xref: /linux-6.15/include/linux/hugetlb.h (revision 8564c315)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4 
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17 
18 struct ctl_table;
19 struct user_struct;
20 struct mmu_gather;
21 struct node;
22 
23 #ifndef CONFIG_ARCH_HAS_HUGEPD
24 typedef struct { unsigned long pd; } hugepd_t;
25 #define is_hugepd(hugepd) (0)
26 #define __hugepd(x) ((hugepd_t) { (x) })
27 #endif
28 
29 #ifdef CONFIG_HUGETLB_PAGE
30 
31 #include <linux/mempolicy.h>
32 #include <linux/shm.h>
33 #include <asm/tlbflush.h>
34 
35 /*
36  * For HugeTLB page, there are more metadata to save in the struct page. But
37  * the head struct page cannot meet our needs, so we have to abuse other tail
38  * struct page to store the metadata.
39  */
40 #define __NR_USED_SUBPAGE 3
41 
42 struct hugepage_subpool {
43 	spinlock_t lock;
44 	long count;
45 	long max_hpages;	/* Maximum huge pages or -1 if no maximum. */
46 	long used_hpages;	/* Used count against maximum, includes */
47 				/* both allocated and reserved pages. */
48 	struct hstate *hstate;
49 	long min_hpages;	/* Minimum huge pages or -1 if no minimum. */
50 	long rsv_hpages;	/* Pages reserved against global pool to */
51 				/* satisfy minimum size. */
52 };
53 
54 struct resv_map {
55 	struct kref refs;
56 	spinlock_t lock;
57 	struct list_head regions;
58 	long adds_in_progress;
59 	struct list_head region_cache;
60 	long region_cache_count;
61 #ifdef CONFIG_CGROUP_HUGETLB
62 	/*
63 	 * On private mappings, the counter to uncharge reservations is stored
64 	 * here. If these fields are 0, then either the mapping is shared, or
65 	 * cgroup accounting is disabled for this resv_map.
66 	 */
67 	struct page_counter *reservation_counter;
68 	unsigned long pages_per_hpage;
69 	struct cgroup_subsys_state *css;
70 #endif
71 };
72 
73 /*
74  * Region tracking -- allows tracking of reservations and instantiated pages
75  *                    across the pages in a mapping.
76  *
77  * The region data structures are embedded into a resv_map and protected
78  * by a resv_map's lock.  The set of regions within the resv_map represent
79  * reservations for huge pages, or huge pages that have already been
80  * instantiated within the map.  The from and to elements are huge page
81  * indices into the associated mapping.  from indicates the starting index
82  * of the region.  to represents the first index past the end of  the region.
83  *
84  * For example, a file region structure with from == 0 and to == 4 represents
85  * four huge pages in a mapping.  It is important to note that the to element
86  * represents the first element past the end of the region. This is used in
87  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
88  *
89  * Interval notation of the form [from, to) will be used to indicate that
90  * the endpoint from is inclusive and to is exclusive.
91  */
92 struct file_region {
93 	struct list_head link;
94 	long from;
95 	long to;
96 #ifdef CONFIG_CGROUP_HUGETLB
97 	/*
98 	 * On shared mappings, each reserved region appears as a struct
99 	 * file_region in resv_map. These fields hold the info needed to
100 	 * uncharge each reservation.
101 	 */
102 	struct page_counter *reservation_counter;
103 	struct cgroup_subsys_state *css;
104 #endif
105 };
106 
107 struct hugetlb_vma_lock {
108 	struct kref refs;
109 	struct rw_semaphore rw_sema;
110 	struct vm_area_struct *vma;
111 };
112 
113 extern struct resv_map *resv_map_alloc(void);
114 void resv_map_release(struct kref *ref);
115 
116 extern spinlock_t hugetlb_lock;
117 extern int hugetlb_max_hstate __read_mostly;
118 #define for_each_hstate(h) \
119 	for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
120 
121 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
122 						long min_hpages);
123 void hugepage_put_subpool(struct hugepage_subpool *spool);
124 
125 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
126 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
127 int move_hugetlb_page_tables(struct vm_area_struct *vma,
128 			     struct vm_area_struct *new_vma,
129 			     unsigned long old_addr, unsigned long new_addr,
130 			     unsigned long len);
131 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
132 			    struct vm_area_struct *, struct vm_area_struct *);
133 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
134 				unsigned long address, unsigned int flags);
135 long follow_hugetlb_page(struct mm_struct *, struct vm_area_struct *,
136 			 struct page **, unsigned long *, unsigned long *,
137 			 long, unsigned int, int *);
138 void unmap_hugepage_range(struct vm_area_struct *,
139 			  unsigned long, unsigned long, struct page *,
140 			  zap_flags_t);
141 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
142 			  struct vm_area_struct *vma,
143 			  unsigned long start, unsigned long end,
144 			  struct page *ref_page, zap_flags_t zap_flags);
145 void hugetlb_report_meminfo(struct seq_file *);
146 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
147 void hugetlb_show_meminfo_node(int nid);
148 unsigned long hugetlb_total_pages(void);
149 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
150 			unsigned long address, unsigned int flags);
151 #ifdef CONFIG_USERFAULTFD
152 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
153 			     struct vm_area_struct *dst_vma,
154 			     unsigned long dst_addr,
155 			     unsigned long src_addr,
156 			     uffd_flags_t flags,
157 			     struct folio **foliop);
158 #endif /* CONFIG_USERFAULTFD */
159 bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
160 						struct vm_area_struct *vma,
161 						vm_flags_t vm_flags);
162 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
163 						long freed);
164 bool isolate_hugetlb(struct folio *folio, struct list_head *list);
165 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
166 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
167 				bool *migratable_cleared);
168 void folio_putback_active_hugetlb(struct folio *folio);
169 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
170 void free_huge_page(struct page *page);
171 void hugetlb_fix_reserve_counts(struct inode *inode);
172 extern struct mutex *hugetlb_fault_mutex_table;
173 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
174 
175 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
176 		      unsigned long addr, pud_t *pud);
177 
178 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage);
179 
180 extern int sysctl_hugetlb_shm_group;
181 extern struct list_head huge_boot_pages;
182 
183 /* arch callbacks */
184 
185 #ifndef CONFIG_HIGHPTE
186 /*
187  * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
188  * which may go down to the lowest PTE level in their huge_pte_offset() and
189  * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
190  */
191 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
192 {
193 	return pte_offset_kernel(pmd, address);
194 }
195 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
196 				    unsigned long address)
197 {
198 	return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
199 }
200 #endif
201 
202 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
203 			unsigned long addr, unsigned long sz);
204 /*
205  * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
206  * Returns the pte_t* if found, or NULL if the address is not mapped.
207  *
208  * IMPORTANT: we should normally not directly call this function, instead
209  * this is only a common interface to implement arch-specific
210  * walker. Please use hugetlb_walk() instead, because that will attempt to
211  * verify the locking for you.
212  *
213  * Since this function will walk all the pgtable pages (including not only
214  * high-level pgtable page, but also PUD entry that can be unshared
215  * concurrently for VM_SHARED), the caller of this function should be
216  * responsible of its thread safety.  One can follow this rule:
217  *
218  *  (1) For private mappings: pmd unsharing is not possible, so holding the
219  *      mmap_lock for either read or write is sufficient. Most callers
220  *      already hold the mmap_lock, so normally, no special action is
221  *      required.
222  *
223  *  (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
224  *      pgtable page can go away from under us!  It can be done by a pmd
225  *      unshare with a follow up munmap() on the other process), then we
226  *      need either:
227  *
228  *     (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
229  *           won't happen upon the range (it also makes sure the pte_t we
230  *           read is the right and stable one), or,
231  *
232  *     (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
233  *           sure even if unshare happened the racy unmap() will wait until
234  *           i_mmap_rwsem is released.
235  *
236  * Option (2.1) is the safest, which guarantees pte stability from pmd
237  * sharing pov, until the vma lock released.  Option (2.2) doesn't protect
238  * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
239  * access.
240  */
241 pte_t *huge_pte_offset(struct mm_struct *mm,
242 		       unsigned long addr, unsigned long sz);
243 unsigned long hugetlb_mask_last_page(struct hstate *h);
244 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
245 				unsigned long addr, pte_t *ptep);
246 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
247 				unsigned long *start, unsigned long *end);
248 
249 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
250 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
251 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
252 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
253 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
254 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
255 void hugetlb_vma_lock_release(struct kref *kref);
256 
257 int pmd_huge(pmd_t pmd);
258 int pud_huge(pud_t pud);
259 long hugetlb_change_protection(struct vm_area_struct *vma,
260 		unsigned long address, unsigned long end, pgprot_t newprot,
261 		unsigned long cp_flags);
262 
263 bool is_hugetlb_entry_migration(pte_t pte);
264 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
265 
266 #else /* !CONFIG_HUGETLB_PAGE */
267 
268 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
269 {
270 }
271 
272 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
273 {
274 }
275 
276 static inline unsigned long hugetlb_total_pages(void)
277 {
278 	return 0;
279 }
280 
281 static inline struct address_space *hugetlb_page_mapping_lock_write(
282 							struct page *hpage)
283 {
284 	return NULL;
285 }
286 
287 static inline int huge_pmd_unshare(struct mm_struct *mm,
288 					struct vm_area_struct *vma,
289 					unsigned long addr, pte_t *ptep)
290 {
291 	return 0;
292 }
293 
294 static inline void adjust_range_if_pmd_sharing_possible(
295 				struct vm_area_struct *vma,
296 				unsigned long *start, unsigned long *end)
297 {
298 }
299 
300 static inline struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
301 				unsigned long address, unsigned int flags)
302 {
303 	BUILD_BUG(); /* should never be compiled in if !CONFIG_HUGETLB_PAGE*/
304 }
305 
306 static inline long follow_hugetlb_page(struct mm_struct *mm,
307 			struct vm_area_struct *vma, struct page **pages,
308 			unsigned long *position, unsigned long *nr_pages,
309 			long i, unsigned int flags, int *nonblocking)
310 {
311 	BUG();
312 	return 0;
313 }
314 
315 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
316 					  struct mm_struct *src,
317 					  struct vm_area_struct *dst_vma,
318 					  struct vm_area_struct *src_vma)
319 {
320 	BUG();
321 	return 0;
322 }
323 
324 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
325 					   struct vm_area_struct *new_vma,
326 					   unsigned long old_addr,
327 					   unsigned long new_addr,
328 					   unsigned long len)
329 {
330 	BUG();
331 	return 0;
332 }
333 
334 static inline void hugetlb_report_meminfo(struct seq_file *m)
335 {
336 }
337 
338 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
339 {
340 	return 0;
341 }
342 
343 static inline void hugetlb_show_meminfo_node(int nid)
344 {
345 }
346 
347 static inline int prepare_hugepage_range(struct file *file,
348 				unsigned long addr, unsigned long len)
349 {
350 	return -EINVAL;
351 }
352 
353 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
354 {
355 }
356 
357 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
358 {
359 }
360 
361 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
362 {
363 }
364 
365 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
366 {
367 }
368 
369 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
370 {
371 	return 1;
372 }
373 
374 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
375 {
376 }
377 
378 static inline int pmd_huge(pmd_t pmd)
379 {
380 	return 0;
381 }
382 
383 static inline int pud_huge(pud_t pud)
384 {
385 	return 0;
386 }
387 
388 static inline int is_hugepage_only_range(struct mm_struct *mm,
389 					unsigned long addr, unsigned long len)
390 {
391 	return 0;
392 }
393 
394 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
395 				unsigned long addr, unsigned long end,
396 				unsigned long floor, unsigned long ceiling)
397 {
398 	BUG();
399 }
400 
401 #ifdef CONFIG_USERFAULTFD
402 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
403 					   struct vm_area_struct *dst_vma,
404 					   unsigned long dst_addr,
405 					   unsigned long src_addr,
406 					   uffd_flags_t flags,
407 					   struct folio **foliop)
408 {
409 	BUG();
410 	return 0;
411 }
412 #endif /* CONFIG_USERFAULTFD */
413 
414 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
415 					unsigned long sz)
416 {
417 	return NULL;
418 }
419 
420 static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list)
421 {
422 	return false;
423 }
424 
425 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
426 {
427 	return 0;
428 }
429 
430 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
431 					bool *migratable_cleared)
432 {
433 	return 0;
434 }
435 
436 static inline void folio_putback_active_hugetlb(struct folio *folio)
437 {
438 }
439 
440 static inline void move_hugetlb_state(struct folio *old_folio,
441 					struct folio *new_folio, int reason)
442 {
443 }
444 
445 static inline long hugetlb_change_protection(
446 			struct vm_area_struct *vma, unsigned long address,
447 			unsigned long end, pgprot_t newprot,
448 			unsigned long cp_flags)
449 {
450 	return 0;
451 }
452 
453 static inline void __unmap_hugepage_range_final(struct mmu_gather *tlb,
454 			struct vm_area_struct *vma, unsigned long start,
455 			unsigned long end, struct page *ref_page,
456 			zap_flags_t zap_flags)
457 {
458 	BUG();
459 }
460 
461 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
462 			struct vm_area_struct *vma, unsigned long address,
463 			unsigned int flags)
464 {
465 	BUG();
466 	return 0;
467 }
468 
469 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
470 
471 #endif /* !CONFIG_HUGETLB_PAGE */
472 /*
473  * hugepages at page global directory. If arch support
474  * hugepages at pgd level, they need to define this.
475  */
476 #ifndef pgd_huge
477 #define pgd_huge(x)	0
478 #endif
479 #ifndef p4d_huge
480 #define p4d_huge(x)	0
481 #endif
482 
483 #ifndef pgd_write
484 static inline int pgd_write(pgd_t pgd)
485 {
486 	BUG();
487 	return 0;
488 }
489 #endif
490 
491 #define HUGETLB_ANON_FILE "anon_hugepage"
492 
493 enum {
494 	/*
495 	 * The file will be used as an shm file so shmfs accounting rules
496 	 * apply
497 	 */
498 	HUGETLB_SHMFS_INODE     = 1,
499 	/*
500 	 * The file is being created on the internal vfs mount and shmfs
501 	 * accounting rules do not apply
502 	 */
503 	HUGETLB_ANONHUGE_INODE  = 2,
504 };
505 
506 #ifdef CONFIG_HUGETLBFS
507 struct hugetlbfs_sb_info {
508 	long	max_inodes;   /* inodes allowed */
509 	long	free_inodes;  /* inodes free */
510 	spinlock_t	stat_lock;
511 	struct hstate *hstate;
512 	struct hugepage_subpool *spool;
513 	kuid_t	uid;
514 	kgid_t	gid;
515 	umode_t mode;
516 };
517 
518 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
519 {
520 	return sb->s_fs_info;
521 }
522 
523 struct hugetlbfs_inode_info {
524 	struct shared_policy policy;
525 	struct inode vfs_inode;
526 	unsigned int seals;
527 };
528 
529 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
530 {
531 	return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
532 }
533 
534 extern const struct file_operations hugetlbfs_file_operations;
535 extern const struct vm_operations_struct hugetlb_vm_ops;
536 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
537 				int creat_flags, int page_size_log);
538 
539 static inline bool is_file_hugepages(struct file *file)
540 {
541 	if (file->f_op == &hugetlbfs_file_operations)
542 		return true;
543 
544 	return is_file_shm_hugepages(file);
545 }
546 
547 static inline struct hstate *hstate_inode(struct inode *i)
548 {
549 	return HUGETLBFS_SB(i->i_sb)->hstate;
550 }
551 #else /* !CONFIG_HUGETLBFS */
552 
553 #define is_file_hugepages(file)			false
554 static inline struct file *
555 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
556 		int creat_flags, int page_size_log)
557 {
558 	return ERR_PTR(-ENOSYS);
559 }
560 
561 static inline struct hstate *hstate_inode(struct inode *i)
562 {
563 	return NULL;
564 }
565 #endif /* !CONFIG_HUGETLBFS */
566 
567 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
568 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
569 					unsigned long len, unsigned long pgoff,
570 					unsigned long flags);
571 #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
572 
573 unsigned long
574 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
575 				  unsigned long len, unsigned long pgoff,
576 				  unsigned long flags);
577 
578 /*
579  * huegtlb page specific state flags.  These flags are located in page.private
580  * of the hugetlb head page.  Functions created via the below macros should be
581  * used to manipulate these flags.
582  *
583  * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
584  *	allocation time.  Cleared when page is fully instantiated.  Free
585  *	routine checks flag to restore a reservation on error paths.
586  *	Synchronization:  Examined or modified by code that knows it has
587  *	the only reference to page.  i.e. After allocation but before use
588  *	or when the page is being freed.
589  * HPG_migratable  - Set after a newly allocated page is added to the page
590  *	cache and/or page tables.  Indicates the page is a candidate for
591  *	migration.
592  *	Synchronization:  Initially set after new page allocation with no
593  *	locking.  When examined and modified during migration processing
594  *	(isolate, migrate, putback) the hugetlb_lock is held.
595  * HPG_temporary - Set on a page that is temporarily allocated from the buddy
596  *	allocator.  Typically used for migration target pages when no pages
597  *	are available in the pool.  The hugetlb free page path will
598  *	immediately free pages with this flag set to the buddy allocator.
599  *	Synchronization: Can be set after huge page allocation from buddy when
600  *	code knows it has only reference.  All other examinations and
601  *	modifications require hugetlb_lock.
602  * HPG_freed - Set when page is on the free lists.
603  *	Synchronization: hugetlb_lock held for examination and modification.
604  * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
605  * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
606  *     that is not tracked by raw_hwp_page list.
607  */
608 enum hugetlb_page_flags {
609 	HPG_restore_reserve = 0,
610 	HPG_migratable,
611 	HPG_temporary,
612 	HPG_freed,
613 	HPG_vmemmap_optimized,
614 	HPG_raw_hwp_unreliable,
615 	__NR_HPAGEFLAGS,
616 };
617 
618 /*
619  * Macros to create test, set and clear function definitions for
620  * hugetlb specific page flags.
621  */
622 #ifdef CONFIG_HUGETLB_PAGE
623 #define TESTHPAGEFLAG(uname, flname)				\
624 static __always_inline						\
625 bool folio_test_hugetlb_##flname(struct folio *folio)		\
626 	{	void *private = &folio->private;		\
627 		return test_bit(HPG_##flname, private);		\
628 	}							\
629 static inline int HPage##uname(struct page *page)		\
630 	{ return test_bit(HPG_##flname, &(page->private)); }
631 
632 #define SETHPAGEFLAG(uname, flname)				\
633 static __always_inline						\
634 void folio_set_hugetlb_##flname(struct folio *folio)		\
635 	{	void *private = &folio->private;		\
636 		set_bit(HPG_##flname, private);			\
637 	}							\
638 static inline void SetHPage##uname(struct page *page)		\
639 	{ set_bit(HPG_##flname, &(page->private)); }
640 
641 #define CLEARHPAGEFLAG(uname, flname)				\
642 static __always_inline						\
643 void folio_clear_hugetlb_##flname(struct folio *folio)		\
644 	{	void *private = &folio->private;		\
645 		clear_bit(HPG_##flname, private);		\
646 	}							\
647 static inline void ClearHPage##uname(struct page *page)		\
648 	{ clear_bit(HPG_##flname, &(page->private)); }
649 #else
650 #define TESTHPAGEFLAG(uname, flname)				\
651 static inline bool						\
652 folio_test_hugetlb_##flname(struct folio *folio)		\
653 	{ return 0; }						\
654 static inline int HPage##uname(struct page *page)		\
655 	{ return 0; }
656 
657 #define SETHPAGEFLAG(uname, flname)				\
658 static inline void						\
659 folio_set_hugetlb_##flname(struct folio *folio) 		\
660 	{ }							\
661 static inline void SetHPage##uname(struct page *page)		\
662 	{ }
663 
664 #define CLEARHPAGEFLAG(uname, flname)				\
665 static inline void						\
666 folio_clear_hugetlb_##flname(struct folio *folio)		\
667 	{ }							\
668 static inline void ClearHPage##uname(struct page *page)		\
669 	{ }
670 #endif
671 
672 #define HPAGEFLAG(uname, flname)				\
673 	TESTHPAGEFLAG(uname, flname)				\
674 	SETHPAGEFLAG(uname, flname)				\
675 	CLEARHPAGEFLAG(uname, flname)				\
676 
677 /*
678  * Create functions associated with hugetlb page flags
679  */
680 HPAGEFLAG(RestoreReserve, restore_reserve)
681 HPAGEFLAG(Migratable, migratable)
682 HPAGEFLAG(Temporary, temporary)
683 HPAGEFLAG(Freed, freed)
684 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
685 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
686 
687 #ifdef CONFIG_HUGETLB_PAGE
688 
689 #define HSTATE_NAME_LEN 32
690 /* Defines one hugetlb page size */
691 struct hstate {
692 	struct mutex resize_lock;
693 	int next_nid_to_alloc;
694 	int next_nid_to_free;
695 	unsigned int order;
696 	unsigned int demote_order;
697 	unsigned long mask;
698 	unsigned long max_huge_pages;
699 	unsigned long nr_huge_pages;
700 	unsigned long free_huge_pages;
701 	unsigned long resv_huge_pages;
702 	unsigned long surplus_huge_pages;
703 	unsigned long nr_overcommit_huge_pages;
704 	struct list_head hugepage_activelist;
705 	struct list_head hugepage_freelists[MAX_NUMNODES];
706 	unsigned int max_huge_pages_node[MAX_NUMNODES];
707 	unsigned int nr_huge_pages_node[MAX_NUMNODES];
708 	unsigned int free_huge_pages_node[MAX_NUMNODES];
709 	unsigned int surplus_huge_pages_node[MAX_NUMNODES];
710 #ifdef CONFIG_CGROUP_HUGETLB
711 	/* cgroup control files */
712 	struct cftype cgroup_files_dfl[8];
713 	struct cftype cgroup_files_legacy[10];
714 #endif
715 	char name[HSTATE_NAME_LEN];
716 };
717 
718 struct huge_bootmem_page {
719 	struct list_head list;
720 	struct hstate *hstate;
721 };
722 
723 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list);
724 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
725 				unsigned long addr, int avoid_reserve);
726 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
727 				nodemask_t *nmask, gfp_t gfp_mask);
728 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
729 				unsigned long address);
730 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
731 			pgoff_t idx);
732 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
733 				unsigned long address, struct folio *folio);
734 
735 /* arch callback */
736 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
737 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
738 bool __init hugetlb_node_alloc_supported(void);
739 
740 void __init hugetlb_add_hstate(unsigned order);
741 bool __init arch_hugetlb_valid_size(unsigned long size);
742 struct hstate *size_to_hstate(unsigned long size);
743 
744 #ifndef HUGE_MAX_HSTATE
745 #define HUGE_MAX_HSTATE 1
746 #endif
747 
748 extern struct hstate hstates[HUGE_MAX_HSTATE];
749 extern unsigned int default_hstate_idx;
750 
751 #define default_hstate (hstates[default_hstate_idx])
752 
753 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
754 {
755 	return folio->_hugetlb_subpool;
756 }
757 
758 static inline void hugetlb_set_folio_subpool(struct folio *folio,
759 					struct hugepage_subpool *subpool)
760 {
761 	folio->_hugetlb_subpool = subpool;
762 }
763 
764 static inline struct hstate *hstate_file(struct file *f)
765 {
766 	return hstate_inode(file_inode(f));
767 }
768 
769 static inline struct hstate *hstate_sizelog(int page_size_log)
770 {
771 	if (!page_size_log)
772 		return &default_hstate;
773 
774 	if (page_size_log < BITS_PER_LONG)
775 		return size_to_hstate(1UL << page_size_log);
776 
777 	return NULL;
778 }
779 
780 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
781 {
782 	return hstate_file(vma->vm_file);
783 }
784 
785 static inline unsigned long huge_page_size(const struct hstate *h)
786 {
787 	return (unsigned long)PAGE_SIZE << h->order;
788 }
789 
790 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
791 
792 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
793 
794 static inline unsigned long huge_page_mask(struct hstate *h)
795 {
796 	return h->mask;
797 }
798 
799 static inline unsigned int huge_page_order(struct hstate *h)
800 {
801 	return h->order;
802 }
803 
804 static inline unsigned huge_page_shift(struct hstate *h)
805 {
806 	return h->order + PAGE_SHIFT;
807 }
808 
809 static inline bool hstate_is_gigantic(struct hstate *h)
810 {
811 	return huge_page_order(h) > MAX_ORDER;
812 }
813 
814 static inline unsigned int pages_per_huge_page(const struct hstate *h)
815 {
816 	return 1 << h->order;
817 }
818 
819 static inline unsigned int blocks_per_huge_page(struct hstate *h)
820 {
821 	return huge_page_size(h) / 512;
822 }
823 
824 #include <asm/hugetlb.h>
825 
826 #ifndef is_hugepage_only_range
827 static inline int is_hugepage_only_range(struct mm_struct *mm,
828 					unsigned long addr, unsigned long len)
829 {
830 	return 0;
831 }
832 #define is_hugepage_only_range is_hugepage_only_range
833 #endif
834 
835 #ifndef arch_clear_hugepage_flags
836 static inline void arch_clear_hugepage_flags(struct page *page) { }
837 #define arch_clear_hugepage_flags arch_clear_hugepage_flags
838 #endif
839 
840 #ifndef arch_make_huge_pte
841 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
842 				       vm_flags_t flags)
843 {
844 	return pte_mkhuge(entry);
845 }
846 #endif
847 
848 static inline struct hstate *folio_hstate(struct folio *folio)
849 {
850 	VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
851 	return size_to_hstate(folio_size(folio));
852 }
853 
854 static inline struct hstate *page_hstate(struct page *page)
855 {
856 	return folio_hstate(page_folio(page));
857 }
858 
859 static inline unsigned hstate_index_to_shift(unsigned index)
860 {
861 	return hstates[index].order + PAGE_SHIFT;
862 }
863 
864 static inline int hstate_index(struct hstate *h)
865 {
866 	return h - hstates;
867 }
868 
869 extern int dissolve_free_huge_page(struct page *page);
870 extern int dissolve_free_huge_pages(unsigned long start_pfn,
871 				    unsigned long end_pfn);
872 
873 #ifdef CONFIG_MEMORY_FAILURE
874 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
875 #else
876 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
877 {
878 }
879 #endif
880 
881 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
882 #ifndef arch_hugetlb_migration_supported
883 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
884 {
885 	if ((huge_page_shift(h) == PMD_SHIFT) ||
886 		(huge_page_shift(h) == PUD_SHIFT) ||
887 			(huge_page_shift(h) == PGDIR_SHIFT))
888 		return true;
889 	else
890 		return false;
891 }
892 #endif
893 #else
894 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
895 {
896 	return false;
897 }
898 #endif
899 
900 static inline bool hugepage_migration_supported(struct hstate *h)
901 {
902 	return arch_hugetlb_migration_supported(h);
903 }
904 
905 /*
906  * Movability check is different as compared to migration check.
907  * It determines whether or not a huge page should be placed on
908  * movable zone or not. Movability of any huge page should be
909  * required only if huge page size is supported for migration.
910  * There won't be any reason for the huge page to be movable if
911  * it is not migratable to start with. Also the size of the huge
912  * page should be large enough to be placed under a movable zone
913  * and still feasible enough to be migratable. Just the presence
914  * in movable zone does not make the migration feasible.
915  *
916  * So even though large huge page sizes like the gigantic ones
917  * are migratable they should not be movable because its not
918  * feasible to migrate them from movable zone.
919  */
920 static inline bool hugepage_movable_supported(struct hstate *h)
921 {
922 	if (!hugepage_migration_supported(h))
923 		return false;
924 
925 	if (hstate_is_gigantic(h))
926 		return false;
927 	return true;
928 }
929 
930 /* Movability of hugepages depends on migration support. */
931 static inline gfp_t htlb_alloc_mask(struct hstate *h)
932 {
933 	if (hugepage_movable_supported(h))
934 		return GFP_HIGHUSER_MOVABLE;
935 	else
936 		return GFP_HIGHUSER;
937 }
938 
939 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
940 {
941 	gfp_t modified_mask = htlb_alloc_mask(h);
942 
943 	/* Some callers might want to enforce node */
944 	modified_mask |= (gfp_mask & __GFP_THISNODE);
945 
946 	modified_mask |= (gfp_mask & __GFP_NOWARN);
947 
948 	return modified_mask;
949 }
950 
951 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
952 					   struct mm_struct *mm, pte_t *pte)
953 {
954 	if (huge_page_size(h) == PMD_SIZE)
955 		return pmd_lockptr(mm, (pmd_t *) pte);
956 	VM_BUG_ON(huge_page_size(h) == PAGE_SIZE);
957 	return &mm->page_table_lock;
958 }
959 
960 #ifndef hugepages_supported
961 /*
962  * Some platform decide whether they support huge pages at boot
963  * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
964  * when there is no such support
965  */
966 #define hugepages_supported() (HPAGE_SHIFT != 0)
967 #endif
968 
969 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
970 
971 static inline void hugetlb_count_init(struct mm_struct *mm)
972 {
973 	atomic_long_set(&mm->hugetlb_usage, 0);
974 }
975 
976 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
977 {
978 	atomic_long_add(l, &mm->hugetlb_usage);
979 }
980 
981 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
982 {
983 	atomic_long_sub(l, &mm->hugetlb_usage);
984 }
985 
986 #ifndef huge_ptep_modify_prot_start
987 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
988 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
989 						unsigned long addr, pte_t *ptep)
990 {
991 	return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep);
992 }
993 #endif
994 
995 #ifndef huge_ptep_modify_prot_commit
996 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
997 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
998 						unsigned long addr, pte_t *ptep,
999 						pte_t old_pte, pte_t pte)
1000 {
1001 	set_huge_pte_at(vma->vm_mm, addr, ptep, pte);
1002 }
1003 #endif
1004 
1005 #ifdef CONFIG_NUMA
1006 void hugetlb_register_node(struct node *node);
1007 void hugetlb_unregister_node(struct node *node);
1008 #endif
1009 
1010 #else	/* CONFIG_HUGETLB_PAGE */
1011 struct hstate {};
1012 
1013 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1014 {
1015 	return NULL;
1016 }
1017 
1018 static inline int isolate_or_dissolve_huge_page(struct page *page,
1019 						struct list_head *list)
1020 {
1021 	return -ENOMEM;
1022 }
1023 
1024 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1025 					   unsigned long addr,
1026 					   int avoid_reserve)
1027 {
1028 	return NULL;
1029 }
1030 
1031 static inline struct folio *
1032 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1033 			nodemask_t *nmask, gfp_t gfp_mask)
1034 {
1035 	return NULL;
1036 }
1037 
1038 static inline struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
1039 					       struct vm_area_struct *vma,
1040 					       unsigned long address)
1041 {
1042 	return NULL;
1043 }
1044 
1045 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1046 {
1047 	return 0;
1048 }
1049 
1050 static inline struct hstate *hstate_file(struct file *f)
1051 {
1052 	return NULL;
1053 }
1054 
1055 static inline struct hstate *hstate_sizelog(int page_size_log)
1056 {
1057 	return NULL;
1058 }
1059 
1060 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1061 {
1062 	return NULL;
1063 }
1064 
1065 static inline struct hstate *folio_hstate(struct folio *folio)
1066 {
1067 	return NULL;
1068 }
1069 
1070 static inline struct hstate *page_hstate(struct page *page)
1071 {
1072 	return NULL;
1073 }
1074 
1075 static inline struct hstate *size_to_hstate(unsigned long size)
1076 {
1077 	return NULL;
1078 }
1079 
1080 static inline unsigned long huge_page_size(struct hstate *h)
1081 {
1082 	return PAGE_SIZE;
1083 }
1084 
1085 static inline unsigned long huge_page_mask(struct hstate *h)
1086 {
1087 	return PAGE_MASK;
1088 }
1089 
1090 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1091 {
1092 	return PAGE_SIZE;
1093 }
1094 
1095 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1096 {
1097 	return PAGE_SIZE;
1098 }
1099 
1100 static inline unsigned int huge_page_order(struct hstate *h)
1101 {
1102 	return 0;
1103 }
1104 
1105 static inline unsigned int huge_page_shift(struct hstate *h)
1106 {
1107 	return PAGE_SHIFT;
1108 }
1109 
1110 static inline bool hstate_is_gigantic(struct hstate *h)
1111 {
1112 	return false;
1113 }
1114 
1115 static inline unsigned int pages_per_huge_page(struct hstate *h)
1116 {
1117 	return 1;
1118 }
1119 
1120 static inline unsigned hstate_index_to_shift(unsigned index)
1121 {
1122 	return 0;
1123 }
1124 
1125 static inline int hstate_index(struct hstate *h)
1126 {
1127 	return 0;
1128 }
1129 
1130 static inline int dissolve_free_huge_page(struct page *page)
1131 {
1132 	return 0;
1133 }
1134 
1135 static inline int dissolve_free_huge_pages(unsigned long start_pfn,
1136 					   unsigned long end_pfn)
1137 {
1138 	return 0;
1139 }
1140 
1141 static inline bool hugepage_migration_supported(struct hstate *h)
1142 {
1143 	return false;
1144 }
1145 
1146 static inline bool hugepage_movable_supported(struct hstate *h)
1147 {
1148 	return false;
1149 }
1150 
1151 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1152 {
1153 	return 0;
1154 }
1155 
1156 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1157 {
1158 	return 0;
1159 }
1160 
1161 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1162 					   struct mm_struct *mm, pte_t *pte)
1163 {
1164 	return &mm->page_table_lock;
1165 }
1166 
1167 static inline void hugetlb_count_init(struct mm_struct *mm)
1168 {
1169 }
1170 
1171 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1172 {
1173 }
1174 
1175 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1176 {
1177 }
1178 
1179 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1180 					  unsigned long addr, pte_t *ptep)
1181 {
1182 #ifdef CONFIG_MMU
1183 	return ptep_get(ptep);
1184 #else
1185 	return *ptep;
1186 #endif
1187 }
1188 
1189 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1190 				   pte_t *ptep, pte_t pte)
1191 {
1192 }
1193 
1194 static inline void hugetlb_register_node(struct node *node)
1195 {
1196 }
1197 
1198 static inline void hugetlb_unregister_node(struct node *node)
1199 {
1200 }
1201 #endif	/* CONFIG_HUGETLB_PAGE */
1202 
1203 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1204 					struct mm_struct *mm, pte_t *pte)
1205 {
1206 	spinlock_t *ptl;
1207 
1208 	ptl = huge_pte_lockptr(h, mm, pte);
1209 	spin_lock(ptl);
1210 	return ptl;
1211 }
1212 
1213 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1214 extern void __init hugetlb_cma_reserve(int order);
1215 #else
1216 static inline __init void hugetlb_cma_reserve(int order)
1217 {
1218 }
1219 #endif
1220 
1221 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
1222 static inline bool hugetlb_pmd_shared(pte_t *pte)
1223 {
1224 	return page_count(virt_to_page(pte)) > 1;
1225 }
1226 #else
1227 static inline bool hugetlb_pmd_shared(pte_t *pte)
1228 {
1229 	return false;
1230 }
1231 #endif
1232 
1233 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1234 
1235 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1236 /*
1237  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1238  * implement this.
1239  */
1240 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1241 #endif
1242 
1243 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1244 {
1245 	return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1246 }
1247 
1248 /*
1249  * Safe version of huge_pte_offset() to check the locks.  See comments
1250  * above huge_pte_offset().
1251  */
1252 static inline pte_t *
1253 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1254 {
1255 #if defined(CONFIG_HUGETLB_PAGE) && \
1256 	defined(CONFIG_ARCH_WANT_HUGE_PMD_SHARE) && defined(CONFIG_LOCKDEP)
1257 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1258 
1259 	/*
1260 	 * If pmd sharing possible, locking needed to safely walk the
1261 	 * hugetlb pgtables.  More information can be found at the comment
1262 	 * above huge_pte_offset() in the same file.
1263 	 *
1264 	 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1265 	 */
1266 	if (__vma_shareable_lock(vma))
1267 		WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1268 			     !lockdep_is_held(
1269 				 &vma->vm_file->f_mapping->i_mmap_rwsem));
1270 #endif
1271 	return huge_pte_offset(vma->vm_mm, addr, sz);
1272 }
1273 
1274 #endif /* _LINUX_HUGETLB_H */
1275