xref: /linux-6.15/include/linux/hugetlb.h (revision bf8a352d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4 
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17 
18 struct ctl_table;
19 struct user_struct;
20 struct mmu_gather;
21 struct node;
22 
23 #ifndef CONFIG_ARCH_HAS_HUGEPD
24 typedef struct { unsigned long pd; } hugepd_t;
25 #define is_hugepd(hugepd) (0)
26 #define __hugepd(x) ((hugepd_t) { (x) })
27 #endif
28 
29 #ifdef CONFIG_HUGETLB_PAGE
30 
31 #include <linux/mempolicy.h>
32 #include <linux/shm.h>
33 #include <asm/tlbflush.h>
34 
35 /*
36  * For HugeTLB page, there are more metadata to save in the struct page. But
37  * the head struct page cannot meet our needs, so we have to abuse other tail
38  * struct page to store the metadata.
39  */
40 #define __NR_USED_SUBPAGE 3
41 
42 struct hugepage_subpool {
43 	spinlock_t lock;
44 	long count;
45 	long max_hpages;	/* Maximum huge pages or -1 if no maximum. */
46 	long used_hpages;	/* Used count against maximum, includes */
47 				/* both allocated and reserved pages. */
48 	struct hstate *hstate;
49 	long min_hpages;	/* Minimum huge pages or -1 if no minimum. */
50 	long rsv_hpages;	/* Pages reserved against global pool to */
51 				/* satisfy minimum size. */
52 };
53 
54 struct resv_map {
55 	struct kref refs;
56 	spinlock_t lock;
57 	struct list_head regions;
58 	long adds_in_progress;
59 	struct list_head region_cache;
60 	long region_cache_count;
61 #ifdef CONFIG_CGROUP_HUGETLB
62 	/*
63 	 * On private mappings, the counter to uncharge reservations is stored
64 	 * here. If these fields are 0, then either the mapping is shared, or
65 	 * cgroup accounting is disabled for this resv_map.
66 	 */
67 	struct page_counter *reservation_counter;
68 	unsigned long pages_per_hpage;
69 	struct cgroup_subsys_state *css;
70 #endif
71 };
72 
73 /*
74  * Region tracking -- allows tracking of reservations and instantiated pages
75  *                    across the pages in a mapping.
76  *
77  * The region data structures are embedded into a resv_map and protected
78  * by a resv_map's lock.  The set of regions within the resv_map represent
79  * reservations for huge pages, or huge pages that have already been
80  * instantiated within the map.  The from and to elements are huge page
81  * indices into the associated mapping.  from indicates the starting index
82  * of the region.  to represents the first index past the end of  the region.
83  *
84  * For example, a file region structure with from == 0 and to == 4 represents
85  * four huge pages in a mapping.  It is important to note that the to element
86  * represents the first element past the end of the region. This is used in
87  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
88  *
89  * Interval notation of the form [from, to) will be used to indicate that
90  * the endpoint from is inclusive and to is exclusive.
91  */
92 struct file_region {
93 	struct list_head link;
94 	long from;
95 	long to;
96 #ifdef CONFIG_CGROUP_HUGETLB
97 	/*
98 	 * On shared mappings, each reserved region appears as a struct
99 	 * file_region in resv_map. These fields hold the info needed to
100 	 * uncharge each reservation.
101 	 */
102 	struct page_counter *reservation_counter;
103 	struct cgroup_subsys_state *css;
104 #endif
105 };
106 
107 struct hugetlb_vma_lock {
108 	struct kref refs;
109 	struct rw_semaphore rw_sema;
110 	struct vm_area_struct *vma;
111 };
112 
113 extern struct resv_map *resv_map_alloc(void);
114 void resv_map_release(struct kref *ref);
115 
116 extern spinlock_t hugetlb_lock;
117 extern int hugetlb_max_hstate __read_mostly;
118 #define for_each_hstate(h) \
119 	for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
120 
121 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
122 						long min_hpages);
123 void hugepage_put_subpool(struct hugepage_subpool *spool);
124 
125 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
126 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
127 int move_hugetlb_page_tables(struct vm_area_struct *vma,
128 			     struct vm_area_struct *new_vma,
129 			     unsigned long old_addr, unsigned long new_addr,
130 			     unsigned long len);
131 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
132 			    struct vm_area_struct *, struct vm_area_struct *);
133 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
134 				unsigned long address, unsigned int flags);
135 long follow_hugetlb_page(struct mm_struct *, struct vm_area_struct *,
136 			 struct page **, struct vm_area_struct **,
137 			 unsigned long *, unsigned long *, long, unsigned int,
138 			 int *);
139 void unmap_hugepage_range(struct vm_area_struct *,
140 			  unsigned long, unsigned long, struct page *,
141 			  zap_flags_t);
142 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
143 			  struct vm_area_struct *vma,
144 			  unsigned long start, unsigned long end,
145 			  struct page *ref_page, zap_flags_t zap_flags);
146 void hugetlb_report_meminfo(struct seq_file *);
147 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
148 void hugetlb_show_meminfo_node(int nid);
149 unsigned long hugetlb_total_pages(void);
150 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
151 			unsigned long address, unsigned int flags);
152 #ifdef CONFIG_USERFAULTFD
153 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
154 			     struct vm_area_struct *dst_vma,
155 			     unsigned long dst_addr,
156 			     unsigned long src_addr,
157 			     uffd_flags_t flags,
158 			     struct folio **foliop);
159 #endif /* CONFIG_USERFAULTFD */
160 bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
161 						struct vm_area_struct *vma,
162 						vm_flags_t vm_flags);
163 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
164 						long freed);
165 bool isolate_hugetlb(struct folio *folio, struct list_head *list);
166 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
167 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
168 				bool *migratable_cleared);
169 void folio_putback_active_hugetlb(struct folio *folio);
170 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
171 void free_huge_page(struct page *page);
172 void hugetlb_fix_reserve_counts(struct inode *inode);
173 extern struct mutex *hugetlb_fault_mutex_table;
174 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
175 
176 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
177 		      unsigned long addr, pud_t *pud);
178 
179 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage);
180 
181 extern int sysctl_hugetlb_shm_group;
182 extern struct list_head huge_boot_pages;
183 
184 /* arch callbacks */
185 
186 #ifndef CONFIG_HIGHPTE
187 /*
188  * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
189  * which may go down to the lowest PTE level in their huge_pte_offset() and
190  * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
191  */
192 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
193 {
194 	return pte_offset_kernel(pmd, address);
195 }
196 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
197 				    unsigned long address)
198 {
199 	return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
200 }
201 #endif
202 
203 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
204 			unsigned long addr, unsigned long sz);
205 /*
206  * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
207  * Returns the pte_t* if found, or NULL if the address is not mapped.
208  *
209  * IMPORTANT: we should normally not directly call this function, instead
210  * this is only a common interface to implement arch-specific
211  * walker. Please use hugetlb_walk() instead, because that will attempt to
212  * verify the locking for you.
213  *
214  * Since this function will walk all the pgtable pages (including not only
215  * high-level pgtable page, but also PUD entry that can be unshared
216  * concurrently for VM_SHARED), the caller of this function should be
217  * responsible of its thread safety.  One can follow this rule:
218  *
219  *  (1) For private mappings: pmd unsharing is not possible, so holding the
220  *      mmap_lock for either read or write is sufficient. Most callers
221  *      already hold the mmap_lock, so normally, no special action is
222  *      required.
223  *
224  *  (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
225  *      pgtable page can go away from under us!  It can be done by a pmd
226  *      unshare with a follow up munmap() on the other process), then we
227  *      need either:
228  *
229  *     (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
230  *           won't happen upon the range (it also makes sure the pte_t we
231  *           read is the right and stable one), or,
232  *
233  *     (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
234  *           sure even if unshare happened the racy unmap() will wait until
235  *           i_mmap_rwsem is released.
236  *
237  * Option (2.1) is the safest, which guarantees pte stability from pmd
238  * sharing pov, until the vma lock released.  Option (2.2) doesn't protect
239  * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
240  * access.
241  */
242 pte_t *huge_pte_offset(struct mm_struct *mm,
243 		       unsigned long addr, unsigned long sz);
244 unsigned long hugetlb_mask_last_page(struct hstate *h);
245 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
246 				unsigned long addr, pte_t *ptep);
247 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
248 				unsigned long *start, unsigned long *end);
249 
250 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
251 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
252 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
253 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
254 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
255 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
256 void hugetlb_vma_lock_release(struct kref *kref);
257 
258 int pmd_huge(pmd_t pmd);
259 int pud_huge(pud_t pud);
260 long hugetlb_change_protection(struct vm_area_struct *vma,
261 		unsigned long address, unsigned long end, pgprot_t newprot,
262 		unsigned long cp_flags);
263 
264 bool is_hugetlb_entry_migration(pte_t pte);
265 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
266 
267 #else /* !CONFIG_HUGETLB_PAGE */
268 
269 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
270 {
271 }
272 
273 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
274 {
275 }
276 
277 static inline unsigned long hugetlb_total_pages(void)
278 {
279 	return 0;
280 }
281 
282 static inline struct address_space *hugetlb_page_mapping_lock_write(
283 							struct page *hpage)
284 {
285 	return NULL;
286 }
287 
288 static inline int huge_pmd_unshare(struct mm_struct *mm,
289 					struct vm_area_struct *vma,
290 					unsigned long addr, pte_t *ptep)
291 {
292 	return 0;
293 }
294 
295 static inline void adjust_range_if_pmd_sharing_possible(
296 				struct vm_area_struct *vma,
297 				unsigned long *start, unsigned long *end)
298 {
299 }
300 
301 static inline struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
302 				unsigned long address, unsigned int flags)
303 {
304 	BUILD_BUG(); /* should never be compiled in if !CONFIG_HUGETLB_PAGE*/
305 }
306 
307 static inline long follow_hugetlb_page(struct mm_struct *mm,
308 			struct vm_area_struct *vma, struct page **pages,
309 			struct vm_area_struct **vmas, unsigned long *position,
310 			unsigned long *nr_pages, long i, unsigned int flags,
311 			int *nonblocking)
312 {
313 	BUG();
314 	return 0;
315 }
316 
317 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
318 					  struct mm_struct *src,
319 					  struct vm_area_struct *dst_vma,
320 					  struct vm_area_struct *src_vma)
321 {
322 	BUG();
323 	return 0;
324 }
325 
326 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
327 					   struct vm_area_struct *new_vma,
328 					   unsigned long old_addr,
329 					   unsigned long new_addr,
330 					   unsigned long len)
331 {
332 	BUG();
333 	return 0;
334 }
335 
336 static inline void hugetlb_report_meminfo(struct seq_file *m)
337 {
338 }
339 
340 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
341 {
342 	return 0;
343 }
344 
345 static inline void hugetlb_show_meminfo_node(int nid)
346 {
347 }
348 
349 static inline int prepare_hugepage_range(struct file *file,
350 				unsigned long addr, unsigned long len)
351 {
352 	return -EINVAL;
353 }
354 
355 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
356 {
357 }
358 
359 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
360 {
361 }
362 
363 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
364 {
365 }
366 
367 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
368 {
369 }
370 
371 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
372 {
373 	return 1;
374 }
375 
376 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
377 {
378 }
379 
380 static inline int pmd_huge(pmd_t pmd)
381 {
382 	return 0;
383 }
384 
385 static inline int pud_huge(pud_t pud)
386 {
387 	return 0;
388 }
389 
390 static inline int is_hugepage_only_range(struct mm_struct *mm,
391 					unsigned long addr, unsigned long len)
392 {
393 	return 0;
394 }
395 
396 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
397 				unsigned long addr, unsigned long end,
398 				unsigned long floor, unsigned long ceiling)
399 {
400 	BUG();
401 }
402 
403 #ifdef CONFIG_USERFAULTFD
404 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
405 					   struct vm_area_struct *dst_vma,
406 					   unsigned long dst_addr,
407 					   unsigned long src_addr,
408 					   uffd_flags_t flags,
409 					   struct folio **foliop)
410 {
411 	BUG();
412 	return 0;
413 }
414 #endif /* CONFIG_USERFAULTFD */
415 
416 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
417 					unsigned long sz)
418 {
419 	return NULL;
420 }
421 
422 static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list)
423 {
424 	return false;
425 }
426 
427 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
428 {
429 	return 0;
430 }
431 
432 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
433 					bool *migratable_cleared)
434 {
435 	return 0;
436 }
437 
438 static inline void folio_putback_active_hugetlb(struct folio *folio)
439 {
440 }
441 
442 static inline void move_hugetlb_state(struct folio *old_folio,
443 					struct folio *new_folio, int reason)
444 {
445 }
446 
447 static inline long hugetlb_change_protection(
448 			struct vm_area_struct *vma, unsigned long address,
449 			unsigned long end, pgprot_t newprot,
450 			unsigned long cp_flags)
451 {
452 	return 0;
453 }
454 
455 static inline void __unmap_hugepage_range_final(struct mmu_gather *tlb,
456 			struct vm_area_struct *vma, unsigned long start,
457 			unsigned long end, struct page *ref_page,
458 			zap_flags_t zap_flags)
459 {
460 	BUG();
461 }
462 
463 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
464 			struct vm_area_struct *vma, unsigned long address,
465 			unsigned int flags)
466 {
467 	BUG();
468 	return 0;
469 }
470 
471 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
472 
473 #endif /* !CONFIG_HUGETLB_PAGE */
474 /*
475  * hugepages at page global directory. If arch support
476  * hugepages at pgd level, they need to define this.
477  */
478 #ifndef pgd_huge
479 #define pgd_huge(x)	0
480 #endif
481 #ifndef p4d_huge
482 #define p4d_huge(x)	0
483 #endif
484 
485 #ifndef pgd_write
486 static inline int pgd_write(pgd_t pgd)
487 {
488 	BUG();
489 	return 0;
490 }
491 #endif
492 
493 #define HUGETLB_ANON_FILE "anon_hugepage"
494 
495 enum {
496 	/*
497 	 * The file will be used as an shm file so shmfs accounting rules
498 	 * apply
499 	 */
500 	HUGETLB_SHMFS_INODE     = 1,
501 	/*
502 	 * The file is being created on the internal vfs mount and shmfs
503 	 * accounting rules do not apply
504 	 */
505 	HUGETLB_ANONHUGE_INODE  = 2,
506 };
507 
508 #ifdef CONFIG_HUGETLBFS
509 struct hugetlbfs_sb_info {
510 	long	max_inodes;   /* inodes allowed */
511 	long	free_inodes;  /* inodes free */
512 	spinlock_t	stat_lock;
513 	struct hstate *hstate;
514 	struct hugepage_subpool *spool;
515 	kuid_t	uid;
516 	kgid_t	gid;
517 	umode_t mode;
518 };
519 
520 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
521 {
522 	return sb->s_fs_info;
523 }
524 
525 struct hugetlbfs_inode_info {
526 	struct shared_policy policy;
527 	struct inode vfs_inode;
528 	unsigned int seals;
529 };
530 
531 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
532 {
533 	return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
534 }
535 
536 extern const struct file_operations hugetlbfs_file_operations;
537 extern const struct vm_operations_struct hugetlb_vm_ops;
538 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
539 				int creat_flags, int page_size_log);
540 
541 static inline bool is_file_hugepages(struct file *file)
542 {
543 	if (file->f_op == &hugetlbfs_file_operations)
544 		return true;
545 
546 	return is_file_shm_hugepages(file);
547 }
548 
549 static inline struct hstate *hstate_inode(struct inode *i)
550 {
551 	return HUGETLBFS_SB(i->i_sb)->hstate;
552 }
553 #else /* !CONFIG_HUGETLBFS */
554 
555 #define is_file_hugepages(file)			false
556 static inline struct file *
557 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
558 		int creat_flags, int page_size_log)
559 {
560 	return ERR_PTR(-ENOSYS);
561 }
562 
563 static inline struct hstate *hstate_inode(struct inode *i)
564 {
565 	return NULL;
566 }
567 #endif /* !CONFIG_HUGETLBFS */
568 
569 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
570 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
571 					unsigned long len, unsigned long pgoff,
572 					unsigned long flags);
573 #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
574 
575 unsigned long
576 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
577 				  unsigned long len, unsigned long pgoff,
578 				  unsigned long flags);
579 
580 /*
581  * huegtlb page specific state flags.  These flags are located in page.private
582  * of the hugetlb head page.  Functions created via the below macros should be
583  * used to manipulate these flags.
584  *
585  * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
586  *	allocation time.  Cleared when page is fully instantiated.  Free
587  *	routine checks flag to restore a reservation on error paths.
588  *	Synchronization:  Examined or modified by code that knows it has
589  *	the only reference to page.  i.e. After allocation but before use
590  *	or when the page is being freed.
591  * HPG_migratable  - Set after a newly allocated page is added to the page
592  *	cache and/or page tables.  Indicates the page is a candidate for
593  *	migration.
594  *	Synchronization:  Initially set after new page allocation with no
595  *	locking.  When examined and modified during migration processing
596  *	(isolate, migrate, putback) the hugetlb_lock is held.
597  * HPG_temporary - Set on a page that is temporarily allocated from the buddy
598  *	allocator.  Typically used for migration target pages when no pages
599  *	are available in the pool.  The hugetlb free page path will
600  *	immediately free pages with this flag set to the buddy allocator.
601  *	Synchronization: Can be set after huge page allocation from buddy when
602  *	code knows it has only reference.  All other examinations and
603  *	modifications require hugetlb_lock.
604  * HPG_freed - Set when page is on the free lists.
605  *	Synchronization: hugetlb_lock held for examination and modification.
606  * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
607  * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
608  *     that is not tracked by raw_hwp_page list.
609  */
610 enum hugetlb_page_flags {
611 	HPG_restore_reserve = 0,
612 	HPG_migratable,
613 	HPG_temporary,
614 	HPG_freed,
615 	HPG_vmemmap_optimized,
616 	HPG_raw_hwp_unreliable,
617 	__NR_HPAGEFLAGS,
618 };
619 
620 /*
621  * Macros to create test, set and clear function definitions for
622  * hugetlb specific page flags.
623  */
624 #ifdef CONFIG_HUGETLB_PAGE
625 #define TESTHPAGEFLAG(uname, flname)				\
626 static __always_inline						\
627 bool folio_test_hugetlb_##flname(struct folio *folio)		\
628 	{	void *private = &folio->private;		\
629 		return test_bit(HPG_##flname, private);		\
630 	}							\
631 static inline int HPage##uname(struct page *page)		\
632 	{ return test_bit(HPG_##flname, &(page->private)); }
633 
634 #define SETHPAGEFLAG(uname, flname)				\
635 static __always_inline						\
636 void folio_set_hugetlb_##flname(struct folio *folio)		\
637 	{	void *private = &folio->private;		\
638 		set_bit(HPG_##flname, private);			\
639 	}							\
640 static inline void SetHPage##uname(struct page *page)		\
641 	{ set_bit(HPG_##flname, &(page->private)); }
642 
643 #define CLEARHPAGEFLAG(uname, flname)				\
644 static __always_inline						\
645 void folio_clear_hugetlb_##flname(struct folio *folio)		\
646 	{	void *private = &folio->private;		\
647 		clear_bit(HPG_##flname, private);		\
648 	}							\
649 static inline void ClearHPage##uname(struct page *page)		\
650 	{ clear_bit(HPG_##flname, &(page->private)); }
651 #else
652 #define TESTHPAGEFLAG(uname, flname)				\
653 static inline bool						\
654 folio_test_hugetlb_##flname(struct folio *folio)		\
655 	{ return 0; }						\
656 static inline int HPage##uname(struct page *page)		\
657 	{ return 0; }
658 
659 #define SETHPAGEFLAG(uname, flname)				\
660 static inline void						\
661 folio_set_hugetlb_##flname(struct folio *folio) 		\
662 	{ }							\
663 static inline void SetHPage##uname(struct page *page)		\
664 	{ }
665 
666 #define CLEARHPAGEFLAG(uname, flname)				\
667 static inline void						\
668 folio_clear_hugetlb_##flname(struct folio *folio)		\
669 	{ }							\
670 static inline void ClearHPage##uname(struct page *page)		\
671 	{ }
672 #endif
673 
674 #define HPAGEFLAG(uname, flname)				\
675 	TESTHPAGEFLAG(uname, flname)				\
676 	SETHPAGEFLAG(uname, flname)				\
677 	CLEARHPAGEFLAG(uname, flname)				\
678 
679 /*
680  * Create functions associated with hugetlb page flags
681  */
682 HPAGEFLAG(RestoreReserve, restore_reserve)
683 HPAGEFLAG(Migratable, migratable)
684 HPAGEFLAG(Temporary, temporary)
685 HPAGEFLAG(Freed, freed)
686 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
687 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
688 
689 #ifdef CONFIG_HUGETLB_PAGE
690 
691 #define HSTATE_NAME_LEN 32
692 /* Defines one hugetlb page size */
693 struct hstate {
694 	struct mutex resize_lock;
695 	int next_nid_to_alloc;
696 	int next_nid_to_free;
697 	unsigned int order;
698 	unsigned int demote_order;
699 	unsigned long mask;
700 	unsigned long max_huge_pages;
701 	unsigned long nr_huge_pages;
702 	unsigned long free_huge_pages;
703 	unsigned long resv_huge_pages;
704 	unsigned long surplus_huge_pages;
705 	unsigned long nr_overcommit_huge_pages;
706 	struct list_head hugepage_activelist;
707 	struct list_head hugepage_freelists[MAX_NUMNODES];
708 	unsigned int max_huge_pages_node[MAX_NUMNODES];
709 	unsigned int nr_huge_pages_node[MAX_NUMNODES];
710 	unsigned int free_huge_pages_node[MAX_NUMNODES];
711 	unsigned int surplus_huge_pages_node[MAX_NUMNODES];
712 #ifdef CONFIG_CGROUP_HUGETLB
713 	/* cgroup control files */
714 	struct cftype cgroup_files_dfl[8];
715 	struct cftype cgroup_files_legacy[10];
716 #endif
717 	char name[HSTATE_NAME_LEN];
718 };
719 
720 struct huge_bootmem_page {
721 	struct list_head list;
722 	struct hstate *hstate;
723 };
724 
725 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list);
726 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
727 				unsigned long addr, int avoid_reserve);
728 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
729 				nodemask_t *nmask, gfp_t gfp_mask);
730 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
731 				unsigned long address);
732 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
733 			pgoff_t idx);
734 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
735 				unsigned long address, struct folio *folio);
736 
737 /* arch callback */
738 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
739 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
740 bool __init hugetlb_node_alloc_supported(void);
741 
742 void __init hugetlb_add_hstate(unsigned order);
743 bool __init arch_hugetlb_valid_size(unsigned long size);
744 struct hstate *size_to_hstate(unsigned long size);
745 
746 #ifndef HUGE_MAX_HSTATE
747 #define HUGE_MAX_HSTATE 1
748 #endif
749 
750 extern struct hstate hstates[HUGE_MAX_HSTATE];
751 extern unsigned int default_hstate_idx;
752 
753 #define default_hstate (hstates[default_hstate_idx])
754 
755 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
756 {
757 	return folio->_hugetlb_subpool;
758 }
759 
760 /*
761  * hugetlb page subpool pointer located in hpage[2].hugetlb_subpool
762  */
763 static inline struct hugepage_subpool *hugetlb_page_subpool(struct page *hpage)
764 {
765 	return hugetlb_folio_subpool(page_folio(hpage));
766 }
767 
768 static inline void hugetlb_set_folio_subpool(struct folio *folio,
769 					struct hugepage_subpool *subpool)
770 {
771 	folio->_hugetlb_subpool = subpool;
772 }
773 
774 static inline void hugetlb_set_page_subpool(struct page *hpage,
775 					struct hugepage_subpool *subpool)
776 {
777 	hugetlb_set_folio_subpool(page_folio(hpage), subpool);
778 }
779 
780 static inline struct hstate *hstate_file(struct file *f)
781 {
782 	return hstate_inode(file_inode(f));
783 }
784 
785 static inline struct hstate *hstate_sizelog(int page_size_log)
786 {
787 	if (!page_size_log)
788 		return &default_hstate;
789 
790 	if (page_size_log < BITS_PER_LONG)
791 		return size_to_hstate(1UL << page_size_log);
792 
793 	return NULL;
794 }
795 
796 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
797 {
798 	return hstate_file(vma->vm_file);
799 }
800 
801 static inline unsigned long huge_page_size(const struct hstate *h)
802 {
803 	return (unsigned long)PAGE_SIZE << h->order;
804 }
805 
806 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
807 
808 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
809 
810 static inline unsigned long huge_page_mask(struct hstate *h)
811 {
812 	return h->mask;
813 }
814 
815 static inline unsigned int huge_page_order(struct hstate *h)
816 {
817 	return h->order;
818 }
819 
820 static inline unsigned huge_page_shift(struct hstate *h)
821 {
822 	return h->order + PAGE_SHIFT;
823 }
824 
825 static inline bool hstate_is_gigantic(struct hstate *h)
826 {
827 	return huge_page_order(h) > MAX_ORDER;
828 }
829 
830 static inline unsigned int pages_per_huge_page(const struct hstate *h)
831 {
832 	return 1 << h->order;
833 }
834 
835 static inline unsigned int blocks_per_huge_page(struct hstate *h)
836 {
837 	return huge_page_size(h) / 512;
838 }
839 
840 #include <asm/hugetlb.h>
841 
842 #ifndef is_hugepage_only_range
843 static inline int is_hugepage_only_range(struct mm_struct *mm,
844 					unsigned long addr, unsigned long len)
845 {
846 	return 0;
847 }
848 #define is_hugepage_only_range is_hugepage_only_range
849 #endif
850 
851 #ifndef arch_clear_hugepage_flags
852 static inline void arch_clear_hugepage_flags(struct page *page) { }
853 #define arch_clear_hugepage_flags arch_clear_hugepage_flags
854 #endif
855 
856 #ifndef arch_make_huge_pte
857 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
858 				       vm_flags_t flags)
859 {
860 	return pte_mkhuge(entry);
861 }
862 #endif
863 
864 static inline struct hstate *folio_hstate(struct folio *folio)
865 {
866 	VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
867 	return size_to_hstate(folio_size(folio));
868 }
869 
870 static inline struct hstate *page_hstate(struct page *page)
871 {
872 	return folio_hstate(page_folio(page));
873 }
874 
875 static inline unsigned hstate_index_to_shift(unsigned index)
876 {
877 	return hstates[index].order + PAGE_SHIFT;
878 }
879 
880 static inline int hstate_index(struct hstate *h)
881 {
882 	return h - hstates;
883 }
884 
885 extern int dissolve_free_huge_page(struct page *page);
886 extern int dissolve_free_huge_pages(unsigned long start_pfn,
887 				    unsigned long end_pfn);
888 
889 #ifdef CONFIG_MEMORY_FAILURE
890 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
891 #else
892 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
893 {
894 }
895 #endif
896 
897 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
898 #ifndef arch_hugetlb_migration_supported
899 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
900 {
901 	if ((huge_page_shift(h) == PMD_SHIFT) ||
902 		(huge_page_shift(h) == PUD_SHIFT) ||
903 			(huge_page_shift(h) == PGDIR_SHIFT))
904 		return true;
905 	else
906 		return false;
907 }
908 #endif
909 #else
910 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
911 {
912 	return false;
913 }
914 #endif
915 
916 static inline bool hugepage_migration_supported(struct hstate *h)
917 {
918 	return arch_hugetlb_migration_supported(h);
919 }
920 
921 /*
922  * Movability check is different as compared to migration check.
923  * It determines whether or not a huge page should be placed on
924  * movable zone or not. Movability of any huge page should be
925  * required only if huge page size is supported for migration.
926  * There won't be any reason for the huge page to be movable if
927  * it is not migratable to start with. Also the size of the huge
928  * page should be large enough to be placed under a movable zone
929  * and still feasible enough to be migratable. Just the presence
930  * in movable zone does not make the migration feasible.
931  *
932  * So even though large huge page sizes like the gigantic ones
933  * are migratable they should not be movable because its not
934  * feasible to migrate them from movable zone.
935  */
936 static inline bool hugepage_movable_supported(struct hstate *h)
937 {
938 	if (!hugepage_migration_supported(h))
939 		return false;
940 
941 	if (hstate_is_gigantic(h))
942 		return false;
943 	return true;
944 }
945 
946 /* Movability of hugepages depends on migration support. */
947 static inline gfp_t htlb_alloc_mask(struct hstate *h)
948 {
949 	if (hugepage_movable_supported(h))
950 		return GFP_HIGHUSER_MOVABLE;
951 	else
952 		return GFP_HIGHUSER;
953 }
954 
955 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
956 {
957 	gfp_t modified_mask = htlb_alloc_mask(h);
958 
959 	/* Some callers might want to enforce node */
960 	modified_mask |= (gfp_mask & __GFP_THISNODE);
961 
962 	modified_mask |= (gfp_mask & __GFP_NOWARN);
963 
964 	return modified_mask;
965 }
966 
967 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
968 					   struct mm_struct *mm, pte_t *pte)
969 {
970 	if (huge_page_size(h) == PMD_SIZE)
971 		return pmd_lockptr(mm, (pmd_t *) pte);
972 	VM_BUG_ON(huge_page_size(h) == PAGE_SIZE);
973 	return &mm->page_table_lock;
974 }
975 
976 #ifndef hugepages_supported
977 /*
978  * Some platform decide whether they support huge pages at boot
979  * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
980  * when there is no such support
981  */
982 #define hugepages_supported() (HPAGE_SHIFT != 0)
983 #endif
984 
985 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
986 
987 static inline void hugetlb_count_init(struct mm_struct *mm)
988 {
989 	atomic_long_set(&mm->hugetlb_usage, 0);
990 }
991 
992 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
993 {
994 	atomic_long_add(l, &mm->hugetlb_usage);
995 }
996 
997 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
998 {
999 	atomic_long_sub(l, &mm->hugetlb_usage);
1000 }
1001 
1002 #ifndef huge_ptep_modify_prot_start
1003 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
1004 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1005 						unsigned long addr, pte_t *ptep)
1006 {
1007 	return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep);
1008 }
1009 #endif
1010 
1011 #ifndef huge_ptep_modify_prot_commit
1012 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
1013 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1014 						unsigned long addr, pte_t *ptep,
1015 						pte_t old_pte, pte_t pte)
1016 {
1017 	set_huge_pte_at(vma->vm_mm, addr, ptep, pte);
1018 }
1019 #endif
1020 
1021 #ifdef CONFIG_NUMA
1022 void hugetlb_register_node(struct node *node);
1023 void hugetlb_unregister_node(struct node *node);
1024 #endif
1025 
1026 #else	/* CONFIG_HUGETLB_PAGE */
1027 struct hstate {};
1028 
1029 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1030 {
1031 	return NULL;
1032 }
1033 
1034 static inline struct hugepage_subpool *hugetlb_page_subpool(struct page *hpage)
1035 {
1036 	return NULL;
1037 }
1038 
1039 static inline int isolate_or_dissolve_huge_page(struct page *page,
1040 						struct list_head *list)
1041 {
1042 	return -ENOMEM;
1043 }
1044 
1045 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1046 					   unsigned long addr,
1047 					   int avoid_reserve)
1048 {
1049 	return NULL;
1050 }
1051 
1052 static inline struct folio *
1053 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1054 			nodemask_t *nmask, gfp_t gfp_mask)
1055 {
1056 	return NULL;
1057 }
1058 
1059 static inline struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
1060 					       struct vm_area_struct *vma,
1061 					       unsigned long address)
1062 {
1063 	return NULL;
1064 }
1065 
1066 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1067 {
1068 	return 0;
1069 }
1070 
1071 static inline struct hstate *hstate_file(struct file *f)
1072 {
1073 	return NULL;
1074 }
1075 
1076 static inline struct hstate *hstate_sizelog(int page_size_log)
1077 {
1078 	return NULL;
1079 }
1080 
1081 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1082 {
1083 	return NULL;
1084 }
1085 
1086 static inline struct hstate *folio_hstate(struct folio *folio)
1087 {
1088 	return NULL;
1089 }
1090 
1091 static inline struct hstate *page_hstate(struct page *page)
1092 {
1093 	return NULL;
1094 }
1095 
1096 static inline struct hstate *size_to_hstate(unsigned long size)
1097 {
1098 	return NULL;
1099 }
1100 
1101 static inline unsigned long huge_page_size(struct hstate *h)
1102 {
1103 	return PAGE_SIZE;
1104 }
1105 
1106 static inline unsigned long huge_page_mask(struct hstate *h)
1107 {
1108 	return PAGE_MASK;
1109 }
1110 
1111 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1112 {
1113 	return PAGE_SIZE;
1114 }
1115 
1116 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1117 {
1118 	return PAGE_SIZE;
1119 }
1120 
1121 static inline unsigned int huge_page_order(struct hstate *h)
1122 {
1123 	return 0;
1124 }
1125 
1126 static inline unsigned int huge_page_shift(struct hstate *h)
1127 {
1128 	return PAGE_SHIFT;
1129 }
1130 
1131 static inline bool hstate_is_gigantic(struct hstate *h)
1132 {
1133 	return false;
1134 }
1135 
1136 static inline unsigned int pages_per_huge_page(struct hstate *h)
1137 {
1138 	return 1;
1139 }
1140 
1141 static inline unsigned hstate_index_to_shift(unsigned index)
1142 {
1143 	return 0;
1144 }
1145 
1146 static inline int hstate_index(struct hstate *h)
1147 {
1148 	return 0;
1149 }
1150 
1151 static inline int dissolve_free_huge_page(struct page *page)
1152 {
1153 	return 0;
1154 }
1155 
1156 static inline int dissolve_free_huge_pages(unsigned long start_pfn,
1157 					   unsigned long end_pfn)
1158 {
1159 	return 0;
1160 }
1161 
1162 static inline bool hugepage_migration_supported(struct hstate *h)
1163 {
1164 	return false;
1165 }
1166 
1167 static inline bool hugepage_movable_supported(struct hstate *h)
1168 {
1169 	return false;
1170 }
1171 
1172 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1173 {
1174 	return 0;
1175 }
1176 
1177 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1178 {
1179 	return 0;
1180 }
1181 
1182 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1183 					   struct mm_struct *mm, pte_t *pte)
1184 {
1185 	return &mm->page_table_lock;
1186 }
1187 
1188 static inline void hugetlb_count_init(struct mm_struct *mm)
1189 {
1190 }
1191 
1192 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1193 {
1194 }
1195 
1196 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1197 {
1198 }
1199 
1200 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1201 					  unsigned long addr, pte_t *ptep)
1202 {
1203 	return *ptep;
1204 }
1205 
1206 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1207 				   pte_t *ptep, pte_t pte)
1208 {
1209 }
1210 
1211 static inline void hugetlb_register_node(struct node *node)
1212 {
1213 }
1214 
1215 static inline void hugetlb_unregister_node(struct node *node)
1216 {
1217 }
1218 #endif	/* CONFIG_HUGETLB_PAGE */
1219 
1220 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1221 					struct mm_struct *mm, pte_t *pte)
1222 {
1223 	spinlock_t *ptl;
1224 
1225 	ptl = huge_pte_lockptr(h, mm, pte);
1226 	spin_lock(ptl);
1227 	return ptl;
1228 }
1229 
1230 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1231 extern void __init hugetlb_cma_reserve(int order);
1232 #else
1233 static inline __init void hugetlb_cma_reserve(int order)
1234 {
1235 }
1236 #endif
1237 
1238 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
1239 static inline bool hugetlb_pmd_shared(pte_t *pte)
1240 {
1241 	return page_count(virt_to_page(pte)) > 1;
1242 }
1243 #else
1244 static inline bool hugetlb_pmd_shared(pte_t *pte)
1245 {
1246 	return false;
1247 }
1248 #endif
1249 
1250 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1251 
1252 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1253 /*
1254  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1255  * implement this.
1256  */
1257 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1258 #endif
1259 
1260 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1261 {
1262 	return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1263 }
1264 
1265 /*
1266  * Safe version of huge_pte_offset() to check the locks.  See comments
1267  * above huge_pte_offset().
1268  */
1269 static inline pte_t *
1270 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1271 {
1272 #if defined(CONFIG_HUGETLB_PAGE) && \
1273 	defined(CONFIG_ARCH_WANT_HUGE_PMD_SHARE) && defined(CONFIG_LOCKDEP)
1274 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1275 
1276 	/*
1277 	 * If pmd sharing possible, locking needed to safely walk the
1278 	 * hugetlb pgtables.  More information can be found at the comment
1279 	 * above huge_pte_offset() in the same file.
1280 	 *
1281 	 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1282 	 */
1283 	if (__vma_shareable_lock(vma))
1284 		WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1285 			     !lockdep_is_held(
1286 				 &vma->vm_file->f_mapping->i_mmap_rwsem));
1287 #endif
1288 	return huge_pte_offset(vma->vm_mm, addr, sz);
1289 }
1290 
1291 #endif /* _LINUX_HUGETLB_H */
1292