1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_HUGETLB_H 3 #define _LINUX_HUGETLB_H 4 5 #include <linux/mm.h> 6 #include <linux/mm_types.h> 7 #include <linux/mmdebug.h> 8 #include <linux/fs.h> 9 #include <linux/hugetlb_inline.h> 10 #include <linux/cgroup.h> 11 #include <linux/page_ref.h> 12 #include <linux/list.h> 13 #include <linux/kref.h> 14 #include <linux/pgtable.h> 15 #include <linux/gfp.h> 16 #include <linux/userfaultfd_k.h> 17 18 struct ctl_table; 19 struct user_struct; 20 struct mmu_gather; 21 struct node; 22 23 void free_huge_folio(struct folio *folio); 24 25 #ifdef CONFIG_HUGETLB_PAGE 26 27 #include <linux/pagemap.h> 28 #include <linux/shm.h> 29 #include <asm/tlbflush.h> 30 31 /* 32 * For HugeTLB page, there are more metadata to save in the struct page. But 33 * the head struct page cannot meet our needs, so we have to abuse other tail 34 * struct page to store the metadata. 35 */ 36 #define __NR_USED_SUBPAGE 3 37 38 struct hugepage_subpool { 39 spinlock_t lock; 40 long count; 41 long max_hpages; /* Maximum huge pages or -1 if no maximum. */ 42 long used_hpages; /* Used count against maximum, includes */ 43 /* both allocated and reserved pages. */ 44 struct hstate *hstate; 45 long min_hpages; /* Minimum huge pages or -1 if no minimum. */ 46 long rsv_hpages; /* Pages reserved against global pool to */ 47 /* satisfy minimum size. */ 48 }; 49 50 struct resv_map { 51 struct kref refs; 52 spinlock_t lock; 53 struct list_head regions; 54 long adds_in_progress; 55 struct list_head region_cache; 56 long region_cache_count; 57 struct rw_semaphore rw_sema; 58 #ifdef CONFIG_CGROUP_HUGETLB 59 /* 60 * On private mappings, the counter to uncharge reservations is stored 61 * here. If these fields are 0, then either the mapping is shared, or 62 * cgroup accounting is disabled for this resv_map. 63 */ 64 struct page_counter *reservation_counter; 65 unsigned long pages_per_hpage; 66 struct cgroup_subsys_state *css; 67 #endif 68 }; 69 70 /* 71 * Region tracking -- allows tracking of reservations and instantiated pages 72 * across the pages in a mapping. 73 * 74 * The region data structures are embedded into a resv_map and protected 75 * by a resv_map's lock. The set of regions within the resv_map represent 76 * reservations for huge pages, or huge pages that have already been 77 * instantiated within the map. The from and to elements are huge page 78 * indices into the associated mapping. from indicates the starting index 79 * of the region. to represents the first index past the end of the region. 80 * 81 * For example, a file region structure with from == 0 and to == 4 represents 82 * four huge pages in a mapping. It is important to note that the to element 83 * represents the first element past the end of the region. This is used in 84 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 85 * 86 * Interval notation of the form [from, to) will be used to indicate that 87 * the endpoint from is inclusive and to is exclusive. 88 */ 89 struct file_region { 90 struct list_head link; 91 long from; 92 long to; 93 #ifdef CONFIG_CGROUP_HUGETLB 94 /* 95 * On shared mappings, each reserved region appears as a struct 96 * file_region in resv_map. These fields hold the info needed to 97 * uncharge each reservation. 98 */ 99 struct page_counter *reservation_counter; 100 struct cgroup_subsys_state *css; 101 #endif 102 }; 103 104 struct hugetlb_vma_lock { 105 struct kref refs; 106 struct rw_semaphore rw_sema; 107 struct vm_area_struct *vma; 108 }; 109 110 extern struct resv_map *resv_map_alloc(void); 111 void resv_map_release(struct kref *ref); 112 113 extern spinlock_t hugetlb_lock; 114 extern int hugetlb_max_hstate __read_mostly; 115 #define for_each_hstate(h) \ 116 for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++) 117 118 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 119 long min_hpages); 120 void hugepage_put_subpool(struct hugepage_subpool *spool); 121 122 void hugetlb_dup_vma_private(struct vm_area_struct *vma); 123 void clear_vma_resv_huge_pages(struct vm_area_struct *vma); 124 int move_hugetlb_page_tables(struct vm_area_struct *vma, 125 struct vm_area_struct *new_vma, 126 unsigned long old_addr, unsigned long new_addr, 127 unsigned long len); 128 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *, 129 struct vm_area_struct *, struct vm_area_struct *); 130 void unmap_hugepage_range(struct vm_area_struct *, 131 unsigned long, unsigned long, struct page *, 132 zap_flags_t); 133 void __unmap_hugepage_range(struct mmu_gather *tlb, 134 struct vm_area_struct *vma, 135 unsigned long start, unsigned long end, 136 struct page *ref_page, zap_flags_t zap_flags); 137 void hugetlb_report_meminfo(struct seq_file *); 138 int hugetlb_report_node_meminfo(char *buf, int len, int nid); 139 void hugetlb_show_meminfo_node(int nid); 140 unsigned long hugetlb_total_pages(void); 141 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 142 unsigned long address, unsigned int flags); 143 #ifdef CONFIG_USERFAULTFD 144 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 145 struct vm_area_struct *dst_vma, 146 unsigned long dst_addr, 147 unsigned long src_addr, 148 uffd_flags_t flags, 149 struct folio **foliop); 150 #endif /* CONFIG_USERFAULTFD */ 151 bool hugetlb_reserve_pages(struct inode *inode, long from, long to, 152 struct vm_area_struct *vma, 153 vm_flags_t vm_flags); 154 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 155 long freed); 156 bool isolate_hugetlb(struct folio *folio, struct list_head *list); 157 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison); 158 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 159 bool *migratable_cleared); 160 void folio_putback_active_hugetlb(struct folio *folio); 161 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason); 162 void hugetlb_fix_reserve_counts(struct inode *inode); 163 extern struct mutex *hugetlb_fault_mutex_table; 164 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx); 165 166 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 167 unsigned long addr, pud_t *pud); 168 bool hugetlbfs_pagecache_present(struct hstate *h, 169 struct vm_area_struct *vma, 170 unsigned long address); 171 172 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio); 173 174 extern int sysctl_hugetlb_shm_group; 175 extern struct list_head huge_boot_pages[MAX_NUMNODES]; 176 177 /* arch callbacks */ 178 179 #ifndef CONFIG_HIGHPTE 180 /* 181 * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures 182 * which may go down to the lowest PTE level in their huge_pte_offset() and 183 * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap(). 184 */ 185 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address) 186 { 187 return pte_offset_kernel(pmd, address); 188 } 189 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd, 190 unsigned long address) 191 { 192 return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address); 193 } 194 #endif 195 196 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 197 unsigned long addr, unsigned long sz); 198 /* 199 * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE. 200 * Returns the pte_t* if found, or NULL if the address is not mapped. 201 * 202 * IMPORTANT: we should normally not directly call this function, instead 203 * this is only a common interface to implement arch-specific 204 * walker. Please use hugetlb_walk() instead, because that will attempt to 205 * verify the locking for you. 206 * 207 * Since this function will walk all the pgtable pages (including not only 208 * high-level pgtable page, but also PUD entry that can be unshared 209 * concurrently for VM_SHARED), the caller of this function should be 210 * responsible of its thread safety. One can follow this rule: 211 * 212 * (1) For private mappings: pmd unsharing is not possible, so holding the 213 * mmap_lock for either read or write is sufficient. Most callers 214 * already hold the mmap_lock, so normally, no special action is 215 * required. 216 * 217 * (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged 218 * pgtable page can go away from under us! It can be done by a pmd 219 * unshare with a follow up munmap() on the other process), then we 220 * need either: 221 * 222 * (2.1) hugetlb vma lock read or write held, to make sure pmd unshare 223 * won't happen upon the range (it also makes sure the pte_t we 224 * read is the right and stable one), or, 225 * 226 * (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make 227 * sure even if unshare happened the racy unmap() will wait until 228 * i_mmap_rwsem is released. 229 * 230 * Option (2.1) is the safest, which guarantees pte stability from pmd 231 * sharing pov, until the vma lock released. Option (2.2) doesn't protect 232 * a concurrent pmd unshare, but it makes sure the pgtable page is safe to 233 * access. 234 */ 235 pte_t *huge_pte_offset(struct mm_struct *mm, 236 unsigned long addr, unsigned long sz); 237 unsigned long hugetlb_mask_last_page(struct hstate *h); 238 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 239 unsigned long addr, pte_t *ptep); 240 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 241 unsigned long *start, unsigned long *end); 242 243 extern void __hugetlb_zap_begin(struct vm_area_struct *vma, 244 unsigned long *begin, unsigned long *end); 245 extern void __hugetlb_zap_end(struct vm_area_struct *vma, 246 struct zap_details *details); 247 248 static inline void hugetlb_zap_begin(struct vm_area_struct *vma, 249 unsigned long *start, unsigned long *end) 250 { 251 if (is_vm_hugetlb_page(vma)) 252 __hugetlb_zap_begin(vma, start, end); 253 } 254 255 static inline void hugetlb_zap_end(struct vm_area_struct *vma, 256 struct zap_details *details) 257 { 258 if (is_vm_hugetlb_page(vma)) 259 __hugetlb_zap_end(vma, details); 260 } 261 262 void hugetlb_vma_lock_read(struct vm_area_struct *vma); 263 void hugetlb_vma_unlock_read(struct vm_area_struct *vma); 264 void hugetlb_vma_lock_write(struct vm_area_struct *vma); 265 void hugetlb_vma_unlock_write(struct vm_area_struct *vma); 266 int hugetlb_vma_trylock_write(struct vm_area_struct *vma); 267 void hugetlb_vma_assert_locked(struct vm_area_struct *vma); 268 void hugetlb_vma_lock_release(struct kref *kref); 269 long hugetlb_change_protection(struct vm_area_struct *vma, 270 unsigned long address, unsigned long end, pgprot_t newprot, 271 unsigned long cp_flags); 272 bool is_hugetlb_entry_migration(pte_t pte); 273 bool is_hugetlb_entry_hwpoisoned(pte_t pte); 274 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma); 275 276 #else /* !CONFIG_HUGETLB_PAGE */ 277 278 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma) 279 { 280 } 281 282 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 283 { 284 } 285 286 static inline unsigned long hugetlb_total_pages(void) 287 { 288 return 0; 289 } 290 291 static inline struct address_space *hugetlb_folio_mapping_lock_write( 292 struct folio *folio) 293 { 294 return NULL; 295 } 296 297 static inline int huge_pmd_unshare(struct mm_struct *mm, 298 struct vm_area_struct *vma, 299 unsigned long addr, pte_t *ptep) 300 { 301 return 0; 302 } 303 304 static inline void adjust_range_if_pmd_sharing_possible( 305 struct vm_area_struct *vma, 306 unsigned long *start, unsigned long *end) 307 { 308 } 309 310 static inline void hugetlb_zap_begin( 311 struct vm_area_struct *vma, 312 unsigned long *start, unsigned long *end) 313 { 314 } 315 316 static inline void hugetlb_zap_end( 317 struct vm_area_struct *vma, 318 struct zap_details *details) 319 { 320 } 321 322 static inline int copy_hugetlb_page_range(struct mm_struct *dst, 323 struct mm_struct *src, 324 struct vm_area_struct *dst_vma, 325 struct vm_area_struct *src_vma) 326 { 327 BUG(); 328 return 0; 329 } 330 331 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma, 332 struct vm_area_struct *new_vma, 333 unsigned long old_addr, 334 unsigned long new_addr, 335 unsigned long len) 336 { 337 BUG(); 338 return 0; 339 } 340 341 static inline void hugetlb_report_meminfo(struct seq_file *m) 342 { 343 } 344 345 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid) 346 { 347 return 0; 348 } 349 350 static inline void hugetlb_show_meminfo_node(int nid) 351 { 352 } 353 354 static inline int prepare_hugepage_range(struct file *file, 355 unsigned long addr, unsigned long len) 356 { 357 return -EINVAL; 358 } 359 360 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma) 361 { 362 } 363 364 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 365 { 366 } 367 368 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma) 369 { 370 } 371 372 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 373 { 374 } 375 376 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 377 { 378 return 1; 379 } 380 381 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 382 { 383 } 384 385 static inline int is_hugepage_only_range(struct mm_struct *mm, 386 unsigned long addr, unsigned long len) 387 { 388 return 0; 389 } 390 391 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb, 392 unsigned long addr, unsigned long end, 393 unsigned long floor, unsigned long ceiling) 394 { 395 BUG(); 396 } 397 398 #ifdef CONFIG_USERFAULTFD 399 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 400 struct vm_area_struct *dst_vma, 401 unsigned long dst_addr, 402 unsigned long src_addr, 403 uffd_flags_t flags, 404 struct folio **foliop) 405 { 406 BUG(); 407 return 0; 408 } 409 #endif /* CONFIG_USERFAULTFD */ 410 411 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, 412 unsigned long sz) 413 { 414 return NULL; 415 } 416 417 static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list) 418 { 419 return false; 420 } 421 422 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 423 { 424 return 0; 425 } 426 427 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 428 bool *migratable_cleared) 429 { 430 return 0; 431 } 432 433 static inline void folio_putback_active_hugetlb(struct folio *folio) 434 { 435 } 436 437 static inline void move_hugetlb_state(struct folio *old_folio, 438 struct folio *new_folio, int reason) 439 { 440 } 441 442 static inline long hugetlb_change_protection( 443 struct vm_area_struct *vma, unsigned long address, 444 unsigned long end, pgprot_t newprot, 445 unsigned long cp_flags) 446 { 447 return 0; 448 } 449 450 static inline void __unmap_hugepage_range(struct mmu_gather *tlb, 451 struct vm_area_struct *vma, unsigned long start, 452 unsigned long end, struct page *ref_page, 453 zap_flags_t zap_flags) 454 { 455 BUG(); 456 } 457 458 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm, 459 struct vm_area_struct *vma, unsigned long address, 460 unsigned int flags) 461 { 462 BUG(); 463 return 0; 464 } 465 466 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { } 467 468 #endif /* !CONFIG_HUGETLB_PAGE */ 469 470 #ifndef pgd_write 471 static inline int pgd_write(pgd_t pgd) 472 { 473 BUG(); 474 return 0; 475 } 476 #endif 477 478 #define HUGETLB_ANON_FILE "anon_hugepage" 479 480 enum { 481 /* 482 * The file will be used as an shm file so shmfs accounting rules 483 * apply 484 */ 485 HUGETLB_SHMFS_INODE = 1, 486 /* 487 * The file is being created on the internal vfs mount and shmfs 488 * accounting rules do not apply 489 */ 490 HUGETLB_ANONHUGE_INODE = 2, 491 }; 492 493 #ifdef CONFIG_HUGETLBFS 494 struct hugetlbfs_sb_info { 495 long max_inodes; /* inodes allowed */ 496 long free_inodes; /* inodes free */ 497 spinlock_t stat_lock; 498 struct hstate *hstate; 499 struct hugepage_subpool *spool; 500 kuid_t uid; 501 kgid_t gid; 502 umode_t mode; 503 }; 504 505 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb) 506 { 507 return sb->s_fs_info; 508 } 509 510 struct hugetlbfs_inode_info { 511 struct inode vfs_inode; 512 unsigned int seals; 513 }; 514 515 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode) 516 { 517 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode); 518 } 519 520 extern const struct vm_operations_struct hugetlb_vm_ops; 521 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct, 522 int creat_flags, int page_size_log); 523 524 static inline bool is_file_hugepages(const struct file *file) 525 { 526 return file->f_op->fop_flags & FOP_HUGE_PAGES; 527 } 528 529 static inline struct hstate *hstate_inode(struct inode *i) 530 { 531 return HUGETLBFS_SB(i->i_sb)->hstate; 532 } 533 #else /* !CONFIG_HUGETLBFS */ 534 535 #define is_file_hugepages(file) false 536 static inline struct file * 537 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag, 538 int creat_flags, int page_size_log) 539 { 540 return ERR_PTR(-ENOSYS); 541 } 542 543 static inline struct hstate *hstate_inode(struct inode *i) 544 { 545 return NULL; 546 } 547 #endif /* !CONFIG_HUGETLBFS */ 548 549 unsigned long 550 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 551 unsigned long len, unsigned long pgoff, 552 unsigned long flags); 553 554 /* 555 * huegtlb page specific state flags. These flags are located in page.private 556 * of the hugetlb head page. Functions created via the below macros should be 557 * used to manipulate these flags. 558 * 559 * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at 560 * allocation time. Cleared when page is fully instantiated. Free 561 * routine checks flag to restore a reservation on error paths. 562 * Synchronization: Examined or modified by code that knows it has 563 * the only reference to page. i.e. After allocation but before use 564 * or when the page is being freed. 565 * HPG_migratable - Set after a newly allocated page is added to the page 566 * cache and/or page tables. Indicates the page is a candidate for 567 * migration. 568 * Synchronization: Initially set after new page allocation with no 569 * locking. When examined and modified during migration processing 570 * (isolate, migrate, putback) the hugetlb_lock is held. 571 * HPG_temporary - Set on a page that is temporarily allocated from the buddy 572 * allocator. Typically used for migration target pages when no pages 573 * are available in the pool. The hugetlb free page path will 574 * immediately free pages with this flag set to the buddy allocator. 575 * Synchronization: Can be set after huge page allocation from buddy when 576 * code knows it has only reference. All other examinations and 577 * modifications require hugetlb_lock. 578 * HPG_freed - Set when page is on the free lists. 579 * Synchronization: hugetlb_lock held for examination and modification. 580 * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed. 581 * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page 582 * that is not tracked by raw_hwp_page list. 583 */ 584 enum hugetlb_page_flags { 585 HPG_restore_reserve = 0, 586 HPG_migratable, 587 HPG_temporary, 588 HPG_freed, 589 HPG_vmemmap_optimized, 590 HPG_raw_hwp_unreliable, 591 __NR_HPAGEFLAGS, 592 }; 593 594 /* 595 * Macros to create test, set and clear function definitions for 596 * hugetlb specific page flags. 597 */ 598 #ifdef CONFIG_HUGETLB_PAGE 599 #define TESTHPAGEFLAG(uname, flname) \ 600 static __always_inline \ 601 bool folio_test_hugetlb_##flname(struct folio *folio) \ 602 { void *private = &folio->private; \ 603 return test_bit(HPG_##flname, private); \ 604 } 605 606 #define SETHPAGEFLAG(uname, flname) \ 607 static __always_inline \ 608 void folio_set_hugetlb_##flname(struct folio *folio) \ 609 { void *private = &folio->private; \ 610 set_bit(HPG_##flname, private); \ 611 } 612 613 #define CLEARHPAGEFLAG(uname, flname) \ 614 static __always_inline \ 615 void folio_clear_hugetlb_##flname(struct folio *folio) \ 616 { void *private = &folio->private; \ 617 clear_bit(HPG_##flname, private); \ 618 } 619 #else 620 #define TESTHPAGEFLAG(uname, flname) \ 621 static inline bool \ 622 folio_test_hugetlb_##flname(struct folio *folio) \ 623 { return 0; } 624 625 #define SETHPAGEFLAG(uname, flname) \ 626 static inline void \ 627 folio_set_hugetlb_##flname(struct folio *folio) \ 628 { } 629 630 #define CLEARHPAGEFLAG(uname, flname) \ 631 static inline void \ 632 folio_clear_hugetlb_##flname(struct folio *folio) \ 633 { } 634 #endif 635 636 #define HPAGEFLAG(uname, flname) \ 637 TESTHPAGEFLAG(uname, flname) \ 638 SETHPAGEFLAG(uname, flname) \ 639 CLEARHPAGEFLAG(uname, flname) \ 640 641 /* 642 * Create functions associated with hugetlb page flags 643 */ 644 HPAGEFLAG(RestoreReserve, restore_reserve) 645 HPAGEFLAG(Migratable, migratable) 646 HPAGEFLAG(Temporary, temporary) 647 HPAGEFLAG(Freed, freed) 648 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized) 649 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable) 650 651 #ifdef CONFIG_HUGETLB_PAGE 652 653 #define HSTATE_NAME_LEN 32 654 /* Defines one hugetlb page size */ 655 struct hstate { 656 struct mutex resize_lock; 657 struct lock_class_key resize_key; 658 int next_nid_to_alloc; 659 int next_nid_to_free; 660 unsigned int order; 661 unsigned int demote_order; 662 unsigned long mask; 663 unsigned long max_huge_pages; 664 unsigned long nr_huge_pages; 665 unsigned long free_huge_pages; 666 unsigned long resv_huge_pages; 667 unsigned long surplus_huge_pages; 668 unsigned long nr_overcommit_huge_pages; 669 struct list_head hugepage_activelist; 670 struct list_head hugepage_freelists[MAX_NUMNODES]; 671 unsigned int max_huge_pages_node[MAX_NUMNODES]; 672 unsigned int nr_huge_pages_node[MAX_NUMNODES]; 673 unsigned int free_huge_pages_node[MAX_NUMNODES]; 674 unsigned int surplus_huge_pages_node[MAX_NUMNODES]; 675 char name[HSTATE_NAME_LEN]; 676 }; 677 678 struct huge_bootmem_page { 679 struct list_head list; 680 struct hstate *hstate; 681 }; 682 683 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list); 684 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 685 unsigned long addr, int avoid_reserve); 686 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 687 nodemask_t *nmask, gfp_t gfp_mask, 688 bool allow_alloc_fallback); 689 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 690 nodemask_t *nmask, gfp_t gfp_mask); 691 692 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 693 pgoff_t idx); 694 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 695 unsigned long address, struct folio *folio); 696 697 /* arch callback */ 698 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid); 699 int __init alloc_bootmem_huge_page(struct hstate *h, int nid); 700 bool __init hugetlb_node_alloc_supported(void); 701 702 void __init hugetlb_add_hstate(unsigned order); 703 bool __init arch_hugetlb_valid_size(unsigned long size); 704 struct hstate *size_to_hstate(unsigned long size); 705 706 #ifndef HUGE_MAX_HSTATE 707 #define HUGE_MAX_HSTATE 1 708 #endif 709 710 extern struct hstate hstates[HUGE_MAX_HSTATE]; 711 extern unsigned int default_hstate_idx; 712 713 #define default_hstate (hstates[default_hstate_idx]) 714 715 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio) 716 { 717 return folio->_hugetlb_subpool; 718 } 719 720 static inline void hugetlb_set_folio_subpool(struct folio *folio, 721 struct hugepage_subpool *subpool) 722 { 723 folio->_hugetlb_subpool = subpool; 724 } 725 726 static inline struct hstate *hstate_file(struct file *f) 727 { 728 return hstate_inode(file_inode(f)); 729 } 730 731 static inline struct hstate *hstate_sizelog(int page_size_log) 732 { 733 if (!page_size_log) 734 return &default_hstate; 735 736 if (page_size_log < BITS_PER_LONG) 737 return size_to_hstate(1UL << page_size_log); 738 739 return NULL; 740 } 741 742 static inline struct hstate *hstate_vma(struct vm_area_struct *vma) 743 { 744 return hstate_file(vma->vm_file); 745 } 746 747 static inline unsigned long huge_page_size(const struct hstate *h) 748 { 749 return (unsigned long)PAGE_SIZE << h->order; 750 } 751 752 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma); 753 754 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma); 755 756 static inline unsigned long huge_page_mask(struct hstate *h) 757 { 758 return h->mask; 759 } 760 761 static inline unsigned int huge_page_order(struct hstate *h) 762 { 763 return h->order; 764 } 765 766 static inline unsigned huge_page_shift(struct hstate *h) 767 { 768 return h->order + PAGE_SHIFT; 769 } 770 771 static inline bool hstate_is_gigantic(struct hstate *h) 772 { 773 return huge_page_order(h) > MAX_PAGE_ORDER; 774 } 775 776 static inline unsigned int pages_per_huge_page(const struct hstate *h) 777 { 778 return 1 << h->order; 779 } 780 781 static inline unsigned int blocks_per_huge_page(struct hstate *h) 782 { 783 return huge_page_size(h) / 512; 784 } 785 786 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h, 787 struct address_space *mapping, pgoff_t idx) 788 { 789 return filemap_lock_folio(mapping, idx << huge_page_order(h)); 790 } 791 792 #include <asm/hugetlb.h> 793 794 #ifndef is_hugepage_only_range 795 static inline int is_hugepage_only_range(struct mm_struct *mm, 796 unsigned long addr, unsigned long len) 797 { 798 return 0; 799 } 800 #define is_hugepage_only_range is_hugepage_only_range 801 #endif 802 803 #ifndef arch_clear_hugetlb_flags 804 static inline void arch_clear_hugetlb_flags(struct folio *folio) { } 805 #define arch_clear_hugetlb_flags arch_clear_hugetlb_flags 806 #endif 807 808 #ifndef arch_make_huge_pte 809 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift, 810 vm_flags_t flags) 811 { 812 return pte_mkhuge(entry); 813 } 814 #endif 815 816 static inline struct hstate *folio_hstate(struct folio *folio) 817 { 818 VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio); 819 return size_to_hstate(folio_size(folio)); 820 } 821 822 static inline unsigned hstate_index_to_shift(unsigned index) 823 { 824 return hstates[index].order + PAGE_SHIFT; 825 } 826 827 static inline int hstate_index(struct hstate *h) 828 { 829 return h - hstates; 830 } 831 832 int dissolve_free_hugetlb_folio(struct folio *folio); 833 int dissolve_free_hugetlb_folios(unsigned long start_pfn, 834 unsigned long end_pfn); 835 836 #ifdef CONFIG_MEMORY_FAILURE 837 extern void folio_clear_hugetlb_hwpoison(struct folio *folio); 838 #else 839 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio) 840 { 841 } 842 #endif 843 844 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION 845 #ifndef arch_hugetlb_migration_supported 846 static inline bool arch_hugetlb_migration_supported(struct hstate *h) 847 { 848 if ((huge_page_shift(h) == PMD_SHIFT) || 849 (huge_page_shift(h) == PUD_SHIFT) || 850 (huge_page_shift(h) == PGDIR_SHIFT)) 851 return true; 852 else 853 return false; 854 } 855 #endif 856 #else 857 static inline bool arch_hugetlb_migration_supported(struct hstate *h) 858 { 859 return false; 860 } 861 #endif 862 863 static inline bool hugepage_migration_supported(struct hstate *h) 864 { 865 return arch_hugetlb_migration_supported(h); 866 } 867 868 /* 869 * Movability check is different as compared to migration check. 870 * It determines whether or not a huge page should be placed on 871 * movable zone or not. Movability of any huge page should be 872 * required only if huge page size is supported for migration. 873 * There won't be any reason for the huge page to be movable if 874 * it is not migratable to start with. Also the size of the huge 875 * page should be large enough to be placed under a movable zone 876 * and still feasible enough to be migratable. Just the presence 877 * in movable zone does not make the migration feasible. 878 * 879 * So even though large huge page sizes like the gigantic ones 880 * are migratable they should not be movable because its not 881 * feasible to migrate them from movable zone. 882 */ 883 static inline bool hugepage_movable_supported(struct hstate *h) 884 { 885 if (!hugepage_migration_supported(h)) 886 return false; 887 888 if (hstate_is_gigantic(h)) 889 return false; 890 return true; 891 } 892 893 /* Movability of hugepages depends on migration support. */ 894 static inline gfp_t htlb_alloc_mask(struct hstate *h) 895 { 896 gfp_t gfp = __GFP_COMP | __GFP_NOWARN; 897 898 gfp |= hugepage_movable_supported(h) ? GFP_HIGHUSER_MOVABLE : GFP_HIGHUSER; 899 900 return gfp; 901 } 902 903 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask) 904 { 905 gfp_t modified_mask = htlb_alloc_mask(h); 906 907 /* Some callers might want to enforce node */ 908 modified_mask |= (gfp_mask & __GFP_THISNODE); 909 910 modified_mask |= (gfp_mask & __GFP_NOWARN); 911 912 return modified_mask; 913 } 914 915 static inline bool htlb_allow_alloc_fallback(int reason) 916 { 917 bool allowed_fallback = false; 918 919 /* 920 * Note: the memory offline, memory failure and migration syscalls will 921 * be allowed to fallback to other nodes due to lack of a better chioce, 922 * that might break the per-node hugetlb pool. While other cases will 923 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool. 924 */ 925 switch (reason) { 926 case MR_MEMORY_HOTPLUG: 927 case MR_MEMORY_FAILURE: 928 case MR_SYSCALL: 929 case MR_MEMPOLICY_MBIND: 930 allowed_fallback = true; 931 break; 932 default: 933 break; 934 } 935 936 return allowed_fallback; 937 } 938 939 static inline spinlock_t *huge_pte_lockptr(struct hstate *h, 940 struct mm_struct *mm, pte_t *pte) 941 { 942 const unsigned long size = huge_page_size(h); 943 944 VM_WARN_ON(size == PAGE_SIZE); 945 946 /* 947 * hugetlb must use the exact same PT locks as core-mm page table 948 * walkers would. When modifying a PTE table, hugetlb must take the 949 * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD 950 * PT lock etc. 951 * 952 * The expectation is that any hugetlb folio smaller than a PMD is 953 * always mapped into a single PTE table and that any hugetlb folio 954 * smaller than a PUD (but at least as big as a PMD) is always mapped 955 * into a single PMD table. 956 * 957 * If that does not hold for an architecture, then that architecture 958 * must disable split PT locks such that all *_lockptr() functions 959 * will give us the same result: the per-MM PT lock. 960 * 961 * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where 962 * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr() 963 * and core-mm would use pmd_lockptr(). However, in such configurations 964 * split PMD locks are disabled -- they don't make sense on a single 965 * PGDIR page table -- and the end result is the same. 966 */ 967 if (size >= PUD_SIZE) 968 return pud_lockptr(mm, (pud_t *) pte); 969 else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE)) 970 return pmd_lockptr(mm, (pmd_t *) pte); 971 /* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */ 972 return ptep_lockptr(mm, pte); 973 } 974 975 #ifndef hugepages_supported 976 /* 977 * Some platform decide whether they support huge pages at boot 978 * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0 979 * when there is no such support 980 */ 981 #define hugepages_supported() (HPAGE_SHIFT != 0) 982 #endif 983 984 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm); 985 986 static inline void hugetlb_count_init(struct mm_struct *mm) 987 { 988 atomic_long_set(&mm->hugetlb_usage, 0); 989 } 990 991 static inline void hugetlb_count_add(long l, struct mm_struct *mm) 992 { 993 atomic_long_add(l, &mm->hugetlb_usage); 994 } 995 996 static inline void hugetlb_count_sub(long l, struct mm_struct *mm) 997 { 998 atomic_long_sub(l, &mm->hugetlb_usage); 999 } 1000 1001 #ifndef huge_ptep_modify_prot_start 1002 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start 1003 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma, 1004 unsigned long addr, pte_t *ptep) 1005 { 1006 return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep); 1007 } 1008 #endif 1009 1010 #ifndef huge_ptep_modify_prot_commit 1011 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit 1012 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma, 1013 unsigned long addr, pte_t *ptep, 1014 pte_t old_pte, pte_t pte) 1015 { 1016 unsigned long psize = huge_page_size(hstate_vma(vma)); 1017 1018 set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize); 1019 } 1020 #endif 1021 1022 #ifdef CONFIG_NUMA 1023 void hugetlb_register_node(struct node *node); 1024 void hugetlb_unregister_node(struct node *node); 1025 #endif 1026 1027 /* 1028 * Check if a given raw @page in a hugepage is HWPOISON. 1029 */ 1030 bool is_raw_hwpoison_page_in_hugepage(struct page *page); 1031 1032 static inline unsigned long huge_page_mask_align(struct file *file) 1033 { 1034 return PAGE_MASK & ~huge_page_mask(hstate_file(file)); 1035 } 1036 1037 #else /* CONFIG_HUGETLB_PAGE */ 1038 struct hstate {}; 1039 1040 static inline unsigned long huge_page_mask_align(struct file *file) 1041 { 1042 return 0; 1043 } 1044 1045 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio) 1046 { 1047 return NULL; 1048 } 1049 1050 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h, 1051 struct address_space *mapping, pgoff_t idx) 1052 { 1053 return NULL; 1054 } 1055 1056 static inline int isolate_or_dissolve_huge_page(struct page *page, 1057 struct list_head *list) 1058 { 1059 return -ENOMEM; 1060 } 1061 1062 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 1063 unsigned long addr, 1064 int avoid_reserve) 1065 { 1066 return NULL; 1067 } 1068 1069 static inline struct folio * 1070 alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 1071 nodemask_t *nmask, gfp_t gfp_mask) 1072 { 1073 return NULL; 1074 } 1075 1076 static inline struct folio * 1077 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 1078 nodemask_t *nmask, gfp_t gfp_mask, 1079 bool allow_alloc_fallback) 1080 { 1081 return NULL; 1082 } 1083 1084 static inline int __alloc_bootmem_huge_page(struct hstate *h) 1085 { 1086 return 0; 1087 } 1088 1089 static inline struct hstate *hstate_file(struct file *f) 1090 { 1091 return NULL; 1092 } 1093 1094 static inline struct hstate *hstate_sizelog(int page_size_log) 1095 { 1096 return NULL; 1097 } 1098 1099 static inline struct hstate *hstate_vma(struct vm_area_struct *vma) 1100 { 1101 return NULL; 1102 } 1103 1104 static inline struct hstate *folio_hstate(struct folio *folio) 1105 { 1106 return NULL; 1107 } 1108 1109 static inline struct hstate *size_to_hstate(unsigned long size) 1110 { 1111 return NULL; 1112 } 1113 1114 static inline unsigned long huge_page_size(struct hstate *h) 1115 { 1116 return PAGE_SIZE; 1117 } 1118 1119 static inline unsigned long huge_page_mask(struct hstate *h) 1120 { 1121 return PAGE_MASK; 1122 } 1123 1124 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1125 { 1126 return PAGE_SIZE; 1127 } 1128 1129 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1130 { 1131 return PAGE_SIZE; 1132 } 1133 1134 static inline unsigned int huge_page_order(struct hstate *h) 1135 { 1136 return 0; 1137 } 1138 1139 static inline unsigned int huge_page_shift(struct hstate *h) 1140 { 1141 return PAGE_SHIFT; 1142 } 1143 1144 static inline bool hstate_is_gigantic(struct hstate *h) 1145 { 1146 return false; 1147 } 1148 1149 static inline unsigned int pages_per_huge_page(struct hstate *h) 1150 { 1151 return 1; 1152 } 1153 1154 static inline unsigned hstate_index_to_shift(unsigned index) 1155 { 1156 return 0; 1157 } 1158 1159 static inline int hstate_index(struct hstate *h) 1160 { 1161 return 0; 1162 } 1163 1164 static inline int dissolve_free_hugetlb_folio(struct folio *folio) 1165 { 1166 return 0; 1167 } 1168 1169 static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn, 1170 unsigned long end_pfn) 1171 { 1172 return 0; 1173 } 1174 1175 static inline bool hugepage_migration_supported(struct hstate *h) 1176 { 1177 return false; 1178 } 1179 1180 static inline bool hugepage_movable_supported(struct hstate *h) 1181 { 1182 return false; 1183 } 1184 1185 static inline gfp_t htlb_alloc_mask(struct hstate *h) 1186 { 1187 return 0; 1188 } 1189 1190 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask) 1191 { 1192 return 0; 1193 } 1194 1195 static inline bool htlb_allow_alloc_fallback(int reason) 1196 { 1197 return false; 1198 } 1199 1200 static inline spinlock_t *huge_pte_lockptr(struct hstate *h, 1201 struct mm_struct *mm, pte_t *pte) 1202 { 1203 return &mm->page_table_lock; 1204 } 1205 1206 static inline void hugetlb_count_init(struct mm_struct *mm) 1207 { 1208 } 1209 1210 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m) 1211 { 1212 } 1213 1214 static inline void hugetlb_count_sub(long l, struct mm_struct *mm) 1215 { 1216 } 1217 1218 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma, 1219 unsigned long addr, pte_t *ptep) 1220 { 1221 #ifdef CONFIG_MMU 1222 return ptep_get(ptep); 1223 #else 1224 return *ptep; 1225 #endif 1226 } 1227 1228 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, 1229 pte_t *ptep, pte_t pte, unsigned long sz) 1230 { 1231 } 1232 1233 static inline void hugetlb_register_node(struct node *node) 1234 { 1235 } 1236 1237 static inline void hugetlb_unregister_node(struct node *node) 1238 { 1239 } 1240 1241 static inline bool hugetlbfs_pagecache_present( 1242 struct hstate *h, struct vm_area_struct *vma, unsigned long address) 1243 { 1244 return false; 1245 } 1246 #endif /* CONFIG_HUGETLB_PAGE */ 1247 1248 static inline spinlock_t *huge_pte_lock(struct hstate *h, 1249 struct mm_struct *mm, pte_t *pte) 1250 { 1251 spinlock_t *ptl; 1252 1253 ptl = huge_pte_lockptr(h, mm, pte); 1254 spin_lock(ptl); 1255 return ptl; 1256 } 1257 1258 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA) 1259 extern void __init hugetlb_cma_reserve(int order); 1260 #else 1261 static inline __init void hugetlb_cma_reserve(int order) 1262 { 1263 } 1264 #endif 1265 1266 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 1267 static inline bool hugetlb_pmd_shared(pte_t *pte) 1268 { 1269 return page_count(virt_to_page(pte)) > 1; 1270 } 1271 #else 1272 static inline bool hugetlb_pmd_shared(pte_t *pte) 1273 { 1274 return false; 1275 } 1276 #endif 1277 1278 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr); 1279 1280 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 1281 /* 1282 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 1283 * implement this. 1284 */ 1285 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1286 #endif 1287 1288 static inline bool __vma_shareable_lock(struct vm_area_struct *vma) 1289 { 1290 return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data; 1291 } 1292 1293 bool __vma_private_lock(struct vm_area_struct *vma); 1294 1295 /* 1296 * Safe version of huge_pte_offset() to check the locks. See comments 1297 * above huge_pte_offset(). 1298 */ 1299 static inline pte_t * 1300 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz) 1301 { 1302 #if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP) 1303 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1304 1305 /* 1306 * If pmd sharing possible, locking needed to safely walk the 1307 * hugetlb pgtables. More information can be found at the comment 1308 * above huge_pte_offset() in the same file. 1309 * 1310 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP. 1311 */ 1312 if (__vma_shareable_lock(vma)) 1313 WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) && 1314 !lockdep_is_held( 1315 &vma->vm_file->f_mapping->i_mmap_rwsem)); 1316 #endif 1317 return huge_pte_offset(vma->vm_mm, addr, sz); 1318 } 1319 1320 #endif /* _LINUX_HUGETLB_H */ 1321