1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_HUGETLB_H 3 #define _LINUX_HUGETLB_H 4 5 #include <linux/mm.h> 6 #include <linux/mm_types.h> 7 #include <linux/mmdebug.h> 8 #include <linux/fs.h> 9 #include <linux/hugetlb_inline.h> 10 #include <linux/cgroup.h> 11 #include <linux/page_ref.h> 12 #include <linux/list.h> 13 #include <linux/kref.h> 14 #include <linux/pgtable.h> 15 #include <linux/gfp.h> 16 #include <linux/userfaultfd_k.h> 17 18 struct ctl_table; 19 struct user_struct; 20 struct mmu_gather; 21 struct node; 22 23 #ifndef CONFIG_ARCH_HAS_HUGEPD 24 typedef struct { unsigned long pd; } hugepd_t; 25 #define is_hugepd(hugepd) (0) 26 #define __hugepd(x) ((hugepd_t) { (x) }) 27 #endif 28 29 void free_huge_folio(struct folio *folio); 30 31 #ifdef CONFIG_HUGETLB_PAGE 32 33 #include <linux/pagemap.h> 34 #include <linux/shm.h> 35 #include <asm/tlbflush.h> 36 37 /* 38 * For HugeTLB page, there are more metadata to save in the struct page. But 39 * the head struct page cannot meet our needs, so we have to abuse other tail 40 * struct page to store the metadata. 41 */ 42 #define __NR_USED_SUBPAGE 3 43 44 struct hugepage_subpool { 45 spinlock_t lock; 46 long count; 47 long max_hpages; /* Maximum huge pages or -1 if no maximum. */ 48 long used_hpages; /* Used count against maximum, includes */ 49 /* both allocated and reserved pages. */ 50 struct hstate *hstate; 51 long min_hpages; /* Minimum huge pages or -1 if no minimum. */ 52 long rsv_hpages; /* Pages reserved against global pool to */ 53 /* satisfy minimum size. */ 54 }; 55 56 struct resv_map { 57 struct kref refs; 58 spinlock_t lock; 59 struct list_head regions; 60 long adds_in_progress; 61 struct list_head region_cache; 62 long region_cache_count; 63 struct rw_semaphore rw_sema; 64 #ifdef CONFIG_CGROUP_HUGETLB 65 /* 66 * On private mappings, the counter to uncharge reservations is stored 67 * here. If these fields are 0, then either the mapping is shared, or 68 * cgroup accounting is disabled for this resv_map. 69 */ 70 struct page_counter *reservation_counter; 71 unsigned long pages_per_hpage; 72 struct cgroup_subsys_state *css; 73 #endif 74 }; 75 76 /* 77 * Region tracking -- allows tracking of reservations and instantiated pages 78 * across the pages in a mapping. 79 * 80 * The region data structures are embedded into a resv_map and protected 81 * by a resv_map's lock. The set of regions within the resv_map represent 82 * reservations for huge pages, or huge pages that have already been 83 * instantiated within the map. The from and to elements are huge page 84 * indices into the associated mapping. from indicates the starting index 85 * of the region. to represents the first index past the end of the region. 86 * 87 * For example, a file region structure with from == 0 and to == 4 represents 88 * four huge pages in a mapping. It is important to note that the to element 89 * represents the first element past the end of the region. This is used in 90 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 91 * 92 * Interval notation of the form [from, to) will be used to indicate that 93 * the endpoint from is inclusive and to is exclusive. 94 */ 95 struct file_region { 96 struct list_head link; 97 long from; 98 long to; 99 #ifdef CONFIG_CGROUP_HUGETLB 100 /* 101 * On shared mappings, each reserved region appears as a struct 102 * file_region in resv_map. These fields hold the info needed to 103 * uncharge each reservation. 104 */ 105 struct page_counter *reservation_counter; 106 struct cgroup_subsys_state *css; 107 #endif 108 }; 109 110 struct hugetlb_vma_lock { 111 struct kref refs; 112 struct rw_semaphore rw_sema; 113 struct vm_area_struct *vma; 114 }; 115 116 extern struct resv_map *resv_map_alloc(void); 117 void resv_map_release(struct kref *ref); 118 119 extern spinlock_t hugetlb_lock; 120 extern int hugetlb_max_hstate __read_mostly; 121 #define for_each_hstate(h) \ 122 for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++) 123 124 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 125 long min_hpages); 126 void hugepage_put_subpool(struct hugepage_subpool *spool); 127 128 void hugetlb_dup_vma_private(struct vm_area_struct *vma); 129 void clear_vma_resv_huge_pages(struct vm_area_struct *vma); 130 int move_hugetlb_page_tables(struct vm_area_struct *vma, 131 struct vm_area_struct *new_vma, 132 unsigned long old_addr, unsigned long new_addr, 133 unsigned long len); 134 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *, 135 struct vm_area_struct *, struct vm_area_struct *); 136 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, 137 unsigned long address, unsigned int flags, 138 unsigned int *page_mask); 139 void unmap_hugepage_range(struct vm_area_struct *, 140 unsigned long, unsigned long, struct page *, 141 zap_flags_t); 142 void __unmap_hugepage_range(struct mmu_gather *tlb, 143 struct vm_area_struct *vma, 144 unsigned long start, unsigned long end, 145 struct page *ref_page, zap_flags_t zap_flags); 146 void hugetlb_report_meminfo(struct seq_file *); 147 int hugetlb_report_node_meminfo(char *buf, int len, int nid); 148 void hugetlb_show_meminfo_node(int nid); 149 unsigned long hugetlb_total_pages(void); 150 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 151 unsigned long address, unsigned int flags); 152 #ifdef CONFIG_USERFAULTFD 153 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 154 struct vm_area_struct *dst_vma, 155 unsigned long dst_addr, 156 unsigned long src_addr, 157 uffd_flags_t flags, 158 struct folio **foliop); 159 #endif /* CONFIG_USERFAULTFD */ 160 bool hugetlb_reserve_pages(struct inode *inode, long from, long to, 161 struct vm_area_struct *vma, 162 vm_flags_t vm_flags); 163 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 164 long freed); 165 bool isolate_hugetlb(struct folio *folio, struct list_head *list); 166 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison); 167 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 168 bool *migratable_cleared); 169 void folio_putback_active_hugetlb(struct folio *folio); 170 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason); 171 void hugetlb_fix_reserve_counts(struct inode *inode); 172 extern struct mutex *hugetlb_fault_mutex_table; 173 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx); 174 175 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 176 unsigned long addr, pud_t *pud); 177 bool hugetlbfs_pagecache_present(struct hstate *h, 178 struct vm_area_struct *vma, 179 unsigned long address); 180 181 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio); 182 183 extern int sysctl_hugetlb_shm_group; 184 extern struct list_head huge_boot_pages[MAX_NUMNODES]; 185 186 /* arch callbacks */ 187 188 #ifndef CONFIG_HIGHPTE 189 /* 190 * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures 191 * which may go down to the lowest PTE level in their huge_pte_offset() and 192 * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap(). 193 */ 194 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address) 195 { 196 return pte_offset_kernel(pmd, address); 197 } 198 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd, 199 unsigned long address) 200 { 201 return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address); 202 } 203 #endif 204 205 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 206 unsigned long addr, unsigned long sz); 207 /* 208 * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE. 209 * Returns the pte_t* if found, or NULL if the address is not mapped. 210 * 211 * IMPORTANT: we should normally not directly call this function, instead 212 * this is only a common interface to implement arch-specific 213 * walker. Please use hugetlb_walk() instead, because that will attempt to 214 * verify the locking for you. 215 * 216 * Since this function will walk all the pgtable pages (including not only 217 * high-level pgtable page, but also PUD entry that can be unshared 218 * concurrently for VM_SHARED), the caller of this function should be 219 * responsible of its thread safety. One can follow this rule: 220 * 221 * (1) For private mappings: pmd unsharing is not possible, so holding the 222 * mmap_lock for either read or write is sufficient. Most callers 223 * already hold the mmap_lock, so normally, no special action is 224 * required. 225 * 226 * (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged 227 * pgtable page can go away from under us! It can be done by a pmd 228 * unshare with a follow up munmap() on the other process), then we 229 * need either: 230 * 231 * (2.1) hugetlb vma lock read or write held, to make sure pmd unshare 232 * won't happen upon the range (it also makes sure the pte_t we 233 * read is the right and stable one), or, 234 * 235 * (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make 236 * sure even if unshare happened the racy unmap() will wait until 237 * i_mmap_rwsem is released. 238 * 239 * Option (2.1) is the safest, which guarantees pte stability from pmd 240 * sharing pov, until the vma lock released. Option (2.2) doesn't protect 241 * a concurrent pmd unshare, but it makes sure the pgtable page is safe to 242 * access. 243 */ 244 pte_t *huge_pte_offset(struct mm_struct *mm, 245 unsigned long addr, unsigned long sz); 246 unsigned long hugetlb_mask_last_page(struct hstate *h); 247 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, 248 unsigned long addr, pte_t *ptep); 249 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 250 unsigned long *start, unsigned long *end); 251 252 extern void __hugetlb_zap_begin(struct vm_area_struct *vma, 253 unsigned long *begin, unsigned long *end); 254 extern void __hugetlb_zap_end(struct vm_area_struct *vma, 255 struct zap_details *details); 256 257 static inline void hugetlb_zap_begin(struct vm_area_struct *vma, 258 unsigned long *start, unsigned long *end) 259 { 260 if (is_vm_hugetlb_page(vma)) 261 __hugetlb_zap_begin(vma, start, end); 262 } 263 264 static inline void hugetlb_zap_end(struct vm_area_struct *vma, 265 struct zap_details *details) 266 { 267 if (is_vm_hugetlb_page(vma)) 268 __hugetlb_zap_end(vma, details); 269 } 270 271 void hugetlb_vma_lock_read(struct vm_area_struct *vma); 272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma); 273 void hugetlb_vma_lock_write(struct vm_area_struct *vma); 274 void hugetlb_vma_unlock_write(struct vm_area_struct *vma); 275 int hugetlb_vma_trylock_write(struct vm_area_struct *vma); 276 void hugetlb_vma_assert_locked(struct vm_area_struct *vma); 277 void hugetlb_vma_lock_release(struct kref *kref); 278 long hugetlb_change_protection(struct vm_area_struct *vma, 279 unsigned long address, unsigned long end, pgprot_t newprot, 280 unsigned long cp_flags); 281 bool is_hugetlb_entry_migration(pte_t pte); 282 bool is_hugetlb_entry_hwpoisoned(pte_t pte); 283 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma); 284 285 #else /* !CONFIG_HUGETLB_PAGE */ 286 287 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma) 288 { 289 } 290 291 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 292 { 293 } 294 295 static inline unsigned long hugetlb_total_pages(void) 296 { 297 return 0; 298 } 299 300 static inline struct address_space *hugetlb_folio_mapping_lock_write( 301 struct folio *folio) 302 { 303 return NULL; 304 } 305 306 static inline int huge_pmd_unshare(struct mm_struct *mm, 307 struct vm_area_struct *vma, 308 unsigned long addr, pte_t *ptep) 309 { 310 return 0; 311 } 312 313 static inline void adjust_range_if_pmd_sharing_possible( 314 struct vm_area_struct *vma, 315 unsigned long *start, unsigned long *end) 316 { 317 } 318 319 static inline void hugetlb_zap_begin( 320 struct vm_area_struct *vma, 321 unsigned long *start, unsigned long *end) 322 { 323 } 324 325 static inline void hugetlb_zap_end( 326 struct vm_area_struct *vma, 327 struct zap_details *details) 328 { 329 } 330 331 static inline int copy_hugetlb_page_range(struct mm_struct *dst, 332 struct mm_struct *src, 333 struct vm_area_struct *dst_vma, 334 struct vm_area_struct *src_vma) 335 { 336 BUG(); 337 return 0; 338 } 339 340 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma, 341 struct vm_area_struct *new_vma, 342 unsigned long old_addr, 343 unsigned long new_addr, 344 unsigned long len) 345 { 346 BUG(); 347 return 0; 348 } 349 350 static inline void hugetlb_report_meminfo(struct seq_file *m) 351 { 352 } 353 354 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid) 355 { 356 return 0; 357 } 358 359 static inline void hugetlb_show_meminfo_node(int nid) 360 { 361 } 362 363 static inline int prepare_hugepage_range(struct file *file, 364 unsigned long addr, unsigned long len) 365 { 366 return -EINVAL; 367 } 368 369 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma) 370 { 371 } 372 373 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 374 { 375 } 376 377 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma) 378 { 379 } 380 381 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 382 { 383 } 384 385 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 386 { 387 return 1; 388 } 389 390 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 391 { 392 } 393 394 static inline int is_hugepage_only_range(struct mm_struct *mm, 395 unsigned long addr, unsigned long len) 396 { 397 return 0; 398 } 399 400 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb, 401 unsigned long addr, unsigned long end, 402 unsigned long floor, unsigned long ceiling) 403 { 404 BUG(); 405 } 406 407 #ifdef CONFIG_USERFAULTFD 408 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 409 struct vm_area_struct *dst_vma, 410 unsigned long dst_addr, 411 unsigned long src_addr, 412 uffd_flags_t flags, 413 struct folio **foliop) 414 { 415 BUG(); 416 return 0; 417 } 418 #endif /* CONFIG_USERFAULTFD */ 419 420 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, 421 unsigned long sz) 422 { 423 return NULL; 424 } 425 426 static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list) 427 { 428 return false; 429 } 430 431 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 432 { 433 return 0; 434 } 435 436 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 437 bool *migratable_cleared) 438 { 439 return 0; 440 } 441 442 static inline void folio_putback_active_hugetlb(struct folio *folio) 443 { 444 } 445 446 static inline void move_hugetlb_state(struct folio *old_folio, 447 struct folio *new_folio, int reason) 448 { 449 } 450 451 static inline long hugetlb_change_protection( 452 struct vm_area_struct *vma, unsigned long address, 453 unsigned long end, pgprot_t newprot, 454 unsigned long cp_flags) 455 { 456 return 0; 457 } 458 459 static inline void __unmap_hugepage_range(struct mmu_gather *tlb, 460 struct vm_area_struct *vma, unsigned long start, 461 unsigned long end, struct page *ref_page, 462 zap_flags_t zap_flags) 463 { 464 BUG(); 465 } 466 467 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm, 468 struct vm_area_struct *vma, unsigned long address, 469 unsigned int flags) 470 { 471 BUG(); 472 return 0; 473 } 474 475 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { } 476 477 #endif /* !CONFIG_HUGETLB_PAGE */ 478 479 #ifndef pgd_write 480 static inline int pgd_write(pgd_t pgd) 481 { 482 BUG(); 483 return 0; 484 } 485 #endif 486 487 #define HUGETLB_ANON_FILE "anon_hugepage" 488 489 enum { 490 /* 491 * The file will be used as an shm file so shmfs accounting rules 492 * apply 493 */ 494 HUGETLB_SHMFS_INODE = 1, 495 /* 496 * The file is being created on the internal vfs mount and shmfs 497 * accounting rules do not apply 498 */ 499 HUGETLB_ANONHUGE_INODE = 2, 500 }; 501 502 #ifdef CONFIG_HUGETLBFS 503 struct hugetlbfs_sb_info { 504 long max_inodes; /* inodes allowed */ 505 long free_inodes; /* inodes free */ 506 spinlock_t stat_lock; 507 struct hstate *hstate; 508 struct hugepage_subpool *spool; 509 kuid_t uid; 510 kgid_t gid; 511 umode_t mode; 512 }; 513 514 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb) 515 { 516 return sb->s_fs_info; 517 } 518 519 struct hugetlbfs_inode_info { 520 struct inode vfs_inode; 521 unsigned int seals; 522 }; 523 524 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode) 525 { 526 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode); 527 } 528 529 extern const struct vm_operations_struct hugetlb_vm_ops; 530 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct, 531 int creat_flags, int page_size_log); 532 533 static inline bool is_file_hugepages(const struct file *file) 534 { 535 return file->f_op->fop_flags & FOP_HUGE_PAGES; 536 } 537 538 static inline struct hstate *hstate_inode(struct inode *i) 539 { 540 return HUGETLBFS_SB(i->i_sb)->hstate; 541 } 542 #else /* !CONFIG_HUGETLBFS */ 543 544 #define is_file_hugepages(file) false 545 static inline struct file * 546 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag, 547 int creat_flags, int page_size_log) 548 { 549 return ERR_PTR(-ENOSYS); 550 } 551 552 static inline struct hstate *hstate_inode(struct inode *i) 553 { 554 return NULL; 555 } 556 #endif /* !CONFIG_HUGETLBFS */ 557 558 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 559 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 560 unsigned long len, unsigned long pgoff, 561 unsigned long flags); 562 #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */ 563 564 unsigned long 565 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 566 unsigned long len, unsigned long pgoff, 567 unsigned long flags); 568 569 /* 570 * huegtlb page specific state flags. These flags are located in page.private 571 * of the hugetlb head page. Functions created via the below macros should be 572 * used to manipulate these flags. 573 * 574 * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at 575 * allocation time. Cleared when page is fully instantiated. Free 576 * routine checks flag to restore a reservation on error paths. 577 * Synchronization: Examined or modified by code that knows it has 578 * the only reference to page. i.e. After allocation but before use 579 * or when the page is being freed. 580 * HPG_migratable - Set after a newly allocated page is added to the page 581 * cache and/or page tables. Indicates the page is a candidate for 582 * migration. 583 * Synchronization: Initially set after new page allocation with no 584 * locking. When examined and modified during migration processing 585 * (isolate, migrate, putback) the hugetlb_lock is held. 586 * HPG_temporary - Set on a page that is temporarily allocated from the buddy 587 * allocator. Typically used for migration target pages when no pages 588 * are available in the pool. The hugetlb free page path will 589 * immediately free pages with this flag set to the buddy allocator. 590 * Synchronization: Can be set after huge page allocation from buddy when 591 * code knows it has only reference. All other examinations and 592 * modifications require hugetlb_lock. 593 * HPG_freed - Set when page is on the free lists. 594 * Synchronization: hugetlb_lock held for examination and modification. 595 * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed. 596 * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page 597 * that is not tracked by raw_hwp_page list. 598 */ 599 enum hugetlb_page_flags { 600 HPG_restore_reserve = 0, 601 HPG_migratable, 602 HPG_temporary, 603 HPG_freed, 604 HPG_vmemmap_optimized, 605 HPG_raw_hwp_unreliable, 606 __NR_HPAGEFLAGS, 607 }; 608 609 /* 610 * Macros to create test, set and clear function definitions for 611 * hugetlb specific page flags. 612 */ 613 #ifdef CONFIG_HUGETLB_PAGE 614 #define TESTHPAGEFLAG(uname, flname) \ 615 static __always_inline \ 616 bool folio_test_hugetlb_##flname(struct folio *folio) \ 617 { void *private = &folio->private; \ 618 return test_bit(HPG_##flname, private); \ 619 } 620 621 #define SETHPAGEFLAG(uname, flname) \ 622 static __always_inline \ 623 void folio_set_hugetlb_##flname(struct folio *folio) \ 624 { void *private = &folio->private; \ 625 set_bit(HPG_##flname, private); \ 626 } 627 628 #define CLEARHPAGEFLAG(uname, flname) \ 629 static __always_inline \ 630 void folio_clear_hugetlb_##flname(struct folio *folio) \ 631 { void *private = &folio->private; \ 632 clear_bit(HPG_##flname, private); \ 633 } 634 #else 635 #define TESTHPAGEFLAG(uname, flname) \ 636 static inline bool \ 637 folio_test_hugetlb_##flname(struct folio *folio) \ 638 { return 0; } 639 640 #define SETHPAGEFLAG(uname, flname) \ 641 static inline void \ 642 folio_set_hugetlb_##flname(struct folio *folio) \ 643 { } 644 645 #define CLEARHPAGEFLAG(uname, flname) \ 646 static inline void \ 647 folio_clear_hugetlb_##flname(struct folio *folio) \ 648 { } 649 #endif 650 651 #define HPAGEFLAG(uname, flname) \ 652 TESTHPAGEFLAG(uname, flname) \ 653 SETHPAGEFLAG(uname, flname) \ 654 CLEARHPAGEFLAG(uname, flname) \ 655 656 /* 657 * Create functions associated with hugetlb page flags 658 */ 659 HPAGEFLAG(RestoreReserve, restore_reserve) 660 HPAGEFLAG(Migratable, migratable) 661 HPAGEFLAG(Temporary, temporary) 662 HPAGEFLAG(Freed, freed) 663 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized) 664 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable) 665 666 #ifdef CONFIG_HUGETLB_PAGE 667 668 #define HSTATE_NAME_LEN 32 669 /* Defines one hugetlb page size */ 670 struct hstate { 671 struct mutex resize_lock; 672 int next_nid_to_alloc; 673 int next_nid_to_free; 674 unsigned int order; 675 unsigned int demote_order; 676 unsigned long mask; 677 unsigned long max_huge_pages; 678 unsigned long nr_huge_pages; 679 unsigned long free_huge_pages; 680 unsigned long resv_huge_pages; 681 unsigned long surplus_huge_pages; 682 unsigned long nr_overcommit_huge_pages; 683 struct list_head hugepage_activelist; 684 struct list_head hugepage_freelists[MAX_NUMNODES]; 685 unsigned int max_huge_pages_node[MAX_NUMNODES]; 686 unsigned int nr_huge_pages_node[MAX_NUMNODES]; 687 unsigned int free_huge_pages_node[MAX_NUMNODES]; 688 unsigned int surplus_huge_pages_node[MAX_NUMNODES]; 689 #ifdef CONFIG_CGROUP_HUGETLB 690 /* cgroup control files */ 691 struct cftype cgroup_files_dfl[8]; 692 struct cftype cgroup_files_legacy[10]; 693 #endif 694 char name[HSTATE_NAME_LEN]; 695 }; 696 697 struct huge_bootmem_page { 698 struct list_head list; 699 struct hstate *hstate; 700 }; 701 702 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list); 703 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 704 unsigned long addr, int avoid_reserve); 705 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 706 nodemask_t *nmask, gfp_t gfp_mask, 707 bool allow_alloc_fallback); 708 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 709 pgoff_t idx); 710 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 711 unsigned long address, struct folio *folio); 712 713 /* arch callback */ 714 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid); 715 int __init alloc_bootmem_huge_page(struct hstate *h, int nid); 716 bool __init hugetlb_node_alloc_supported(void); 717 718 void __init hugetlb_add_hstate(unsigned order); 719 bool __init arch_hugetlb_valid_size(unsigned long size); 720 struct hstate *size_to_hstate(unsigned long size); 721 722 #ifndef HUGE_MAX_HSTATE 723 #define HUGE_MAX_HSTATE 1 724 #endif 725 726 extern struct hstate hstates[HUGE_MAX_HSTATE]; 727 extern unsigned int default_hstate_idx; 728 729 #define default_hstate (hstates[default_hstate_idx]) 730 731 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio) 732 { 733 return folio->_hugetlb_subpool; 734 } 735 736 static inline void hugetlb_set_folio_subpool(struct folio *folio, 737 struct hugepage_subpool *subpool) 738 { 739 folio->_hugetlb_subpool = subpool; 740 } 741 742 static inline struct hstate *hstate_file(struct file *f) 743 { 744 return hstate_inode(file_inode(f)); 745 } 746 747 static inline struct hstate *hstate_sizelog(int page_size_log) 748 { 749 if (!page_size_log) 750 return &default_hstate; 751 752 if (page_size_log < BITS_PER_LONG) 753 return size_to_hstate(1UL << page_size_log); 754 755 return NULL; 756 } 757 758 static inline struct hstate *hstate_vma(struct vm_area_struct *vma) 759 { 760 return hstate_file(vma->vm_file); 761 } 762 763 static inline unsigned long huge_page_size(const struct hstate *h) 764 { 765 return (unsigned long)PAGE_SIZE << h->order; 766 } 767 768 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma); 769 770 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma); 771 772 static inline unsigned long huge_page_mask(struct hstate *h) 773 { 774 return h->mask; 775 } 776 777 static inline unsigned int huge_page_order(struct hstate *h) 778 { 779 return h->order; 780 } 781 782 static inline unsigned huge_page_shift(struct hstate *h) 783 { 784 return h->order + PAGE_SHIFT; 785 } 786 787 static inline bool hstate_is_gigantic(struct hstate *h) 788 { 789 return huge_page_order(h) > MAX_PAGE_ORDER; 790 } 791 792 static inline unsigned int pages_per_huge_page(const struct hstate *h) 793 { 794 return 1 << h->order; 795 } 796 797 static inline unsigned int blocks_per_huge_page(struct hstate *h) 798 { 799 return huge_page_size(h) / 512; 800 } 801 802 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h, 803 struct address_space *mapping, pgoff_t idx) 804 { 805 return filemap_lock_folio(mapping, idx << huge_page_order(h)); 806 } 807 808 #include <asm/hugetlb.h> 809 810 #ifndef is_hugepage_only_range 811 static inline int is_hugepage_only_range(struct mm_struct *mm, 812 unsigned long addr, unsigned long len) 813 { 814 return 0; 815 } 816 #define is_hugepage_only_range is_hugepage_only_range 817 #endif 818 819 #ifndef arch_clear_hugetlb_flags 820 static inline void arch_clear_hugetlb_flags(struct folio *folio) { } 821 #define arch_clear_hugetlb_flags arch_clear_hugetlb_flags 822 #endif 823 824 #ifndef arch_make_huge_pte 825 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift, 826 vm_flags_t flags) 827 { 828 return pte_mkhuge(entry); 829 } 830 #endif 831 832 static inline struct hstate *folio_hstate(struct folio *folio) 833 { 834 VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio); 835 return size_to_hstate(folio_size(folio)); 836 } 837 838 static inline unsigned hstate_index_to_shift(unsigned index) 839 { 840 return hstates[index].order + PAGE_SHIFT; 841 } 842 843 static inline int hstate_index(struct hstate *h) 844 { 845 return h - hstates; 846 } 847 848 int dissolve_free_hugetlb_folio(struct folio *folio); 849 int dissolve_free_hugetlb_folios(unsigned long start_pfn, 850 unsigned long end_pfn); 851 852 #ifdef CONFIG_MEMORY_FAILURE 853 extern void folio_clear_hugetlb_hwpoison(struct folio *folio); 854 #else 855 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio) 856 { 857 } 858 #endif 859 860 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION 861 #ifndef arch_hugetlb_migration_supported 862 static inline bool arch_hugetlb_migration_supported(struct hstate *h) 863 { 864 if ((huge_page_shift(h) == PMD_SHIFT) || 865 (huge_page_shift(h) == PUD_SHIFT) || 866 (huge_page_shift(h) == PGDIR_SHIFT)) 867 return true; 868 else 869 return false; 870 } 871 #endif 872 #else 873 static inline bool arch_hugetlb_migration_supported(struct hstate *h) 874 { 875 return false; 876 } 877 #endif 878 879 static inline bool hugepage_migration_supported(struct hstate *h) 880 { 881 return arch_hugetlb_migration_supported(h); 882 } 883 884 /* 885 * Movability check is different as compared to migration check. 886 * It determines whether or not a huge page should be placed on 887 * movable zone or not. Movability of any huge page should be 888 * required only if huge page size is supported for migration. 889 * There won't be any reason for the huge page to be movable if 890 * it is not migratable to start with. Also the size of the huge 891 * page should be large enough to be placed under a movable zone 892 * and still feasible enough to be migratable. Just the presence 893 * in movable zone does not make the migration feasible. 894 * 895 * So even though large huge page sizes like the gigantic ones 896 * are migratable they should not be movable because its not 897 * feasible to migrate them from movable zone. 898 */ 899 static inline bool hugepage_movable_supported(struct hstate *h) 900 { 901 if (!hugepage_migration_supported(h)) 902 return false; 903 904 if (hstate_is_gigantic(h)) 905 return false; 906 return true; 907 } 908 909 /* Movability of hugepages depends on migration support. */ 910 static inline gfp_t htlb_alloc_mask(struct hstate *h) 911 { 912 if (hugepage_movable_supported(h)) 913 return GFP_HIGHUSER_MOVABLE; 914 else 915 return GFP_HIGHUSER; 916 } 917 918 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask) 919 { 920 gfp_t modified_mask = htlb_alloc_mask(h); 921 922 /* Some callers might want to enforce node */ 923 modified_mask |= (gfp_mask & __GFP_THISNODE); 924 925 modified_mask |= (gfp_mask & __GFP_NOWARN); 926 927 return modified_mask; 928 } 929 930 static inline bool htlb_allow_alloc_fallback(int reason) 931 { 932 bool allowed_fallback = false; 933 934 /* 935 * Note: the memory offline, memory failure and migration syscalls will 936 * be allowed to fallback to other nodes due to lack of a better chioce, 937 * that might break the per-node hugetlb pool. While other cases will 938 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool. 939 */ 940 switch (reason) { 941 case MR_MEMORY_HOTPLUG: 942 case MR_MEMORY_FAILURE: 943 case MR_SYSCALL: 944 case MR_MEMPOLICY_MBIND: 945 allowed_fallback = true; 946 break; 947 default: 948 break; 949 } 950 951 return allowed_fallback; 952 } 953 954 static inline spinlock_t *huge_pte_lockptr(struct hstate *h, 955 struct mm_struct *mm, pte_t *pte) 956 { 957 if (huge_page_size(h) == PMD_SIZE) 958 return pmd_lockptr(mm, (pmd_t *) pte); 959 VM_BUG_ON(huge_page_size(h) == PAGE_SIZE); 960 return &mm->page_table_lock; 961 } 962 963 #ifndef hugepages_supported 964 /* 965 * Some platform decide whether they support huge pages at boot 966 * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0 967 * when there is no such support 968 */ 969 #define hugepages_supported() (HPAGE_SHIFT != 0) 970 #endif 971 972 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm); 973 974 static inline void hugetlb_count_init(struct mm_struct *mm) 975 { 976 atomic_long_set(&mm->hugetlb_usage, 0); 977 } 978 979 static inline void hugetlb_count_add(long l, struct mm_struct *mm) 980 { 981 atomic_long_add(l, &mm->hugetlb_usage); 982 } 983 984 static inline void hugetlb_count_sub(long l, struct mm_struct *mm) 985 { 986 atomic_long_sub(l, &mm->hugetlb_usage); 987 } 988 989 #ifndef huge_ptep_modify_prot_start 990 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start 991 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma, 992 unsigned long addr, pte_t *ptep) 993 { 994 return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep); 995 } 996 #endif 997 998 #ifndef huge_ptep_modify_prot_commit 999 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit 1000 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma, 1001 unsigned long addr, pte_t *ptep, 1002 pte_t old_pte, pte_t pte) 1003 { 1004 unsigned long psize = huge_page_size(hstate_vma(vma)); 1005 1006 set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize); 1007 } 1008 #endif 1009 1010 #ifdef CONFIG_NUMA 1011 void hugetlb_register_node(struct node *node); 1012 void hugetlb_unregister_node(struct node *node); 1013 #endif 1014 1015 /* 1016 * Check if a given raw @page in a hugepage is HWPOISON. 1017 */ 1018 bool is_raw_hwpoison_page_in_hugepage(struct page *page); 1019 1020 #else /* CONFIG_HUGETLB_PAGE */ 1021 struct hstate {}; 1022 1023 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio) 1024 { 1025 return NULL; 1026 } 1027 1028 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h, 1029 struct address_space *mapping, pgoff_t idx) 1030 { 1031 return NULL; 1032 } 1033 1034 static inline int isolate_or_dissolve_huge_page(struct page *page, 1035 struct list_head *list) 1036 { 1037 return -ENOMEM; 1038 } 1039 1040 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 1041 unsigned long addr, 1042 int avoid_reserve) 1043 { 1044 return NULL; 1045 } 1046 1047 static inline struct folio * 1048 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 1049 nodemask_t *nmask, gfp_t gfp_mask, 1050 bool allow_alloc_fallback) 1051 { 1052 return NULL; 1053 } 1054 1055 static inline int __alloc_bootmem_huge_page(struct hstate *h) 1056 { 1057 return 0; 1058 } 1059 1060 static inline struct hstate *hstate_file(struct file *f) 1061 { 1062 return NULL; 1063 } 1064 1065 static inline struct hstate *hstate_sizelog(int page_size_log) 1066 { 1067 return NULL; 1068 } 1069 1070 static inline struct hstate *hstate_vma(struct vm_area_struct *vma) 1071 { 1072 return NULL; 1073 } 1074 1075 static inline struct hstate *folio_hstate(struct folio *folio) 1076 { 1077 return NULL; 1078 } 1079 1080 static inline struct hstate *size_to_hstate(unsigned long size) 1081 { 1082 return NULL; 1083 } 1084 1085 static inline unsigned long huge_page_size(struct hstate *h) 1086 { 1087 return PAGE_SIZE; 1088 } 1089 1090 static inline unsigned long huge_page_mask(struct hstate *h) 1091 { 1092 return PAGE_MASK; 1093 } 1094 1095 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1096 { 1097 return PAGE_SIZE; 1098 } 1099 1100 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1101 { 1102 return PAGE_SIZE; 1103 } 1104 1105 static inline unsigned int huge_page_order(struct hstate *h) 1106 { 1107 return 0; 1108 } 1109 1110 static inline unsigned int huge_page_shift(struct hstate *h) 1111 { 1112 return PAGE_SHIFT; 1113 } 1114 1115 static inline bool hstate_is_gigantic(struct hstate *h) 1116 { 1117 return false; 1118 } 1119 1120 static inline unsigned int pages_per_huge_page(struct hstate *h) 1121 { 1122 return 1; 1123 } 1124 1125 static inline unsigned hstate_index_to_shift(unsigned index) 1126 { 1127 return 0; 1128 } 1129 1130 static inline int hstate_index(struct hstate *h) 1131 { 1132 return 0; 1133 } 1134 1135 static inline int dissolve_free_hugetlb_folio(struct folio *folio) 1136 { 1137 return 0; 1138 } 1139 1140 static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn, 1141 unsigned long end_pfn) 1142 { 1143 return 0; 1144 } 1145 1146 static inline bool hugepage_migration_supported(struct hstate *h) 1147 { 1148 return false; 1149 } 1150 1151 static inline bool hugepage_movable_supported(struct hstate *h) 1152 { 1153 return false; 1154 } 1155 1156 static inline gfp_t htlb_alloc_mask(struct hstate *h) 1157 { 1158 return 0; 1159 } 1160 1161 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask) 1162 { 1163 return 0; 1164 } 1165 1166 static inline bool htlb_allow_alloc_fallback(int reason) 1167 { 1168 return false; 1169 } 1170 1171 static inline spinlock_t *huge_pte_lockptr(struct hstate *h, 1172 struct mm_struct *mm, pte_t *pte) 1173 { 1174 return &mm->page_table_lock; 1175 } 1176 1177 static inline void hugetlb_count_init(struct mm_struct *mm) 1178 { 1179 } 1180 1181 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m) 1182 { 1183 } 1184 1185 static inline void hugetlb_count_sub(long l, struct mm_struct *mm) 1186 { 1187 } 1188 1189 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma, 1190 unsigned long addr, pte_t *ptep) 1191 { 1192 #ifdef CONFIG_MMU 1193 return ptep_get(ptep); 1194 #else 1195 return *ptep; 1196 #endif 1197 } 1198 1199 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, 1200 pte_t *ptep, pte_t pte, unsigned long sz) 1201 { 1202 } 1203 1204 static inline void hugetlb_register_node(struct node *node) 1205 { 1206 } 1207 1208 static inline void hugetlb_unregister_node(struct node *node) 1209 { 1210 } 1211 1212 static inline bool hugetlbfs_pagecache_present( 1213 struct hstate *h, struct vm_area_struct *vma, unsigned long address) 1214 { 1215 return false; 1216 } 1217 #endif /* CONFIG_HUGETLB_PAGE */ 1218 1219 static inline spinlock_t *huge_pte_lock(struct hstate *h, 1220 struct mm_struct *mm, pte_t *pte) 1221 { 1222 spinlock_t *ptl; 1223 1224 ptl = huge_pte_lockptr(h, mm, pte); 1225 spin_lock(ptl); 1226 return ptl; 1227 } 1228 1229 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA) 1230 extern void __init hugetlb_cma_reserve(int order); 1231 #else 1232 static inline __init void hugetlb_cma_reserve(int order) 1233 { 1234 } 1235 #endif 1236 1237 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 1238 static inline bool hugetlb_pmd_shared(pte_t *pte) 1239 { 1240 return page_count(virt_to_page(pte)) > 1; 1241 } 1242 #else 1243 static inline bool hugetlb_pmd_shared(pte_t *pte) 1244 { 1245 return false; 1246 } 1247 #endif 1248 1249 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr); 1250 1251 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 1252 /* 1253 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 1254 * implement this. 1255 */ 1256 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1257 #endif 1258 1259 static inline bool __vma_shareable_lock(struct vm_area_struct *vma) 1260 { 1261 return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data; 1262 } 1263 1264 bool __vma_private_lock(struct vm_area_struct *vma); 1265 1266 /* 1267 * Safe version of huge_pte_offset() to check the locks. See comments 1268 * above huge_pte_offset(). 1269 */ 1270 static inline pte_t * 1271 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz) 1272 { 1273 #if defined(CONFIG_HUGETLB_PAGE) && \ 1274 defined(CONFIG_ARCH_WANT_HUGE_PMD_SHARE) && defined(CONFIG_LOCKDEP) 1275 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1276 1277 /* 1278 * If pmd sharing possible, locking needed to safely walk the 1279 * hugetlb pgtables. More information can be found at the comment 1280 * above huge_pte_offset() in the same file. 1281 * 1282 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP. 1283 */ 1284 if (__vma_shareable_lock(vma)) 1285 WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) && 1286 !lockdep_is_held( 1287 &vma->vm_file->f_mapping->i_mmap_rwsem)); 1288 #endif 1289 return huge_pte_offset(vma->vm_mm, addr, sz); 1290 } 1291 1292 #endif /* _LINUX_HUGETLB_H */ 1293