_actual_len, 1155 u64 *requestid); 1156 1157 1158 extern void vmbus_ontimer(unsigned long data); 1159 1160 /* Base driver object */ 1161 struct hv_driver { 1162 const char *name; 1163 1164 /* the device type supported by this driver */ 1165 uuid_le dev_type; 1166 const struct hv_vmbus_device_id *id_table; 1167 1168 struct device_driver driver; 1169 1170 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1171 int (*remove)(struct hv_device *); 1172 void (*shutdown)(struct hv_device *); 1173 1174 }; 1175 1176 /* Base device object */ 1177 struct hv_device { 1178 /* the device type id of this device */ 1179 uuid_le dev_type; 1180 1181 /* the device instance id of this device */ 1182 uuid_le dev_instance; 1183 1184 struct device device; 1185 1186 struct vmbus_channel *channel; 1187 }; 1188 1189 1190 static inline struct hv_device *device_to_hv_device(struct device *d) 1191 { 1192 return container_of(d, struct hv_device, device); 1193 } 1194 1195 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1196 { 1197 return container_of(d, struct hv_driver, driver); 1198 } 1199 1200 static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1201 { 1202 dev_set_drvdata(&dev->device, data); 1203 } 1204 1205 static inline void *hv_get_drvdata(struct hv_device *dev) 1206 { 1207 return dev_get_drvdata(&dev->device); 1208 } 1209 1210 /* Vmbus interface */ 1211 #define vmbus_driver_register(driver) \ 1212 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1213 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1214 struct module *owner, 1215 const char *mod_name); 1216 void vmbus_driver_unregister(struct hv_driver *hv_driver); 1217 1218 /** 1219 * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device 1220 * 1221 * This macro is used to create a struct hv_vmbus_device_id that matches a 1222 * specific device. 1223 */ 1224 #define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7, \ 1225 g8, g9, ga, gb, gc, gd, ge, gf) \ 1226 .guid = { g0, g1, g2, g3, g4, g5, g6, g7, \ 1227 g8, g9, ga, gb, gc, gd, ge, gf }, 1228 1229 /* 1230 * GUID definitions of various offer types - services offered to the guest. 1231 */ 1232 1233 /* 1234 * Network GUID 1235 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1236 */ 1237 #define HV_NIC_GUID \ 1238 .guid = { \ 1239 0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46, \ 1240 0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e \ 1241 } 1242 1243 /* 1244 * IDE GUID 1245 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1246 */ 1247 #define HV_IDE_GUID \ 1248 .guid = { \ 1249 0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44, \ 1250 0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5 \ 1251 } 1252 1253 /* 1254 * SCSI GUID 1255 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1256 */ 1257 #define HV_SCSI_GUID \ 1258 .guid = { \ 1259 0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d, \ 1260 0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f \ 1261 } 1262 1263 /* 1264 * Shutdown GUID 1265 * {0e0b6031-5213-4934-818b-38d90ced39db} 1266 */ 1267 #define HV_SHUTDOWN_GUID \ 1268 .guid = { \ 1269 0x31, 0x60, 0x0b, 0x0e, 0x13, 0x52, 0x34, 0x49, \ 1270 0x81, 0x8b, 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb \ 1271 } 1272 1273 /* 1274 * Time Synch GUID 1275 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1276 */ 1277 #define HV_TS_GUID \ 1278 .guid = { \ 1279 0x30, 0xe6, 0x27, 0x95, 0xae, 0xd0, 0x7b, 0x49, \ 1280 0xad, 0xce, 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf \ 1281 } 1282 1283 /* 1284 * Heartbeat GUID 1285 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1286 */ 1287 #define HV_HEART_BEAT_GUID \ 1288 .guid = { \ 1289 0x39, 0x4f, 0x16, 0x57, 0x15, 0x91, 0x78, 0x4e, \ 1290 0xab, 0x55, 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d \ 1291 } 1292 1293 /* 1294 * KVP GUID 1295 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1296 */ 1297 #define HV_KVP_GUID \ 1298 .guid = { \ 1299 0xe7, 0xf4, 0xa0, 0xa9, 0x45, 0x5a, 0x96, 0x4d, \ 1300 0xb8, 0x27, 0x8a, 0x84, 0x1e, 0x8c, 0x3, 0xe6 \ 1301 } 1302 1303 /* 1304 * Dynamic memory GUID 1305 * {525074dc-8985-46e2-8057-a307dc18a502} 1306 */ 1307 #define HV_DM_GUID \ 1308 .guid = { \ 1309 0xdc, 0x74, 0x50, 0X52, 0x85, 0x89, 0xe2, 0x46, \ 1310 0x80, 0x57, 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02 \ 1311 } 1312 1313 /* 1314 * Mouse GUID 1315 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1316 */ 1317 #define HV_MOUSE_GUID \ 1318 .guid = { \ 1319 0x9e, 0xb6, 0xa8, 0xcf, 0x4a, 0x5b, 0xc0, 0x4c, \ 1320 0xb9, 0x8b, 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a \ 1321 } 1322 1323 /* 1324 * VSS (Backup/Restore) GUID 1325 */ 1326 #define HV_VSS_GUID \ 1327 .guid = { \ 1328 0x29, 0x2e, 0xfa, 0x35, 0x23, 0xea, 0x36, 0x42, \ 1329 0x96, 0xae, 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40 \ 1330 } 1331 /* 1332 * Synthetic Video GUID 1333 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1334 */ 1335 #define HV_SYNTHVID_GUID \ 1336 .guid = { \ 1337 0x02, 0x78, 0x0a, 0xda, 0x77, 0xe3, 0xac, 0x4a, \ 1338 0x8e, 0x77, 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8 \ 1339 } 1340 1341 /* 1342 * Synthetic FC GUID 1343 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1344 */ 1345 #define HV_SYNTHFC_GUID \ 1346 .guid = { \ 1347 0x4A, 0xCC, 0x9B, 0x2F, 0x69, 0x00, 0xF3, 0x4A, \ 1348 0xB7, 0x6B, 0x6F, 0xD0, 0xBE, 0x52, 0x8C, 0xDA \ 1349 } 1350 1351 /* 1352 * Common header for Hyper-V ICs 1353 */ 1354 1355 #define ICMSGTYPE_NEGOTIATE 0 1356 #define ICMSGTYPE_HEARTBEAT 1 1357 #define ICMSGTYPE_KVPEXCHANGE 2 1358 #define ICMSGTYPE_SHUTDOWN 3 1359 #define ICMSGTYPE_TIMESYNC 4 1360 #define ICMSGTYPE_VSS 5 1361 1362 #define ICMSGHDRFLAG_TRANSACTION 1 1363 #define ICMSGHDRFLAG_REQUEST 2 1364 #define ICMSGHDRFLAG_RESPONSE 4 1365 1366 1367 /* 1368 * While we want to handle util services as regular devices, 1369 * there is only one instance of each of these services; so 1370 * we statically allocate the service specific state. 1371 */ 1372 1373 struct hv_util_service { 1374 u8 *recv_buffer; 1375 void (*util_cb)(void *); 1376 int (*util_init)(struct hv_util_service *); 1377 void (*util_deinit)(void); 1378 }; 1379 1380 struct vmbuspipe_hdr { 1381 u32 flags; 1382 u32 msgsize; 1383 } __packed; 1384 1385 struct ic_version { 1386 u16 major; 1387 u16 minor; 1388 } __packed; 1389 1390 struct icmsg_hdr { 1391 struct ic_version icverframe; 1392 u16 icmsgtype; 1393 struct ic_version icvermsg; 1394 u16 icmsgsize; 1395 u32 status; 1396 u8 ictransaction_id; 1397 u8 icflags; 1398 u8 reserved[2]; 1399 } __packed; 1400 1401 struct icmsg_negotiate { 1402 u16 icframe_vercnt; 1403 u16 icmsg_vercnt; 1404 u32 reserved; 1405 struct ic_version icversion_data[1]; /* any size array */ 1406 } __packed; 1407 1408 struct shutdown_msg_data { 1409 u32 reason_code; 1410 u32 timeout_seconds; 1411 u32 flags; 1412 u8 display_message[2048]; 1413 } __packed; 1414 1415 struct heartbeat_msg_data { 1416 u64 seq_num; 1417 u32 reserved[8]; 1418 } __packed; 1419 1420 /* Time Sync IC defs */ 1421 #define ICTIMESYNCFLAG_PROBE 0 1422 #define ICTIMESYNCFLAG_SYNC 1 1423 #define ICTIMESYNCFLAG_SAMPLE 2 1424 1425 #ifdef __x86_64__ 1426 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1427 #else 1428 #define WLTIMEDELTA 116444736000000000LL 1429 #endif 1430 1431 struct ictimesync_data { 1432 u64 parenttime; 1433 u64 childtime; 1434 u64 roundtriptime; 1435 u8 flags; 1436 } __packed; 1437 1438 struct hyperv_service_callback { 1439 u8 msg_type; 1440 char *log_msg; 1441 uuid_le data; 1442 struct vmbus_channel *channel; 1443 void (*callback) (void *context); 1444 }; 1445 1446 #define MAX_SRV_VER 0x7ffffff 1447 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *, 1448 struct icmsg_negotiate *, u8 *, int, 1449 int); 1450 1451 int hv_kvp_init(struct hv_util_service *); 1452 void hv_kvp_deinit(void); 1453 void hv_kvp_onchannelcallback(void *); 1454 1455 int hv_vss_init(struct hv_util_service *); 1456 void hv_vss_deinit(void); 1457 void hv_vss_onchannelcallback(void *); 1458 1459 /* 1460 * Negotiated version with the Host. 1461 */ 1462 1463 extern __u32 vmbus_proto_version; 1464 1465 #endif /* __KERNEL__ */ 1466 #endif /* _HYPERV_H */ 1467