1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_HUGETLB_H 3 #define _LINUX_HUGETLB_H 4 5 #include <linux/mm.h> 6 #include <linux/mm_types.h> 7 #include <linux/mmdebug.h> 8 #include <linux/fs.h> 9 #include <linux/hugetlb_inline.h> 10 #include <linux/cgroup.h> 11 #include <linux/page_ref.h> 12 #include <linux/list.h> 13 #include <linux/kref.h> 14 #include <linux/pgtable.h> 15 #include <linux/gfp.h> 16 #include <linux/userfaultfd_k.h> 17 18 struct ctl_table; 19 struct user_struct; 20 struct mmu_gather; 21 struct node; 22 23 #ifndef CONFIG_ARCH_HAS_HUGEPD 24 typedef struct { unsigned long pd; } hugepd_t; 25 #define is_hugepd(hugepd) (0) 26 #define __hugepd(x) ((hugepd_t) { (x) }) 27 #endif 28 29 #ifdef CONFIG_HUGETLB_PAGE 30 31 #include <linux/mempolicy.h> 32 #include <linux/shm.h> 33 #include <asm/tlbflush.h> 34 35 /* 36 * For HugeTLB page, there are more metadata to save in the struct page. But 37 * the head struct page cannot meet our needs, so we have to abuse other tail 38 * struct page to store the metadata. 39 */ 40 #define __NR_USED_SUBPAGE 3 41 42 struct hugepage_subpool { 43 spinlock_t lock; 44 long count; 45 long max_hpages; /* Maximum huge pages or -1 if no maximum. */ 46 long used_hpages; /* Used count against maximum, includes */ 47 /* both allocated and reserved pages. */ 48 struct hstate *hstate; 49 long min_hpages; /* Minimum huge pages or -1 if no minimum. */ 50 long rsv_hpages; /* Pages reserved against global pool to */ 51 /* satisfy minimum size. */ 52 }; 53 54 struct resv_map { 55 struct kref refs; 56 spinlock_t lock; 57 struct list_head regions; 58 long adds_in_progress; 59 struct list_head region_cache; 60 long region_cache_count; 61 #ifdef CONFIG_CGROUP_HUGETLB 62 /* 63 * On private mappings, the counter to uncharge reservations is stored 64 * here. If these fields are 0, then either the mapping is shared, or 65 * cgroup accounting is disabled for this resv_map. 66 */ 67 struct page_counter *reservation_counter; 68 unsigned long pages_per_hpage; 69 struct cgroup_subsys_state *css; 70 #endif 71 }; 72 73 /* 74 * Region tracking -- allows tracking of reservations and instantiated pages 75 * across the pages in a mapping. 76 * 77 * The region data structures are embedded into a resv_map and protected 78 * by a resv_map's lock. The set of regions within the resv_map represent 79 * reservations for huge pages, or huge pages that have already been 80 * instantiated within the map. The from and to elements are huge page 81 * indices into the associated mapping. from indicates the starting index 82 * of the region. to represents the first index past the end of the region. 83 * 84 * For example, a file region structure with from == 0 and to == 4 represents 85 * four huge pages in a mapping. It is important to note that the to element 86 * represents the first element past the end of the region. This is used in 87 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 88 * 89 * Interval notation of the form [from, to) will be used to indicate that 90 * the endpoint from is inclusive and to is exclusive. 91 */ 92 struct file_region { 93 struct list_head link; 94 long from; 95 long to; 96 #ifdef CONFIG_CGROUP_HUGETLB 97 /* 98 * On shared mappings, each reserved region appears as a struct 99 * file_region in resv_map. These fields hold the info needed to 100 * uncharge each reservation. 101 */ 102 struct page_counter *reservation_counter; 103 struct cgroup_subsys_state *css; 104 #endif 105 }; 106 107 struct hugetlb_vma_lock { 108 struct kref refs; 109 struct rw_semaphore rw_sema; 110 struct vm_area_struct *vma; 111 }; 112 113 extern struct resv_map *resv_map_alloc(void); 114 void resv_map_release(struct kref *ref); 115 116 extern spinlock_t hugetlb_lock; 117 extern int hugetlb_max_hstate __read_mostly; 118 #define for_each_hstate(h) \ 119 for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++) 120 121 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 122 long min_hpages); 123 void hugepage_put_subpool(struct hugepage_subpool *spool); 124 125 void hugetlb_dup_vma_private(struct vm_area_struct *vma); 126 void clear_vma_resv_huge_pages(struct vm_area_struct *vma); 127 int move_hugetlb_page_tables(struct vm_area_struct *vma, 128 struct vm_area_struct *new_vma, 129 unsigned long old_addr, unsigned long new_addr, 130 unsigned long len); 131 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *, 132 struct vm_area_struct *, struct vm_area_struct *); 133 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 134 unsigned long address, unsigned int flags); 135 long follow_hugetlb_page(struct mm_struct *, struct vm_area_struct *, 136 struct page **, struct vm_area_struct **, 137 unsigned long *, unsigned long *, long, unsigned int, 138 int *); 139 void unmap_hugepage_range(struct vm_area_struct *, 140 unsigned long, unsigned long, struct page *, 141 zap_flags_t); 142 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 143 struct vm_area_struct *vma, 144 unsigned long start, unsigned long end, 145 struct page *ref_page, zap_flags_t zap_flags); 146 void hugetlb_report_meminfo(struct seq_file *); 147 int hugetlb_report_node_meminfo(char *buf, int len, int nid); 148 void hugetlb_show_meminfo_node(int nid); 149 unsigned long hugetlb_total_pages(void); 150 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 151 unsigned long address, unsigned int flags); 152 #ifdef CONFIG_USERFAULTFD 153 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 154 struct vm_area_struct *dst_vma, 155 unsigned long dst_addr, 156 unsigned long src_addr, 157 uffd_flags_t flags, 158 struct folio **foliop); 159 #endif /* CONFIG_USERFAULTFD */ 160 bool hugetlb_reserve_pages(struct inode *inode, long from, long to, 161 struct vm_area_struct *vma, 162 vm_flags_t vm_flags); 163 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 164 long freed); 165 bool isolate_hugetlb(struct folio *folio, struct list_head *list); 166 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison); 167 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 168 bool *migratable_cleared); 169 void folio_putback_active_hugetlb(struct folio *folio); 170 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason); 171 void free_huge_page(struct page *page); 172 void hugetlb_fix_reserve_counts(struct inode *inode); 173 extern struct mutex *hugetlb_fault_mutex_table; 174 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx); 175 176 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 177 unsigned long addr, pud_t *pud); 178 179 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage); 180 181 extern int sysctl_hugetlb_shm_group; 182 extern struct list_head huge_boot_pages; 183 184 /* arch callbacks */ 185 186 #ifndef CONFIG_HIGHPTE 187 /* 188 * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures 189 * which may go down to the lowest PTE level in their huge_pte_offset() and 190 * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap(). 191 */ 192 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address) 193 { 194 return pte_offset_kernel(pmd, address); 195 } 196 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd, 197 unsigned long address) 198 { 199 return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address); 200 } 201 #endif 202 203 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 204 unsigned long addr, unsigned long sz); 205 /* 206 * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE. 207 * Returns the pte_t* if found, or NULL if the address is not mapped. 208 * 209 * IMPORTANT: we should normally not directly call this function, instead 210 * this is only a common interface to implement arch-specific 211 * walker. Please use hugetlb_walk() instead, because that will attempt to 212 * verify the locking for you. 213 * 214 * Since this function will walk all the pgtable pages (including not only 215 * high-level pgtable page, but also PUD entry that can be unshared 216 * concurrently for VM_SHARED), the caller of this function should be 217 * responsible of its thread safety. One can follow this rule: 218 * 219 * (1) For private mappings: pmd unsharing is not possible, so holding the 220 * mmap_lock for either read or write is sufficient. Most callers 221 * already hold the mmap_lock, so normally, no special action is 222 * required. 223 * 224 * (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged 225 * pgtable page can go away from under us! It can be done by a pmd 226 * unshare with a follow up munmap() on the other process), then we 227 * need either: 228 * 229 * (2.1) hugetlb vma lock read or write held, to make sure pmd unshare 230 * won't happen upon the range (it also makes sure the pte_t we 231 * read is the right and stable one), or, 232 * 233 * (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make 234 * sure even if unshare happened the racy unmap() will wait until 235 * i_mmap_rwsem is released. 236 * 237 * Option (2.1) is the safest, which guarantees pte stability from pmd 238 * sharing pov, until the vma lock released. Option (2.2) doesn't protect 239 * a concurrent pmd unshare, but it makes sure the pgtable page is safe to 240 * access. 241 */ 242 pte_t *huge_pte_offset(struct mm_struct *mm, 243 unsigned long addr, unsigned long sz); 244 unsigned long hugetlb_mask_last_page(struct hstate *h); 245 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 246 unsigned long addr, pte_t *ptep); 247 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 248 unsigned long *start, unsigned long *end); 249 250 void hugetlb_vma_lock_read(struct vm_area_struct *vma); 251 void hugetlb_vma_unlock_read(struct vm_area_struct *vma); 252 void hugetlb_vma_lock_write(struct vm_area_struct *vma); 253 void hugetlb_vma_unlock_write(struct vm_area_struct *vma); 254 int hugetlb_vma_trylock_write(struct vm_area_struct *vma); 255 void hugetlb_vma_assert_locked(struct vm_area_struct *vma); 256 void hugetlb_vma_lock_release(struct kref *kref); 257 258 int pmd_huge(pmd_t pmd); 259 int pud_huge(pud_t pud); 260 long hugetlb_change_protection(struct vm_area_struct *vma, 261 unsigned long address, unsigned long end, pgprot_t newprot, 262 unsigned long cp_flags); 263 264 bool is_hugetlb_entry_migration(pte_t pte); 265 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma); 266 267 #else /* !CONFIG_HUGETLB_PAGE */ 268 269 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma) 270 { 271 } 272 273 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 274 { 275 } 276 277 static inline unsigned long hugetlb_total_pages(void) 278 { 279 return 0; 280 } 281 282 static inline struct address_space *hugetlb_page_mapping_lock_write( 283 struct page *hpage) 284 { 285 return NULL; 286 } 287 288 static inline int huge_pmd_unshare(struct mm_struct *mm, 289 struct vm_area_struct *vma, 290 unsigned long addr, pte_t *ptep) 291 { 292 return 0; 293 } 294 295 static inline void adjust_range_if_pmd_sharing_possible( 296 struct vm_area_struct *vma, 297 unsigned long *start, unsigned long *end) 298 { 299 } 300 301 static inline struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 302 unsigned long address, unsigned int flags) 303 { 304 BUILD_BUG(); /* should never be compiled in if !CONFIG_HUGETLB_PAGE*/ 305 } 306 307 static inline long follow_hugetlb_page(struct mm_struct *mm, 308 struct vm_area_struct *vma, struct page **pages, 309 struct vm_area_struct **vmas, unsigned long *position, 310 unsigned long *nr_pages, long i, unsigned int flags, 311 int *nonblocking) 312 { 313 BUG(); 314 return 0; 315 } 316 317 static inline int copy_hugetlb_page_range(struct mm_struct *dst, 318 struct mm_struct *src, 319 struct vm_area_struct *dst_vma, 320 struct vm_area_struct *src_vma) 321 { 322 BUG(); 323 return 0; 324 } 325 326 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma, 327 struct vm_area_struct *new_vma, 328 unsigned long old_addr, 329 unsigned long new_addr, 330 unsigned long len) 331 { 332 BUG(); 333 return 0; 334 } 335 336 static inline void hugetlb_report_meminfo(struct seq_file *m) 337 { 338 } 339 340 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid) 341 { 342 return 0; 343 } 344 345 static inline void hugetlb_show_meminfo_node(int nid) 346 { 347 } 348 349 static inline int prepare_hugepage_range(struct file *file, 350 unsigned long addr, unsigned long len) 351 { 352 return -EINVAL; 353 } 354 355 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma) 356 { 357 } 358 359 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 360 { 361 } 362 363 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma) 364 { 365 } 366 367 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 368 { 369 } 370 371 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 372 { 373 return 1; 374 } 375 376 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 377 { 378 } 379 380 static inline int pmd_huge(pmd_t pmd) 381 { 382 return 0; 383 } 384 385 static inline int pud_huge(pud_t pud) 386 { 387 return 0; 388 } 389 390 static inline int is_hugepage_only_range(struct mm_struct *mm, 391 unsigned long addr, unsigned long len) 392 { 393 return 0; 394 } 395 396 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb, 397 unsigned long addr, unsigned long end, 398 unsigned long floor, unsigned long ceiling) 399 { 400 BUG(); 401 } 402 403 #ifdef CONFIG_USERFAULTFD 404 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 405 struct vm_area_struct *dst_vma, 406 unsigned long dst_addr, 407 unsigned long src_addr, 408 uffd_flags_t flags, 409 struct folio **foliop) 410 { 411 BUG(); 412 return 0; 413 } 414 #endif /* CONFIG_USERFAULTFD */ 415 416 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, 417 unsigned long sz) 418 { 419 return NULL; 420 } 421 422 static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list) 423 { 424 return false; 425 } 426 427 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 428 { 429 return 0; 430 } 431 432 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 433 bool *migratable_cleared) 434 { 435 return 0; 436 } 437 438 static inline void folio_putback_active_hugetlb(struct folio *folio) 439 { 440 } 441 442 static inline void move_hugetlb_state(struct folio *old_folio, 443 struct folio *new_folio, int reason) 444 { 445 } 446 447 static inline long hugetlb_change_protection( 448 struct vm_area_struct *vma, unsigned long address, 449 unsigned long end, pgprot_t newprot, 450 unsigned long cp_flags) 451 { 452 return 0; 453 } 454 455 static inline void __unmap_hugepage_range_final(struct mmu_gather *tlb, 456 struct vm_area_struct *vma, unsigned long start, 457 unsigned long end, struct page *ref_page, 458 zap_flags_t zap_flags) 459 { 460 BUG(); 461 } 462 463 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm, 464 struct vm_area_struct *vma, unsigned long address, 465 unsigned int flags) 466 { 467 BUG(); 468 return 0; 469 } 470 471 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { } 472 473 #endif /* !CONFIG_HUGETLB_PAGE */ 474 /* 475 * hugepages at page global directory. If arch support 476 * hugepages at pgd level, they need to define this. 477 */ 478 #ifndef pgd_huge 479 #define pgd_huge(x) 0 480 #endif 481 #ifndef p4d_huge 482 #define p4d_huge(x) 0 483 #endif 484 485 #ifndef pgd_write 486 static inline int pgd_write(pgd_t pgd) 487 { 488 BUG(); 489 return 0; 490 } 491 #endif 492 493 #define HUGETLB_ANON_FILE "anon_hugepage" 494 495 enum { 496 /* 497 * The file will be used as an shm file so shmfs accounting rules 498 * apply 499 */ 500 HUGETLB_SHMFS_INODE = 1, 501 /* 502 * The file is being created on the internal vfs mount and shmfs 503 * accounting rules do not apply 504 */ 505 HUGETLB_ANONHUGE_INODE = 2, 506 }; 507 508 #ifdef CONFIG_HUGETLBFS 509 struct hugetlbfs_sb_info { 510 long max_inodes; /* inodes allowed */ 511 long free_inodes; /* inodes free */ 512 spinlock_t stat_lock; 513 struct hstate *hstate; 514 struct hugepage_subpool *spool; 515 kuid_t uid; 516 kgid_t gid; 517 umode_t mode; 518 }; 519 520 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb) 521 { 522 return sb->s_fs_info; 523 } 524 525 struct hugetlbfs_inode_info { 526 struct shared_policy policy; 527 struct inode vfs_inode; 528 unsigned int seals; 529 }; 530 531 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode) 532 { 533 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode); 534 } 535 536 extern const struct file_operations hugetlbfs_file_operations; 537 extern const struct vm_operations_struct hugetlb_vm_ops; 538 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct, 539 int creat_flags, int page_size_log); 540 541 static inline bool is_file_hugepages(struct file *file) 542 { 543 if (file->f_op == &hugetlbfs_file_operations) 544 return true; 545 546 return is_file_shm_hugepages(file); 547 } 548 549 static inline struct hstate *hstate_inode(struct inode *i) 550 { 551 return HUGETLBFS_SB(i->i_sb)->hstate; 552 } 553 #else /* !CONFIG_HUGETLBFS */ 554 555 #define is_file_hugepages(file) false 556 static inline struct file * 557 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag, 558 int creat_flags, int page_size_log) 559 { 560 return ERR_PTR(-ENOSYS); 561 } 562 563 static inline struct hstate *hstate_inode(struct inode *i) 564 { 565 return NULL; 566 } 567 #endif /* !CONFIG_HUGETLBFS */ 568 569 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 570 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 571 unsigned long len, unsigned long pgoff, 572 unsigned long flags); 573 #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */ 574 575 unsigned long 576 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 577 unsigned long len, unsigned long pgoff, 578 unsigned long flags); 579 580 /* 581 * huegtlb page specific state flags. These flags are located in page.private 582 * of the hugetlb head page. Functions created via the below macros should be 583 * used to manipulate these flags. 584 * 585 * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at 586 * allocation time. Cleared when page is fully instantiated. Free 587 * routine checks flag to restore a reservation on error paths. 588 * Synchronization: Examined or modified by code that knows it has 589 * the only reference to page. i.e. After allocation but before use 590 * or when the page is being freed. 591 * HPG_migratable - Set after a newly allocated page is added to the page 592 * cache and/or page tables. Indicates the page is a candidate for 593 * migration. 594 * Synchronization: Initially set after new page allocation with no 595 * locking. When examined and modified during migration processing 596 * (isolate, migrate, putback) the hugetlb_lock is held. 597 * HPG_temporary - Set on a page that is temporarily allocated from the buddy 598 * allocator. Typically used for migration target pages when no pages 599 * are available in the pool. The hugetlb free page path will 600 * immediately free pages with this flag set to the buddy allocator. 601 * Synchronization: Can be set after huge page allocation from buddy when 602 * code knows it has only reference. All other examinations and 603 * modifications require hugetlb_lock. 604 * HPG_freed - Set when page is on the free lists. 605 * Synchronization: hugetlb_lock held for examination and modification. 606 * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed. 607 * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page 608 * that is not tracked by raw_hwp_page list. 609 */ 610 enum hugetlb_page_flags { 611 HPG_restore_reserve = 0, 612 HPG_migratable, 613 HPG_temporary, 614 HPG_freed, 615 HPG_vmemmap_optimized, 616 HPG_raw_hwp_unreliable, 617 __NR_HPAGEFLAGS, 618 }; 619 620 /* 621 * Macros to create test, set and clear function definitions for 622 * hugetlb specific page flags. 623 */ 624 #ifdef CONFIG_HUGETLB_PAGE 625 #define TESTHPAGEFLAG(uname, flname) \ 626 static __always_inline \ 627 bool folio_test_hugetlb_##flname(struct folio *folio) \ 628 { void *private = &folio->private; \ 629 return test_bit(HPG_##flname, private); \ 630 } \ 631 static inline int HPage##uname(struct page *page) \ 632 { return test_bit(HPG_##flname, &(page->private)); } 633 634 #define SETHPAGEFLAG(uname, flname) \ 635 static __always_inline \ 636 void folio_set_hugetlb_##flname(struct folio *folio) \ 637 { void *private = &folio->private; \ 638 set_bit(HPG_##flname, private); \ 639 } \ 640 static inline void SetHPage##uname(struct page *page) \ 641 { set_bit(HPG_##flname, &(page->private)); } 642 643 #define CLEARHPAGEFLAG(uname, flname) \ 644 static __always_inline \ 645 void folio_clear_hugetlb_##flname(struct folio *folio) \ 646 { void *private = &folio->private; \ 647 clear_bit(HPG_##flname, private); \ 648 } \ 649 static inline void ClearHPage##uname(struct page *page) \ 650 { clear_bit(HPG_##flname, &(page->private)); } 651 #else 652 #define TESTHPAGEFLAG(uname, flname) \ 653 static inline bool \ 654 folio_test_hugetlb_##flname(struct folio *folio) \ 655 { return 0; } \ 656 static inline int HPage##uname(struct page *page) \ 657 { return 0; } 658 659 #define SETHPAGEFLAG(uname, flname) \ 660 static inline void \ 661 folio_set_hugetlb_##flname(struct folio *folio) \ 662 { } \ 663 static inline void SetHPage##uname(struct page *page) \ 664 { } 665 666 #define CLEARHPAGEFLAG(uname, flname) \ 667 static inline void \ 668 folio_clear_hugetlb_##flname(struct folio *folio) \ 669 { } \ 670 static inline void ClearHPage##uname(struct page *page) \ 671 { } 672 #endif 673 674 #define HPAGEFLAG(uname, flname) \ 675 TESTHPAGEFLAG(uname, flname) \ 676 SETHPAGEFLAG(uname, flname) \ 677 CLEARHPAGEFLAG(uname, flname) \ 678 679 /* 680 * Create functions associated with hugetlb page flags 681 */ 682 HPAGEFLAG(RestoreReserve, restore_reserve) 683 HPAGEFLAG(Migratable, migratable) 684 HPAGEFLAG(Temporary, temporary) 685 HPAGEFLAG(Freed, freed) 686 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized) 687 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable) 688 689 #ifdef CONFIG_HUGETLB_PAGE 690 691 #define HSTATE_NAME_LEN 32 692 /* Defines one hugetlb page size */ 693 struct hstate { 694 struct mutex resize_lock; 695 int next_nid_to_alloc; 696 int next_nid_to_free; 697 unsigned int order; 698 unsigned int demote_order; 699 unsigned long mask; 700 unsigned long max_huge_pages; 701 unsigned long nr_huge_pages; 702 unsigned long free_huge_pages; 703 unsigned long resv_huge_pages; 704 unsigned long surplus_huge_pages; 705 unsigned long nr_overcommit_huge_pages; 706 struct list_head hugepage_activelist; 707 struct list_head hugepage_freelists[MAX_NUMNODES]; 708 unsigned int max_huge_pages_node[MAX_NUMNODES]; 709 unsigned int nr_huge_pages_node[MAX_NUMNODES]; 710 unsigned int free_huge_pages_node[MAX_NUMNODES]; 711 unsigned int surplus_huge_pages_node[MAX_NUMNODES]; 712 #ifdef CONFIG_CGROUP_HUGETLB 713 /* cgroup control files */ 714 struct cftype cgroup_files_dfl[8]; 715 struct cftype cgroup_files_legacy[10]; 716 #endif 717 char name[HSTATE_NAME_LEN]; 718 }; 719 720 struct huge_bootmem_page { 721 struct list_head list; 722 struct hstate *hstate; 723 }; 724 725 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list); 726 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 727 unsigned long addr, int avoid_reserve); 728 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 729 nodemask_t *nmask, gfp_t gfp_mask); 730 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma, 731 unsigned long address); 732 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 733 pgoff_t idx); 734 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 735 unsigned long address, struct folio *folio); 736 737 /* arch callback */ 738 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid); 739 int __init alloc_bootmem_huge_page(struct hstate *h, int nid); 740 bool __init hugetlb_node_alloc_supported(void); 741 742 void __init hugetlb_add_hstate(unsigned order); 743 bool __init arch_hugetlb_valid_size(unsigned long size); 744 struct hstate *size_to_hstate(unsigned long size); 745 746 #ifndef HUGE_MAX_HSTATE 747 #define HUGE_MAX_HSTATE 1 748 #endif 749 750 extern struct hstate hstates[HUGE_MAX_HSTATE]; 751 extern unsigned int default_hstate_idx; 752 753 #define default_hstate (hstates[default_hstate_idx]) 754 755 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio) 756 { 757 return folio->_hugetlb_subpool; 758 } 759 760 /* 761 * hugetlb page subpool pointer located in hpage[2].hugetlb_subpool 762 */ 763 static inline struct hugepage_subpool *hugetlb_page_subpool(struct page *hpage) 764 { 765 return hugetlb_folio_subpool(page_folio(hpage)); 766 } 767 768 static inline void hugetlb_set_folio_subpool(struct folio *folio, 769 struct hugepage_subpool *subpool) 770 { 771 folio->_hugetlb_subpool = subpool; 772 } 773 774 static inline void hugetlb_set_page_subpool(struct page *hpage, 775 struct hugepage_subpool *subpool) 776 { 777 hugetlb_set_folio_subpool(page_folio(hpage), subpool); 778 } 779 780 static inline struct hstate *hstate_file(struct file *f) 781 { 782 return hstate_inode(file_inode(f)); 783 } 784 785 static inline struct hstate *hstate_sizelog(int page_size_log) 786 { 787 if (!page_size_log) 788 return &default_hstate; 789 790 if (page_size_log < BITS_PER_LONG) 791 return size_to_hstate(1UL << page_size_log); 792 793 return NULL; 794 } 795 796 static inline struct hstate *hstate_vma(struct vm_area_struct *vma) 797 { 798 return hstate_file(vma->vm_file); 799 } 800 801 static inline unsigned long huge_page_size(const struct hstate *h) 802 { 803 return (unsigned long)PAGE_SIZE << h->order; 804 } 805 806 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma); 807 808 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma); 809 810 static inline unsigned long huge_page_mask(struct hstate *h) 811 { 812 return h->mask; 813 } 814 815 static inline unsigned int huge_page_order(struct hstate *h) 816 { 817 return h->order; 818 } 819 820 static inline unsigned huge_page_shift(struct hstate *h) 821 { 822 return h->order + PAGE_SHIFT; 823 } 824 825 static inline bool hstate_is_gigantic(struct hstate *h) 826 { 827 return huge_page_order(h) > MAX_ORDER; 828 } 829 830 static inline unsigned int pages_per_huge_page(const struct hstate *h) 831 { 832 return 1 << h->order; 833 } 834 835 static inline unsigned int blocks_per_huge_page(struct hstate *h) 836 { 837 return huge_page_size(h) / 512; 838 } 839 840 #include <asm/hugetlb.h> 841 842 #ifndef is_hugepage_only_range 843 static inline int is_hugepage_only_range(struct mm_struct *mm, 844 unsigned long addr, unsigned long len) 845 { 846 return 0; 847 } 848 #define is_hugepage_only_range is_hugepage_only_range 849 #endif 850 851 #ifndef arch_clear_hugepage_flags 852 static inline void arch_clear_hugepage_flags(struct page *page) { } 853 #define arch_clear_hugepage_flags arch_clear_hugepage_flags 854 #endif 855 856 #ifndef arch_make_huge_pte 857 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift, 858 vm_flags_t flags) 859 { 860 return pte_mkhuge(entry); 861 } 862 #endif 863 864 static inline struct hstate *folio_hstate(struct folio *folio) 865 { 866 VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio); 867 return size_to_hstate(folio_size(folio)); 868 } 869 870 static inline struct hstate *page_hstate(struct page *page) 871 { 872 return folio_hstate(page_folio(page)); 873 } 874 875 static inline unsigned hstate_index_to_shift(unsigned index) 876 { 877 return hstates[index].order + PAGE_SHIFT; 878 } 879 880 static inline int hstate_index(struct hstate *h) 881 { 882 return h - hstates; 883 } 884 885 extern int dissolve_free_huge_page(struct page *page); 886 extern int dissolve_free_huge_pages(unsigned long start_pfn, 887 unsigned long end_pfn); 888 889 #ifdef CONFIG_MEMORY_FAILURE 890 extern void folio_clear_hugetlb_hwpoison(struct folio *folio); 891 #else 892 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio) 893 { 894 } 895 #endif 896 897 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION 898 #ifndef arch_hugetlb_migration_supported 899 static inline bool arch_hugetlb_migration_supported(struct hstate *h) 900 { 901 if ((huge_page_shift(h) == PMD_SHIFT) || 902 (huge_page_shift(h) == PUD_SHIFT) || 903 (huge_page_shift(h) == PGDIR_SHIFT)) 904 return true; 905 else 906 return false; 907 } 908 #endif 909 #else 910 static inline bool arch_hugetlb_migration_supported(struct hstate *h) 911 { 912 return false; 913 } 914 #endif 915 916 static inline bool hugepage_migration_supported(struct hstate *h) 917 { 918 return arch_hugetlb_migration_supported(h); 919 } 920 921 /* 922 * Movability check is different as compared to migration check. 923 * It determines whether or not a huge page should be placed on 924 * movable zone or not. Movability of any huge page should be 925 * required only if huge page size is supported for migration. 926 * There won't be any reason for the huge page to be movable if 927 * it is not migratable to start with. Also the size of the huge 928 * page should be large enough to be placed under a movable zone 929 * and still feasible enough to be migratable. Just the presence 930 * in movable zone does not make the migration feasible. 931 * 932 * So even though large huge page sizes like the gigantic ones 933 * are migratable they should not be movable because its not 934 * feasible to migrate them from movable zone. 935 */ 936 static inline bool hugepage_movable_supported(struct hstate *h) 937 { 938 if (!hugepage_migration_supported(h)) 939 return false; 940 941 if (hstate_is_gigantic(h)) 942 return false; 943 return true; 944 } 945 946 /* Movability of hugepages depends on migration support. */ 947 static inline gfp_t htlb_alloc_mask(struct hstate *h) 948 { 949 if (hugepage_movable_supported(h)) 950 return GFP_HIGHUSER_MOVABLE; 951 else 952 return GFP_HIGHUSER; 953 } 954 955 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask) 956 { 957 gfp_t modified_mask = htlb_alloc_mask(h); 958 959 /* Some callers might want to enforce node */ 960 modified_mask |= (gfp_mask & __GFP_THISNODE); 961 962 modified_mask |= (gfp_mask & __GFP_NOWARN); 963 964 return modified_mask; 965 } 966 967 static inline spinlock_t *huge_pte_lockptr(struct hstate *h, 968 struct mm_struct *mm, pte_t *pte) 969 { 970 if (huge_page_size(h) == PMD_SIZE) 971 return pmd_lockptr(mm, (pmd_t *) pte); 972 VM_BUG_ON(huge_page_size(h) == PAGE_SIZE); 973 return &mm->page_table_lock; 974 } 975 976 #ifndef hugepages_supported 977 /* 978 * Some platform decide whether they support huge pages at boot 979 * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0 980 * when there is no such support 981 */ 982 #define hugepages_supported() (HPAGE_SHIFT != 0) 983 #endif 984 985 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm); 986 987 static inline void hugetlb_count_init(struct mm_struct *mm) 988 { 989 atomic_long_set(&mm->hugetlb_usage, 0); 990 } 991 992 static inline void hugetlb_count_add(long l, struct mm_struct *mm) 993 { 994 atomic_long_add(l, &mm->hugetlb_usage); 995 } 996 997 static inline void hugetlb_count_sub(long l, struct mm_struct *mm) 998 { 999 atomic_long_sub(l, &mm->hugetlb_usage); 1000 } 1001 1002 #ifndef huge_ptep_modify_prot_start 1003 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start 1004 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma, 1005 unsigned long addr, pte_t *ptep) 1006 { 1007 return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep); 1008 } 1009 #endif 1010 1011 #ifndef huge_ptep_modify_prot_commit 1012 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit 1013 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma, 1014 unsigned long addr, pte_t *ptep, 1015 pte_t old_pte, pte_t pte) 1016 { 1017 set_huge_pte_at(vma->vm_mm, addr, ptep, pte); 1018 } 1019 #endif 1020 1021 #ifdef CONFIG_NUMA 1022 void hugetlb_register_node(struct node *node); 1023 void hugetlb_unregister_node(struct node *node); 1024 #endif 1025 1026 #else /* CONFIG_HUGETLB_PAGE */ 1027 struct hstate {}; 1028 1029 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio) 1030 { 1031 return NULL; 1032 } 1033 1034 static inline struct hugepage_subpool *hugetlb_page_subpool(struct page *hpage) 1035 { 1036 return NULL; 1037 } 1038 1039 static inline int isolate_or_dissolve_huge_page(struct page *page, 1040 struct list_head *list) 1041 { 1042 return -ENOMEM; 1043 } 1044 1045 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 1046 unsigned long addr, 1047 int avoid_reserve) 1048 { 1049 return NULL; 1050 } 1051 1052 static inline struct folio * 1053 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 1054 nodemask_t *nmask, gfp_t gfp_mask) 1055 { 1056 return NULL; 1057 } 1058 1059 static inline struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 1060 struct vm_area_struct *vma, 1061 unsigned long address) 1062 { 1063 return NULL; 1064 } 1065 1066 static inline int __alloc_bootmem_huge_page(struct hstate *h) 1067 { 1068 return 0; 1069 } 1070 1071 static inline struct hstate *hstate_file(struct file *f) 1072 { 1073 return NULL; 1074 } 1075 1076 static inline struct hstate *hstate_sizelog(int page_size_log) 1077 { 1078 return NULL; 1079 } 1080 1081 static inline struct hstate *hstate_vma(struct vm_area_struct *vma) 1082 { 1083 return NULL; 1084 } 1085 1086 static inline struct hstate *folio_hstate(struct folio *folio) 1087 { 1088 return NULL; 1089 } 1090 1091 static inline struct hstate *page_hstate(struct page *page) 1092 { 1093 return NULL; 1094 } 1095 1096 static inline struct hstate *size_to_hstate(unsigned long size) 1097 { 1098 return NULL; 1099 } 1100 1101 static inline unsigned long huge_page_size(struct hstate *h) 1102 { 1103 return PAGE_SIZE; 1104 } 1105 1106 static inline unsigned long huge_page_mask(struct hstate *h) 1107 { 1108 return PAGE_MASK; 1109 } 1110 1111 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1112 { 1113 return PAGE_SIZE; 1114 } 1115 1116 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1117 { 1118 return PAGE_SIZE; 1119 } 1120 1121 static inline unsigned int huge_page_order(struct hstate *h) 1122 { 1123 return 0; 1124 } 1125 1126 static inline unsigned int huge_page_shift(struct hstate *h) 1127 { 1128 return PAGE_SHIFT; 1129 } 1130 1131 static inline bool hstate_is_gigantic(struct hstate *h) 1132 { 1133 return false; 1134 } 1135 1136 static inline unsigned int pages_per_huge_page(struct hstate *h) 1137 { 1138 return 1; 1139 } 1140 1141 static inline unsigned hstate_index_to_shift(unsigned index) 1142 { 1143 return 0; 1144 } 1145 1146 static inline int hstate_index(struct hstate *h) 1147 { 1148 return 0; 1149 } 1150 1151 static inline int dissolve_free_huge_page(struct page *page) 1152 { 1153 return 0; 1154 } 1155 1156 static inline int dissolve_free_huge_pages(unsigned long start_pfn, 1157 unsigned long end_pfn) 1158 { 1159 return 0; 1160 } 1161 1162 static inline bool hugepage_migration_supported(struct hstate *h) 1163 { 1164 return false; 1165 } 1166 1167 static inline bool hugepage_movable_supported(struct hstate *h) 1168 { 1169 return false; 1170 } 1171 1172 static inline gfp_t htlb_alloc_mask(struct hstate *h) 1173 { 1174 return 0; 1175 } 1176 1177 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask) 1178 { 1179 return 0; 1180 } 1181 1182 static inline spinlock_t *huge_pte_lockptr(struct hstate *h, 1183 struct mm_struct *mm, pte_t *pte) 1184 { 1185 return &mm->page_table_lock; 1186 } 1187 1188 static inline void hugetlb_count_init(struct mm_struct *mm) 1189 { 1190 } 1191 1192 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m) 1193 { 1194 } 1195 1196 static inline void hugetlb_count_sub(long l, struct mm_struct *mm) 1197 { 1198 } 1199 1200 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma, 1201 unsigned long addr, pte_t *ptep) 1202 { 1203 return *ptep; 1204 } 1205 1206 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, 1207 pte_t *ptep, pte_t pte) 1208 { 1209 } 1210 1211 static inline void hugetlb_register_node(struct node *node) 1212 { 1213 } 1214 1215 static inline void hugetlb_unregister_node(struct node *node) 1216 { 1217 } 1218 #endif /* CONFIG_HUGETLB_PAGE */ 1219 1220 static inline spinlock_t *huge_pte_lock(struct hstate *h, 1221 struct mm_struct *mm, pte_t *pte) 1222 { 1223 spinlock_t *ptl; 1224 1225 ptl = huge_pte_lockptr(h, mm, pte); 1226 spin_lock(ptl); 1227 return ptl; 1228 } 1229 1230 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA) 1231 extern void __init hugetlb_cma_reserve(int order); 1232 #else 1233 static inline __init void hugetlb_cma_reserve(int order) 1234 { 1235 } 1236 #endif 1237 1238 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 1239 static inline bool hugetlb_pmd_shared(pte_t *pte) 1240 { 1241 return page_count(virt_to_page(pte)) > 1; 1242 } 1243 #else 1244 static inline bool hugetlb_pmd_shared(pte_t *pte) 1245 { 1246 return false; 1247 } 1248 #endif 1249 1250 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr); 1251 1252 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 1253 /* 1254 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 1255 * implement this. 1256 */ 1257 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1258 #endif 1259 1260 static inline bool __vma_shareable_lock(struct vm_area_struct *vma) 1261 { 1262 return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data; 1263 } 1264 1265 /* 1266 * Safe version of huge_pte_offset() to check the locks. See comments 1267 * above huge_pte_offset(). 1268 */ 1269 static inline pte_t * 1270 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz) 1271 { 1272 #if defined(CONFIG_HUGETLB_PAGE) && \ 1273 defined(CONFIG_ARCH_WANT_HUGE_PMD_SHARE) && defined(CONFIG_LOCKDEP) 1274 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1275 1276 /* 1277 * If pmd sharing possible, locking needed to safely walk the 1278 * hugetlb pgtables. More information can be found at the comment 1279 * above huge_pte_offset() in the same file. 1280 * 1281 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP. 1282 */ 1283 if (__vma_shareable_lock(vma)) 1284 WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) && 1285 !lockdep_is_held( 1286 &vma->vm_file->f_mapping->i_mmap_rwsem)); 1287 #endif 1288 return huge_pte_offset(vma->vm_mm, addr, sz); 1289 } 1290 1291 #endif /* _LINUX_HUGETLB_H */ 1292