xref: /linux-6.15/include/linux/hugetlb.h (revision dc5befec)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4 
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17 
18 struct ctl_table;
19 struct user_struct;
20 struct mmu_gather;
21 struct node;
22 
23 void free_huge_folio(struct folio *folio);
24 
25 #ifdef CONFIG_HUGETLB_PAGE
26 
27 #include <linux/pagemap.h>
28 #include <linux/shm.h>
29 #include <asm/tlbflush.h>
30 
31 /*
32  * For HugeTLB page, there are more metadata to save in the struct page. But
33  * the head struct page cannot meet our needs, so we have to abuse other tail
34  * struct page to store the metadata.
35  */
36 #define __NR_USED_SUBPAGE 3
37 
38 struct hugepage_subpool {
39 	spinlock_t lock;
40 	long count;
41 	long max_hpages;	/* Maximum huge pages or -1 if no maximum. */
42 	long used_hpages;	/* Used count against maximum, includes */
43 				/* both allocated and reserved pages. */
44 	struct hstate *hstate;
45 	long min_hpages;	/* Minimum huge pages or -1 if no minimum. */
46 	long rsv_hpages;	/* Pages reserved against global pool to */
47 				/* satisfy minimum size. */
48 };
49 
50 struct resv_map {
51 	struct kref refs;
52 	spinlock_t lock;
53 	struct list_head regions;
54 	long adds_in_progress;
55 	struct list_head region_cache;
56 	long region_cache_count;
57 	struct rw_semaphore rw_sema;
58 #ifdef CONFIG_CGROUP_HUGETLB
59 	/*
60 	 * On private mappings, the counter to uncharge reservations is stored
61 	 * here. If these fields are 0, then either the mapping is shared, or
62 	 * cgroup accounting is disabled for this resv_map.
63 	 */
64 	struct page_counter *reservation_counter;
65 	unsigned long pages_per_hpage;
66 	struct cgroup_subsys_state *css;
67 #endif
68 };
69 
70 /*
71  * Region tracking -- allows tracking of reservations and instantiated pages
72  *                    across the pages in a mapping.
73  *
74  * The region data structures are embedded into a resv_map and protected
75  * by a resv_map's lock.  The set of regions within the resv_map represent
76  * reservations for huge pages, or huge pages that have already been
77  * instantiated within the map.  The from and to elements are huge page
78  * indices into the associated mapping.  from indicates the starting index
79  * of the region.  to represents the first index past the end of  the region.
80  *
81  * For example, a file region structure with from == 0 and to == 4 represents
82  * four huge pages in a mapping.  It is important to note that the to element
83  * represents the first element past the end of the region. This is used in
84  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
85  *
86  * Interval notation of the form [from, to) will be used to indicate that
87  * the endpoint from is inclusive and to is exclusive.
88  */
89 struct file_region {
90 	struct list_head link;
91 	long from;
92 	long to;
93 #ifdef CONFIG_CGROUP_HUGETLB
94 	/*
95 	 * On shared mappings, each reserved region appears as a struct
96 	 * file_region in resv_map. These fields hold the info needed to
97 	 * uncharge each reservation.
98 	 */
99 	struct page_counter *reservation_counter;
100 	struct cgroup_subsys_state *css;
101 #endif
102 };
103 
104 struct hugetlb_vma_lock {
105 	struct kref refs;
106 	struct rw_semaphore rw_sema;
107 	struct vm_area_struct *vma;
108 };
109 
110 extern struct resv_map *resv_map_alloc(void);
111 void resv_map_release(struct kref *ref);
112 
113 extern spinlock_t hugetlb_lock;
114 extern int hugetlb_max_hstate __read_mostly;
115 #define for_each_hstate(h) \
116 	for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
117 
118 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
119 						long min_hpages);
120 void hugepage_put_subpool(struct hugepage_subpool *spool);
121 
122 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
123 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
124 int move_hugetlb_page_tables(struct vm_area_struct *vma,
125 			     struct vm_area_struct *new_vma,
126 			     unsigned long old_addr, unsigned long new_addr,
127 			     unsigned long len);
128 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
129 			    struct vm_area_struct *, struct vm_area_struct *);
130 void unmap_hugepage_range(struct vm_area_struct *,
131 			  unsigned long, unsigned long, struct page *,
132 			  zap_flags_t);
133 void __unmap_hugepage_range(struct mmu_gather *tlb,
134 			  struct vm_area_struct *vma,
135 			  unsigned long start, unsigned long end,
136 			  struct page *ref_page, zap_flags_t zap_flags);
137 void hugetlb_report_meminfo(struct seq_file *);
138 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
139 void hugetlb_show_meminfo_node(int nid);
140 unsigned long hugetlb_total_pages(void);
141 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
142 			unsigned long address, unsigned int flags);
143 #ifdef CONFIG_USERFAULTFD
144 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
145 			     struct vm_area_struct *dst_vma,
146 			     unsigned long dst_addr,
147 			     unsigned long src_addr,
148 			     uffd_flags_t flags,
149 			     struct folio **foliop);
150 #endif /* CONFIG_USERFAULTFD */
151 bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
152 						struct vm_area_struct *vma,
153 						vm_flags_t vm_flags);
154 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
155 						long freed);
156 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list);
157 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
158 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
159 				bool *migratable_cleared);
160 void folio_putback_hugetlb(struct folio *folio);
161 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
162 void hugetlb_fix_reserve_counts(struct inode *inode);
163 extern struct mutex *hugetlb_fault_mutex_table;
164 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
165 
166 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
167 		      unsigned long addr, pud_t *pud);
168 bool hugetlbfs_pagecache_present(struct hstate *h,
169 				 struct vm_area_struct *vma,
170 				 unsigned long address);
171 
172 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio);
173 
174 extern int sysctl_hugetlb_shm_group;
175 extern struct list_head huge_boot_pages[MAX_NUMNODES];
176 
177 void hugetlb_bootmem_alloc(void);
178 bool hugetlb_bootmem_allocated(void);
179 
180 /* arch callbacks */
181 
182 #ifndef CONFIG_HIGHPTE
183 /*
184  * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
185  * which may go down to the lowest PTE level in their huge_pte_offset() and
186  * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
187  */
188 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
189 {
190 	return pte_offset_kernel(pmd, address);
191 }
192 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
193 				    unsigned long address)
194 {
195 	return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
196 }
197 #endif
198 
199 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
200 			unsigned long addr, unsigned long sz);
201 /*
202  * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
203  * Returns the pte_t* if found, or NULL if the address is not mapped.
204  *
205  * IMPORTANT: we should normally not directly call this function, instead
206  * this is only a common interface to implement arch-specific
207  * walker. Please use hugetlb_walk() instead, because that will attempt to
208  * verify the locking for you.
209  *
210  * Since this function will walk all the pgtable pages (including not only
211  * high-level pgtable page, but also PUD entry that can be unshared
212  * concurrently for VM_SHARED), the caller of this function should be
213  * responsible of its thread safety.  One can follow this rule:
214  *
215  *  (1) For private mappings: pmd unsharing is not possible, so holding the
216  *      mmap_lock for either read or write is sufficient. Most callers
217  *      already hold the mmap_lock, so normally, no special action is
218  *      required.
219  *
220  *  (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
221  *      pgtable page can go away from under us!  It can be done by a pmd
222  *      unshare with a follow up munmap() on the other process), then we
223  *      need either:
224  *
225  *     (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
226  *           won't happen upon the range (it also makes sure the pte_t we
227  *           read is the right and stable one), or,
228  *
229  *     (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
230  *           sure even if unshare happened the racy unmap() will wait until
231  *           i_mmap_rwsem is released.
232  *
233  * Option (2.1) is the safest, which guarantees pte stability from pmd
234  * sharing pov, until the vma lock released.  Option (2.2) doesn't protect
235  * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
236  * access.
237  */
238 pte_t *huge_pte_offset(struct mm_struct *mm,
239 		       unsigned long addr, unsigned long sz);
240 unsigned long hugetlb_mask_last_page(struct hstate *h);
241 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
242 				unsigned long addr, pte_t *ptep);
243 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
244 				unsigned long *start, unsigned long *end);
245 
246 extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
247 				unsigned long *begin, unsigned long *end);
248 extern void __hugetlb_zap_end(struct vm_area_struct *vma,
249 			      struct zap_details *details);
250 
251 static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
252 				     unsigned long *start, unsigned long *end)
253 {
254 	if (is_vm_hugetlb_page(vma))
255 		__hugetlb_zap_begin(vma, start, end);
256 }
257 
258 static inline void hugetlb_zap_end(struct vm_area_struct *vma,
259 				   struct zap_details *details)
260 {
261 	if (is_vm_hugetlb_page(vma))
262 		__hugetlb_zap_end(vma, details);
263 }
264 
265 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
266 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
267 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
268 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
269 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
270 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
271 void hugetlb_vma_lock_release(struct kref *kref);
272 long hugetlb_change_protection(struct vm_area_struct *vma,
273 		unsigned long address, unsigned long end, pgprot_t newprot,
274 		unsigned long cp_flags);
275 bool is_hugetlb_entry_migration(pte_t pte);
276 bool is_hugetlb_entry_hwpoisoned(pte_t pte);
277 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
278 
279 #else /* !CONFIG_HUGETLB_PAGE */
280 
281 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
282 {
283 }
284 
285 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
286 {
287 }
288 
289 static inline unsigned long hugetlb_total_pages(void)
290 {
291 	return 0;
292 }
293 
294 static inline struct address_space *hugetlb_folio_mapping_lock_write(
295 							struct folio *folio)
296 {
297 	return NULL;
298 }
299 
300 static inline int huge_pmd_unshare(struct mm_struct *mm,
301 					struct vm_area_struct *vma,
302 					unsigned long addr, pte_t *ptep)
303 {
304 	return 0;
305 }
306 
307 static inline void adjust_range_if_pmd_sharing_possible(
308 				struct vm_area_struct *vma,
309 				unsigned long *start, unsigned long *end)
310 {
311 }
312 
313 static inline void hugetlb_zap_begin(
314 				struct vm_area_struct *vma,
315 				unsigned long *start, unsigned long *end)
316 {
317 }
318 
319 static inline void hugetlb_zap_end(
320 				struct vm_area_struct *vma,
321 				struct zap_details *details)
322 {
323 }
324 
325 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
326 					  struct mm_struct *src,
327 					  struct vm_area_struct *dst_vma,
328 					  struct vm_area_struct *src_vma)
329 {
330 	BUG();
331 	return 0;
332 }
333 
334 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
335 					   struct vm_area_struct *new_vma,
336 					   unsigned long old_addr,
337 					   unsigned long new_addr,
338 					   unsigned long len)
339 {
340 	BUG();
341 	return 0;
342 }
343 
344 static inline void hugetlb_report_meminfo(struct seq_file *m)
345 {
346 }
347 
348 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
349 {
350 	return 0;
351 }
352 
353 static inline void hugetlb_show_meminfo_node(int nid)
354 {
355 }
356 
357 static inline int prepare_hugepage_range(struct file *file,
358 				unsigned long addr, unsigned long len)
359 {
360 	return -EINVAL;
361 }
362 
363 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
364 {
365 }
366 
367 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
368 {
369 }
370 
371 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
372 {
373 }
374 
375 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
376 {
377 }
378 
379 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
380 {
381 	return 1;
382 }
383 
384 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
385 {
386 }
387 
388 static inline int is_hugepage_only_range(struct mm_struct *mm,
389 					unsigned long addr, unsigned long len)
390 {
391 	return 0;
392 }
393 
394 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
395 				unsigned long addr, unsigned long end,
396 				unsigned long floor, unsigned long ceiling)
397 {
398 	BUG();
399 }
400 
401 #ifdef CONFIG_USERFAULTFD
402 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
403 					   struct vm_area_struct *dst_vma,
404 					   unsigned long dst_addr,
405 					   unsigned long src_addr,
406 					   uffd_flags_t flags,
407 					   struct folio **foliop)
408 {
409 	BUG();
410 	return 0;
411 }
412 #endif /* CONFIG_USERFAULTFD */
413 
414 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
415 					unsigned long sz)
416 {
417 	return NULL;
418 }
419 
420 static inline bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
421 {
422 	return false;
423 }
424 
425 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
426 {
427 	return 0;
428 }
429 
430 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
431 					bool *migratable_cleared)
432 {
433 	return 0;
434 }
435 
436 static inline void folio_putback_hugetlb(struct folio *folio)
437 {
438 }
439 
440 static inline void move_hugetlb_state(struct folio *old_folio,
441 					struct folio *new_folio, int reason)
442 {
443 }
444 
445 static inline long hugetlb_change_protection(
446 			struct vm_area_struct *vma, unsigned long address,
447 			unsigned long end, pgprot_t newprot,
448 			unsigned long cp_flags)
449 {
450 	return 0;
451 }
452 
453 static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
454 			struct vm_area_struct *vma, unsigned long start,
455 			unsigned long end, struct page *ref_page,
456 			zap_flags_t zap_flags)
457 {
458 	BUG();
459 }
460 
461 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
462 			struct vm_area_struct *vma, unsigned long address,
463 			unsigned int flags)
464 {
465 	BUG();
466 	return 0;
467 }
468 
469 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
470 
471 #endif /* !CONFIG_HUGETLB_PAGE */
472 
473 #ifndef pgd_write
474 static inline int pgd_write(pgd_t pgd)
475 {
476 	BUG();
477 	return 0;
478 }
479 #endif
480 
481 #define HUGETLB_ANON_FILE "anon_hugepage"
482 
483 enum {
484 	/*
485 	 * The file will be used as an shm file so shmfs accounting rules
486 	 * apply
487 	 */
488 	HUGETLB_SHMFS_INODE     = 1,
489 	/*
490 	 * The file is being created on the internal vfs mount and shmfs
491 	 * accounting rules do not apply
492 	 */
493 	HUGETLB_ANONHUGE_INODE  = 2,
494 };
495 
496 #ifdef CONFIG_HUGETLBFS
497 struct hugetlbfs_sb_info {
498 	long	max_inodes;   /* inodes allowed */
499 	long	free_inodes;  /* inodes free */
500 	spinlock_t	stat_lock;
501 	struct hstate *hstate;
502 	struct hugepage_subpool *spool;
503 	kuid_t	uid;
504 	kgid_t	gid;
505 	umode_t mode;
506 };
507 
508 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
509 {
510 	return sb->s_fs_info;
511 }
512 
513 struct hugetlbfs_inode_info {
514 	struct inode vfs_inode;
515 	unsigned int seals;
516 };
517 
518 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
519 {
520 	return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
521 }
522 
523 extern const struct vm_operations_struct hugetlb_vm_ops;
524 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
525 				int creat_flags, int page_size_log);
526 
527 static inline bool is_file_hugepages(const struct file *file)
528 {
529 	return file->f_op->fop_flags & FOP_HUGE_PAGES;
530 }
531 
532 static inline struct hstate *hstate_inode(struct inode *i)
533 {
534 	return HUGETLBFS_SB(i->i_sb)->hstate;
535 }
536 #else /* !CONFIG_HUGETLBFS */
537 
538 #define is_file_hugepages(file)			false
539 static inline struct file *
540 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
541 		int creat_flags, int page_size_log)
542 {
543 	return ERR_PTR(-ENOSYS);
544 }
545 
546 static inline struct hstate *hstate_inode(struct inode *i)
547 {
548 	return NULL;
549 }
550 #endif /* !CONFIG_HUGETLBFS */
551 
552 unsigned long
553 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
554 				    unsigned long len, unsigned long pgoff,
555 				    unsigned long flags);
556 
557 /*
558  * huegtlb page specific state flags.  These flags are located in page.private
559  * of the hugetlb head page.  Functions created via the below macros should be
560  * used to manipulate these flags.
561  *
562  * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
563  *	allocation time.  Cleared when page is fully instantiated.  Free
564  *	routine checks flag to restore a reservation on error paths.
565  *	Synchronization:  Examined or modified by code that knows it has
566  *	the only reference to page.  i.e. After allocation but before use
567  *	or when the page is being freed.
568  * HPG_migratable  - Set after a newly allocated page is added to the page
569  *	cache and/or page tables.  Indicates the page is a candidate for
570  *	migration.
571  *	Synchronization:  Initially set after new page allocation with no
572  *	locking.  When examined and modified during migration processing
573  *	(isolate, migrate, putback) the hugetlb_lock is held.
574  * HPG_temporary - Set on a page that is temporarily allocated from the buddy
575  *	allocator.  Typically used for migration target pages when no pages
576  *	are available in the pool.  The hugetlb free page path will
577  *	immediately free pages with this flag set to the buddy allocator.
578  *	Synchronization: Can be set after huge page allocation from buddy when
579  *	code knows it has only reference.  All other examinations and
580  *	modifications require hugetlb_lock.
581  * HPG_freed - Set when page is on the free lists.
582  *	Synchronization: hugetlb_lock held for examination and modification.
583  * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
584  * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
585  *     that is not tracked by raw_hwp_page list.
586  */
587 enum hugetlb_page_flags {
588 	HPG_restore_reserve = 0,
589 	HPG_migratable,
590 	HPG_temporary,
591 	HPG_freed,
592 	HPG_vmemmap_optimized,
593 	HPG_raw_hwp_unreliable,
594 	HPG_cma,
595 	__NR_HPAGEFLAGS,
596 };
597 
598 /*
599  * Macros to create test, set and clear function definitions for
600  * hugetlb specific page flags.
601  */
602 #ifdef CONFIG_HUGETLB_PAGE
603 #define TESTHPAGEFLAG(uname, flname)				\
604 static __always_inline						\
605 bool folio_test_hugetlb_##flname(struct folio *folio)		\
606 	{	void *private = &folio->private;		\
607 		return test_bit(HPG_##flname, private);		\
608 	}
609 
610 #define SETHPAGEFLAG(uname, flname)				\
611 static __always_inline						\
612 void folio_set_hugetlb_##flname(struct folio *folio)		\
613 	{	void *private = &folio->private;		\
614 		set_bit(HPG_##flname, private);			\
615 	}
616 
617 #define CLEARHPAGEFLAG(uname, flname)				\
618 static __always_inline						\
619 void folio_clear_hugetlb_##flname(struct folio *folio)		\
620 	{	void *private = &folio->private;		\
621 		clear_bit(HPG_##flname, private);		\
622 	}
623 #else
624 #define TESTHPAGEFLAG(uname, flname)				\
625 static inline bool						\
626 folio_test_hugetlb_##flname(struct folio *folio)		\
627 	{ return 0; }
628 
629 #define SETHPAGEFLAG(uname, flname)				\
630 static inline void						\
631 folio_set_hugetlb_##flname(struct folio *folio) 		\
632 	{ }
633 
634 #define CLEARHPAGEFLAG(uname, flname)				\
635 static inline void						\
636 folio_clear_hugetlb_##flname(struct folio *folio)		\
637 	{ }
638 #endif
639 
640 #define HPAGEFLAG(uname, flname)				\
641 	TESTHPAGEFLAG(uname, flname)				\
642 	SETHPAGEFLAG(uname, flname)				\
643 	CLEARHPAGEFLAG(uname, flname)				\
644 
645 /*
646  * Create functions associated with hugetlb page flags
647  */
648 HPAGEFLAG(RestoreReserve, restore_reserve)
649 HPAGEFLAG(Migratable, migratable)
650 HPAGEFLAG(Temporary, temporary)
651 HPAGEFLAG(Freed, freed)
652 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
653 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
654 HPAGEFLAG(Cma, cma)
655 
656 #ifdef CONFIG_HUGETLB_PAGE
657 
658 #define HSTATE_NAME_LEN 32
659 /* Defines one hugetlb page size */
660 struct hstate {
661 	struct mutex resize_lock;
662 	struct lock_class_key resize_key;
663 	int next_nid_to_alloc;
664 	int next_nid_to_free;
665 	unsigned int order;
666 	unsigned int demote_order;
667 	unsigned long mask;
668 	unsigned long max_huge_pages;
669 	unsigned long nr_huge_pages;
670 	unsigned long free_huge_pages;
671 	unsigned long resv_huge_pages;
672 	unsigned long surplus_huge_pages;
673 	unsigned long nr_overcommit_huge_pages;
674 	struct list_head hugepage_activelist;
675 	struct list_head hugepage_freelists[MAX_NUMNODES];
676 	unsigned int max_huge_pages_node[MAX_NUMNODES];
677 	unsigned int nr_huge_pages_node[MAX_NUMNODES];
678 	unsigned int free_huge_pages_node[MAX_NUMNODES];
679 	unsigned int surplus_huge_pages_node[MAX_NUMNODES];
680 	char name[HSTATE_NAME_LEN];
681 };
682 
683 struct cma;
684 
685 struct huge_bootmem_page {
686 	struct list_head list;
687 	struct hstate *hstate;
688 	unsigned long flags;
689 	struct cma *cma;
690 };
691 
692 #define HUGE_BOOTMEM_HVO		0x0001
693 #define HUGE_BOOTMEM_ZONES_VALID	0x0002
694 #define HUGE_BOOTMEM_CMA		0x0004
695 
696 bool hugetlb_bootmem_page_zones_valid(int nid, struct huge_bootmem_page *m);
697 
698 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list);
699 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn);
700 void wait_for_freed_hugetlb_folios(void);
701 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
702 				unsigned long addr, bool cow_from_owner);
703 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
704 				nodemask_t *nmask, gfp_t gfp_mask,
705 				bool allow_alloc_fallback);
706 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
707 					  nodemask_t *nmask, gfp_t gfp_mask);
708 
709 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
710 			pgoff_t idx);
711 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
712 				unsigned long address, struct folio *folio);
713 
714 /* arch callback */
715 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
716 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
717 bool __init hugetlb_node_alloc_supported(void);
718 
719 void __init hugetlb_add_hstate(unsigned order);
720 bool __init arch_hugetlb_valid_size(unsigned long size);
721 struct hstate *size_to_hstate(unsigned long size);
722 
723 #ifndef HUGE_MAX_HSTATE
724 #define HUGE_MAX_HSTATE 1
725 #endif
726 
727 extern struct hstate hstates[HUGE_MAX_HSTATE];
728 extern unsigned int default_hstate_idx;
729 
730 #define default_hstate (hstates[default_hstate_idx])
731 
732 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
733 {
734 	return folio->_hugetlb_subpool;
735 }
736 
737 static inline void hugetlb_set_folio_subpool(struct folio *folio,
738 					struct hugepage_subpool *subpool)
739 {
740 	folio->_hugetlb_subpool = subpool;
741 }
742 
743 static inline struct hstate *hstate_file(struct file *f)
744 {
745 	return hstate_inode(file_inode(f));
746 }
747 
748 static inline struct hstate *hstate_sizelog(int page_size_log)
749 {
750 	if (!page_size_log)
751 		return &default_hstate;
752 
753 	if (page_size_log < BITS_PER_LONG)
754 		return size_to_hstate(1UL << page_size_log);
755 
756 	return NULL;
757 }
758 
759 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
760 {
761 	return hstate_file(vma->vm_file);
762 }
763 
764 static inline unsigned long huge_page_size(const struct hstate *h)
765 {
766 	return (unsigned long)PAGE_SIZE << h->order;
767 }
768 
769 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
770 
771 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
772 
773 static inline unsigned long huge_page_mask(struct hstate *h)
774 {
775 	return h->mask;
776 }
777 
778 static inline unsigned int huge_page_order(struct hstate *h)
779 {
780 	return h->order;
781 }
782 
783 static inline unsigned huge_page_shift(struct hstate *h)
784 {
785 	return h->order + PAGE_SHIFT;
786 }
787 
788 static inline bool hstate_is_gigantic(struct hstate *h)
789 {
790 	return huge_page_order(h) > MAX_PAGE_ORDER;
791 }
792 
793 static inline unsigned int pages_per_huge_page(const struct hstate *h)
794 {
795 	return 1 << h->order;
796 }
797 
798 static inline unsigned int blocks_per_huge_page(struct hstate *h)
799 {
800 	return huge_page_size(h) / 512;
801 }
802 
803 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
804 				struct address_space *mapping, pgoff_t idx)
805 {
806 	return filemap_lock_folio(mapping, idx << huge_page_order(h));
807 }
808 
809 #include <asm/hugetlb.h>
810 
811 #ifndef is_hugepage_only_range
812 static inline int is_hugepage_only_range(struct mm_struct *mm,
813 					unsigned long addr, unsigned long len)
814 {
815 	return 0;
816 }
817 #define is_hugepage_only_range is_hugepage_only_range
818 #endif
819 
820 #ifndef arch_clear_hugetlb_flags
821 static inline void arch_clear_hugetlb_flags(struct folio *folio) { }
822 #define arch_clear_hugetlb_flags arch_clear_hugetlb_flags
823 #endif
824 
825 #ifndef arch_make_huge_pte
826 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
827 				       vm_flags_t flags)
828 {
829 	return pte_mkhuge(entry);
830 }
831 #endif
832 
833 #ifndef arch_has_huge_bootmem_alloc
834 /*
835  * Some architectures do their own bootmem allocation, so they can't use
836  * early CMA allocation.
837  */
838 static inline bool arch_has_huge_bootmem_alloc(void)
839 {
840 	return false;
841 }
842 #endif
843 
844 static inline struct hstate *folio_hstate(struct folio *folio)
845 {
846 	VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
847 	return size_to_hstate(folio_size(folio));
848 }
849 
850 static inline unsigned hstate_index_to_shift(unsigned index)
851 {
852 	return hstates[index].order + PAGE_SHIFT;
853 }
854 
855 static inline int hstate_index(struct hstate *h)
856 {
857 	return h - hstates;
858 }
859 
860 int dissolve_free_hugetlb_folio(struct folio *folio);
861 int dissolve_free_hugetlb_folios(unsigned long start_pfn,
862 				    unsigned long end_pfn);
863 
864 #ifdef CONFIG_MEMORY_FAILURE
865 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
866 #else
867 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
868 {
869 }
870 #endif
871 
872 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
873 #ifndef arch_hugetlb_migration_supported
874 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
875 {
876 	if ((huge_page_shift(h) == PMD_SHIFT) ||
877 		(huge_page_shift(h) == PUD_SHIFT) ||
878 			(huge_page_shift(h) == PGDIR_SHIFT))
879 		return true;
880 	else
881 		return false;
882 }
883 #endif
884 #else
885 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
886 {
887 	return false;
888 }
889 #endif
890 
891 static inline bool hugepage_migration_supported(struct hstate *h)
892 {
893 	return arch_hugetlb_migration_supported(h);
894 }
895 
896 /*
897  * Movability check is different as compared to migration check.
898  * It determines whether or not a huge page should be placed on
899  * movable zone or not. Movability of any huge page should be
900  * required only if huge page size is supported for migration.
901  * There won't be any reason for the huge page to be movable if
902  * it is not migratable to start with. Also the size of the huge
903  * page should be large enough to be placed under a movable zone
904  * and still feasible enough to be migratable. Just the presence
905  * in movable zone does not make the migration feasible.
906  *
907  * So even though large huge page sizes like the gigantic ones
908  * are migratable they should not be movable because its not
909  * feasible to migrate them from movable zone.
910  */
911 static inline bool hugepage_movable_supported(struct hstate *h)
912 {
913 	if (!hugepage_migration_supported(h))
914 		return false;
915 
916 	if (hstate_is_gigantic(h))
917 		return false;
918 	return true;
919 }
920 
921 /* Movability of hugepages depends on migration support. */
922 static inline gfp_t htlb_alloc_mask(struct hstate *h)
923 {
924 	gfp_t gfp = __GFP_COMP | __GFP_NOWARN;
925 
926 	gfp |= hugepage_movable_supported(h) ? GFP_HIGHUSER_MOVABLE : GFP_HIGHUSER;
927 
928 	return gfp;
929 }
930 
931 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
932 {
933 	gfp_t modified_mask = htlb_alloc_mask(h);
934 
935 	/* Some callers might want to enforce node */
936 	modified_mask |= (gfp_mask & __GFP_THISNODE);
937 
938 	modified_mask |= (gfp_mask & __GFP_NOWARN);
939 
940 	return modified_mask;
941 }
942 
943 static inline bool htlb_allow_alloc_fallback(int reason)
944 {
945 	bool allowed_fallback = false;
946 
947 	/*
948 	 * Note: the memory offline, memory failure and migration syscalls will
949 	 * be allowed to fallback to other nodes due to lack of a better chioce,
950 	 * that might break the per-node hugetlb pool. While other cases will
951 	 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool.
952 	 */
953 	switch (reason) {
954 	case MR_MEMORY_HOTPLUG:
955 	case MR_MEMORY_FAILURE:
956 	case MR_SYSCALL:
957 	case MR_MEMPOLICY_MBIND:
958 		allowed_fallback = true;
959 		break;
960 	default:
961 		break;
962 	}
963 
964 	return allowed_fallback;
965 }
966 
967 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
968 					   struct mm_struct *mm, pte_t *pte)
969 {
970 	const unsigned long size = huge_page_size(h);
971 
972 	VM_WARN_ON(size == PAGE_SIZE);
973 
974 	/*
975 	 * hugetlb must use the exact same PT locks as core-mm page table
976 	 * walkers would. When modifying a PTE table, hugetlb must take the
977 	 * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD
978 	 * PT lock etc.
979 	 *
980 	 * The expectation is that any hugetlb folio smaller than a PMD is
981 	 * always mapped into a single PTE table and that any hugetlb folio
982 	 * smaller than a PUD (but at least as big as a PMD) is always mapped
983 	 * into a single PMD table.
984 	 *
985 	 * If that does not hold for an architecture, then that architecture
986 	 * must disable split PT locks such that all *_lockptr() functions
987 	 * will give us the same result: the per-MM PT lock.
988 	 *
989 	 * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where
990 	 * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr()
991 	 * and core-mm would use pmd_lockptr(). However, in such configurations
992 	 * split PMD locks are disabled -- they don't make sense on a single
993 	 * PGDIR page table -- and the end result is the same.
994 	 */
995 	if (size >= PUD_SIZE)
996 		return pud_lockptr(mm, (pud_t *) pte);
997 	else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE))
998 		return pmd_lockptr(mm, (pmd_t *) pte);
999 	/* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */
1000 	return ptep_lockptr(mm, pte);
1001 }
1002 
1003 #ifndef hugepages_supported
1004 /*
1005  * Some platform decide whether they support huge pages at boot
1006  * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
1007  * when there is no such support
1008  */
1009 #define hugepages_supported() (HPAGE_SHIFT != 0)
1010 #endif
1011 
1012 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
1013 
1014 static inline void hugetlb_count_init(struct mm_struct *mm)
1015 {
1016 	atomic_long_set(&mm->hugetlb_usage, 0);
1017 }
1018 
1019 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
1020 {
1021 	atomic_long_add(l, &mm->hugetlb_usage);
1022 }
1023 
1024 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1025 {
1026 	atomic_long_sub(l, &mm->hugetlb_usage);
1027 }
1028 
1029 #ifndef huge_ptep_modify_prot_start
1030 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
1031 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1032 						unsigned long addr, pte_t *ptep)
1033 {
1034 	unsigned long psize = huge_page_size(hstate_vma(vma));
1035 
1036 	return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep, psize);
1037 }
1038 #endif
1039 
1040 #ifndef huge_ptep_modify_prot_commit
1041 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
1042 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1043 						unsigned long addr, pte_t *ptep,
1044 						pte_t old_pte, pte_t pte)
1045 {
1046 	unsigned long psize = huge_page_size(hstate_vma(vma));
1047 
1048 	set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1049 }
1050 #endif
1051 
1052 #ifdef CONFIG_NUMA
1053 void hugetlb_register_node(struct node *node);
1054 void hugetlb_unregister_node(struct node *node);
1055 #endif
1056 
1057 /*
1058  * Check if a given raw @page in a hugepage is HWPOISON.
1059  */
1060 bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1061 
1062 static inline unsigned long huge_page_mask_align(struct file *file)
1063 {
1064 	return PAGE_MASK & ~huge_page_mask(hstate_file(file));
1065 }
1066 
1067 #else	/* CONFIG_HUGETLB_PAGE */
1068 struct hstate {};
1069 
1070 static inline unsigned long huge_page_mask_align(struct file *file)
1071 {
1072 	return 0;
1073 }
1074 
1075 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1076 {
1077 	return NULL;
1078 }
1079 
1080 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
1081 				struct address_space *mapping, pgoff_t idx)
1082 {
1083 	return NULL;
1084 }
1085 
1086 static inline int isolate_or_dissolve_huge_page(struct page *page,
1087 						struct list_head *list)
1088 {
1089 	return -ENOMEM;
1090 }
1091 
1092 static inline int replace_free_hugepage_folios(unsigned long start_pfn,
1093 		unsigned long end_pfn)
1094 {
1095 	return 0;
1096 }
1097 
1098 static inline void wait_for_freed_hugetlb_folios(void)
1099 {
1100 }
1101 
1102 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1103 					   unsigned long addr,
1104 					   bool cow_from_owner)
1105 {
1106 	return NULL;
1107 }
1108 
1109 static inline struct folio *
1110 alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
1111 			    nodemask_t *nmask, gfp_t gfp_mask)
1112 {
1113 	return NULL;
1114 }
1115 
1116 static inline struct folio *
1117 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1118 			nodemask_t *nmask, gfp_t gfp_mask,
1119 			bool allow_alloc_fallback)
1120 {
1121 	return NULL;
1122 }
1123 
1124 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1125 {
1126 	return 0;
1127 }
1128 
1129 static inline struct hstate *hstate_file(struct file *f)
1130 {
1131 	return NULL;
1132 }
1133 
1134 static inline struct hstate *hstate_sizelog(int page_size_log)
1135 {
1136 	return NULL;
1137 }
1138 
1139 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1140 {
1141 	return NULL;
1142 }
1143 
1144 static inline struct hstate *folio_hstate(struct folio *folio)
1145 {
1146 	return NULL;
1147 }
1148 
1149 static inline struct hstate *size_to_hstate(unsigned long size)
1150 {
1151 	return NULL;
1152 }
1153 
1154 static inline unsigned long huge_page_size(struct hstate *h)
1155 {
1156 	return PAGE_SIZE;
1157 }
1158 
1159 static inline unsigned long huge_page_mask(struct hstate *h)
1160 {
1161 	return PAGE_MASK;
1162 }
1163 
1164 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1165 {
1166 	return PAGE_SIZE;
1167 }
1168 
1169 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1170 {
1171 	return PAGE_SIZE;
1172 }
1173 
1174 static inline unsigned int huge_page_order(struct hstate *h)
1175 {
1176 	return 0;
1177 }
1178 
1179 static inline unsigned int huge_page_shift(struct hstate *h)
1180 {
1181 	return PAGE_SHIFT;
1182 }
1183 
1184 static inline bool hstate_is_gigantic(struct hstate *h)
1185 {
1186 	return false;
1187 }
1188 
1189 static inline unsigned int pages_per_huge_page(struct hstate *h)
1190 {
1191 	return 1;
1192 }
1193 
1194 static inline unsigned hstate_index_to_shift(unsigned index)
1195 {
1196 	return 0;
1197 }
1198 
1199 static inline int hstate_index(struct hstate *h)
1200 {
1201 	return 0;
1202 }
1203 
1204 static inline int dissolve_free_hugetlb_folio(struct folio *folio)
1205 {
1206 	return 0;
1207 }
1208 
1209 static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn,
1210 					   unsigned long end_pfn)
1211 {
1212 	return 0;
1213 }
1214 
1215 static inline bool hugepage_migration_supported(struct hstate *h)
1216 {
1217 	return false;
1218 }
1219 
1220 static inline bool hugepage_movable_supported(struct hstate *h)
1221 {
1222 	return false;
1223 }
1224 
1225 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1226 {
1227 	return 0;
1228 }
1229 
1230 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1231 {
1232 	return 0;
1233 }
1234 
1235 static inline bool htlb_allow_alloc_fallback(int reason)
1236 {
1237 	return false;
1238 }
1239 
1240 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1241 					   struct mm_struct *mm, pte_t *pte)
1242 {
1243 	return &mm->page_table_lock;
1244 }
1245 
1246 static inline void hugetlb_count_init(struct mm_struct *mm)
1247 {
1248 }
1249 
1250 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1251 {
1252 }
1253 
1254 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1255 {
1256 }
1257 
1258 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1259 					  unsigned long addr, pte_t *ptep)
1260 {
1261 #ifdef CONFIG_MMU
1262 	return ptep_get(ptep);
1263 #else
1264 	return *ptep;
1265 #endif
1266 }
1267 
1268 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1269 				   pte_t *ptep, pte_t pte, unsigned long sz)
1270 {
1271 }
1272 
1273 static inline void hugetlb_register_node(struct node *node)
1274 {
1275 }
1276 
1277 static inline void hugetlb_unregister_node(struct node *node)
1278 {
1279 }
1280 
1281 static inline bool hugetlbfs_pagecache_present(
1282     struct hstate *h, struct vm_area_struct *vma, unsigned long address)
1283 {
1284 	return false;
1285 }
1286 
1287 static inline void hugetlb_bootmem_alloc(void)
1288 {
1289 }
1290 
1291 static inline bool hugetlb_bootmem_allocated(void)
1292 {
1293 	return false;
1294 }
1295 #endif	/* CONFIG_HUGETLB_PAGE */
1296 
1297 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1298 					struct mm_struct *mm, pte_t *pte)
1299 {
1300 	spinlock_t *ptl;
1301 
1302 	ptl = huge_pte_lockptr(h, mm, pte);
1303 	spin_lock(ptl);
1304 	return ptl;
1305 }
1306 
1307 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1308 extern void __init hugetlb_cma_reserve(int order);
1309 #else
1310 static inline __init void hugetlb_cma_reserve(int order)
1311 {
1312 }
1313 #endif
1314 
1315 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
1316 static inline bool hugetlb_pmd_shared(pte_t *pte)
1317 {
1318 	return page_count(virt_to_page(pte)) > 1;
1319 }
1320 #else
1321 static inline bool hugetlb_pmd_shared(pte_t *pte)
1322 {
1323 	return false;
1324 }
1325 #endif
1326 
1327 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1328 
1329 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1330 /*
1331  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1332  * implement this.
1333  */
1334 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1335 #endif
1336 
1337 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1338 {
1339 	return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1340 }
1341 
1342 bool __vma_private_lock(struct vm_area_struct *vma);
1343 
1344 /*
1345  * Safe version of huge_pte_offset() to check the locks.  See comments
1346  * above huge_pte_offset().
1347  */
1348 static inline pte_t *
1349 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1350 {
1351 #if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP)
1352 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1353 
1354 	/*
1355 	 * If pmd sharing possible, locking needed to safely walk the
1356 	 * hugetlb pgtables.  More information can be found at the comment
1357 	 * above huge_pte_offset() in the same file.
1358 	 *
1359 	 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1360 	 */
1361 	if (__vma_shareable_lock(vma))
1362 		WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1363 			     !lockdep_is_held(
1364 				 &vma->vm_file->f_mapping->i_mmap_rwsem));
1365 #endif
1366 	return huge_pte_offset(vma->vm_mm, addr, sz);
1367 }
1368 
1369 #endif /* _LINUX_HUGETLB_H */
1370