xref: /linux-6.15/include/linux/hyperv.h (revision 0244ad00)
1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <[email protected]>
20  *   Hank Janssen  <[email protected]>
21  *   K. Y. Srinivasan <[email protected]>
22  *
23  */
24 
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27 
28 #include <linux/types.h>
29 
30 /*
31  * Framework version for util services.
32  */
33 
34 #define UTIL_FW_MAJOR  3
35 #define UTIL_FW_MINOR  0
36 #define UTIL_FW_MAJOR_MINOR     (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
37 
38 
39 /*
40  * Implementation of host controlled snapshot of the guest.
41  */
42 
43 #define VSS_OP_REGISTER 128
44 
45 enum hv_vss_op {
46 	VSS_OP_CREATE = 0,
47 	VSS_OP_DELETE,
48 	VSS_OP_HOT_BACKUP,
49 	VSS_OP_GET_DM_INFO,
50 	VSS_OP_BU_COMPLETE,
51 	/*
52 	 * Following operations are only supported with IC version >= 5.0
53 	 */
54 	VSS_OP_FREEZE, /* Freeze the file systems in the VM */
55 	VSS_OP_THAW, /* Unfreeze the file systems */
56 	VSS_OP_AUTO_RECOVER,
57 	VSS_OP_COUNT /* Number of operations, must be last */
58 };
59 
60 
61 /*
62  * Header for all VSS messages.
63  */
64 struct hv_vss_hdr {
65 	__u8 operation;
66 	__u8 reserved[7];
67 } __attribute__((packed));
68 
69 
70 /*
71  * Flag values for the hv_vss_check_feature. Linux supports only
72  * one value.
73  */
74 #define VSS_HBU_NO_AUTO_RECOVERY	0x00000005
75 
76 struct hv_vss_check_feature {
77 	__u32 flags;
78 } __attribute__((packed));
79 
80 struct hv_vss_check_dm_info {
81 	__u32 flags;
82 } __attribute__((packed));
83 
84 struct hv_vss_msg {
85 	union {
86 		struct hv_vss_hdr vss_hdr;
87 		int error;
88 	};
89 	union {
90 		struct hv_vss_check_feature vss_cf;
91 		struct hv_vss_check_dm_info dm_info;
92 	};
93 } __attribute__((packed));
94 
95 /*
96  * An implementation of HyperV key value pair (KVP) functionality for Linux.
97  *
98  *
99  * Copyright (C) 2010, Novell, Inc.
100  * Author : K. Y. Srinivasan <[email protected]>
101  *
102  */
103 
104 /*
105  * Maximum value size - used for both key names and value data, and includes
106  * any applicable NULL terminators.
107  *
108  * Note:  This limit is somewhat arbitrary, but falls easily within what is
109  * supported for all native guests (back to Win 2000) and what is reasonable
110  * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
111  * limited to 255 character key names.
112  *
113  * MSDN recommends not storing data values larger than 2048 bytes in the
114  * registry.
115  *
116  * Note:  This value is used in defining the KVP exchange message - this value
117  * cannot be modified without affecting the message size and compatibility.
118  */
119 
120 /*
121  * bytes, including any null terminators
122  */
123 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
124 
125 
126 /*
127  * Maximum key size - the registry limit for the length of an entry name
128  * is 256 characters, including the null terminator
129  */
130 
131 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
132 
133 /*
134  * In Linux, we implement the KVP functionality in two components:
135  * 1) The kernel component which is packaged as part of the hv_utils driver
136  * is responsible for communicating with the host and responsible for
137  * implementing the host/guest protocol. 2) A user level daemon that is
138  * responsible for data gathering.
139  *
140  * Host/Guest Protocol: The host iterates over an index and expects the guest
141  * to assign a key name to the index and also return the value corresponding to
142  * the key. The host will have atmost one KVP transaction outstanding at any
143  * given point in time. The host side iteration stops when the guest returns
144  * an error. Microsoft has specified the following mapping of key names to
145  * host specified index:
146  *
147  *	Index		Key Name
148  *	0		FullyQualifiedDomainName
149  *	1		IntegrationServicesVersion
150  *	2		NetworkAddressIPv4
151  *	3		NetworkAddressIPv6
152  *	4		OSBuildNumber
153  *	5		OSName
154  *	6		OSMajorVersion
155  *	7		OSMinorVersion
156  *	8		OSVersion
157  *	9		ProcessorArchitecture
158  *
159  * The Windows host expects the Key Name and Key Value to be encoded in utf16.
160  *
161  * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
162  * data gathering functionality in a user mode daemon. The user level daemon
163  * is also responsible for binding the key name to the index as well. The
164  * kernel and user-level daemon communicate using a connector channel.
165  *
166  * The user mode component first registers with the
167  * the kernel component. Subsequently, the kernel component requests, data
168  * for the specified keys. In response to this message the user mode component
169  * fills in the value corresponding to the specified key. We overload the
170  * sequence field in the cn_msg header to define our KVP message types.
171  *
172  *
173  * The kernel component simply acts as a conduit for communication between the
174  * Windows host and the user-level daemon. The kernel component passes up the
175  * index received from the Host to the user-level daemon. If the index is
176  * valid (supported), the corresponding key as well as its
177  * value (both are strings) is returned. If the index is invalid
178  * (not supported), a NULL key string is returned.
179  */
180 
181 
182 /*
183  * Registry value types.
184  */
185 
186 #define REG_SZ 1
187 #define REG_U32 4
188 #define REG_U64 8
189 
190 /*
191  * As we look at expanding the KVP functionality to include
192  * IP injection functionality, we need to maintain binary
193  * compatibility with older daemons.
194  *
195  * The KVP opcodes are defined by the host and it was unfortunate
196  * that I chose to treat the registration operation as part of the
197  * KVP operations defined by the host.
198  * Here is the level of compatibility
199  * (between the user level daemon and the kernel KVP driver) that we
200  * will implement:
201  *
202  * An older daemon will always be supported on a newer driver.
203  * A given user level daemon will require a minimal version of the
204  * kernel driver.
205  * If we cannot handle the version differences, we will fail gracefully
206  * (this can happen when we have a user level daemon that is more
207  * advanced than the KVP driver.
208  *
209  * We will use values used in this handshake for determining if we have
210  * workable user level daemon and the kernel driver. We begin by taking the
211  * registration opcode out of the KVP opcode namespace. We will however,
212  * maintain compatibility with the existing user-level daemon code.
213  */
214 
215 /*
216  * Daemon code not supporting IP injection (legacy daemon).
217  */
218 
219 #define KVP_OP_REGISTER	4
220 
221 /*
222  * Daemon code supporting IP injection.
223  * The KVP opcode field is used to communicate the
224  * registration information; so define a namespace that
225  * will be distinct from the host defined KVP opcode.
226  */
227 
228 #define KVP_OP_REGISTER1 100
229 
230 enum hv_kvp_exchg_op {
231 	KVP_OP_GET = 0,
232 	KVP_OP_SET,
233 	KVP_OP_DELETE,
234 	KVP_OP_ENUMERATE,
235 	KVP_OP_GET_IP_INFO,
236 	KVP_OP_SET_IP_INFO,
237 	KVP_OP_COUNT /* Number of operations, must be last. */
238 };
239 
240 enum hv_kvp_exchg_pool {
241 	KVP_POOL_EXTERNAL = 0,
242 	KVP_POOL_GUEST,
243 	KVP_POOL_AUTO,
244 	KVP_POOL_AUTO_EXTERNAL,
245 	KVP_POOL_AUTO_INTERNAL,
246 	KVP_POOL_COUNT /* Number of pools, must be last. */
247 };
248 
249 /*
250  * Some Hyper-V status codes.
251  */
252 
253 #define HV_S_OK				0x00000000
254 #define HV_E_FAIL			0x80004005
255 #define HV_S_CONT			0x80070103
256 #define HV_ERROR_NOT_SUPPORTED		0x80070032
257 #define HV_ERROR_MACHINE_LOCKED		0x800704F7
258 #define HV_ERROR_DEVICE_NOT_CONNECTED	0x8007048F
259 #define HV_INVALIDARG			0x80070057
260 #define HV_GUID_NOTFOUND		0x80041002
261 
262 #define ADDR_FAMILY_NONE	0x00
263 #define ADDR_FAMILY_IPV4	0x01
264 #define ADDR_FAMILY_IPV6	0x02
265 
266 #define MAX_ADAPTER_ID_SIZE	128
267 #define MAX_IP_ADDR_SIZE	1024
268 #define MAX_GATEWAY_SIZE	512
269 
270 
271 struct hv_kvp_ipaddr_value {
272 	__u16	adapter_id[MAX_ADAPTER_ID_SIZE];
273 	__u8	addr_family;
274 	__u8	dhcp_enabled;
275 	__u16	ip_addr[MAX_IP_ADDR_SIZE];
276 	__u16	sub_net[MAX_IP_ADDR_SIZE];
277 	__u16	gate_way[MAX_GATEWAY_SIZE];
278 	__u16	dns_addr[MAX_IP_ADDR_SIZE];
279 } __attribute__((packed));
280 
281 
282 struct hv_kvp_hdr {
283 	__u8 operation;
284 	__u8 pool;
285 	__u16 pad;
286 } __attribute__((packed));
287 
288 struct hv_kvp_exchg_msg_value {
289 	__u32 value_type;
290 	__u32 key_size;
291 	__u32 value_size;
292 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
293 	union {
294 		__u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
295 		__u32 value_u32;
296 		__u64 value_u64;
297 	};
298 } __attribute__((packed));
299 
300 struct hv_kvp_msg_enumerate {
301 	__u32 index;
302 	struct hv_kvp_exchg_msg_value data;
303 } __attribute__((packed));
304 
305 struct hv_kvp_msg_get {
306 	struct hv_kvp_exchg_msg_value data;
307 };
308 
309 struct hv_kvp_msg_set {
310 	struct hv_kvp_exchg_msg_value data;
311 };
312 
313 struct hv_kvp_msg_delete {
314 	__u32 key_size;
315 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
316 };
317 
318 struct hv_kvp_register {
319 	__u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
320 };
321 
322 struct hv_kvp_msg {
323 	union {
324 		struct hv_kvp_hdr	kvp_hdr;
325 		int error;
326 	};
327 	union {
328 		struct hv_kvp_msg_get		kvp_get;
329 		struct hv_kvp_msg_set		kvp_set;
330 		struct hv_kvp_msg_delete	kvp_delete;
331 		struct hv_kvp_msg_enumerate	kvp_enum_data;
332 		struct hv_kvp_ipaddr_value      kvp_ip_val;
333 		struct hv_kvp_register		kvp_register;
334 	} body;
335 } __attribute__((packed));
336 
337 struct hv_kvp_ip_msg {
338 	__u8 operation;
339 	__u8 pool;
340 	struct hv_kvp_ipaddr_value      kvp_ip_val;
341 } __attribute__((packed));
342 
343 #ifdef __KERNEL__
344 #include <linux/scatterlist.h>
345 #include <linux/list.h>
346 #include <linux/uuid.h>
347 #include <linux/timer.h>
348 #include <linux/workqueue.h>
349 #include <linux/completion.h>
350 #include <linux/device.h>
351 #include <linux/mod_devicetable.h>
352 
353 
354 #define MAX_PAGE_BUFFER_COUNT				19
355 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
356 
357 #pragma pack(push, 1)
358 
359 /* Single-page buffer */
360 struct hv_page_buffer {
361 	u32 len;
362 	u32 offset;
363 	u64 pfn;
364 };
365 
366 /* Multiple-page buffer */
367 struct hv_multipage_buffer {
368 	/* Length and Offset determines the # of pfns in the array */
369 	u32 len;
370 	u32 offset;
371 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
372 };
373 
374 /* 0x18 includes the proprietary packet header */
375 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
376 					(sizeof(struct hv_page_buffer) * \
377 					 MAX_PAGE_BUFFER_COUNT))
378 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
379 					 sizeof(struct hv_multipage_buffer))
380 
381 
382 #pragma pack(pop)
383 
384 struct hv_ring_buffer {
385 	/* Offset in bytes from the start of ring data below */
386 	u32 write_index;
387 
388 	/* Offset in bytes from the start of ring data below */
389 	u32 read_index;
390 
391 	u32 interrupt_mask;
392 
393 	/*
394 	 * Win8 uses some of the reserved bits to implement
395 	 * interrupt driven flow management. On the send side
396 	 * we can request that the receiver interrupt the sender
397 	 * when the ring transitions from being full to being able
398 	 * to handle a message of size "pending_send_sz".
399 	 *
400 	 * Add necessary state for this enhancement.
401 	 */
402 	u32 pending_send_sz;
403 
404 	u32 reserved1[12];
405 
406 	union {
407 		struct {
408 			u32 feat_pending_send_sz:1;
409 		};
410 		u32 value;
411 	} feature_bits;
412 
413 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
414 	u8	reserved2[4028];
415 
416 	/*
417 	 * Ring data starts here + RingDataStartOffset
418 	 * !!! DO NOT place any fields below this !!!
419 	 */
420 	u8 buffer[0];
421 } __packed;
422 
423 struct hv_ring_buffer_info {
424 	struct hv_ring_buffer *ring_buffer;
425 	u32 ring_size;			/* Include the shared header */
426 	spinlock_t ring_lock;
427 
428 	u32 ring_datasize;		/* < ring_size */
429 	u32 ring_data_startoffset;
430 };
431 
432 struct hv_ring_buffer_debug_info {
433 	u32 current_interrupt_mask;
434 	u32 current_read_index;
435 	u32 current_write_index;
436 	u32 bytes_avail_toread;
437 	u32 bytes_avail_towrite;
438 };
439 
440 
441 /*
442  *
443  * hv_get_ringbuffer_availbytes()
444  *
445  * Get number of bytes available to read and to write to
446  * for the specified ring buffer
447  */
448 static inline void
449 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
450 			  u32 *read, u32 *write)
451 {
452 	u32 read_loc, write_loc, dsize;
453 
454 	smp_read_barrier_depends();
455 
456 	/* Capture the read/write indices before they changed */
457 	read_loc = rbi->ring_buffer->read_index;
458 	write_loc = rbi->ring_buffer->write_index;
459 	dsize = rbi->ring_datasize;
460 
461 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
462 		read_loc - write_loc;
463 	*read = dsize - *write;
464 }
465 
466 /*
467  * VMBUS version is 32 bit entity broken up into
468  * two 16 bit quantities: major_number. minor_number.
469  *
470  * 0 . 13 (Windows Server 2008)
471  * 1 . 1  (Windows 7)
472  * 2 . 4  (Windows 8)
473  */
474 
475 #define VERSION_WS2008  ((0 << 16) | (13))
476 #define VERSION_WIN7    ((1 << 16) | (1))
477 #define VERSION_WIN8    ((2 << 16) | (4))
478 
479 #define VERSION_INVAL -1
480 
481 #define VERSION_CURRENT VERSION_WIN8
482 
483 /* Make maximum size of pipe payload of 16K */
484 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
485 
486 /* Define PipeMode values. */
487 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
488 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
489 
490 /* The size of the user defined data buffer for non-pipe offers. */
491 #define MAX_USER_DEFINED_BYTES		120
492 
493 /* The size of the user defined data buffer for pipe offers. */
494 #define MAX_PIPE_USER_DEFINED_BYTES	116
495 
496 /*
497  * At the center of the Channel Management library is the Channel Offer. This
498  * struct contains the fundamental information about an offer.
499  */
500 struct vmbus_channel_offer {
501 	uuid_le if_type;
502 	uuid_le if_instance;
503 
504 	/*
505 	 * These two fields are not currently used.
506 	 */
507 	u64 reserved1;
508 	u64 reserved2;
509 
510 	u16 chn_flags;
511 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
512 
513 	union {
514 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
515 		struct {
516 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
517 		} std;
518 
519 		/*
520 		 * Pipes:
521 		 * The following sructure is an integrated pipe protocol, which
522 		 * is implemented on top of standard user-defined data. Pipe
523 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
524 		 * use.
525 		 */
526 		struct {
527 			u32  pipe_mode;
528 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
529 		} pipe;
530 	} u;
531 	/*
532 	 * The sub_channel_index is defined in win8.
533 	 */
534 	u16 sub_channel_index;
535 	u16 reserved3;
536 } __packed;
537 
538 /* Server Flags */
539 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
540 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
541 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
542 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
543 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
544 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
545 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
546 
547 struct vmpacket_descriptor {
548 	u16 type;
549 	u16 offset8;
550 	u16 len8;
551 	u16 flags;
552 	u64 trans_id;
553 } __packed;
554 
555 struct vmpacket_header {
556 	u32 prev_pkt_start_offset;
557 	struct vmpacket_descriptor descriptor;
558 } __packed;
559 
560 struct vmtransfer_page_range {
561 	u32 byte_count;
562 	u32 byte_offset;
563 } __packed;
564 
565 struct vmtransfer_page_packet_header {
566 	struct vmpacket_descriptor d;
567 	u16 xfer_pageset_id;
568 	u8  sender_owns_set;
569 	u8 reserved;
570 	u32 range_cnt;
571 	struct vmtransfer_page_range ranges[1];
572 } __packed;
573 
574 struct vmgpadl_packet_header {
575 	struct vmpacket_descriptor d;
576 	u32 gpadl;
577 	u32 reserved;
578 } __packed;
579 
580 struct vmadd_remove_transfer_page_set {
581 	struct vmpacket_descriptor d;
582 	u32 gpadl;
583 	u16 xfer_pageset_id;
584 	u16 reserved;
585 } __packed;
586 
587 /*
588  * This structure defines a range in guest physical space that can be made to
589  * look virtually contiguous.
590  */
591 struct gpa_range {
592 	u32 byte_count;
593 	u32 byte_offset;
594 	u64 pfn_array[0];
595 };
596 
597 /*
598  * This is the format for an Establish Gpadl packet, which contains a handle by
599  * which this GPADL will be known and a set of GPA ranges associated with it.
600  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
601  * ranges, then the resulting MDL will be "chained," representing multiple VA
602  * ranges.
603  */
604 struct vmestablish_gpadl {
605 	struct vmpacket_descriptor d;
606 	u32 gpadl;
607 	u32 range_cnt;
608 	struct gpa_range range[1];
609 } __packed;
610 
611 /*
612  * This is the format for a Teardown Gpadl packet, which indicates that the
613  * GPADL handle in the Establish Gpadl packet will never be referenced again.
614  */
615 struct vmteardown_gpadl {
616 	struct vmpacket_descriptor d;
617 	u32 gpadl;
618 	u32 reserved;	/* for alignment to a 8-byte boundary */
619 } __packed;
620 
621 /*
622  * This is the format for a GPA-Direct packet, which contains a set of GPA
623  * ranges, in addition to commands and/or data.
624  */
625 struct vmdata_gpa_direct {
626 	struct vmpacket_descriptor d;
627 	u32 reserved;
628 	u32 range_cnt;
629 	struct gpa_range range[1];
630 } __packed;
631 
632 /* This is the format for a Additional Data Packet. */
633 struct vmadditional_data {
634 	struct vmpacket_descriptor d;
635 	u64 total_bytes;
636 	u32 offset;
637 	u32 byte_cnt;
638 	unsigned char data[1];
639 } __packed;
640 
641 union vmpacket_largest_possible_header {
642 	struct vmpacket_descriptor simple_hdr;
643 	struct vmtransfer_page_packet_header xfer_page_hdr;
644 	struct vmgpadl_packet_header gpadl_hdr;
645 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
646 	struct vmestablish_gpadl establish_gpadl_hdr;
647 	struct vmteardown_gpadl teardown_gpadl_hdr;
648 	struct vmdata_gpa_direct data_gpa_direct_hdr;
649 };
650 
651 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
652 	(void *)(((unsigned char *)__packet) +	\
653 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
654 
655 #define VMPACKET_DATA_LENGTH(__packet)		\
656 	((((struct vmpacket_descriptor)__packet)->len8 -	\
657 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
658 
659 #define VMPACKET_TRANSFER_MODE(__packet)	\
660 	(((struct IMPACT)__packet)->type)
661 
662 enum vmbus_packet_type {
663 	VM_PKT_INVALID				= 0x0,
664 	VM_PKT_SYNCH				= 0x1,
665 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
666 	VM_PKT_RM_XFER_PAGESET			= 0x3,
667 	VM_PKT_ESTABLISH_GPADL			= 0x4,
668 	VM_PKT_TEARDOWN_GPADL			= 0x5,
669 	VM_PKT_DATA_INBAND			= 0x6,
670 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
671 	VM_PKT_DATA_USING_GPADL			= 0x8,
672 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
673 	VM_PKT_CANCEL_REQUEST			= 0xa,
674 	VM_PKT_COMP				= 0xb,
675 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
676 	VM_PKT_ADDITIONAL_DATA			= 0xd
677 };
678 
679 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
680 
681 
682 /* Version 1 messages */
683 enum vmbus_channel_message_type {
684 	CHANNELMSG_INVALID			=  0,
685 	CHANNELMSG_OFFERCHANNEL		=  1,
686 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
687 	CHANNELMSG_REQUESTOFFERS		=  3,
688 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
689 	CHANNELMSG_OPENCHANNEL		=  5,
690 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
691 	CHANNELMSG_CLOSECHANNEL		=  7,
692 	CHANNELMSG_GPADL_HEADER		=  8,
693 	CHANNELMSG_GPADL_BODY			=  9,
694 	CHANNELMSG_GPADL_CREATED		= 10,
695 	CHANNELMSG_GPADL_TEARDOWN		= 11,
696 	CHANNELMSG_GPADL_TORNDOWN		= 12,
697 	CHANNELMSG_RELID_RELEASED		= 13,
698 	CHANNELMSG_INITIATE_CONTACT		= 14,
699 	CHANNELMSG_VERSION_RESPONSE		= 15,
700 	CHANNELMSG_UNLOAD			= 16,
701 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
702 	CHANNELMSG_VIEWRANGE_ADD		= 17,
703 	CHANNELMSG_VIEWRANGE_REMOVE		= 18,
704 #endif
705 	CHANNELMSG_COUNT
706 };
707 
708 struct vmbus_channel_message_header {
709 	enum vmbus_channel_message_type msgtype;
710 	u32 padding;
711 } __packed;
712 
713 /* Query VMBus Version parameters */
714 struct vmbus_channel_query_vmbus_version {
715 	struct vmbus_channel_message_header header;
716 	u32 version;
717 } __packed;
718 
719 /* VMBus Version Supported parameters */
720 struct vmbus_channel_version_supported {
721 	struct vmbus_channel_message_header header;
722 	u8 version_supported;
723 } __packed;
724 
725 /* Offer Channel parameters */
726 struct vmbus_channel_offer_channel {
727 	struct vmbus_channel_message_header header;
728 	struct vmbus_channel_offer offer;
729 	u32 child_relid;
730 	u8 monitorid;
731 	/*
732 	 * win7 and beyond splits this field into a bit field.
733 	 */
734 	u8 monitor_allocated:1;
735 	u8 reserved:7;
736 	/*
737 	 * These are new fields added in win7 and later.
738 	 * Do not access these fields without checking the
739 	 * negotiated protocol.
740 	 *
741 	 * If "is_dedicated_interrupt" is set, we must not set the
742 	 * associated bit in the channel bitmap while sending the
743 	 * interrupt to the host.
744 	 *
745 	 * connection_id is to be used in signaling the host.
746 	 */
747 	u16 is_dedicated_interrupt:1;
748 	u16 reserved1:15;
749 	u32 connection_id;
750 } __packed;
751 
752 /* Rescind Offer parameters */
753 struct vmbus_channel_rescind_offer {
754 	struct vmbus_channel_message_header header;
755 	u32 child_relid;
756 } __packed;
757 
758 /*
759  * Request Offer -- no parameters, SynIC message contains the partition ID
760  * Set Snoop -- no parameters, SynIC message contains the partition ID
761  * Clear Snoop -- no parameters, SynIC message contains the partition ID
762  * All Offers Delivered -- no parameters, SynIC message contains the partition
763  *		           ID
764  * Flush Client -- no parameters, SynIC message contains the partition ID
765  */
766 
767 /* Open Channel parameters */
768 struct vmbus_channel_open_channel {
769 	struct vmbus_channel_message_header header;
770 
771 	/* Identifies the specific VMBus channel that is being opened. */
772 	u32 child_relid;
773 
774 	/* ID making a particular open request at a channel offer unique. */
775 	u32 openid;
776 
777 	/* GPADL for the channel's ring buffer. */
778 	u32 ringbuffer_gpadlhandle;
779 
780 	/*
781 	 * Starting with win8, this field will be used to specify
782 	 * the target virtual processor on which to deliver the interrupt for
783 	 * the host to guest communication.
784 	 * Prior to win8, incoming channel interrupts would only
785 	 * be delivered on cpu 0. Setting this value to 0 would
786 	 * preserve the earlier behavior.
787 	 */
788 	u32 target_vp;
789 
790 	/*
791 	* The upstream ring buffer begins at offset zero in the memory
792 	* described by RingBufferGpadlHandle. The downstream ring buffer
793 	* follows it at this offset (in pages).
794 	*/
795 	u32 downstream_ringbuffer_pageoffset;
796 
797 	/* User-specific data to be passed along to the server endpoint. */
798 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
799 } __packed;
800 
801 /* Open Channel Result parameters */
802 struct vmbus_channel_open_result {
803 	struct vmbus_channel_message_header header;
804 	u32 child_relid;
805 	u32 openid;
806 	u32 status;
807 } __packed;
808 
809 /* Close channel parameters; */
810 struct vmbus_channel_close_channel {
811 	struct vmbus_channel_message_header header;
812 	u32 child_relid;
813 } __packed;
814 
815 /* Channel Message GPADL */
816 #define GPADL_TYPE_RING_BUFFER		1
817 #define GPADL_TYPE_SERVER_SAVE_AREA	2
818 #define GPADL_TYPE_TRANSACTION		8
819 
820 /*
821  * The number of PFNs in a GPADL message is defined by the number of
822  * pages that would be spanned by ByteCount and ByteOffset.  If the
823  * implied number of PFNs won't fit in this packet, there will be a
824  * follow-up packet that contains more.
825  */
826 struct vmbus_channel_gpadl_header {
827 	struct vmbus_channel_message_header header;
828 	u32 child_relid;
829 	u32 gpadl;
830 	u16 range_buflen;
831 	u16 rangecount;
832 	struct gpa_range range[0];
833 } __packed;
834 
835 /* This is the followup packet that contains more PFNs. */
836 struct vmbus_channel_gpadl_body {
837 	struct vmbus_channel_message_header header;
838 	u32 msgnumber;
839 	u32 gpadl;
840 	u64 pfn[0];
841 } __packed;
842 
843 struct vmbus_channel_gpadl_created {
844 	struct vmbus_channel_message_header header;
845 	u32 child_relid;
846 	u32 gpadl;
847 	u32 creation_status;
848 } __packed;
849 
850 struct vmbus_channel_gpadl_teardown {
851 	struct vmbus_channel_message_header header;
852 	u32 child_relid;
853 	u32 gpadl;
854 } __packed;
855 
856 struct vmbus_channel_gpadl_torndown {
857 	struct vmbus_channel_message_header header;
858 	u32 gpadl;
859 } __packed;
860 
861 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
862 struct vmbus_channel_view_range_add {
863 	struct vmbus_channel_message_header header;
864 	PHYSICAL_ADDRESS viewrange_base;
865 	u64 viewrange_length;
866 	u32 child_relid;
867 } __packed;
868 
869 struct vmbus_channel_view_range_remove {
870 	struct vmbus_channel_message_header header;
871 	PHYSICAL_ADDRESS viewrange_base;
872 	u32 child_relid;
873 } __packed;
874 #endif
875 
876 struct vmbus_channel_relid_released {
877 	struct vmbus_channel_message_header header;
878 	u32 child_relid;
879 } __packed;
880 
881 struct vmbus_channel_initiate_contact {
882 	struct vmbus_channel_message_header header;
883 	u32 vmbus_version_requested;
884 	u32 padding2;
885 	u64 interrupt_page;
886 	u64 monitor_page1;
887 	u64 monitor_page2;
888 } __packed;
889 
890 struct vmbus_channel_version_response {
891 	struct vmbus_channel_message_header header;
892 	u8 version_supported;
893 } __packed;
894 
895 enum vmbus_channel_state {
896 	CHANNEL_OFFER_STATE,
897 	CHANNEL_OPENING_STATE,
898 	CHANNEL_OPEN_STATE,
899 	CHANNEL_OPENED_STATE,
900 };
901 
902 struct vmbus_channel_debug_info {
903 	u32 relid;
904 	enum vmbus_channel_state state;
905 	uuid_le interfacetype;
906 	uuid_le interface_instance;
907 	u32 monitorid;
908 	u32 servermonitor_pending;
909 	u32 servermonitor_latency;
910 	u32 servermonitor_connectionid;
911 	u32 clientmonitor_pending;
912 	u32 clientmonitor_latency;
913 	u32 clientmonitor_connectionid;
914 
915 	struct hv_ring_buffer_debug_info inbound;
916 	struct hv_ring_buffer_debug_info outbound;
917 };
918 
919 /*
920  * Represents each channel msg on the vmbus connection This is a
921  * variable-size data structure depending on the msg type itself
922  */
923 struct vmbus_channel_msginfo {
924 	/* Bookkeeping stuff */
925 	struct list_head msglistentry;
926 
927 	/* So far, this is only used to handle gpadl body message */
928 	struct list_head submsglist;
929 
930 	/* Synchronize the request/response if needed */
931 	struct completion  waitevent;
932 	union {
933 		struct vmbus_channel_version_supported version_supported;
934 		struct vmbus_channel_open_result open_result;
935 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
936 		struct vmbus_channel_gpadl_created gpadl_created;
937 		struct vmbus_channel_version_response version_response;
938 	} response;
939 
940 	u32 msgsize;
941 	/*
942 	 * The channel message that goes out on the "wire".
943 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
944 	 */
945 	unsigned char msg[0];
946 };
947 
948 struct vmbus_close_msg {
949 	struct vmbus_channel_msginfo info;
950 	struct vmbus_channel_close_channel msg;
951 };
952 
953 /* Define connection identifier type. */
954 union hv_connection_id {
955 	u32 asu32;
956 	struct {
957 		u32 id:24;
958 		u32 reserved:8;
959 	} u;
960 };
961 
962 /* Definition of the hv_signal_event hypercall input structure. */
963 struct hv_input_signal_event {
964 	union hv_connection_id connectionid;
965 	u16 flag_number;
966 	u16 rsvdz;
967 };
968 
969 struct hv_input_signal_event_buffer {
970 	u64 align8;
971 	struct hv_input_signal_event event;
972 };
973 
974 struct vmbus_channel {
975 	struct list_head listentry;
976 
977 	struct hv_device *device_obj;
978 
979 	struct work_struct work;
980 
981 	enum vmbus_channel_state state;
982 
983 	struct vmbus_channel_offer_channel offermsg;
984 	/*
985 	 * These are based on the OfferMsg.MonitorId.
986 	 * Save it here for easy access.
987 	 */
988 	u8 monitor_grp;
989 	u8 monitor_bit;
990 
991 	u32 ringbuffer_gpadlhandle;
992 
993 	/* Allocated memory for ring buffer */
994 	void *ringbuffer_pages;
995 	u32 ringbuffer_pagecount;
996 	struct hv_ring_buffer_info outbound;	/* send to parent */
997 	struct hv_ring_buffer_info inbound;	/* receive from parent */
998 	spinlock_t inbound_lock;
999 	struct workqueue_struct *controlwq;
1000 
1001 	struct vmbus_close_msg close_msg;
1002 
1003 	/* Channel callback are invoked in this workqueue context */
1004 	/* HANDLE dataWorkQueue; */
1005 
1006 	void (*onchannel_callback)(void *context);
1007 	void *channel_callback_context;
1008 
1009 	/*
1010 	 * A channel can be marked for efficient (batched)
1011 	 * reading:
1012 	 * If batched_reading is set to "true", we read until the
1013 	 * channel is empty and hold off interrupts from the host
1014 	 * during the entire read process.
1015 	 * If batched_reading is set to "false", the client is not
1016 	 * going to perform batched reading.
1017 	 *
1018 	 * By default we will enable batched reading; specific
1019 	 * drivers that don't want this behavior can turn it off.
1020 	 */
1021 
1022 	bool batched_reading;
1023 
1024 	bool is_dedicated_interrupt;
1025 	struct hv_input_signal_event_buffer sig_buf;
1026 	struct hv_input_signal_event *sig_event;
1027 
1028 	/*
1029 	 * Starting with win8, this field will be used to specify
1030 	 * the target virtual processor on which to deliver the interrupt for
1031 	 * the host to guest communication.
1032 	 * Prior to win8, incoming channel interrupts would only
1033 	 * be delivered on cpu 0. Setting this value to 0 would
1034 	 * preserve the earlier behavior.
1035 	 */
1036 	u32 target_vp;
1037 	/*
1038 	 * Support for sub-channels. For high performance devices,
1039 	 * it will be useful to have multiple sub-channels to support
1040 	 * a scalable communication infrastructure with the host.
1041 	 * The support for sub-channels is implemented as an extention
1042 	 * to the current infrastructure.
1043 	 * The initial offer is considered the primary channel and this
1044 	 * offer message will indicate if the host supports sub-channels.
1045 	 * The guest is free to ask for sub-channels to be offerred and can
1046 	 * open these sub-channels as a normal "primary" channel. However,
1047 	 * all sub-channels will have the same type and instance guids as the
1048 	 * primary channel. Requests sent on a given channel will result in a
1049 	 * response on the same channel.
1050 	 */
1051 
1052 	/*
1053 	 * Sub-channel creation callback. This callback will be called in
1054 	 * process context when a sub-channel offer is received from the host.
1055 	 * The guest can open the sub-channel in the context of this callback.
1056 	 */
1057 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
1058 
1059 	spinlock_t sc_lock;
1060 	/*
1061 	 * All Sub-channels of a primary channel are linked here.
1062 	 */
1063 	struct list_head sc_list;
1064 	/*
1065 	 * The primary channel this sub-channel belongs to.
1066 	 * This will be NULL for the primary channel.
1067 	 */
1068 	struct vmbus_channel *primary_channel;
1069 };
1070 
1071 static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
1072 {
1073 	c->batched_reading = state;
1074 }
1075 
1076 void vmbus_onmessage(void *context);
1077 
1078 int vmbus_request_offers(void);
1079 
1080 /*
1081  * APIs for managing sub-channels.
1082  */
1083 
1084 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1085 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1086 
1087 /*
1088  * Retrieve the (sub) channel on which to send an outgoing request.
1089  * When a primary channel has multiple sub-channels, we choose a
1090  * channel whose VCPU binding is closest to the VCPU on which
1091  * this call is being made.
1092  */
1093 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
1094 
1095 /*
1096  * Check if sub-channels have already been offerred. This API will be useful
1097  * when the driver is unloaded after establishing sub-channels. In this case,
1098  * when the driver is re-loaded, the driver would have to check if the
1099  * subchannels have already been established before attempting to request
1100  * the creation of sub-channels.
1101  * This function returns TRUE to indicate that subchannels have already been
1102  * created.
1103  * This function should be invoked after setting the callback function for
1104  * sub-channel creation.
1105  */
1106 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1107 
1108 /* The format must be the same as struct vmdata_gpa_direct */
1109 struct vmbus_channel_packet_page_buffer {
1110 	u16 type;
1111 	u16 dataoffset8;
1112 	u16 length8;
1113 	u16 flags;
1114 	u64 transactionid;
1115 	u32 reserved;
1116 	u32 rangecount;
1117 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1118 } __packed;
1119 
1120 /* The format must be the same as struct vmdata_gpa_direct */
1121 struct vmbus_channel_packet_multipage_buffer {
1122 	u16 type;
1123 	u16 dataoffset8;
1124 	u16 length8;
1125 	u16 flags;
1126 	u64 transactionid;
1127 	u32 reserved;
1128 	u32 rangecount;		/* Always 1 in this case */
1129 	struct hv_multipage_buffer range;
1130 } __packed;
1131 
1132 
1133 extern int vmbus_open(struct vmbus_channel *channel,
1134 			    u32 send_ringbuffersize,
1135 			    u32 recv_ringbuffersize,
1136 			    void *userdata,
1137 			    u32 userdatalen,
1138 			    void(*onchannel_callback)(void *context),
1139 			    void *context);
1140 
1141 extern void vmbus_close(struct vmbus_channel *channel);
1142 
1143 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1144 				  const void *buffer,
1145 				  u32 bufferLen,
1146 				  u64 requestid,
1147 				  enum vmbus_packet_type type,
1148 				  u32 flags);
1149 
1150 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1151 					    struct hv_page_buffer pagebuffers[],
1152 					    u32 pagecount,
1153 					    void *buffer,
1154 					    u32 bufferlen,
1155 					    u64 requestid);
1156 
1157 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1158 					struct hv_multipage_buffer *mpb,
1159 					void *buffer,
1160 					u32 bufferlen,
1161 					u64 requestid);
1162 
1163 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1164 				      void *kbuffer,
1165 				      u32 size,
1166 				      u32 *gpadl_handle);
1167 
1168 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1169 				     u32 gpadl_handle);
1170 
1171 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1172 				  void *buffer,
1173 				  u32 bufferlen,
1174 				  u32 *buffer_actual_len,
1175 				  u64 *requestid);
1176 
1177 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1178 				     void *buffer,
1179 				     u32 bufferlen,
1180 				     u32 *buffer_actual_len,
1181 				     u64 *requestid);
1182 
1183 
1184 extern void vmbus_get_debug_info(struct vmbus_channel *channel,
1185 				     struct vmbus_channel_debug_info *debug);
1186 
1187 extern void vmbus_ontimer(unsigned long data);
1188 
1189 struct hv_dev_port_info {
1190 	u32 int_mask;
1191 	u32 read_idx;
1192 	u32 write_idx;
1193 	u32 bytes_avail_toread;
1194 	u32 bytes_avail_towrite;
1195 };
1196 
1197 /* Base driver object */
1198 struct hv_driver {
1199 	const char *name;
1200 
1201 	/* the device type supported by this driver */
1202 	uuid_le dev_type;
1203 	const struct hv_vmbus_device_id *id_table;
1204 
1205 	struct device_driver driver;
1206 
1207 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1208 	int (*remove)(struct hv_device *);
1209 	void (*shutdown)(struct hv_device *);
1210 
1211 };
1212 
1213 /* Base device object */
1214 struct hv_device {
1215 	/* the device type id of this device */
1216 	uuid_le dev_type;
1217 
1218 	/* the device instance id of this device */
1219 	uuid_le dev_instance;
1220 
1221 	struct device device;
1222 
1223 	struct vmbus_channel *channel;
1224 };
1225 
1226 
1227 static inline struct hv_device *device_to_hv_device(struct device *d)
1228 {
1229 	return container_of(d, struct hv_device, device);
1230 }
1231 
1232 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1233 {
1234 	return container_of(d, struct hv_driver, driver);
1235 }
1236 
1237 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1238 {
1239 	dev_set_drvdata(&dev->device, data);
1240 }
1241 
1242 static inline void *hv_get_drvdata(struct hv_device *dev)
1243 {
1244 	return dev_get_drvdata(&dev->device);
1245 }
1246 
1247 /* Vmbus interface */
1248 #define vmbus_driver_register(driver)	\
1249 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1250 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1251 					 struct module *owner,
1252 					 const char *mod_name);
1253 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1254 
1255 /**
1256  * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device
1257  *
1258  * This macro is used to create a struct hv_vmbus_device_id that matches a
1259  * specific device.
1260  */
1261 #define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7,	\
1262 		     g8, g9, ga, gb, gc, gd, ge, gf)	\
1263 	.guid = { g0, g1, g2, g3, g4, g5, g6, g7,	\
1264 		  g8, g9, ga, gb, gc, gd, ge, gf },
1265 
1266 /*
1267  * GUID definitions of various offer types - services offered to the guest.
1268  */
1269 
1270 /*
1271  * Network GUID
1272  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1273  */
1274 #define HV_NIC_GUID \
1275 	.guid = { \
1276 			0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46, \
1277 			0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e \
1278 		}
1279 
1280 /*
1281  * IDE GUID
1282  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1283  */
1284 #define HV_IDE_GUID \
1285 	.guid = { \
1286 			0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44, \
1287 			0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5 \
1288 		}
1289 
1290 /*
1291  * SCSI GUID
1292  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1293  */
1294 #define HV_SCSI_GUID \
1295 	.guid = { \
1296 			0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d, \
1297 			0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f \
1298 		}
1299 
1300 /*
1301  * Shutdown GUID
1302  * {0e0b6031-5213-4934-818b-38d90ced39db}
1303  */
1304 #define HV_SHUTDOWN_GUID \
1305 	.guid = { \
1306 			0x31, 0x60, 0x0b, 0x0e, 0x13, 0x52, 0x34, 0x49, \
1307 			0x81, 0x8b, 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb \
1308 		}
1309 
1310 /*
1311  * Time Synch GUID
1312  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1313  */
1314 #define HV_TS_GUID \
1315 	.guid = { \
1316 			0x30, 0xe6, 0x27, 0x95, 0xae, 0xd0, 0x7b, 0x49, \
1317 			0xad, 0xce, 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf \
1318 		}
1319 
1320 /*
1321  * Heartbeat GUID
1322  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1323  */
1324 #define HV_HEART_BEAT_GUID \
1325 	.guid = { \
1326 			0x39, 0x4f, 0x16, 0x57, 0x15, 0x91, 0x78, 0x4e, \
1327 			0xab, 0x55, 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d \
1328 		}
1329 
1330 /*
1331  * KVP GUID
1332  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1333  */
1334 #define HV_KVP_GUID \
1335 	.guid = { \
1336 			0xe7, 0xf4, 0xa0, 0xa9, 0x45, 0x5a, 0x96, 0x4d, \
1337 			0xb8, 0x27, 0x8a, 0x84, 0x1e, 0x8c, 0x3,  0xe6 \
1338 		}
1339 
1340 /*
1341  * Dynamic memory GUID
1342  * {525074dc-8985-46e2-8057-a307dc18a502}
1343  */
1344 #define HV_DM_GUID \
1345 	.guid = { \
1346 			0xdc, 0x74, 0x50, 0X52, 0x85, 0x89, 0xe2, 0x46, \
1347 			0x80, 0x57, 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02 \
1348 		}
1349 
1350 /*
1351  * Mouse GUID
1352  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1353  */
1354 #define HV_MOUSE_GUID \
1355 	.guid = { \
1356 			0x9e, 0xb6, 0xa8, 0xcf, 0x4a, 0x5b, 0xc0, 0x4c, \
1357 			0xb9, 0x8b, 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a \
1358 		}
1359 
1360 /*
1361  * VSS (Backup/Restore) GUID
1362  */
1363 #define HV_VSS_GUID \
1364 	.guid = { \
1365 			0x29, 0x2e, 0xfa, 0x35, 0x23, 0xea, 0x36, 0x42, \
1366 			0x96, 0xae, 0x3a, 0x6e, 0xba, 0xcb, 0xa4,  0x40 \
1367 		}
1368 /*
1369  * Synthetic Video GUID
1370  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1371  */
1372 #define HV_SYNTHVID_GUID \
1373 	.guid = { \
1374 			0x02, 0x78, 0x0a, 0xda, 0x77, 0xe3, 0xac, 0x4a, \
1375 			0x8e, 0x77, 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8 \
1376 		}
1377 
1378 /*
1379  * Synthetic FC GUID
1380  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1381  */
1382 #define HV_SYNTHFC_GUID \
1383 	.guid = { \
1384 			0x4A, 0xCC, 0x9B, 0x2F, 0x69, 0x00, 0xF3, 0x4A, \
1385 			0xB7, 0x6B, 0x6F, 0xD0, 0xBE, 0x52, 0x8C, 0xDA \
1386 		}
1387 
1388 /*
1389  * Common header for Hyper-V ICs
1390  */
1391 
1392 #define ICMSGTYPE_NEGOTIATE		0
1393 #define ICMSGTYPE_HEARTBEAT		1
1394 #define ICMSGTYPE_KVPEXCHANGE		2
1395 #define ICMSGTYPE_SHUTDOWN		3
1396 #define ICMSGTYPE_TIMESYNC		4
1397 #define ICMSGTYPE_VSS			5
1398 
1399 #define ICMSGHDRFLAG_TRANSACTION	1
1400 #define ICMSGHDRFLAG_REQUEST		2
1401 #define ICMSGHDRFLAG_RESPONSE		4
1402 
1403 
1404 /*
1405  * While we want to handle util services as regular devices,
1406  * there is only one instance of each of these services; so
1407  * we statically allocate the service specific state.
1408  */
1409 
1410 struct hv_util_service {
1411 	u8 *recv_buffer;
1412 	void (*util_cb)(void *);
1413 	int (*util_init)(struct hv_util_service *);
1414 	void (*util_deinit)(void);
1415 };
1416 
1417 struct vmbuspipe_hdr {
1418 	u32 flags;
1419 	u32 msgsize;
1420 } __packed;
1421 
1422 struct ic_version {
1423 	u16 major;
1424 	u16 minor;
1425 } __packed;
1426 
1427 struct icmsg_hdr {
1428 	struct ic_version icverframe;
1429 	u16 icmsgtype;
1430 	struct ic_version icvermsg;
1431 	u16 icmsgsize;
1432 	u32 status;
1433 	u8 ictransaction_id;
1434 	u8 icflags;
1435 	u8 reserved[2];
1436 } __packed;
1437 
1438 struct icmsg_negotiate {
1439 	u16 icframe_vercnt;
1440 	u16 icmsg_vercnt;
1441 	u32 reserved;
1442 	struct ic_version icversion_data[1]; /* any size array */
1443 } __packed;
1444 
1445 struct shutdown_msg_data {
1446 	u32 reason_code;
1447 	u32 timeout_seconds;
1448 	u32 flags;
1449 	u8  display_message[2048];
1450 } __packed;
1451 
1452 struct heartbeat_msg_data {
1453 	u64 seq_num;
1454 	u32 reserved[8];
1455 } __packed;
1456 
1457 /* Time Sync IC defs */
1458 #define ICTIMESYNCFLAG_PROBE	0
1459 #define ICTIMESYNCFLAG_SYNC	1
1460 #define ICTIMESYNCFLAG_SAMPLE	2
1461 
1462 #ifdef __x86_64__
1463 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1464 #else
1465 #define WLTIMEDELTA	116444736000000000LL
1466 #endif
1467 
1468 struct ictimesync_data {
1469 	u64 parenttime;
1470 	u64 childtime;
1471 	u64 roundtriptime;
1472 	u8 flags;
1473 } __packed;
1474 
1475 struct hyperv_service_callback {
1476 	u8 msg_type;
1477 	char *log_msg;
1478 	uuid_le data;
1479 	struct vmbus_channel *channel;
1480 	void (*callback) (void *context);
1481 };
1482 
1483 #define MAX_SRV_VER	0x7ffffff
1484 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1485 					struct icmsg_negotiate *, u8 *, int,
1486 					int);
1487 
1488 int hv_kvp_init(struct hv_util_service *);
1489 void hv_kvp_deinit(void);
1490 void hv_kvp_onchannelcallback(void *);
1491 
1492 int hv_vss_init(struct hv_util_service *);
1493 void hv_vss_deinit(void);
1494 void hv_vss_onchannelcallback(void *);
1495 
1496 /*
1497  * Negotiated version with the Host.
1498  */
1499 
1500 extern __u32 vmbus_proto_version;
1501 
1502 #endif /* __KERNEL__ */
1503 #endif /* _HYPERV_H */
1504