xref: /linux-6.15/include/linux/hyperv.h (revision 02bc11de)
1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <[email protected]>
20  *   Hank Janssen  <[email protected]>
21  *   K. Y. Srinivasan <[email protected]>
22  *
23  */
24 
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27 
28 #include <uapi/linux/hyperv.h>
29 #include <uapi/asm/hyperv.h>
30 
31 #include <linux/types.h>
32 #include <linux/scatterlist.h>
33 #include <linux/list.h>
34 #include <linux/timer.h>
35 #include <linux/workqueue.h>
36 #include <linux/completion.h>
37 #include <linux/device.h>
38 #include <linux/mod_devicetable.h>
39 
40 
41 #define MAX_PAGE_BUFFER_COUNT				32
42 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
43 
44 #pragma pack(push, 1)
45 
46 /* Single-page buffer */
47 struct hv_page_buffer {
48 	u32 len;
49 	u32 offset;
50 	u64 pfn;
51 };
52 
53 /* Multiple-page buffer */
54 struct hv_multipage_buffer {
55 	/* Length and Offset determines the # of pfns in the array */
56 	u32 len;
57 	u32 offset;
58 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
59 };
60 
61 /*
62  * Multiple-page buffer array; the pfn array is variable size:
63  * The number of entries in the PFN array is determined by
64  * "len" and "offset".
65  */
66 struct hv_mpb_array {
67 	/* Length and Offset determines the # of pfns in the array */
68 	u32 len;
69 	u32 offset;
70 	u64 pfn_array[];
71 };
72 
73 /* 0x18 includes the proprietary packet header */
74 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
75 					(sizeof(struct hv_page_buffer) * \
76 					 MAX_PAGE_BUFFER_COUNT))
77 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
78 					 sizeof(struct hv_multipage_buffer))
79 
80 
81 #pragma pack(pop)
82 
83 struct hv_ring_buffer {
84 	/* Offset in bytes from the start of ring data below */
85 	u32 write_index;
86 
87 	/* Offset in bytes from the start of ring data below */
88 	u32 read_index;
89 
90 	u32 interrupt_mask;
91 
92 	/*
93 	 * Win8 uses some of the reserved bits to implement
94 	 * interrupt driven flow management. On the send side
95 	 * we can request that the receiver interrupt the sender
96 	 * when the ring transitions from being full to being able
97 	 * to handle a message of size "pending_send_sz".
98 	 *
99 	 * Add necessary state for this enhancement.
100 	 */
101 	u32 pending_send_sz;
102 
103 	u32 reserved1[12];
104 
105 	union {
106 		struct {
107 			u32 feat_pending_send_sz:1;
108 		};
109 		u32 value;
110 	} feature_bits;
111 
112 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
113 	u8	reserved2[4028];
114 
115 	/*
116 	 * Ring data starts here + RingDataStartOffset
117 	 * !!! DO NOT place any fields below this !!!
118 	 */
119 	u8 buffer[0];
120 } __packed;
121 
122 struct hv_ring_buffer_info {
123 	struct hv_ring_buffer *ring_buffer;
124 	u32 ring_size;			/* Include the shared header */
125 	spinlock_t ring_lock;
126 
127 	u32 ring_datasize;		/* < ring_size */
128 	u32 ring_data_startoffset;
129 	u32 priv_write_index;
130 	u32 priv_read_index;
131 };
132 
133 /*
134  *
135  * hv_get_ringbuffer_availbytes()
136  *
137  * Get number of bytes available to read and to write to
138  * for the specified ring buffer
139  */
140 static inline void
141 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
142 			  u32 *read, u32 *write)
143 {
144 	u32 read_loc, write_loc, dsize;
145 
146 	/* Capture the read/write indices before they changed */
147 	read_loc = rbi->ring_buffer->read_index;
148 	write_loc = rbi->ring_buffer->write_index;
149 	dsize = rbi->ring_datasize;
150 
151 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
152 		read_loc - write_loc;
153 	*read = dsize - *write;
154 }
155 
156 static inline u32 hv_get_bytes_to_read(struct hv_ring_buffer_info *rbi)
157 {
158 	u32 read_loc, write_loc, dsize, read;
159 
160 	dsize = rbi->ring_datasize;
161 	read_loc = rbi->ring_buffer->read_index;
162 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
163 
164 	read = write_loc >= read_loc ? (write_loc - read_loc) :
165 		(dsize - read_loc) + write_loc;
166 
167 	return read;
168 }
169 
170 static inline u32 hv_get_bytes_to_write(struct hv_ring_buffer_info *rbi)
171 {
172 	u32 read_loc, write_loc, dsize, write;
173 
174 	dsize = rbi->ring_datasize;
175 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
176 	write_loc = rbi->ring_buffer->write_index;
177 
178 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
179 		read_loc - write_loc;
180 	return write;
181 }
182 
183 /*
184  * VMBUS version is 32 bit entity broken up into
185  * two 16 bit quantities: major_number. minor_number.
186  *
187  * 0 . 13 (Windows Server 2008)
188  * 1 . 1  (Windows 7)
189  * 2 . 4  (Windows 8)
190  * 3 . 0  (Windows 8 R2)
191  * 4 . 0  (Windows 10)
192  */
193 
194 #define VERSION_WS2008  ((0 << 16) | (13))
195 #define VERSION_WIN7    ((1 << 16) | (1))
196 #define VERSION_WIN8    ((2 << 16) | (4))
197 #define VERSION_WIN8_1    ((3 << 16) | (0))
198 #define VERSION_WIN10	((4 << 16) | (0))
199 
200 #define VERSION_INVAL -1
201 
202 #define VERSION_CURRENT VERSION_WIN10
203 
204 /* Make maximum size of pipe payload of 16K */
205 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
206 
207 /* Define PipeMode values. */
208 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
209 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
210 
211 /* The size of the user defined data buffer for non-pipe offers. */
212 #define MAX_USER_DEFINED_BYTES		120
213 
214 /* The size of the user defined data buffer for pipe offers. */
215 #define MAX_PIPE_USER_DEFINED_BYTES	116
216 
217 /*
218  * At the center of the Channel Management library is the Channel Offer. This
219  * struct contains the fundamental information about an offer.
220  */
221 struct vmbus_channel_offer {
222 	uuid_le if_type;
223 	uuid_le if_instance;
224 
225 	/*
226 	 * These two fields are not currently used.
227 	 */
228 	u64 reserved1;
229 	u64 reserved2;
230 
231 	u16 chn_flags;
232 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
233 
234 	union {
235 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
236 		struct {
237 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
238 		} std;
239 
240 		/*
241 		 * Pipes:
242 		 * The following sructure is an integrated pipe protocol, which
243 		 * is implemented on top of standard user-defined data. Pipe
244 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
245 		 * use.
246 		 */
247 		struct {
248 			u32  pipe_mode;
249 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
250 		} pipe;
251 	} u;
252 	/*
253 	 * The sub_channel_index is defined in win8.
254 	 */
255 	u16 sub_channel_index;
256 	u16 reserved3;
257 } __packed;
258 
259 /* Server Flags */
260 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
261 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
262 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
263 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
264 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
265 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
266 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
267 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER		0x2000
268 
269 struct vmpacket_descriptor {
270 	u16 type;
271 	u16 offset8;
272 	u16 len8;
273 	u16 flags;
274 	u64 trans_id;
275 } __packed;
276 
277 struct vmpacket_header {
278 	u32 prev_pkt_start_offset;
279 	struct vmpacket_descriptor descriptor;
280 } __packed;
281 
282 struct vmtransfer_page_range {
283 	u32 byte_count;
284 	u32 byte_offset;
285 } __packed;
286 
287 struct vmtransfer_page_packet_header {
288 	struct vmpacket_descriptor d;
289 	u16 xfer_pageset_id;
290 	u8  sender_owns_set;
291 	u8 reserved;
292 	u32 range_cnt;
293 	struct vmtransfer_page_range ranges[1];
294 } __packed;
295 
296 struct vmgpadl_packet_header {
297 	struct vmpacket_descriptor d;
298 	u32 gpadl;
299 	u32 reserved;
300 } __packed;
301 
302 struct vmadd_remove_transfer_page_set {
303 	struct vmpacket_descriptor d;
304 	u32 gpadl;
305 	u16 xfer_pageset_id;
306 	u16 reserved;
307 } __packed;
308 
309 /*
310  * This structure defines a range in guest physical space that can be made to
311  * look virtually contiguous.
312  */
313 struct gpa_range {
314 	u32 byte_count;
315 	u32 byte_offset;
316 	u64 pfn_array[0];
317 };
318 
319 /*
320  * This is the format for an Establish Gpadl packet, which contains a handle by
321  * which this GPADL will be known and a set of GPA ranges associated with it.
322  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
323  * ranges, then the resulting MDL will be "chained," representing multiple VA
324  * ranges.
325  */
326 struct vmestablish_gpadl {
327 	struct vmpacket_descriptor d;
328 	u32 gpadl;
329 	u32 range_cnt;
330 	struct gpa_range range[1];
331 } __packed;
332 
333 /*
334  * This is the format for a Teardown Gpadl packet, which indicates that the
335  * GPADL handle in the Establish Gpadl packet will never be referenced again.
336  */
337 struct vmteardown_gpadl {
338 	struct vmpacket_descriptor d;
339 	u32 gpadl;
340 	u32 reserved;	/* for alignment to a 8-byte boundary */
341 } __packed;
342 
343 /*
344  * This is the format for a GPA-Direct packet, which contains a set of GPA
345  * ranges, in addition to commands and/or data.
346  */
347 struct vmdata_gpa_direct {
348 	struct vmpacket_descriptor d;
349 	u32 reserved;
350 	u32 range_cnt;
351 	struct gpa_range range[1];
352 } __packed;
353 
354 /* This is the format for a Additional Data Packet. */
355 struct vmadditional_data {
356 	struct vmpacket_descriptor d;
357 	u64 total_bytes;
358 	u32 offset;
359 	u32 byte_cnt;
360 	unsigned char data[1];
361 } __packed;
362 
363 union vmpacket_largest_possible_header {
364 	struct vmpacket_descriptor simple_hdr;
365 	struct vmtransfer_page_packet_header xfer_page_hdr;
366 	struct vmgpadl_packet_header gpadl_hdr;
367 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
368 	struct vmestablish_gpadl establish_gpadl_hdr;
369 	struct vmteardown_gpadl teardown_gpadl_hdr;
370 	struct vmdata_gpa_direct data_gpa_direct_hdr;
371 };
372 
373 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
374 	(void *)(((unsigned char *)__packet) +	\
375 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
376 
377 #define VMPACKET_DATA_LENGTH(__packet)		\
378 	((((struct vmpacket_descriptor)__packet)->len8 -	\
379 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
380 
381 #define VMPACKET_TRANSFER_MODE(__packet)	\
382 	(((struct IMPACT)__packet)->type)
383 
384 enum vmbus_packet_type {
385 	VM_PKT_INVALID				= 0x0,
386 	VM_PKT_SYNCH				= 0x1,
387 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
388 	VM_PKT_RM_XFER_PAGESET			= 0x3,
389 	VM_PKT_ESTABLISH_GPADL			= 0x4,
390 	VM_PKT_TEARDOWN_GPADL			= 0x5,
391 	VM_PKT_DATA_INBAND			= 0x6,
392 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
393 	VM_PKT_DATA_USING_GPADL			= 0x8,
394 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
395 	VM_PKT_CANCEL_REQUEST			= 0xa,
396 	VM_PKT_COMP				= 0xb,
397 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
398 	VM_PKT_ADDITIONAL_DATA			= 0xd
399 };
400 
401 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
402 
403 
404 /* Version 1 messages */
405 enum vmbus_channel_message_type {
406 	CHANNELMSG_INVALID			=  0,
407 	CHANNELMSG_OFFERCHANNEL		=  1,
408 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
409 	CHANNELMSG_REQUESTOFFERS		=  3,
410 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
411 	CHANNELMSG_OPENCHANNEL		=  5,
412 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
413 	CHANNELMSG_CLOSECHANNEL		=  7,
414 	CHANNELMSG_GPADL_HEADER		=  8,
415 	CHANNELMSG_GPADL_BODY			=  9,
416 	CHANNELMSG_GPADL_CREATED		= 10,
417 	CHANNELMSG_GPADL_TEARDOWN		= 11,
418 	CHANNELMSG_GPADL_TORNDOWN		= 12,
419 	CHANNELMSG_RELID_RELEASED		= 13,
420 	CHANNELMSG_INITIATE_CONTACT		= 14,
421 	CHANNELMSG_VERSION_RESPONSE		= 15,
422 	CHANNELMSG_UNLOAD			= 16,
423 	CHANNELMSG_UNLOAD_RESPONSE		= 17,
424 	CHANNELMSG_18				= 18,
425 	CHANNELMSG_19				= 19,
426 	CHANNELMSG_20				= 20,
427 	CHANNELMSG_TL_CONNECT_REQUEST		= 21,
428 	CHANNELMSG_COUNT
429 };
430 
431 struct vmbus_channel_message_header {
432 	enum vmbus_channel_message_type msgtype;
433 	u32 padding;
434 } __packed;
435 
436 /* Query VMBus Version parameters */
437 struct vmbus_channel_query_vmbus_version {
438 	struct vmbus_channel_message_header header;
439 	u32 version;
440 } __packed;
441 
442 /* VMBus Version Supported parameters */
443 struct vmbus_channel_version_supported {
444 	struct vmbus_channel_message_header header;
445 	u8 version_supported;
446 } __packed;
447 
448 /* Offer Channel parameters */
449 struct vmbus_channel_offer_channel {
450 	struct vmbus_channel_message_header header;
451 	struct vmbus_channel_offer offer;
452 	u32 child_relid;
453 	u8 monitorid;
454 	/*
455 	 * win7 and beyond splits this field into a bit field.
456 	 */
457 	u8 monitor_allocated:1;
458 	u8 reserved:7;
459 	/*
460 	 * These are new fields added in win7 and later.
461 	 * Do not access these fields without checking the
462 	 * negotiated protocol.
463 	 *
464 	 * If "is_dedicated_interrupt" is set, we must not set the
465 	 * associated bit in the channel bitmap while sending the
466 	 * interrupt to the host.
467 	 *
468 	 * connection_id is to be used in signaling the host.
469 	 */
470 	u16 is_dedicated_interrupt:1;
471 	u16 reserved1:15;
472 	u32 connection_id;
473 } __packed;
474 
475 /* Rescind Offer parameters */
476 struct vmbus_channel_rescind_offer {
477 	struct vmbus_channel_message_header header;
478 	u32 child_relid;
479 } __packed;
480 
481 /*
482  * Request Offer -- no parameters, SynIC message contains the partition ID
483  * Set Snoop -- no parameters, SynIC message contains the partition ID
484  * Clear Snoop -- no parameters, SynIC message contains the partition ID
485  * All Offers Delivered -- no parameters, SynIC message contains the partition
486  *		           ID
487  * Flush Client -- no parameters, SynIC message contains the partition ID
488  */
489 
490 /* Open Channel parameters */
491 struct vmbus_channel_open_channel {
492 	struct vmbus_channel_message_header header;
493 
494 	/* Identifies the specific VMBus channel that is being opened. */
495 	u32 child_relid;
496 
497 	/* ID making a particular open request at a channel offer unique. */
498 	u32 openid;
499 
500 	/* GPADL for the channel's ring buffer. */
501 	u32 ringbuffer_gpadlhandle;
502 
503 	/*
504 	 * Starting with win8, this field will be used to specify
505 	 * the target virtual processor on which to deliver the interrupt for
506 	 * the host to guest communication.
507 	 * Prior to win8, incoming channel interrupts would only
508 	 * be delivered on cpu 0. Setting this value to 0 would
509 	 * preserve the earlier behavior.
510 	 */
511 	u32 target_vp;
512 
513 	/*
514 	* The upstream ring buffer begins at offset zero in the memory
515 	* described by RingBufferGpadlHandle. The downstream ring buffer
516 	* follows it at this offset (in pages).
517 	*/
518 	u32 downstream_ringbuffer_pageoffset;
519 
520 	/* User-specific data to be passed along to the server endpoint. */
521 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
522 } __packed;
523 
524 /* Open Channel Result parameters */
525 struct vmbus_channel_open_result {
526 	struct vmbus_channel_message_header header;
527 	u32 child_relid;
528 	u32 openid;
529 	u32 status;
530 } __packed;
531 
532 /* Close channel parameters; */
533 struct vmbus_channel_close_channel {
534 	struct vmbus_channel_message_header header;
535 	u32 child_relid;
536 } __packed;
537 
538 /* Channel Message GPADL */
539 #define GPADL_TYPE_RING_BUFFER		1
540 #define GPADL_TYPE_SERVER_SAVE_AREA	2
541 #define GPADL_TYPE_TRANSACTION		8
542 
543 /*
544  * The number of PFNs in a GPADL message is defined by the number of
545  * pages that would be spanned by ByteCount and ByteOffset.  If the
546  * implied number of PFNs won't fit in this packet, there will be a
547  * follow-up packet that contains more.
548  */
549 struct vmbus_channel_gpadl_header {
550 	struct vmbus_channel_message_header header;
551 	u32 child_relid;
552 	u32 gpadl;
553 	u16 range_buflen;
554 	u16 rangecount;
555 	struct gpa_range range[0];
556 } __packed;
557 
558 /* This is the followup packet that contains more PFNs. */
559 struct vmbus_channel_gpadl_body {
560 	struct vmbus_channel_message_header header;
561 	u32 msgnumber;
562 	u32 gpadl;
563 	u64 pfn[0];
564 } __packed;
565 
566 struct vmbus_channel_gpadl_created {
567 	struct vmbus_channel_message_header header;
568 	u32 child_relid;
569 	u32 gpadl;
570 	u32 creation_status;
571 } __packed;
572 
573 struct vmbus_channel_gpadl_teardown {
574 	struct vmbus_channel_message_header header;
575 	u32 child_relid;
576 	u32 gpadl;
577 } __packed;
578 
579 struct vmbus_channel_gpadl_torndown {
580 	struct vmbus_channel_message_header header;
581 	u32 gpadl;
582 } __packed;
583 
584 struct vmbus_channel_relid_released {
585 	struct vmbus_channel_message_header header;
586 	u32 child_relid;
587 } __packed;
588 
589 struct vmbus_channel_initiate_contact {
590 	struct vmbus_channel_message_header header;
591 	u32 vmbus_version_requested;
592 	u32 target_vcpu; /* The VCPU the host should respond to */
593 	u64 interrupt_page;
594 	u64 monitor_page1;
595 	u64 monitor_page2;
596 } __packed;
597 
598 /* Hyper-V socket: guest's connect()-ing to host */
599 struct vmbus_channel_tl_connect_request {
600 	struct vmbus_channel_message_header header;
601 	uuid_le guest_endpoint_id;
602 	uuid_le host_service_id;
603 } __packed;
604 
605 struct vmbus_channel_version_response {
606 	struct vmbus_channel_message_header header;
607 	u8 version_supported;
608 } __packed;
609 
610 enum vmbus_channel_state {
611 	CHANNEL_OFFER_STATE,
612 	CHANNEL_OPENING_STATE,
613 	CHANNEL_OPEN_STATE,
614 	CHANNEL_OPENED_STATE,
615 };
616 
617 /*
618  * Represents each channel msg on the vmbus connection This is a
619  * variable-size data structure depending on the msg type itself
620  */
621 struct vmbus_channel_msginfo {
622 	/* Bookkeeping stuff */
623 	struct list_head msglistentry;
624 
625 	/* So far, this is only used to handle gpadl body message */
626 	struct list_head submsglist;
627 
628 	/* Synchronize the request/response if needed */
629 	struct completion  waitevent;
630 	union {
631 		struct vmbus_channel_version_supported version_supported;
632 		struct vmbus_channel_open_result open_result;
633 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
634 		struct vmbus_channel_gpadl_created gpadl_created;
635 		struct vmbus_channel_version_response version_response;
636 	} response;
637 
638 	u32 msgsize;
639 	/*
640 	 * The channel message that goes out on the "wire".
641 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
642 	 */
643 	unsigned char msg[0];
644 };
645 
646 struct vmbus_close_msg {
647 	struct vmbus_channel_msginfo info;
648 	struct vmbus_channel_close_channel msg;
649 };
650 
651 /* Define connection identifier type. */
652 union hv_connection_id {
653 	u32 asu32;
654 	struct {
655 		u32 id:24;
656 		u32 reserved:8;
657 	} u;
658 };
659 
660 /* Definition of the hv_signal_event hypercall input structure. */
661 struct hv_input_signal_event {
662 	union hv_connection_id connectionid;
663 	u16 flag_number;
664 	u16 rsvdz;
665 };
666 
667 struct hv_input_signal_event_buffer {
668 	u64 align8;
669 	struct hv_input_signal_event event;
670 };
671 
672 enum hv_signal_policy {
673 	HV_SIGNAL_POLICY_DEFAULT = 0,
674 	HV_SIGNAL_POLICY_EXPLICIT,
675 };
676 
677 enum hv_numa_policy {
678 	HV_BALANCED = 0,
679 	HV_LOCALIZED,
680 };
681 
682 enum vmbus_device_type {
683 	HV_IDE = 0,
684 	HV_SCSI,
685 	HV_FC,
686 	HV_NIC,
687 	HV_ND,
688 	HV_PCIE,
689 	HV_FB,
690 	HV_KBD,
691 	HV_MOUSE,
692 	HV_KVP,
693 	HV_TS,
694 	HV_HB,
695 	HV_SHUTDOWN,
696 	HV_FCOPY,
697 	HV_BACKUP,
698 	HV_DM,
699 	HV_UNKOWN,
700 };
701 
702 struct vmbus_device {
703 	u16  dev_type;
704 	uuid_le guid;
705 	bool perf_device;
706 };
707 
708 struct vmbus_channel {
709 	struct list_head listentry;
710 
711 	struct hv_device *device_obj;
712 
713 	enum vmbus_channel_state state;
714 
715 	struct vmbus_channel_offer_channel offermsg;
716 	/*
717 	 * These are based on the OfferMsg.MonitorId.
718 	 * Save it here for easy access.
719 	 */
720 	u8 monitor_grp;
721 	u8 monitor_bit;
722 
723 	bool rescind; /* got rescind msg */
724 
725 	u32 ringbuffer_gpadlhandle;
726 
727 	/* Allocated memory for ring buffer */
728 	void *ringbuffer_pages;
729 	u32 ringbuffer_pagecount;
730 	struct hv_ring_buffer_info outbound;	/* send to parent */
731 	struct hv_ring_buffer_info inbound;	/* receive from parent */
732 	spinlock_t inbound_lock;
733 
734 	struct vmbus_close_msg close_msg;
735 
736 	/* Channel callback are invoked in this workqueue context */
737 	/* HANDLE dataWorkQueue; */
738 
739 	void (*onchannel_callback)(void *context);
740 	void *channel_callback_context;
741 
742 	/*
743 	 * A channel can be marked for efficient (batched)
744 	 * reading:
745 	 * If batched_reading is set to "true", we read until the
746 	 * channel is empty and hold off interrupts from the host
747 	 * during the entire read process.
748 	 * If batched_reading is set to "false", the client is not
749 	 * going to perform batched reading.
750 	 *
751 	 * By default we will enable batched reading; specific
752 	 * drivers that don't want this behavior can turn it off.
753 	 */
754 
755 	bool batched_reading;
756 
757 	bool is_dedicated_interrupt;
758 	struct hv_input_signal_event_buffer sig_buf;
759 	struct hv_input_signal_event *sig_event;
760 
761 	/*
762 	 * Starting with win8, this field will be used to specify
763 	 * the target virtual processor on which to deliver the interrupt for
764 	 * the host to guest communication.
765 	 * Prior to win8, incoming channel interrupts would only
766 	 * be delivered on cpu 0. Setting this value to 0 would
767 	 * preserve the earlier behavior.
768 	 */
769 	u32 target_vp;
770 	/* The corresponding CPUID in the guest */
771 	u32 target_cpu;
772 	/*
773 	 * State to manage the CPU affiliation of channels.
774 	 */
775 	struct cpumask alloced_cpus_in_node;
776 	int numa_node;
777 	/*
778 	 * Support for sub-channels. For high performance devices,
779 	 * it will be useful to have multiple sub-channels to support
780 	 * a scalable communication infrastructure with the host.
781 	 * The support for sub-channels is implemented as an extention
782 	 * to the current infrastructure.
783 	 * The initial offer is considered the primary channel and this
784 	 * offer message will indicate if the host supports sub-channels.
785 	 * The guest is free to ask for sub-channels to be offerred and can
786 	 * open these sub-channels as a normal "primary" channel. However,
787 	 * all sub-channels will have the same type and instance guids as the
788 	 * primary channel. Requests sent on a given channel will result in a
789 	 * response on the same channel.
790 	 */
791 
792 	/*
793 	 * Sub-channel creation callback. This callback will be called in
794 	 * process context when a sub-channel offer is received from the host.
795 	 * The guest can open the sub-channel in the context of this callback.
796 	 */
797 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
798 
799 	/*
800 	 * Channel rescind callback. Some channels (the hvsock ones), need to
801 	 * register a callback which is invoked in vmbus_onoffer_rescind().
802 	 */
803 	void (*chn_rescind_callback)(struct vmbus_channel *channel);
804 
805 	/*
806 	 * The spinlock to protect the structure. It is being used to protect
807 	 * test-and-set access to various attributes of the structure as well
808 	 * as all sc_list operations.
809 	 */
810 	spinlock_t lock;
811 	/*
812 	 * All Sub-channels of a primary channel are linked here.
813 	 */
814 	struct list_head sc_list;
815 	/*
816 	 * Current number of sub-channels.
817 	 */
818 	int num_sc;
819 	/*
820 	 * Number of a sub-channel (position within sc_list) which is supposed
821 	 * to be used as the next outgoing channel.
822 	 */
823 	int next_oc;
824 	/*
825 	 * The primary channel this sub-channel belongs to.
826 	 * This will be NULL for the primary channel.
827 	 */
828 	struct vmbus_channel *primary_channel;
829 	/*
830 	 * Support per-channel state for use by vmbus drivers.
831 	 */
832 	void *per_channel_state;
833 	/*
834 	 * To support per-cpu lookup mapping of relid to channel,
835 	 * link up channels based on their CPU affinity.
836 	 */
837 	struct list_head percpu_list;
838 	/*
839 	 * Host signaling policy: The default policy will be
840 	 * based on the ring buffer state. We will also support
841 	 * a policy where the client driver can have explicit
842 	 * signaling control.
843 	 */
844 	enum hv_signal_policy  signal_policy;
845 	/*
846 	 * On the channel send side, many of the VMBUS
847 	 * device drivers explicity serialize access to the
848 	 * outgoing ring buffer. Give more control to the
849 	 * VMBUS device drivers in terms how to serialize
850 	 * accesss to the outgoing ring buffer.
851 	 * The default behavior will be to aquire the
852 	 * ring lock to preserve the current behavior.
853 	 */
854 	bool acquire_ring_lock;
855 	/*
856 	 * For performance critical channels (storage, networking
857 	 * etc,), Hyper-V has a mechanism to enhance the throughput
858 	 * at the expense of latency:
859 	 * When the host is to be signaled, we just set a bit in a shared page
860 	 * and this bit will be inspected by the hypervisor within a certain
861 	 * window and if the bit is set, the host will be signaled. The window
862 	 * of time is the monitor latency - currently around 100 usecs. This
863 	 * mechanism improves throughput by:
864 	 *
865 	 * A) Making the host more efficient - each time it wakes up,
866 	 *    potentially it will process morev number of packets. The
867 	 *    monitor latency allows a batch to build up.
868 	 * B) By deferring the hypercall to signal, we will also minimize
869 	 *    the interrupts.
870 	 *
871 	 * Clearly, these optimizations improve throughput at the expense of
872 	 * latency. Furthermore, since the channel is shared for both
873 	 * control and data messages, control messages currently suffer
874 	 * unnecessary latency adversley impacting performance and boot
875 	 * time. To fix this issue, permit tagging the channel as being
876 	 * in "low latency" mode. In this mode, we will bypass the monitor
877 	 * mechanism.
878 	 */
879 	bool low_latency;
880 
881 	/*
882 	 * NUMA distribution policy:
883 	 * We support teo policies:
884 	 * 1) Balanced: Here all performance critical channels are
885 	 *    distributed evenly amongst all the NUMA nodes.
886 	 *    This policy will be the default policy.
887 	 * 2) Localized: All channels of a given instance of a
888 	 *    performance critical service will be assigned CPUs
889 	 *    within a selected NUMA node.
890 	 */
891 	enum hv_numa_policy affinity_policy;
892 
893 };
894 
895 static inline void set_channel_lock_state(struct vmbus_channel *c, bool state)
896 {
897 	c->acquire_ring_lock = state;
898 }
899 
900 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
901 {
902 	return !!(c->offermsg.offer.chn_flags &
903 		  VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
904 }
905 
906 static inline void set_channel_signal_state(struct vmbus_channel *c,
907 					    enum hv_signal_policy policy)
908 {
909 	c->signal_policy = policy;
910 }
911 
912 static inline void set_channel_affinity_state(struct vmbus_channel *c,
913 					      enum hv_numa_policy policy)
914 {
915 	c->affinity_policy = policy;
916 }
917 
918 static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
919 {
920 	c->batched_reading = state;
921 }
922 
923 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
924 {
925 	c->per_channel_state = s;
926 }
927 
928 static inline void *get_per_channel_state(struct vmbus_channel *c)
929 {
930 	return c->per_channel_state;
931 }
932 
933 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
934 						 u32 size)
935 {
936 	c->outbound.ring_buffer->pending_send_sz = size;
937 }
938 
939 static inline void set_low_latency_mode(struct vmbus_channel *c)
940 {
941 	c->low_latency = true;
942 }
943 
944 static inline void clear_low_latency_mode(struct vmbus_channel *c)
945 {
946 	c->low_latency = false;
947 }
948 
949 void vmbus_onmessage(void *context);
950 
951 int vmbus_request_offers(void);
952 
953 /*
954  * APIs for managing sub-channels.
955  */
956 
957 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
958 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
959 
960 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
961 		void (*chn_rescind_cb)(struct vmbus_channel *));
962 
963 /*
964  * Retrieve the (sub) channel on which to send an outgoing request.
965  * When a primary channel has multiple sub-channels, we choose a
966  * channel whose VCPU binding is closest to the VCPU on which
967  * this call is being made.
968  */
969 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
970 
971 /*
972  * Check if sub-channels have already been offerred. This API will be useful
973  * when the driver is unloaded after establishing sub-channels. In this case,
974  * when the driver is re-loaded, the driver would have to check if the
975  * subchannels have already been established before attempting to request
976  * the creation of sub-channels.
977  * This function returns TRUE to indicate that subchannels have already been
978  * created.
979  * This function should be invoked after setting the callback function for
980  * sub-channel creation.
981  */
982 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
983 
984 /* The format must be the same as struct vmdata_gpa_direct */
985 struct vmbus_channel_packet_page_buffer {
986 	u16 type;
987 	u16 dataoffset8;
988 	u16 length8;
989 	u16 flags;
990 	u64 transactionid;
991 	u32 reserved;
992 	u32 rangecount;
993 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
994 } __packed;
995 
996 /* The format must be the same as struct vmdata_gpa_direct */
997 struct vmbus_channel_packet_multipage_buffer {
998 	u16 type;
999 	u16 dataoffset8;
1000 	u16 length8;
1001 	u16 flags;
1002 	u64 transactionid;
1003 	u32 reserved;
1004 	u32 rangecount;		/* Always 1 in this case */
1005 	struct hv_multipage_buffer range;
1006 } __packed;
1007 
1008 /* The format must be the same as struct vmdata_gpa_direct */
1009 struct vmbus_packet_mpb_array {
1010 	u16 type;
1011 	u16 dataoffset8;
1012 	u16 length8;
1013 	u16 flags;
1014 	u64 transactionid;
1015 	u32 reserved;
1016 	u32 rangecount;         /* Always 1 in this case */
1017 	struct hv_mpb_array range;
1018 } __packed;
1019 
1020 
1021 extern int vmbus_open(struct vmbus_channel *channel,
1022 			    u32 send_ringbuffersize,
1023 			    u32 recv_ringbuffersize,
1024 			    void *userdata,
1025 			    u32 userdatalen,
1026 			    void(*onchannel_callback)(void *context),
1027 			    void *context);
1028 
1029 extern void vmbus_close(struct vmbus_channel *channel);
1030 
1031 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1032 				  void *buffer,
1033 				  u32 bufferLen,
1034 				  u64 requestid,
1035 				  enum vmbus_packet_type type,
1036 				  u32 flags);
1037 
1038 extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel,
1039 				  void *buffer,
1040 				  u32 bufferLen,
1041 				  u64 requestid,
1042 				  enum vmbus_packet_type type,
1043 				  u32 flags,
1044 				  bool kick_q);
1045 
1046 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1047 					    struct hv_page_buffer pagebuffers[],
1048 					    u32 pagecount,
1049 					    void *buffer,
1050 					    u32 bufferlen,
1051 					    u64 requestid);
1052 
1053 extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel,
1054 					   struct hv_page_buffer pagebuffers[],
1055 					   u32 pagecount,
1056 					   void *buffer,
1057 					   u32 bufferlen,
1058 					   u64 requestid,
1059 					   u32 flags,
1060 					   bool kick_q);
1061 
1062 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1063 					struct hv_multipage_buffer *mpb,
1064 					void *buffer,
1065 					u32 bufferlen,
1066 					u64 requestid);
1067 
1068 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1069 				     struct vmbus_packet_mpb_array *mpb,
1070 				     u32 desc_size,
1071 				     void *buffer,
1072 				     u32 bufferlen,
1073 				     u64 requestid);
1074 
1075 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1076 				      void *kbuffer,
1077 				      u32 size,
1078 				      u32 *gpadl_handle);
1079 
1080 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1081 				     u32 gpadl_handle);
1082 
1083 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1084 				  void *buffer,
1085 				  u32 bufferlen,
1086 				  u32 *buffer_actual_len,
1087 				  u64 *requestid);
1088 
1089 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1090 				     void *buffer,
1091 				     u32 bufferlen,
1092 				     u32 *buffer_actual_len,
1093 				     u64 *requestid);
1094 
1095 
1096 extern void vmbus_ontimer(unsigned long data);
1097 
1098 /* Base driver object */
1099 struct hv_driver {
1100 	const char *name;
1101 
1102 	/*
1103 	 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1104 	 * channel flag, actually doesn't mean a synthetic device because the
1105 	 * offer's if_type/if_instance can change for every new hvsock
1106 	 * connection.
1107 	 *
1108 	 * However, to facilitate the notification of new-offer/rescind-offer
1109 	 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1110 	 * a special vmbus device, and hence we need the below flag to
1111 	 * indicate if the driver is the hvsock driver or not: we need to
1112 	 * specially treat the hvosck offer & driver in vmbus_match().
1113 	 */
1114 	bool hvsock;
1115 
1116 	/* the device type supported by this driver */
1117 	uuid_le dev_type;
1118 	const struct hv_vmbus_device_id *id_table;
1119 
1120 	struct device_driver driver;
1121 
1122 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1123 	int (*remove)(struct hv_device *);
1124 	void (*shutdown)(struct hv_device *);
1125 
1126 };
1127 
1128 /* Base device object */
1129 struct hv_device {
1130 	/* the device type id of this device */
1131 	uuid_le dev_type;
1132 
1133 	/* the device instance id of this device */
1134 	uuid_le dev_instance;
1135 	u16 vendor_id;
1136 	u16 device_id;
1137 
1138 	struct device device;
1139 
1140 	struct vmbus_channel *channel;
1141 };
1142 
1143 
1144 static inline struct hv_device *device_to_hv_device(struct device *d)
1145 {
1146 	return container_of(d, struct hv_device, device);
1147 }
1148 
1149 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1150 {
1151 	return container_of(d, struct hv_driver, driver);
1152 }
1153 
1154 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1155 {
1156 	dev_set_drvdata(&dev->device, data);
1157 }
1158 
1159 static inline void *hv_get_drvdata(struct hv_device *dev)
1160 {
1161 	return dev_get_drvdata(&dev->device);
1162 }
1163 
1164 /* Vmbus interface */
1165 #define vmbus_driver_register(driver)	\
1166 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1167 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1168 					 struct module *owner,
1169 					 const char *mod_name);
1170 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1171 
1172 static inline const char *vmbus_dev_name(const struct hv_device *device_obj)
1173 {
1174 	const struct kobject *kobj = &device_obj->device.kobj;
1175 
1176 	return kobj->name;
1177 }
1178 
1179 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1180 
1181 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1182 			resource_size_t min, resource_size_t max,
1183 			resource_size_t size, resource_size_t align,
1184 			bool fb_overlap_ok);
1185 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1186 int vmbus_cpu_number_to_vp_number(int cpu_number);
1187 u64 hv_do_hypercall(u64 control, void *input, void *output);
1188 
1189 /*
1190  * GUID definitions of various offer types - services offered to the guest.
1191  */
1192 
1193 /*
1194  * Network GUID
1195  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1196  */
1197 #define HV_NIC_GUID \
1198 	.guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1199 			0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1200 
1201 /*
1202  * IDE GUID
1203  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1204  */
1205 #define HV_IDE_GUID \
1206 	.guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1207 			0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1208 
1209 /*
1210  * SCSI GUID
1211  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1212  */
1213 #define HV_SCSI_GUID \
1214 	.guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1215 			0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1216 
1217 /*
1218  * Shutdown GUID
1219  * {0e0b6031-5213-4934-818b-38d90ced39db}
1220  */
1221 #define HV_SHUTDOWN_GUID \
1222 	.guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1223 			0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1224 
1225 /*
1226  * Time Synch GUID
1227  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1228  */
1229 #define HV_TS_GUID \
1230 	.guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1231 			0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1232 
1233 /*
1234  * Heartbeat GUID
1235  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1236  */
1237 #define HV_HEART_BEAT_GUID \
1238 	.guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1239 			0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1240 
1241 /*
1242  * KVP GUID
1243  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1244  */
1245 #define HV_KVP_GUID \
1246 	.guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1247 			0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1248 
1249 /*
1250  * Dynamic memory GUID
1251  * {525074dc-8985-46e2-8057-a307dc18a502}
1252  */
1253 #define HV_DM_GUID \
1254 	.guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1255 			0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1256 
1257 /*
1258  * Mouse GUID
1259  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1260  */
1261 #define HV_MOUSE_GUID \
1262 	.guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1263 			0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1264 
1265 /*
1266  * Keyboard GUID
1267  * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1268  */
1269 #define HV_KBD_GUID \
1270 	.guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1271 			0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1272 
1273 /*
1274  * VSS (Backup/Restore) GUID
1275  */
1276 #define HV_VSS_GUID \
1277 	.guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1278 			0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1279 /*
1280  * Synthetic Video GUID
1281  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1282  */
1283 #define HV_SYNTHVID_GUID \
1284 	.guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1285 			0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1286 
1287 /*
1288  * Synthetic FC GUID
1289  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1290  */
1291 #define HV_SYNTHFC_GUID \
1292 	.guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1293 			0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1294 
1295 /*
1296  * Guest File Copy Service
1297  * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1298  */
1299 
1300 #define HV_FCOPY_GUID \
1301 	.guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1302 			0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1303 
1304 /*
1305  * NetworkDirect. This is the guest RDMA service.
1306  * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1307  */
1308 #define HV_ND_GUID \
1309 	.guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1310 			0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1311 
1312 /*
1313  * PCI Express Pass Through
1314  * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1315  */
1316 
1317 #define HV_PCIE_GUID \
1318 	.guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1319 			0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1320 
1321 /*
1322  * Linux doesn't support the 3 devices: the first two are for
1323  * Automatic Virtual Machine Activation, and the third is for
1324  * Remote Desktop Virtualization.
1325  * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1326  * {3375baf4-9e15-4b30-b765-67acb10d607b}
1327  * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1328  */
1329 
1330 #define HV_AVMA1_GUID \
1331 	.guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1332 			0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1333 
1334 #define HV_AVMA2_GUID \
1335 	.guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1336 			0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1337 
1338 #define HV_RDV_GUID \
1339 	.guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1340 			0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1341 
1342 /*
1343  * Common header for Hyper-V ICs
1344  */
1345 
1346 #define ICMSGTYPE_NEGOTIATE		0
1347 #define ICMSGTYPE_HEARTBEAT		1
1348 #define ICMSGTYPE_KVPEXCHANGE		2
1349 #define ICMSGTYPE_SHUTDOWN		3
1350 #define ICMSGTYPE_TIMESYNC		4
1351 #define ICMSGTYPE_VSS			5
1352 
1353 #define ICMSGHDRFLAG_TRANSACTION	1
1354 #define ICMSGHDRFLAG_REQUEST		2
1355 #define ICMSGHDRFLAG_RESPONSE		4
1356 
1357 
1358 /*
1359  * While we want to handle util services as regular devices,
1360  * there is only one instance of each of these services; so
1361  * we statically allocate the service specific state.
1362  */
1363 
1364 struct hv_util_service {
1365 	u8 *recv_buffer;
1366 	void *channel;
1367 	void (*util_cb)(void *);
1368 	int (*util_init)(struct hv_util_service *);
1369 	void (*util_deinit)(void);
1370 };
1371 
1372 struct vmbuspipe_hdr {
1373 	u32 flags;
1374 	u32 msgsize;
1375 } __packed;
1376 
1377 struct ic_version {
1378 	u16 major;
1379 	u16 minor;
1380 } __packed;
1381 
1382 struct icmsg_hdr {
1383 	struct ic_version icverframe;
1384 	u16 icmsgtype;
1385 	struct ic_version icvermsg;
1386 	u16 icmsgsize;
1387 	u32 status;
1388 	u8 ictransaction_id;
1389 	u8 icflags;
1390 	u8 reserved[2];
1391 } __packed;
1392 
1393 struct icmsg_negotiate {
1394 	u16 icframe_vercnt;
1395 	u16 icmsg_vercnt;
1396 	u32 reserved;
1397 	struct ic_version icversion_data[1]; /* any size array */
1398 } __packed;
1399 
1400 struct shutdown_msg_data {
1401 	u32 reason_code;
1402 	u32 timeout_seconds;
1403 	u32 flags;
1404 	u8  display_message[2048];
1405 } __packed;
1406 
1407 struct heartbeat_msg_data {
1408 	u64 seq_num;
1409 	u32 reserved[8];
1410 } __packed;
1411 
1412 /* Time Sync IC defs */
1413 #define ICTIMESYNCFLAG_PROBE	0
1414 #define ICTIMESYNCFLAG_SYNC	1
1415 #define ICTIMESYNCFLAG_SAMPLE	2
1416 
1417 #ifdef __x86_64__
1418 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1419 #else
1420 #define WLTIMEDELTA	116444736000000000LL
1421 #endif
1422 
1423 struct ictimesync_data {
1424 	u64 parenttime;
1425 	u64 childtime;
1426 	u64 roundtriptime;
1427 	u8 flags;
1428 } __packed;
1429 
1430 struct ictimesync_ref_data {
1431 	u64 parenttime;
1432 	u64 vmreferencetime;
1433 	u8 flags;
1434 	char leapflags;
1435 	char stratum;
1436 	u8 reserved[3];
1437 } __packed;
1438 
1439 struct hyperv_service_callback {
1440 	u8 msg_type;
1441 	char *log_msg;
1442 	uuid_le data;
1443 	struct vmbus_channel *channel;
1444 	void (*callback) (void *context);
1445 };
1446 
1447 #define MAX_SRV_VER	0x7ffffff
1448 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1449 					struct icmsg_negotiate *, u8 *, int,
1450 					int);
1451 
1452 void hv_event_tasklet_disable(struct vmbus_channel *channel);
1453 void hv_event_tasklet_enable(struct vmbus_channel *channel);
1454 
1455 void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid);
1456 
1457 /*
1458  * Negotiated version with the Host.
1459  */
1460 
1461 extern __u32 vmbus_proto_version;
1462 
1463 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1464 				  const uuid_le *shv_host_servie_id);
1465 void vmbus_set_event(struct vmbus_channel *channel);
1466 
1467 /* Get the start of the ring buffer. */
1468 static inline void *
1469 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
1470 {
1471 	return (void *)ring_info->ring_buffer->buffer;
1472 }
1473 
1474 /*
1475  * To optimize the flow management on the send-side,
1476  * when the sender is blocked because of lack of
1477  * sufficient space in the ring buffer, potential the
1478  * consumer of the ring buffer can signal the producer.
1479  * This is controlled by the following parameters:
1480  *
1481  * 1. pending_send_sz: This is the size in bytes that the
1482  *    producer is trying to send.
1483  * 2. The feature bit feat_pending_send_sz set to indicate if
1484  *    the consumer of the ring will signal when the ring
1485  *    state transitions from being full to a state where
1486  *    there is room for the producer to send the pending packet.
1487  */
1488 
1489 static inline  bool hv_need_to_signal_on_read(struct hv_ring_buffer_info *rbi)
1490 {
1491 	u32 cur_write_sz;
1492 	u32 pending_sz;
1493 
1494 	/*
1495 	 * Issue a full memory barrier before making the signaling decision.
1496 	 * Here is the reason for having this barrier:
1497 	 * If the reading of the pend_sz (in this function)
1498 	 * were to be reordered and read before we commit the new read
1499 	 * index (in the calling function)  we could
1500 	 * have a problem. If the host were to set the pending_sz after we
1501 	 * have sampled pending_sz and go to sleep before we commit the
1502 	 * read index, we could miss sending the interrupt. Issue a full
1503 	 * memory barrier to address this.
1504 	 */
1505 	virt_mb();
1506 
1507 	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
1508 	/* If the other end is not blocked on write don't bother. */
1509 	if (pending_sz == 0)
1510 		return false;
1511 
1512 	cur_write_sz = hv_get_bytes_to_write(rbi);
1513 
1514 	if (cur_write_sz >= pending_sz)
1515 		return true;
1516 
1517 	return false;
1518 }
1519 
1520 /*
1521  * An API to support in-place processing of incoming VMBUS packets.
1522  */
1523 #define VMBUS_PKT_TRAILER	8
1524 
1525 static inline struct vmpacket_descriptor *
1526 get_next_pkt_raw(struct vmbus_channel *channel)
1527 {
1528 	struct hv_ring_buffer_info *ring_info = &channel->inbound;
1529 	u32 read_loc = ring_info->priv_read_index;
1530 	void *ring_buffer = hv_get_ring_buffer(ring_info);
1531 	struct vmpacket_descriptor *cur_desc;
1532 	u32 packetlen;
1533 	u32 dsize = ring_info->ring_datasize;
1534 	u32 delta = read_loc - ring_info->ring_buffer->read_index;
1535 	u32 bytes_avail_toread = (hv_get_bytes_to_read(ring_info) - delta);
1536 
1537 	if (bytes_avail_toread < sizeof(struct vmpacket_descriptor))
1538 		return NULL;
1539 
1540 	if ((read_loc + sizeof(*cur_desc)) > dsize)
1541 		return NULL;
1542 
1543 	cur_desc = ring_buffer + read_loc;
1544 	packetlen = cur_desc->len8 << 3;
1545 
1546 	/*
1547 	 * If the packet under consideration is wrapping around,
1548 	 * return failure.
1549 	 */
1550 	if ((read_loc + packetlen + VMBUS_PKT_TRAILER) > (dsize - 1))
1551 		return NULL;
1552 
1553 	return cur_desc;
1554 }
1555 
1556 /*
1557  * A helper function to step through packets "in-place"
1558  * This API is to be called after each successful call
1559  * get_next_pkt_raw().
1560  */
1561 static inline void put_pkt_raw(struct vmbus_channel *channel,
1562 				struct vmpacket_descriptor *desc)
1563 {
1564 	struct hv_ring_buffer_info *ring_info = &channel->inbound;
1565 	u32 read_loc = ring_info->priv_read_index;
1566 	u32 packetlen = desc->len8 << 3;
1567 	u32 dsize = ring_info->ring_datasize;
1568 
1569 	if ((read_loc + packetlen + VMBUS_PKT_TRAILER) > dsize)
1570 		BUG();
1571 	/*
1572 	 * Include the packet trailer.
1573 	 */
1574 	ring_info->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
1575 }
1576 
1577 /*
1578  * This call commits the read index and potentially signals the host.
1579  * Here is the pattern for using the "in-place" consumption APIs:
1580  *
1581  * while (get_next_pkt_raw() {
1582  *	process the packet "in-place";
1583  *	put_pkt_raw();
1584  * }
1585  * if (packets processed in place)
1586  *	commit_rd_index();
1587  */
1588 static inline void commit_rd_index(struct vmbus_channel *channel)
1589 {
1590 	struct hv_ring_buffer_info *ring_info = &channel->inbound;
1591 	/*
1592 	 * Make sure all reads are done before we update the read index since
1593 	 * the writer may start writing to the read area once the read index
1594 	 * is updated.
1595 	 */
1596 	virt_rmb();
1597 	ring_info->ring_buffer->read_index = ring_info->priv_read_index;
1598 
1599 	if (hv_need_to_signal_on_read(ring_info))
1600 		vmbus_set_event(channel);
1601 }
1602 
1603 
1604 #endif /* _HYPERV_H */
1605